WorldWideScience

Sample records for non-metallic construction material

  1. Sustainable Non-Metallic Building Materials

    Directory of Open Access Journals (Sweden)

    Svetlana Tretsiakova-McNally

    2010-01-01

    Full Text Available Buildings are the largest energy consumers and greenhouse gases emitters, both in the developed and developing countries. In continental Europe, the energy use in buildings alone is responsible for up to 50% of carbon dioxide emission. Urgent changes are, therefore, required relating to energy saving, emissions control, production and application of materials, use of renewable resources, and to recycling and reuse of building materials. In addition, the development of new eco-friendly building materials and practices is of prime importance owing to the growing environmental concerns. This review reflects the key tendencies in the sector of sustainable building materials of a non-metallic nature that have occurred over the past decade or so.

  2. Testing theOdour Quality of Non-Metallic Materials

    Directory of Open Access Journals (Sweden)

    AVIJIT SINGH GANGWAR

    2014-10-01

    Full Text Available This report has been compiled on the completion of 3 week summer training at ICAT. It discusses about a very necessary and least popular part of the Automotive Industry i.e. Testing and Certification. It discusses about one of the government notified Testing body ICAT which is one of just 6 such organisations in India.This report deals with the odour quality testing of non-metallic materials that are used for automobile compartment and parts associated with the compartment.

  3. Fatigue Strength Prediction of Drilling Materials Based on the Maximum Non-metallic Inclusion Size

    Science.gov (United States)

    Zeng, Dezhi; Tian, Gang; Liu, Fei; Shi, Taihe; Zhang, Zhi; Hu, Junying; Liu, Wanying; Ouyang, Zhiying

    2015-12-01

    In this paper, the statistics of the size distribution of non-metallic inclusions in five drilling materials were performed. Based on the maximum non-metallic inclusion size, the fatigue strength of the drilling material was predicted. The sizes of non-metallic inclusions in drilling materials were observed to follow the inclusion size distribution rule. Then the maximum inclusion size in the fatigue specimens was deduced. According to the prediction equation of the maximum inclusion size and fatigue strength proposed by Murakami, fatigue strength of drilling materials was obtained. Moreover, fatigue strength was also measured through rotating bending tests. The predicted fatigue strength was significantly lower than the measured one. Therefore, according to the comparison results, the coefficients in the prediction equation were revised. The revised equation allowed the satisfactory prediction results of fatigue strength of drilling materials at the fatigue life of 107 rotations and could be used in the fast prediction of fatigue strength of drilling materials.

  4. Laser -Based Joining of Metallic and Non-metallic Materials

    Science.gov (United States)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  5. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    Science.gov (United States)

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.

  6. Construction material

    Science.gov (United States)

    Wagh, Arun S.; Antink, Allison L.

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  7. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  8. Detection of Surface and Subsurface Cracks in Metallic and Non-Metallic Materials Using a Complementary Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Ali Albishi

    2014-10-01

    Full Text Available Available microwave techniques for crack detection have some challenges, such as design complexity and working at a high frequency. These challenges make the sensing apparatus design complex and relatively very expensive. This paper presents a simple method for surface and subsurface crack detection in metallic and non-metallic materials based on complementary split-ring resonators (CSRRs. A CSRR sensor can be patterned on the ground plane of a microstrip line and fabricated using printed circuit board technology. Compared to available microwave techniques for sub-millimeter crack detection, the methods presented here show distinct advantages, such as high spatial resolution, high sensitivity and design simplicity. The response of the CSRR as a sensor for crack detection is studied and analysed numerically. Experimental validations are also presented.

  9. Metallic and Non-Metallic Materials for the Primary Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf; RP Corson

    2006-02-21

    The primary support structure (PSS) is required for mechanical support of reactor module (RM) components and mounting of the RM to the spacecraft. The PSS would provide support and accept all loads associated with dynamic (e. g., launch and maneuvering) or thermally induced loading. Prior to termination of NRPCT involvement in Project Prometheus, the NRPCT Mechanical Systems team developed preliminary finite element models to gain a basic understanding of the behavior of the structure, but optimization of the models, specification of the final design, and materials selection were not completed. The Space Plant Materials team had evaluated several materials for potential use in the primary support structure, namely titanium alloys, beryllium, aluminum alloys and carbon-carbon composites. The feasibility of application of each material system was compared based on mass, stiffness, thermal expansion, and ease of fabrication. Due to insufficient data on environmental factors, such as temperatures and radiation, and limited modeling support, a final materials selection was not made.

  10. [Materials for construction sector].

    Science.gov (United States)

    Macchia, C

    2012-01-01

    The construction sector is characterized by high complexity due to several factors. There are a lot of processes within the building sites and they need the use of different materials with the help of appropriate technologies. Traditional materials have evolved and diversified, meanwhile new products and materials appeared and still appear, offering services which meet user needs, but that often involve risks to the health of workers. Research in the field of materials, promoted and carried out at various levels, has led to interesting results, encoded in the form of rules and laws.

  11. Cleavage of hydrogen by activation at a single non-metal centre - towards new hydrogen storage materials.

    Science.gov (United States)

    Grabowski, Sławomir J

    2015-05-28

    Molecular surfaces of non-metal species are often characterized by both positive and negative regions of electrostatic potential (EP) at a non-metal centre. This centre may activate molecular hydrogen which further leads to the addition reaction. The positive EP regions at the non-metal centres correspond to σ-holes; the latter sites are enhanced by electronegative substituents. This is why the following simple moieties; PFH2, SFH, AsFH2, SeFH, BrF3, PF(CH3)2 and AsF(CH3)2, were chosen here to analyze the H2 activation and its subsequent splitting at the P, As, S, Se and Br centres. Also the reverse H-H bond reforming process is analyzed. MP2/aug-cc-pVTZ calculations were performed for systems corresponding to different stages of these processes. The sulphur centre in the SFH moiety is analyzed in detail since the potential barrier height for the addition reaction for this species is the lowest of the moieties analyzed here. The results of calculations show that the SFH + H2 → SFH3 reaction in the gas phase is endothermic but it is exothermic in polar solvents.

  12. One-Sided 3D Imaging of Non-Uniformities in Non-Metallic Space Flight Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II project, we propose to develop, construct, and deliver to NASA a prototype single-sided computed tomography time-domain terahertz (single-sided CT...

  13. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  14. A computer controlled mass spectrometer system for investigating the decomposition of non-metallic materials under atmospheric conditions

    Science.gov (United States)

    Thompson, J. M.

    1985-01-01

    A PDP 11/23 quadrupole mass spectrometer system was coupled to a nondiscriminating gas inlet system permitting gases at atmospheric pressure to be admitted into a high vacuum chamber containing the ion source of the mass spectrometer without separation of the gaseous components. The resolution of related software problems has resulted in a convenient computer-mass spectrometer system capable of generating masses, relative intensities and related data on the gaseous products resulting from the atmospheric thermal decomposition of nonmetallic materials.

  15. Analysis of industry development of building materials and ore mining and dressing of non-metallic minerals%2011年建材及非金属矿采选业行业发展分析

    Institute of Scientific and Technical Information of China (English)

    何军生

    2012-01-01

    In 2011, the growth of building materials production remained stable, industrial structure contiuned to optimise, economic porfits improved. In this paper, the author firstly discusses economic operation of building materials and ore mining and dressing of non-metallic minerals in 2011, to adjust the industrial structure of building materials and ore mining and dressing of non-metallic minerals to impove the quality of the economic operation, predicts the development trend of industry of building materials and ore mining and dressing of non-metallic minerals in 2012. At last, the author puts forward to policy suggestions which accelerate industry deleopment of the building materials and ore mining and dressing of non-metallic minerals%2011年建材工业生产增长速度保持平稳,产业结构继续优化,经济效益提高.本文首先讨论了2011年建材工业经济及非金属矿采选行业经济运行情况,做到调整建材及非金属矿选行业产业结构,提高经济运行质量,预测了2012年建材及非金属矿选行业未来发展趋势,最后提出促进建材及非金属矿选行业发展的政策建议.

  16. Material Efficiency of Building Construction

    Directory of Open Access Journals (Sweden)

    Antti Ruuska

    2014-07-01

    Full Text Available Better construction and use of buildings in the European Union would influence 42% of final energy consumption, about 35% of our greenhouse gas emissions and more than 50% of all extracted materials. It could also help to save up to 30% of water consumption. This paper outlines and draws conclusions about different aspects of the material efficiency of buildings and assesses the significance of different building materials on the material efficiency. The research uses an extensive literature study and a case-study in order to assess: should the depletion of materials be ignored in the environmental or sustainability assessment of buildings, are the related effects on land use, energy use and/or harmful emissions significant, should related indicators (such as GHGs be used to indicate the material efficiency of buildings, and what is the significance of scarce materials, compared to the use of other building materials. This research suggests that the material efficiency should focus on the significant global impacts of material efficiency; not on the individual factors of it. At present global warming and greenhouse gas emissions are among the biggest global problems on which material efficiency has a direct impact on. Therefore, this paper suggests that greenhouse gas emissions could be used as an indicator for material efficiency in building.

  17. Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis

    Science.gov (United States)

    Jiang, Yinhua; Liu, Peipei; Chen, YeCheng; Zhou, Zhengzhong; Yang, Haijian; Hong, Yuanzhi; Li, Fan; Ni, Liang; Yan, Yongsheng; Gregory, Duncan H.

    2017-01-01

    In this paper, a novel Ta3N5/g-C3N4 metal/non-metal nitride hybrid was successfully synthesized by a facile impregnation method. The photocatalytic activity of Ta3N5/g-C3N4 hybrid nitrides was evaluated by the degradation of organic dye rhodamine B (RhB) under visible light irradiation, and the result indicated that all Ta3N5/g-C3N4 samples exhibited distinctly enhanced photocatalytic activities for the degradation of RhB than pure g-C3N4. The optimal Ta3N5/g-C3N4 composite sample, with Ta3N5 mass ratio of 2%, demonstrated the highest photocatalytic activity, and its degradation rate constant was 2.71 times as high as that of pure g-C3N4. The enhanced photocatalytic activity of this Ta3N5/g-C3N4 metal/metal-free nitride was predominantly attributed to the synergistic effect which increased visible-light absorption and facilitated the efficient separation of photoinduced electrons and holes. The Ta3N5/g-C3N4 hybrid nitride exhibited excellent photostability and reusability. The possible mechanism for improved photocatalytic performance was proposed. Overall, this work may provide a facile way to synthesize the highly efficient metal/metal-free hybrid nitride photocatalysts with promising applications in environmental purification and energy conversion.

  18. An innovate method to recycle non-metallic materials from waste printed circuit board.%废线路板非金属物料再生利用新型工艺研究

    Institute of Scientific and Technical Information of China (English)

    段华波; 李金惠; 王斯婷

    2012-01-01

    The reuse of non-metallic material separated from PWBs residues before and after thermo-shocked pretreatment was investigated. With the blending of various additives from silane coupling agents, lubricant agents, anti-oxidizing agents to processing modifier, the non-metallic material could be filled to produce polymeric composite materials subjected to the injection and molding processes. Said method was also appropriate to thermo-shocked non-metallic material. The mechanical property was qualified by compared with the standard limit of related composite materials. The maximum amount of recyclate that could be added to a composite board was 30% of weight, with the additive agents of: silane coupling agents (1%), lubricant agents (1%), anti-oxidizing agents (1%) and processing modifier (5%).%以加热改性处理前后的废线路板非金属物料为对象,对其再生利用工艺进行了研究.通过添加硅烷偶联剂、润滑剂、抗氧化剂和改性剂等助剂改性共混,基于挤出注塑成型工艺过程,可制备废线路板非金属物料填充增强聚丙烯复合板材,该工艺同时可适合一定温度条件下加热改性处理后的非金属物料,其主要力学性能符合相关制品产品质量标准.确定的优化参数为:非金属物料添加质量分数30%,添加助剂包括硅烷偶联剂(1%)、润滑剂(1%)、抗氧化剂(1%)和改性剂(5%).

  19. Management for Construction Materials and Control of Construction Waste in Construction Industry: A Review

    Directory of Open Access Journals (Sweden)

    A. A. Gulghane

    2015-04-01

    Full Text Available In recent treads a wide range of building materials is available for the construction of civil engineering structures. The total cost of materials may be up to 60% or more of the total cost incurred in construction project dependent upon the type of project. Effective construction materials management is a key to success for a construction project. Construction waste is another serious problem in construction industry. A large and various types of construction waste with different characteristics are created at all the stages of construction. Construction industries have a larger part in contributing environmental problems. The economic and environmental benefits must be gained from construction waste minimization. This paper presents a review on systematically investigation of the management of construction materials and construction waste, material management techniques, control of construction waste and existing situation of construction management and construction waste in the industry.

  20. Management for Construction Materials and Control of Construction Waste in Construction Industry: A Review

    OpenAIRE

    A. A. Gulghane; Prof P. V. Khandve

    2015-01-01

    In recent treads a wide range of building materials is available for the construction of civil engineering structures. The total cost of materials may be up to 60% or more of the total cost incurred in construction project dependent upon the type of project. Effective construction materials management is a key to success for a construction project. Construction waste is another serious problem in construction industry. A large and various types of construction waste with different...

  1. Sustainable Management of Construction and Demolition Materials

    Science.gov (United States)

    This web page discusses how to sustainably manage construction and demolition materials, Information covers, what they are, and how builders, construction crews, demolition teams,and deign practitioners can divert C&D from landfills.

  2. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  3. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    OpenAIRE

    Тахира Далиевна Сидикова

    2016-01-01

    We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR) may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ce...

  4. Development of Non-metal Material Query System for Satellite-borne Radar Based on .NET Framework%基于.NET框架的星载雷达非金属材料查询系统开发

    Institute of Scientific and Technical Information of China (English)

    程丹; 欧屹

    2011-01-01

    Based on .NET framework,the non-metal material query system for satellite-borne radar was developed in the environment of Visual Studio 2005.The web pages were written by ASP.NET while the database was developed using Oracle9i.This system realizes query of non-metal material data for satellite-borne radar in enterprise LAN.It can also carry out data maintenance via administrator account.This system effectively realizes knowledge sharing,and also provides a good cooperative working environment for the enterprise.%基于.NET框架,在Visual Studio 2005环境中开发了星载雷达非金属材料查询系统,前台Web页面和后台数据库分别采用ASP.NET和Oracle9i进行开发。该系统能够在企业局域网范围内实现对星载雷达非金属材料相关信息的查询,且通过登录管理员帐户,可以实现对材料信息的数据维护。该系统有效实现了知识共享,为企业提供了理想的协同工作环境。

  5. Using Indigenous Materials for Construction

    Science.gov (United States)

    2015-07-01

    the sandwich composite provides a desired balance of thermal insulation, fire resistance and (with proper shear stress transfer through the core ...ferrocement webs acting as shear ties (Figure 1.2c), with either of core materials noted above  Building systems comprising sandwich composite wall , roof...sandwich walls , respectively, the weight of each wall (Figure 4.12) can be approximated at 1,248 kg (~46% of which 46 corresponds to the core weight

  6. Sustainable material selection for construction industry

    DEFF Research Database (Denmark)

    Govindan, Kannan; Shankar, Madan; Kannan, Devika

    2016-01-01

    Urbanization and globalization has led to a rapid development in the construction industry. Many strategies have been proposed to improve cost effectiveness in this sector. Over the last decade, cost concerns have been balanced with a growing debate on the necessity for sustainable construction...... in particular, there is an ongoing demand to select the best sustainable construction materials because the industry is growing so rapidly in this nation. Thus, the main intent of this paper is to propose a model to evaluate the best sustainable construction material based on sustainable indicators through...... practices. Because of depleting resources and environmental concerns, researchers and practitioners have begun to explore sustainable construction strategies. Among these strategies is the selection of sustainable materials which play a vital role in a building's environmental footprint. In the UAE...

  7. Use of superabsorbent polymers in construction materials

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2008-01-01

    This paper gives an overview of some of the possibilities which are offered by the use of superabsorbent polymers in construction. Superabsorbent polymers, SAP, have some distinct properties that make them interesting to use in connection with construction materials. These properties include...

  8. Construction Material Waste: Recognition and Analysis

    Directory of Open Access Journals (Sweden)

    Ibrahim Mahamid

    2014-09-01

    Full Text Available This study was motivated by long term observations of the construction industry in the Northern region of the Kingdom of Saudi Arabia (KSA. The observations showed that the construction waste is becoming a serious environmental, economical and safety issue that affects the suburbs of the KSA. The study utilizes Likert scaled responses through a two-part questionnaire distributed to 42 contractors located in the Northern region of KSA. The first part of the questionnaire aims at identifying causes of material waste in building construction projects from the contractors’ viewpoint. The second part seeks to rank the considered materials according to their level of importance from the contractors’ viewpoint. The collected data was analyzed through Minitab statistical software. It was found that the most significant factors causing construction waste are: (1 inaccuracy in quantity surveys leading to over-ordering or under-ordering; (2 the selection of low quality products; (3 detail errors in design and construction; (4 the order of supplies in loose form; (5 and the inefficiency in resource management. The results of this study show that construction material handling and managerial decisions have a critical impact on the cause and effect of the level of construction waste. The study findings demonstrate that the most important benefits for considering construction waste are to know the exact required quantities for a construction project and to plan and prepare an accurate schedule for material arriving supply. The study recommends employing Lean Manufacturing principles to eliminate the construction waste and to enhance the decision making process in construction management in the northern part of KSA.

  9. Textile materials for lightweight constructions technologies, methods, materials, properties

    CERN Document Server

    2016-01-01

    In this book, experts on textile technologies convey both general and specific informa­tion on various aspects of textile engineering, ready-made technologies, and textile chemistry. They describe the entire process chain from fiber materials to various yarn constructions, 2D and 3D textile constructions, preforms, and interface layer design. In addition, the authors introduce testing methods, shaping and simulation techniques for the characterization of and structural mechanics calculations on anisotropic, pliable high-performance textiles, including specific examples from the fields of fiber plastic composites, textile concrete, and textile membranes. Readers will also be familiarized with the potential offered by increasingly popular textile structures, for instance in the fields of composite technology, construction technology, security technology, and membrane technology. Textile materials and semi-finished products have widely varied potential characteristics, and are commonly used as essential element...

  10. Basalt: structural insight as a construction material

    Indian Academy of Sciences (India)

    SMRITI RAJ; V RAMESH KUMAR; B H BHARATH KUMAR; NAGESH R IYER

    2017-01-01

    The need for the development of novel and innovative materials is instrumental at every stage of societal improvements, leading to the overall development of a country. One such material of abundant source is basalt. The use of basalt in different forms like fibre, rod, grid and laminates has captured the interest of society from the 20th century onwards. Lately, basalt fibre has attracted attention as a possible construction material due to its properties such as high modulus of elasticity, high elastic strength, corrosion resistance, high-temperature resistance, extended operating temperature range and ease of handling. This paper explores the state of the art of basalt used in the construction industry with the overall layout of different subcategories of historical background starting from fibre development and different chemical and mechanical fibre properties to its applications in the field. Comparative studies have also been reported with respect to other high-strength fibre like glass, steel and carbon fibre based on different physical, chemical and mechanical properties. Along with these, a review hasbeen done on the usage of different basalt products like aggregate, rod, fibre, mesh, etc. in structural applications. The review also tends to identify critical constraints that restrain the implementation of basalt as a global construction material, thereby opening avenues of needed research. An insight on inconsistency reported in the literature with respect to the behaviour of basalt-fibre-reinforced composites is also expressed in this paper. The overall idea is to gain information and identify and prioritize research areas of the possible applications of basalt towards sustainable construction.

  11. Determinación de la vida útil de las herramientas utilizadas en el barrenado de materiales no metálicos. // Determination of tools life in non-metallic materials drilling.

    Directory of Open Access Journals (Sweden)

    J. A. Cabrera Rodríguez

    2002-05-01

    Full Text Available En el barrenado de Placas de Circuito Impreso (PCI las barrenas de carburo de tungsteno son responsables de más de lamitad de los costos de la operación, siendo de vital importancia la búsqueda de vías para aumentar la eficiencia sin afectarla calidad del agujero.El siguiente artículo explica la implementación de una metodología para la determinación de la máxima cantidad deagujeros posibles de barrenar con una herramienta sin afectar los parámetros de calidad de los mismos en las condiciones ycon los medios disponibles en nuestro país. Esta metodología permitió elevar la vida útil de las herramientas en un 66%.Palabras claves: Barrenado, materiales no metálicos, circuitos impresos.________________________________________________________________________________AbstractIn the Printed Circuit Board (PCB drilling, the tools of tungsten carbide are responsible of more than half of the drillingcost. Due to is necessary look for ways to elevate the drilling efficiency without affect hole quality a methodology forseveral drilling in a PCB is given in the present paper.Key words: Drilling, non metalic materials, printe3d circuit board.

  12. Unvulcanized elastomeric waterproofing materials for construction application

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2016-01-01

    Full Text Available In the construction was widespread elastomer profiles, which have the ability to swell in water. Such products should have a high capacity for swelling, elasticity, resistance to weathering. At the present time for these purposes are used materials, mostly of foreign origin. With the increasing pace of construction in Russia the problem of replacement of imported materials is particularly relevant. The work was dedicated to the creation of water-swellable elastomer materials using bentonite powders and study of their properties. Сomparative testing of imported and domestic hydrophilic sealants were held. Rationale and choice of components for the cords of bentonite was conducted. Polymer base is saturated ethylene-propylene rubber. Bentonite from different manufacturers used to increase the swelling of the samples. Filler added in an amount of 50–100 phr. The elastomeric compositions were prepared using laboratory roller at a temperature of 60 ± 5° C. Profiling was performed on a syringe-machine at a temperature of 120° C. Extrusion indicator of the mixtures were evaluated on a 10-point scale (German-Russian system. It is found that high swelling products provided using field Azerbaijan bentonite. It is noted that the dosage of bentonite than 150 w.p. deteriorates technological properties of bentonite cords. It has been shown that activation of the bentonite and sodium carbonate chloride can significantly improve product swelling, wherein the bentonite content of the composition was 150–200 w.p.

  13. Design, materials, construction, repair and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J. [TransCanada PipeLines Ltd., Calgary, AB (Canada); Murray, A. [National Energy Board, Calgary, AB (Canada); Abes, J. [CC Technologies Canada, Calgary, AB (Canada)

    2007-07-01

    Working Group 4 discussed issues regarding recent technologies and practices in oil and gas pipeline design, material specification, qualification, construction and maintenance. The presentations raised awareness on emerging developments, issues and concerns, including the steps needed to implement an alternative integrity validation (AIV) process in lieu of a post-construction hydrotesting for pipeline construction. It was determined that before AIV can become an accepted practice for the entire oil and gas industry, additional research is needed to form criteria for acceptance by both regulators and the public. Issues regarding the rehabilitation of pipelines with reference to maintaining high safety standards were also reviewed. It was noted that the current labour shortage makes safety even more pertinent. Procedures should be written to ensure compliance by employees. The group discussed how operators should determine the required pressure decrease and margin of safety for integrity work in a ditch. The dangers of driver fatigue were also discussed along with proposed measures to reduce the risk of injuries to drivers. tabs., figs.

  14. A study on non-metallic structure of heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobin; Zang Chuncheng; Zhang Xiliang; Wang Yangzhong; Du Fengli [Himin Solar Energy Group Co., Ltd, Dezhou City (China); Wang Zhifeng [Inst. of Electrical Engineering, CAS, BJ (China)

    2008-07-01

    Heliostat constitutes a very important component in the solar power tower system. Its importance derives from three aspects: one is the large proportion in the total cost, accounting for about 50% of the whole, the other is its concentration efficiency and reflectivity heavily determining the power conversion from solar thermal energy to electrical energy, another is itself power consumption amount highly expressing failure or success of the power plant. Therefore, serious efforts and considerations from the structure, motion and control mode to material selection have to be given in the design and optimization of heliostat. In the present paper, the mechanical and aging performance of non-metallic materials is investigated and compared. The possibility of these non-metallic materials in the application of heliostat structure is discussed. (orig.)

  15. Construction materials and construction influential factors in Latvia

    OpenAIRE

    Skribans, V.

    2000-01-01

    In work are analysed situation in Latvian building, building material producing, in real estate market. Show on building material producing influential factors. Analysed statistic about building material produce and using in Latvia. Work out matrix, which help to develop produces and building material branch.

  16. Green Building Construction Thermal Isolation Materials (Rockwool

    Directory of Open Access Journals (Sweden)

    M. Itewi

    2011-01-01

    Full Text Available Problem statement: Building insulation consisting roughly to anything in a structure that is utilizes as insulation for any reason. Thermal insulation in structures is a significant feature to attaining thermal comfort for its tenants. Approach: Insulation decreases unnecessary warmth loss or gain and can reduce the power burdens of heating and cooling structures. It does not automatically having anything to do with problems of sufficient exposure to air and might or might not influence the amount of sound insulation. Results: In a constricted way insulation can just mean the insulation substance used to reduce heat loss, such as: Glass wool, cellulose, polystyrene, rock wool, urethane foam, vermiculite and the earth, but it can also entail a variety of plans and methods used to deal with the chief forms of heat movement like transmission, emission and convection substances. The efficiency of insulation is normally assessed by its R-value. However, an R-value does not allow for the superiority of assembly or narrow green issues for each structure. Building superiority matters comprise insufficient vapor obstructions and troubles with draft-proofing. Additionally, the property and concentration of the insulation substance itself is vital. Fiberglass insulation materials, for example, made out of short fibers of glass covered on top of each other is not as long-lasting as insulation prepared from extended entwined fibers of glass. Conclusion/Recommendations: Rockwool insulation is a kind of insulation that is constructed out of real rocks and minerals. It furthermore is known by the names of mineral wool insulation, stone wool insulation or slag wool insulation. A broad collection of goods can be constructed from Rockwool, because of its outstanding capability to obstruct sound and heat. Rockwool insulation is normally utilized in building assembly, manufacturing plants and in automotive purposes. In this study i proposed to use

  17. Integrating Sustainable Construction Materials to Achieve Green Building

    Directory of Open Access Journals (Sweden)

    Abdelmajeed H. Kasassbeh

    2015-07-01

    Full Text Available Green buildings integrate building materials and methods that promote environmental quality, economic vitality and social benefits through the design, construction and operation of the built environment. This study demonstrates potential actions including material selection that can be implemented to achieve green building. Also, we discuss the importance and environmental impact of sustainable material, the selection criteria of these materials and the different types of sustainable materials in the buildings construction in Jordan.

  18. Survey on educational material on sustainable constructions

    OpenAIRE

    Veljkovic, Milan; Koukkari, Heli; Braganca, Luis

    2008-01-01

    Higher education of professionals in the construction and real estate sector is in the process of “Greening curricula”. Pressures to educate environmentally literate workforce are increasing. Leading construction companies worldwide are becoming involved in green construction. “Green building, green project, green property, green procurement as well as green living and green citizenship” are concepts that are used in business like in voluntary organisations. The literature surv...

  19. The share of non-metallic inclusions in high-grade steel for machine parts

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2010-10-01

    Full Text Available The aim of this work was to compare the differences in the purity steel in the dimensions of inclusion particles as dependent on various steel production processes. The experimental material consisted of semi-finished products of high-grade, medium-carbon constructional steel with: manganese, chromium, nickel, molybdenum and boron. The impurity content of steel was low as phosphorus and sulphur levels did not exceed 0.025%. The experimental material consisted of steel products obtained in three metallurgical processes: electric, electric with argon refining and oxygen converter with vacuum degassing of steel. Billet samples were collected to determine: chemical composition, relative volume of non-metallic inclusions, dimensions of impurities. The results were processed and presented in graphic form.

  20. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad;

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an exampl...

  1. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  2. Materials availability for fusion power plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining.

  3. Materials for construction and civil engineering science, processing, and design

    CERN Document Server

    Margarido, Fernanda

    2015-01-01

    This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: ·       Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure ·       Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes ·  �...

  4. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Johnny Bolden

    2013-01-01

    Full Text Available More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nation’s landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take advantage of the benefits of using waste and recycled materials. Studies have investigated the use of acceptable waste, recycled and reusable materials and methods. The use of swine manure, animal fat, silica fume, roofing shingles, empty palm fruit bunch, citrus peels, cement kiln dust, fly ash, foundry sand, slag, glass, plastic, carpet, tire scraps, asphalt pavement and concrete aggregate in construction is becoming increasingly popular due to the shortage and increasing cost of raw materials. In this study a questionnaire survey targeting experts from construction industry was conducted in order to investigate the current practices of the uses of waste and recycled materials in the construction industry. This study presents an initial understanding of the current strengths and weaknesses of the practice intended to support construction industry in developing effective policies regarding uses of waste and recycled materials as construction materials.

  5. Indigenous Construction Materials for Theater Facilities

    Science.gov (United States)

    2013-09-01

    example, tools such as a hammer and nails for wood construction, or masonry tools for adobe, are easier to use than those needed to build a Hesco...Stabilizers result in an increase in soil strength and cohesion, reduced permeability , increased durability, and less soil expansion and shrinkage in wet...9 Soil-Cement 1 Water 7 Cement 2 Earth mortar 16 Wood 3 Nails 13 Stone 10 Foam 15

  6. Mass of materials: the impact of designers on construction ergonomics.

    Science.gov (United States)

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  7. Natural radioactivity in construction materials; Natuerliche Radioaktivitaet in Bauprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Bernd [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2017-04-01

    Rocks and soils contain traces of uranium and thorium and their daughter products, also the primordial nuclide K-40. Most construction materials are produced from mineral raw materials and residuals from industrial processes, thus natural radionuclides can be detected. The radionuclide concentrations are relevant with respect to radiation protection. Radionuclides in construction materials can cause indoor radiation exposure due to their gamma radiation and due to inhalation of radon a gaseous nuclide that can diffuse out of the materials. Based on new legal developments in the European Union the Bundesamt fuer Strahlenschutz is now again concerned with radiation protection issues of building materials.

  8. Nanostructured materials, production and application in construction

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2014-12-01

    Full Text Available The paper considers characteristics of water-soluble high module silicate systems: based on polysilicates of alkali element called liquid glasses and the chains of their transformations from the lowest oligomers into the highest ones with further formation colloid solutions – silica sol. The authors describe the potentialities of the use of such systems as binders or modifying additives to produce different nanostructured silicate polymer concretes. There are examples of prospective application of liquid glass and water solutions of high module silicates in industrial areas and construction. Quantum-chemical calculations of the structure and properties of tetraphenylarsonium are given and heterogeneity of its functional groups is shown.

  9. Interactively human: Sharing time, constructing materiality.

    Science.gov (United States)

    Roepstorff, Andreas

    2013-06-01

    Predictive processing models of cognition are promising an elegant way to unite action, perception, and learning. However, in the current formulations, they are species-unspecific and have very little particularly human about them. I propose to examine how, in this framework, humans can be able to massively interact and to build shared worlds that are both material and symbolic.

  10. Natural road construction materials of Southern Africa

    CSIR Research Space (South Africa)

    Weinert, HH

    1980-01-01

    Full Text Available in the various layers of a pavement and that these differences are greater in rocks than in soils. It has also been found that environmental conditions, such as climate and topography, play an important role in the performance of such materials in roads...

  11. Innovative Materials and Techniques in Concrete Construction : ACES Workshop

    CERN Document Server

    2012-01-01

    Recent years have seen enormous advances in the technology of concrete as a material, through which its strength, compactness and ductility can reach levels never dreamed of before. Thanks to these improved material properties, the strength and durability of concrete structures is greatly improved, their weight and dimensions reduced, the scope of concrete as a structural material is widened and – despite the higher material costs – overall economy is possible, with positive impacts on sustainability as well. Similar advances are underway in reinforcing materials, notably high strength steel and fibre-reinforced polymers, and in the way they are combined with concrete into high performance structures. Developments in materials and equipment, as well as new concepts, have lead to innovative construction techniques, reducing cost and construction time and making possible the application of concrete under extreme conditions of construction or environment. All these advances will be highlighted in the book by...

  12. Enablers of Innovation in the Construction Material Industry

    DEFF Research Database (Denmark)

    Wandahl, Søren; Lassen, Astrid Heidemann; Jacobsen, Alexia

    2014-01-01

    . By exploring case-based innovation processes the purpose is to discover enablers of innovation in the construction material industry. The research design is based on explorative case studies. By applying case study as method, the research is drawn towards inductive research, where we investigate patterns......The construction material industry is often acknowledged as slightly more innovative than the overall construction industry and could hence serve as a valuable learning place for how innovation could flourish in the construction industry. Construction is viewed as network or supply chain based...... suitable for generalization on enablers for innovation. In total, six cases of successful innovation are investigated. The conclusion of this research validates that open innovation in a network approach is a precondition for a successful innovation journey in the construction industry. In addition...

  13. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  14. UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS

    OpenAIRE

    Johnny Bolden; Taher Abu-Lebdeh; Ellie Fini

    2013-01-01

    More production equals more waste, more waste creates environmental concerns of toxic threat. An economical viable solution to this problem should include utilization of waste materials for new products which in turn minimize the heavy burden on the nationâs landfills. Recycling of waste construction materials saves natural resources, saves energy, reduces solid waste, reduces air and water pollutants and reduces greenhouse gases. The construction industry can start being aware of and take a...

  15. Applications of Titanium Dioxide Photocatalysis to Construction Materials

    CERN Document Server

    Ohama, Yoshihiko

    2011-01-01

    Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.

  16. Transport and handling of construction materials in the hard coal mining industry and tunnel construction

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Stephan [Olko-Maschinentechnik GmbH, Olfen (Germany)

    2008-08-21

    In the German hard coal mining industry construction materials with the most diverse compositions are required for various applications. The largest proportion of the materials is required for the construction of roadside packs and for the backfilling of roadways because of the ever increasing depths and the resulting rock mechanical problems. Over the last 30 years handling, transport and processing systems have been developed to cope with these quantities of materials and to avoid further loads on the shaft hoisting installation. Nowadays these systems are standardised and are characterised by mobility, flexibility, small space requirement and the latest control engineering. This applies in particular to pneumatic and hydraulic transport and distribution of the construction materials. In future all mines will monitor and control all installations above and below ground from a central control room. The methods developed in the mining industry are also successfully used in tunnel and underground railway construction. (orig.)

  17. Issues of structure formation of multi-component construction materials

    Directory of Open Access Journals (Sweden)

    Sidorenko Yulia

    2017-01-01

    Full Text Available Growing volumes of construction result in the rising demand for high-quality wall materials and products, growing relevance of availability of resource and raw-material base of natural and industrial products for the construction industry. Structural, physical and mechanical qualities of these products can be improved through systematical selection of compositions based on natural and raw materials, including nano-scale products. The goal of this paper is to provide rationale for structure formation mechanisms of multicomponent materials (silica-lime, silicate, cement materials, with the possibility of using nano-scale products in their production. The primary mechanism of directed structure formation at the interface boundaries of binders are nano- and ultra-disperse particles with high absorption and adhesion properties, which are primarily intended to strengthen the contact area (one of the key structural units of multicomponent binders. The knowledge of genesis, chemical, mineralogical, and phase compositions, as well as specific features of formation of nano-technological raw materials, enables optimization of construction product properties. Using the small-angle neutron scattering method, we identified granulometric and surface properties of a series of nano-technological products (binary and sludge and materials where such products are used, which enabled us to design optimal mixture compositions and parameters of pressing operations.

  18. Construction and materials of airframe resisting severer fleight environment

    Energy Technology Data Exchange (ETDEWEB)

    Sanbongi, Shigeo

    1988-07-01

    It is unavoidable for any spaceplane to encounter mechanically and thermally severe conditions regardless of the type when taking off and asecending or reentering the atmosphere. The nose part and other parts of smaller curvature are heated to about 1,500/sup 0/C by the friction between air and the airframe. The minimum temperature in the airframe is -253/sup 0/C in the liquid hydrogen tank and it is required for the construction to resist this larger temperature difference and severe mechanical outside load. For these reasons, the airframe side wall is constructed by thermal protection system(PTS), main construction material and insulating material; and suitable materials and constructions must be selected to respective parts. In addition to using different heat resistant materials for PTS, an active mean to cool heated parts with a coolant can be thought. There are much technical accumulations in the USA, and there is large technological gap between Japan and the USA but Japan may display the power with advanced materials. (9 figs, 6 refs)

  19. Intelligent Materials Tracking System for Construction Projects Management

    Directory of Open Access Journals (Sweden)

    Narimah Kasim

    2015-05-01

    Full Text Available An essential factor adversely affecting the performance of construction projects is the improper handling of materials during site activities. In addition, paper-based reports are mostly used to record and exchange information related to the material components within the supply chain, which is problematic and inefficient. Generally, technologies (such as wireless systems and RFID are not being adequately used to overcome human errors and are not well integrated with project management systems to make tracking and management of materials easier and faster. Findings from a literature review and surveys showed that there is a lack of positive examples of such tools having been used effectively. Therefore, this research focused on the development of a materials tracking system that integrates RFID-based materials management with resources modelling to improve on-site materials tracking. Rapid prototyping was used to develop the system and testing of the system was carried out to examine the functionality and working appropriately. The proposed system is intended to promote the employment of RFID for automatic materials tracking with integration of resource modelling (Microsoft (R Office Project in the project management system in order to establish which of the tagged components are required resources for certain project tasks. In conclusion, the system provides an automatic and easy tracking method for managing materials during materials delivery and inventory management processes in construction projects.

  20. Old and Modern Construction Materials In Yemen: The Effect In Building Construction In Sana'a

    Directory of Open Access Journals (Sweden)

    ISSA A.M. Al_Kahtani

    2007-01-01

    Full Text Available Sana’a city in Yemen is one of the oldest cities in the worlds, which has different forms of building built with different types of materials. In the present work, the old and new forms of building construction and the building materials used in Sana’a, the sources available for the new material, the effects of new material usage on building forms are all presented with the advantages and disadvantages of each material. The old shapes of buildings in Yemen and the classical and modern forms of construction using different types of materials are considered in the study. Survey is used to investigate the building forms and material types in Sana’a. Several conclusions are submitted showing that, the new building material, such as concrete block, is preferred in building comparing with old material, such as stone, which makes it the best choice for the low income people but sometimes the limited resources make old material the only available choice. Several steps needed to develop and encourage the use of new building materials are recommended.

  1. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    Opiela M.; Grajcar A.

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  2. Distribution of materials in construction and demolition waste in Portugal.

    Science.gov (United States)

    Coelho, André; de Brito, Jorge

    2011-08-01

    It may not be enough simply to know the global volume of construction and demolition waste (CDW) generated in a certain region or country if one wants to estimate, for instance, the revenue accruing from separating several types of materials from the input entering a given CDW recycling plant. A more detailed determination of the distribution of the materials within the generated CDW is needed and the present paper addresses this issue, distinguishing different buildings and types of operation (new construction, retrofitting and demolition). This has been achieved by measuring the materials from buildings of different ages within the Portuguese building stock, and by using direct data from demolition/retrofitting sites and new construction average values reported in the literature. An attempt to establish a benchmark with other countries is also presented. This knowledge may also benefit industry management, especially that related to CDW recycling, helping to optimize procedures, equipment size and operation and even industrial plant spatial distribution. In an extremely competitive market, where as in Portugal low-tech and high environmental impact procedures remain the norm in the construction industry (in particular, the construction waste industry), the introduction of a successful recycling industry is only possible with highly optimized processes and based on a knowledge-based approach to problems.

  3. Construction raw materials policy and supply practices in Northwestern Europe

    NARCIS (Netherlands)

    Meulen, M.J. van der; Koopmans, T.P.F.; Pietersen, H.S.

    2003-01-01

    The present contribution is an inventory of the construction raw materials policy and supply practices in The Netherlands, Belgium, North Rhine-Westphalia, Lower Saxony, Great Britain, Norway and Denmark. The work has been commissioned by the Dutch government in order to benchmark its domestic provi

  4. Improved suction technique for the characterization of construction materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93 %). The samples to be studied are placed in a pressurized container (an extractor) on a water...

  5. Improved Suction Technique for the Characterization of Construction Materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93%). The samples to be studied are placed in a pressurized container (an extractor) on a water...

  6. Improved suction technique for the characterization of construction materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93 %). The samples to be studied are placed in a pressurized container (an extractor) on a water satur...

  7. Outgassing studies of materials for the TRT construction

    CERN Document Server

    Guarino, F; Romaniouk, A; Soutchkov, S; Tartarelli, F

    1999-01-01

    Systematic outgassing studies of 7 materials and 10 glues candidates to be used in the construction of the TRT are persented. Each sample has been tested before and after irradiation up to 50 Mrad dose. Some results on tests of the electrical and mechanical properties of the materals are also presented.

  8. Costs Climb on Materials for Schools: Construction Projects Delayed, Scrapped

    Science.gov (United States)

    Sack, Joetta L.

    2004-01-01

    The rapidly rising cost of steel and other construction materials is forcing some districts that are building new schools to scramble for more money, delay work, or redesign projects. Nationwide, contractors and architects are finding it harder to give accurate estimates on projects, and some have even had to renegotiate contracts with districts.…

  9. Aeolian sands as material to construct low-volume roads

    CSIR Research Space (South Africa)

    Paige-Green, P

    2011-07-01

    Full Text Available Aeolian sands are widespread in many semi-arid to arid areas of the world and often provide the only economic source of construction materials for low volume roads. Experience in southern Africa over a number of decades has shown that provided...

  10. Natural and construction materials and plant products. Raw materials, constructional physics, design and construction. 2. upd. and enl. ed.; Natuerliche und pflanzliche Baustoffe. Rohstoff - Bauphysik - Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, Gerhard; Wangelin, Matthias; Bruns, Rainer

    2012-07-01

    The book discusses all relevant renewable constructional materials made from fibre or dyeing plants along with their physical and chemical fundamentals. Protection of resources, environmental protection, and pollutants in constructional materials are gone into as well. [German] Dieses Buch behandelt alle wichtige nachwachsenden, pflanzlichen Baustoffe aus Faser- und Faerberpflanzen sowie dazugehoerige physikalische und chemische Grundlagen. Angesprochen werden auch Ressourcen- und Umweltschutz sowie Schadstoffe aus Bauprodukten.

  11. Environmentally Sustainable Construction Products and Materials – Assessment of release

    DEFF Research Database (Denmark)

    Wahlström, Margareta; Laine-Yliijoki, Jutta; Järnström, helena

    hardly any construction product is designed keeping recycling/reuse in mind, the “Design for theEnvironment” -concept is one of the key steps towards increased recycling and reuse and thereby towards minimal environmental impacts. This project has been carried out by VTT with cooperation with the Danish......The construction sector consumes yearly about half of all natural resourcesextracted in Europe and their transformation into building products has huge energy demands. Therefore the focus of today’s environmental policy is on the building end-of-life scenarios and material efficiency. Here waste...... prevention and recycling / reuse play a key role by providing huge energy, water and materialsavings. These issues are also specifically addressed in the Construction Products Regulation (CPR2011), where health and safety aspects related to use of construction products cover the entire lifecycle. Meanwhile...

  12. Development and mechanical properties of construction materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  13. Characterization of Kaolin as Nano Material for High Quality Construction

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available At the moment utilisation of nano technology in every aspect in human life were growing rapidly. In this research, a new nano material was produce from kaolin clay and compare to OPC in terms of surface analysis, particle sizing and micrograph image on new modification of kaolin clay particles. Kaolin clay was established in two processes which are before and after heat treatment. Apart from that, transformation of kaolin clay to nano material was monitor by using Field Emission Scanning Electron Microscope (FESEM and new nano materials were formed. Those images were supported by X Ray Diffraction analysis (XRD, X Ray Fluorescence (XRF and laser particle analyser to see the chemical composition and particle size for all specimens. A combination of rough, smooth and long section can be analysed. From this analysis a new develops nano materials can be achieved and can be utilised especially for construction purposes.

  14. Challenges in treating earthen construction materials as unsaturated soils

    Directory of Open Access Journals (Sweden)

    Augarde Charles E.

    2016-01-01

    Full Text Available Earthen construction is a loosely defined term covering both the materials and methods for creating structural components from mixtures of subsoil, often with the addition of chemical or mechanical stabilisers. There is evidence of Man creating earthen structures for thousands of years, and there are many world heritage sites containing earthen structures, some of which present issues in terms of conservation. In some parts of the world there is a growing market for new-build earthen structures and a key issue here is the lack of design codes. Since these materials are composed mainly of particulates and water it is natural to regard them as geotechnical in nature, where friction and the presence of water have a key influence on material properties, however until very recently this was not the case, with earthen construction materials regarded as weak concrete or masonry. In this paper we examine these opposing views and discuss the issues associated with regarding these materials as unsaturated soils. The paper is illustrated with outcomes from research at Durham University carried out over the past ten years.

  15. Photocatalytic construction and building materials: From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Poon, Chi-sun [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hum Hom (China)

    2009-09-15

    Heterogeneous photocatalysis has been intensively studied in recent decades because it only requires photonic energy to activate the chemical conversion contrasting with conventional catalysis which needs heat for thermo-activation. Over the years, the theories for photochemical activity of photocatalyst including photo-induced redox reaction and super-hydrophilic conversion of TiO{sub 2} itself have been established. The progress in academic research significantly promotes its practical applications, including the field of photocatalytic construction and building materials. TiO{sub 2} modified building materials are most popular because TiO{sub 2} has been traditionally used as a white pigment. The major applications of TiO{sub 2} based photocatalytic building materials include environmental pollution remediation, self-cleaning and self-disinfecting. The advantage of using solar light and rainwater as driving force has opened a new domain for environmentally friendly building materials. In this paper, the basic reaction mechanisms on photocatalyst surface under the irradiation of ultraviolet and their corresponding applications in building and construction materials are reviewed. The problems faced in practical applications and the trends for future development are also discussed. (author)

  16. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    Directory of Open Access Journals (Sweden)

    Wenbo Zeng

    2017-01-01

    Full Text Available In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration were tested for the samples which were introduced at different mass ratios of GO (1% and 3% to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants of GO in asphalt pavement construction were explained.

  17. Environmental impacts of construction materials use: a life cycle perspective

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2009-02-01

    Full Text Available , fibreboard, cellulose products, steel, aluminium frames, appliances, wire, paint, solvents, plate glass, carpet 3 On-site construction Foundation and site earthwork, concrete pouring, structural framing, roofing, mechanical... reusable materials, knock-down, site clearing, disposal PRE-USE PHASE USE-PHASE EOL 5 mining, growing/harvesting quarrying and felling is a source of air pollutants, solid waste, polluted water run-off and noise, vibration and odour. The processing...

  18. Advanced Construction Material for Airfield Pavements and Rapid Runway Repair

    Science.gov (United States)

    1990-12-01

    AIRFIELD PAVEMENTS AND RAPID RUNWAY REPAIR by Vincent Maurice Saroni, B.S.C.E. and David W. Fowler, Ph.D., P.E. T. U. Taylor Professor in...to my family, Betsy and Mark. ADVANCED CONSTRUCTION MATERIAL FOR AIRFIELD PAVEMENTS AND RAPID RUNWAY REPAIR Vincent Maurice Saroni, B.S.C.E. THESIS...85 C.4 Calculation Results of Modulus of Rupture, Density and Percent Voids for Uncompacted Siliceous G ravel

  19. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    OpenAIRE

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae; Son, Mee-Kyoung

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study...

  20. Evaluating the Readability of Radio Frequency Identification for Construction Materials

    Directory of Open Access Journals (Sweden)

    Younghan Jung

    2017-01-01

    Full Text Available Radio Frequency Identification (RFID, which was originally introduced to improve material handling and speed production as part of supply chain management, has become a globally accepted technology that is now applied on many construction sites to facilitate real-time information visibility and traceability. This paper describes a senior undergraduate project for a Construction Management (CM program that was specifically designed to give the students a greater insight into technical research in the CM area. The students were asked to determine whether it would be possible to utilize an RFID system capable of tracking tagged equipment, personnel and materials across an entire construction site. This project required them to set up an experimental program, execute a series of experiments, analyze the results and summarize them in a report. The readability test was performed using an active Ultra-High frequency (UHF, 433.92 MHz RFID system with various construction materials, including metal, concrete, wood, plastic, and aluminum. The readability distance distances are measured for each of the six scenarios. The distance at which a tag was readable with no obstructions was found to be an average of 133.9m based on three measurements, with a standard deviation of 3.9m. This result confirms the manufacturer’s claimed distance of 137.2m. The RFID tag embedded under 50.8mm of concrete was readable for an average distance of only 12.2m, the shortest readable distance of any of the scenarios tested. At the end of the semester, faculty advisors held an open discussion session to gather feedback and elicit the students’ reflections on their research experiences, revealing that the students’ overall impressions of their undergraduate research had positively affected their postgraduate education plans.

  1. Vegetable Fibers for Composite Materials In Constructive Sector

    Science.gov (United States)

    Giglio, Francesca; Savoja, Giulia

    2017-08-01

    The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.

  2. Interaction of silicene and germanene with non-metallic substrates

    Science.gov (United States)

    Houssa, M.; Scalise, E.; van den Broek, B.; Lu, A.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.

    2015-01-01

    By using first-principles simulations, we investigate the interaction of silicene and germanene with various non-metallic substrates. We first consider weak van der Waals interactions between the 2D layers and dichalcogenide substrates, like MoX2 (X=S, Se, Te). The buckling of the silicene or germanene layer is correlated to the lattice mismatch between the 2D material and the MoX2 template. The electronic properties of silicene or germanene on these different templates then largely depend on the buckling of the 2D material layer: highly buckled silicene or germanene on MoS2 are predicted to be metallic, while low buckled silicene on MoTe2 is predicted to be semi-metallic, with preserved Dirac cones at the K points. We next study the covalent bonding of silicene and germanene on (0001) ZnS and ZnSe surfaces. On these substrates, silicene or germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy band gap can be controlled by an out-of-plane electric field.

  3. Constructing Ontology for Knowledge Sharing of Materials Failure Analysis

    Directory of Open Access Journals (Sweden)

    Peng Shi

    2014-01-01

    Full Text Available Materials failure indicates the fault with materials or components during their performance. To avoid the reoccurrence of similar failures, materials failure analysis is executed to investigate the reasons for the failure and to propose improved strategies. The whole procedure needs sufficient domain knowledge and also produces valuable new knowledge. However, the information about the materials failure analysis is usually retained by the domain expert, and its sharing is technically difficult. This phenomenon may seriously reduce the efficiency and decrease the veracity of the failure analysis. To solve this problem, this paper adopts ontology, a novel technology from the Semantic Web, as a tool for knowledge representation and sharing and describes the construction of the ontology to obtain information concerning the failure analysis, application area, materials, and failure cases. The ontology represented information is machine-understandable and can be easily shared through the Internet. At the same time, failure case intelligent retrieval, advanced statistics, and even automatic reasoning can be accomplished based on ontology represented knowledge. Obviously this can promote the knowledge sharing of materials service safety and improve the efficiency of failure analysis. The case of a nuclear power plant area is presented to show the details and benefits of this method.

  4. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  5. Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

    Directory of Open Access Journals (Sweden)

    Lipiński T.

    2014-12-01

    Full Text Available Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argonrefined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess them operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.

  6. Characterization of porous construction materials using electromagnetic radar wave

    Science.gov (United States)

    Lai, Wallace Wai Lok

    This thesis reports the effort of characterizing three porous construction materials (i.e. concrete, asphalt and soils) and the establishment and formulation of novel unified constitutive models by utilizing electromagnetic (EM) radar wave. An important outcome of this research is that the studied materials were assigned successfully into their rightful positions corresponding to the different regimes governed by three EM wave properties and two engineering/geological properties of the materials. The former refers to the real part of complex dielectric permittivity (epsilon'), energy attenuation and peak-frequency drift. The latter refers to porosity and permeability determined with forward models or conventional testing techniques. In soil and asphalt, the material characterization was achieved by a novel inhouse developed method called Cyclic Moisture Variation Technique (CMVT). The technique is termed cyclic because the porous materials were subjected to change from partially saturated states to fully saturated state (i.e. permeation), and vice versa (i.e. de-watering). With CMVT, water was used as an enhancer or a tracer to differentiate the studied materials which are otherwise difficult when they are dry. Soils and asphalt with different textures were characterized by different curve families exhibited in the relationship between epsilon' and degrees of water saturation (SW). In particular, these curve families were divided into three regions: slow-climbing region in very low SW, fast-climbing region in intermediate SW and another slow-climbing region at high S W. When data obtained from the permeation and de-watering cycles was compared, dielectric hysteresis was observed, but rarely reported in the field of ground penetrating radar (GPR). Different curing histories affect both porosity and pore size distribution within mature concrete. By injecting pressurized water into concrete specimens, different concrete curing histories was back-tracked through the

  7. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    proton exchange membrane (PEM) water electrolysers (HTPEMWE). All samples were exposed to anodic polarisation in 85% phosphoric acid electrolyte solution. Platinum and gold plates were tested for the valid comparison. Steady-state voltammetry was used in combination with scanning electron microscopy......Different types of corrosion resistant stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as a possible metallic bipolar plate and construction material with respect to corrosion resistance under simulated conditions corresponding to the conditions in high temperature...

  8. Corrosion behaviour of construction materials for high temperature water electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    2010-01-01

    Different types of corrosion resistant stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as a possible metallic bipolar plate and construction material with respect to corrosion resistance under simulated conditions corresponding to the conditions in high temperature...... and energy-dispersive X-ray spectroscopy. Results show that stainless steels are the most inclined to corrosion under high anodic polarization. Among alloys, Ni-based showed the highest corrosion resistance under conditions, simulating HTPEMWE. In particular, Inconel625 is the most promising alloy...

  9. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance...... was measured under simulated conditions (molten KH2PO4) corresponding to the proton-conducting solid acids or transition metal phosphates as electrolytes. It was shown that, unlike at temperatures below 200 °C, gold is unstable with respect to corrosion in molten KH2PO4. Platinum demonstrated high corrosion...... resistance and the anodic and cathodic limits were for the first time found for the electrolyte. Nickel, niobium, Inconel®625, Hastelloy®C-276 and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as construction materials for bipolar plates. © (2013) Trans...

  10. Corrosion behaviour of construction materials for high temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Christensen, Erik;

    2011-01-01

    Different types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum were evaluated as possible metallic bipolar plates and construction materials. The corrosion resistance was measured under simulated conditions corresponding to the conditions in high...... to corrosion under strong anodic polarisation. Among alloys, Ni-based showed the highest corrosion resistance in the simulated PEM electrolyser medium. In particular, Inconel 625 was the most promising among the tested corrosion-resistant alloys for the anodic compartment in high temperature steam electrolysis....... Tantalum showed outstanding resistance to corrosion in selected media. On the contrary, passivation of titanium was weak, and the highest rate of corrosion among all tested materials was observed for titanium at 120 degrees C....

  11. Mechanical Activation of Construction Binder Materials by Various Mills

    Science.gov (United States)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  12. Sheep Wool as a Construction Material for Energy Efficiency Improvement

    Directory of Open Access Journals (Sweden)

    Azra Korjenic

    2015-06-01

    Full Text Available The building sector is responsible for 40% of the current CO2 emissions as well as energy consumption. Sustainability and energy efficiency of buildings are currently being evaluated, not only based on thermal insulation qualities and energy demands, but also based on primary energy demand, CO2 reductions and the ecological properties of the materials used. Therefore, in order to make buildings as sustainable as possible, it is crucial to maximize the use of ecological materials. This study explores alternative usage of sheep wool as a construction material beyond its traditional application in the textile industry. Another goal of this research was to study the feasibility of replacement of commonly used thermal insulations with natural and renewable materials which have better environmental and primary energy values. Building physics, energy and environmental characteristics were evaluated and compared based on hygrothermal simulation and ecological balance methods. The observations demonstrate that sheep wool, compared with mineral wool and calcium silicate, provides comparable thermal insulation characteristics, and in some applications even reveals better performance.

  13. A comparative toxicity assessment of materials used in aquatic construction.

    Science.gov (United States)

    Lalonde, Benoit A; Ernst, William; Julien, Gary; Jackman, Paula; Doe, Ken; Schaefer, Rebecca

    2011-10-01

    Comparative toxicity testing was performed on selected materials that may be used in aquatic construction projects. The tests were conducted on the following materials: (1) untreated wood species (hemlock [Tsuga ssp], Western red cedar (Thuja plicata), red oak [Quercus rubra], Douglas fir [Pseudotsuga menziesii], red pine [Pinus resinosa], and tamarack [Larix ssp]); (2) plastic wood; (3) Ecothermo wood hemlock stakes treated with preservatives (e.g., chromated copper arsenate [CCA], creosote, alkaline copper quaternary [ACQ], zinc naphthenate, copper naphthenate, and Lifetime Wood Treatment); (4) epoxy-coated steel; (5) hot-rolled steel; (6) zinc-coated steel; and (7) concrete. Those materials were used in acute lethality tests with rainbow trout, Daphnia magna, Vibrio fischeri and threespine stickleback. The results indicated the following general ranking of the materials (from the lowest to highest LC(50) values); ACQ > creosote > zinc naphthenate > copper naphthenate > CCA (treated at 22.4 kg/m(3)) > concrete > red pine > western red cedar > red oak > zinc-coated steel > epoxy-coated steel > CCA (6.4 kg/m(3)). Furthermore, the toxicity results indicated that plastic wood, certain untreated wood species (hemlock, tamarack, Douglas fir, and red oak), hot-rolled steel, Ecothermo wood, and wood treated with Lifetime Wood Treatment were generally nontoxic to the test species.

  14. Introducing Textiles as Material of Construction of Ethanol Bioreactors

    Directory of Open Access Journals (Sweden)

    Osagie A. Osadolor

    2014-11-01

    Full Text Available The conventional materials for constructing bioreactors for ethanol production are stainless and cladded carbon steel because of the corrosive behaviour of the fermenting media. As an alternative and cheaper material of construction, a novel textile bioreactor was developed and examined. The textile, coated with several layers to withstand the pressure, resist the chemicals inside the reactor and to be gas-proof was welded to form a 30 L lab reactor. The reactor had excellent performance for fermentative production of bioethanol from sugar using baker’s yeast. Experiments with temperature and mixing as process parameters were performed. No bacterial contamination was observed. Bioethanol was produced for all conditions considered with the optimum fermentation time of 15 h and ethanol yield of 0.48 g/g sucrose. The need for mixing and temperature control can be eliminated. Using a textile bioreactor at room temperature of 22 °C without mixing required 2.5 times longer retention time to produce bioethanol than at 30 °C with mixing. This will reduce the fermentation investment cost by 26% for an ethanol plant with capacity of 100,000 m3 ethanol/y. Also, replacing one 1300 m3 stainless steel reactor with 1300 m3 of the textile bioreactor in this plant will reduce the fermentation investment cost by 19%.

  15. Recycling Of Concrete Waste Material from Construction Demolition

    Directory of Open Access Journals (Sweden)

    Aiyewalehinmi E.O1 and Adeoye T.E2

    2016-04-01

    Full Text Available This study investigates the engineering properties of demolished concrete aggregates wastes along Arakale Road, Akure. The purpose is to recycle and reduce the amount of construction wastes materials going into landfills and dumping pits. The study identifies about 15% to 20% of construction waste materials go into landfill and dumping pits in Akure. Four different mixes at 0.5, 0.55, 0.60 and 0.65 water/cement ratios were performed and a total of 96 (48 each concrete cube samples were cast, cured and crushed. The results showed that at lower percentage water/cement ratios, the compressive strength of used aggregates at day 28 were much lower than virgin aggregates (16.89N/mm2 , 19.93N/mm2 while at higher percentage water/cement ratios, the compressive strength of used aggregates at day 28 was almost the same as Virgin aggregates (18.07, 18.37. It shows that the used aggregates can attain the same compressive strength as virgin aggregates at higher water/cement ratios

  16. Effect of carbon fiber content on explosion-proof performance of spherical non-metallic separation explosion-proof material%碳纤维含量对球形非金属阻隔防爆材料防爆性能的影响

    Institute of Scientific and Technical Information of China (English)

    薄雪峰; 鲁长波; 杨真理; 朱祥东; 安高军; 解立峰

    2016-01-01

    在临界起爆能和高起爆能条件下,对装填碳纤维含量分别为6.5%、8.0%、9.5%和11.0%球形非金属阻隔防爆材料的油箱进行等效静爆试验,探究球形非金属阻隔防爆材料中碳纤维含量对其防爆性能的影响.利用红外热成像仪、高速摄像机分别记录油箱爆炸火球的温度场参数及爆炸过程,并与未填装阻隔防爆材料的油箱进行对比.试验结果表明:在临界起爆能条件下,装填4种材料的油箱均有一定阻燃防爆效果,油箱爆炸产生的燃料云团面积有依次减小的趋势;在高起爆能量条件下,4种材料的外场防爆性能分数分别为16.93、22.04、32.51、94.18,材料的防爆能力随着碳纤维含量的增加而增强.%Under the conditions of critical initiation energy and high initiation energy , the equivalent static explosion tests were carried out on the fuel tank which was filled by spherical non-metallic separation explosion-proof materials with the car-bon fiber content of 6.5%, 8%, 9.5%and 11%respectively, and the effect of carbon fiber content on explosion-proof per-formance of spherical non-metallic separation explosion-proof material was studied .The temperature field parameters and ex-plosion process of the explosive ball in the tank were recorded by the infrared thermal imaging system and high speed camera separately , and compared with those of the tank without filling separation explosion -proof material .The results showed that under the condition of critical initiation energy , all the tanks filled by four kinds of materials had a certain flame retardant and explosion-proof effect , and the area of fuel cloud produced by explosion of tank presented the trend of decrease in turn . Under the condition of high initiation energy , the scores of explosion-proof performance in external field for four kinds of ma-terials were 16.93, 22.04, 32.51 and 94.18 respectively, and the explosion-proof performance of the materials enhanced with

  17. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  18. Utilization of Construction Waste Composite Powder Materials as Cementitious Materials in Small-Scale Prefabricated Concrete

    Directory of Open Access Journals (Sweden)

    Cuizhen Xue

    2016-01-01

    Full Text Available The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.

  19. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  20. Improved Suction Technique for the Characterization of Construction Materials

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hansen, Kurt Kielsgaard

    2007-01-01

    The suction technique is a method from soil science that is used for the study of moisture storage capacity in porous construction materials at high relative humidity levels (above approximately 93%). The samples to be studied are placed in a pressurized container (an extractor) on a water...... procedure for determining the equilibrium moisture content of samples during the experiment. The method (refered to as the balance method) is to simply keep track of all water entering and leaving the system and use these data to estimate the moisture content of the samples. The advantage of this approach...... is that the experiment does not need to be stopped and restarted for each relative humidity level tested. The main disadvantage of the method is that the estimation of the moisture content in the samples depends on a correct estimation of the moisture content of the ceramic disc. The second adjustment is the development...

  1. Interspecific variation in beeswax as a biological construction material.

    Science.gov (United States)

    Buchwald, Robert; Breed, Michael D; Greenberg, Alan R; Otis, Gard

    2006-10-01

    Beeswax is a multicomponent material used by bees in the genus Apis to house larvae and store honey and pollen. We characterized the mechanical properties of waxes from four honeybee species: Apis mellifera L., Apis andreniformis L., Apis dorsata L. and two subspecies of Apis cerana L. In order to isolate the material effects from the architectural properties of nest comb, we formed raw wax in to right, circular cylindrical samples, and compressed them in an electromechanical tensometer. From the resulting stress-strain curves, values for yield stress, yield strain, stress and strain at the proportional limit, stiffness, and resilience were obtained. Apis dorsata wax was stiffer and had a higher yield stress and stress at the proportional limit than all of the other waxes. The waxes of A. cerana and A. mellifera had intermediate strength and stiffness, and A. andreniformis wax was the least strong, stiff and resilient. All of the waxes had similar strain values at the proportional limit and yield point. The observed differences in wax mechanical properties correlate with the nesting ecology of these species. A. mellifera and A. cerana nest in cavities that protect the nest from environmental stresses, whereas the species with the strongest and stiffest wax, A. dorsata, constructs relatively heavy nests attached to branches of tall trees, exposing them to substantially greater mechanical forces. The wax of A. andreniformis was the least strong, stiff and resilient, and their nests have low masses relative to other species in the genus and, although not built in cavities, are constructed on lower, often shielded branches that can absorb the forces of wind and rain.

  2. Toward self-constructing materials: a systems chemistry approach.

    Science.gov (United States)

    Giuseppone, Nicolas

    2012-12-18

    To design the next generation of so-called "smart" materials, researchers will need to develop chemical systems that respond, adapt, and multitask. Because many of these features occur in living systems, we expect that such advanced artificial systems will be inspired by nature. In particular, these new materials should ultimately combine three key properties of life: metabolism, mutation, and self-replication. In this Account, we discuss our endeavors toward the design of such advanced functional materials. First, we focus on dynamic molecular libraries. These molecular and supramolecular chemical systems are based on mixtures of reversibly interacting molecules that are coupled within networks of thermodynamic equilibria. We will explain how the superimposition of combinatorial networks at different length scales of structural organization can provide valuable hierarchical dynamics for producing complex functional systems. In particular, our experimental results highlight why these libraries are of interest for the design of responsive materials and how their functional properties can be modulated by various chemical and physical stimuli. Then, we introduce examples in which these dynamic combinatorial systems can be coupled to kinetic feedback loops to produce self-replicating pathways that amplify a selected component from the equilibrated libraries. Finally, we discuss the discovery of highly functional self-replicating supramolecular assemblies that can transfer an electric signal in space and time. We show how these wires can be directly incorporated within an electronic nanocircuit by self-organization and functional feedback loops. Because the network topologies act as complex algorithms to process information, we present these systems in this order to provide context for their potential for extending the current generation of responsive materials. We propose a general description for a potential autonomous (self-constructing) material. Such a system

  3. Vibration in metal and non-metal incubators.

    Science.gov (United States)

    Youngblut, J M; Lewandowski, W; Casper, G R; Youngblut, W R

    1994-01-01

    The purpose of this study was to determine the amount of vibration transmitted to the surface of an incubator mattress. Empty incubators with metal (n = 12) and non-metal (n = 12) bases were monitored for vibration levels when the incubators were turned "off" and when they were turned "on." High levels of low-frequency vibration were detected in both types of incubators in both conditions. The metal incubators transmitted significantly less vibration to the mattress than did the non-metal incubators at several frequencies in the "off," the "on," and the "adjusted" conditions. These results suggest that infants experience significant whole-body vibration while lying in incubators.

  4. Non-metallic inclusions in high manganese austenitic alloys

    OpenAIRE

    A. Grajcar; L. Bulkowski; U. Galisz

    2011-01-01

    Purpose: The aim of the paper is to identify the type, fraction and chemical composition of non-metallic inclusions modified by rare-earth elements in an advanced group of high-manganese austenitic C-Mn-Si-Al-type steels with Nb and Ti microadditions.Design/methodology/approach: The heats of 3 high-Mn steels of a various content of Si, Al and Ti were melted in a vacuum induction furnace and a modification of non-metallic inclusions was carried out by the mischmetal in the amount of 0.87 g or ...

  5. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  6. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete.

  7. Interaction mechanism of non-metallic particles with crystallization front

    Directory of Open Access Journals (Sweden)

    Żak P. L.

    2017-03-01

    Full Text Available The process of steel solidification in the CCS mould is accompanied by a number of phenomena relating to the formation of non-metallic phase, as well as the mechanism of its interaction with the existing precipitations and the advancing crystallization front. In the solidification process the non-metallic inclusions may be absorbed or repelled by the moving front. As a result a specific distribution of non-metallic inclusions is obtained in the solidified ingot, and their distribution is a consequence of these processes. The interaction of a non-metallic inclusion with the solidification front was analyzed for alumina, for different values of the particle radius. The simulation was performed with the use of own computer program. Each time a balance of forces acting on a particle in its specific position was calculated. On this basis the change of position of alumina particle in relation to the front was defined for a specific radius and original location of the particle with respect to the front.

  8. Progress in Nanoscale Studies of Hydrogen Reactions in Construction Materials

    Science.gov (United States)

    Schweitzer, J. S.; Livingston, R. A.; Cheung, J.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Spillane, T.; Zickefoose, J.; Castellote, M.; Bengtsson, N.; Galan, I.; de Viedma, P. G.; Brendle, S.; Bumrongjaroen, W.; Muller, I.

    Nuclear resonance reaction analysis (NRRA) has been applied to measure the nanoscale distribution of hydrogen with depth in the hydration of cementitious phases. This has provided a better understanding of the mechanisms and kinetics of cement hydration during the induction period that is critical to improved concrete technology. NRRA was also applied to measure the hydrogen depth profiles in other materials used in concrete construction such as fly ash and steel. By varying the incident beam energy one measures a profile with a depth resolution of a few nanometers. Time-resolved measurements are achieved by stopping the chemical reactions at specific times. Effects of temperature, sulfate concentration, accelerators and retarders, and superplasticizers have been investigated. Hydration of fly ashes has been studied with synthetic glass specimens whose chemical compositions are modeled on those of actual fly ashes. A combinatorial chemistry approach was used where glasses of different compositions are hydrated in various solutions for a fixed time. The resulting hydrogen depth profiles show significant differences in hydrated phases, rates of depth penetration and amount of surface etching. Hydrogen embrittlement of steel was studied on slow strain rate specimens under different corrosion potentials.

  9. 30 CFR 715.18 - Dams constructed of or impounding waste material.

    Science.gov (United States)

    2010-07-01

    ... loading) 1.0 (iv) The dam, foundation, and abutments shall be stable under all conditions of construction...) of this section and for all increments of construction. (v) Seepage through the dam, foundation, and...) constructed of waste materials, in accordance with the requirements of this section. (b) Construction of...

  10. Leaching characteristics of construction materials and stabilization products containing waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; De Groot, G.J.; Wijkstra, J.

    1987-06-01

    Construction materials prepared with an admixture of waste material(s) and various stabilized waste products have been subjected to leaching studies. Static and dynamic leach tests are applied, in which the specimen to be studied is fully submerged in demineralized water or in seawater. At increasing time intervals the contact solution is renewed and the flux of elements into solution is measured. By studying a wide range of products containing waste materials attempts have been made to find common leaching characteristics. Materials studied to date comprise mortar specimen with a 20% cement replacement by pulverized coal ash, phosphate slag, light weight concrete with 50% of pulverized coal ash, stabilized phosphogypsum and stabilized products prepared from combinations of pulverized coal ash, phosphogypsum, incinerator ash, blast furnace slag, lime or cement. The alkalinity of the material, the open porosity of the product and the surface to volume ratio prove to be important factors in controlling the release of potential hazardous elements from materials containing waste products. In these studies leach parameters on (trace) elements are related to those of sodium. Since the interaction of sodium with the solid phase is usually small, sodium can be used as an indicator for the tortuosity of the product. Elements leached from cement-based waste products are mainly anionic species, like Mo, B, V, F and SO/sub 4/-ions, whereas leaching of metals, like Cu, Cd, Zn and Pb, is limited due to the high pH in the pore solution. The leaching experiments have been verified by scanning electron microscopy for major components on field samples and by measuring depth profiles in waste products for trace constituents using apparatus developed for this purpose.

  11. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems;Endommagement et rupture des materiaux - Volumes 1-2. Generalites, materiaux metalliques. Materiaux non metalliques et biomateriaux, assemblages et problemes industriels

    Energy Technology Data Exchange (ETDEWEB)

    Clavel, M.; Bompard, P.

    2009-07-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  12. A RISK MANAGEMENT METHODOLOGY FOR NON-METALLIC PROCESS EQUIPMENT

    Directory of Open Access Journals (Sweden)

    J.J. Viviers

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Many companies in South Africa have implemented the risk-based inspection (RBI methodology as a maintenance strategy. The risk involved in operating a piece of equipment, past history, non-destructive examination techniques, failure modes, and many other aspects determine the frequency of inspections required to meet legislation. The main purpose of the RBI methodology is to prevent failures of process equipment. The methodology for risk-based inspection for metal equipment is well-established and has been proven in industry, becoming the norm nationally and internationally. However, it is not possible to apply all the techniques to nonmetallic equipment owing to vast differences between the two types of materials. This paper discusses the results of data gathered on the RBI methodology for nonmetallic equipment, and proposes a risk-based model that can be used to perform a risk assessment for non-metallic equipment in a process plant. The risk assessment can be used to formulate the next inspection interval for the asset.

    AFRIKAANSE OPSOMMING: Verskeie maatskappye in Suid-Afrika het reeds die metodologie van risikogebaseeerde inspeksie (RBI geïmplementeer as deel van ‘n omvattende instandhoudingstrategie. Die risiko betrokke by ‘n fisiese item, bedryfsgeskiedenis, nie-vernietigende toetstegnieke, falingsmodusse, en vele ander aspekte bepaal die frekwensie van inspeksies wat benodig word om aan wetlike vereistes te voldoen. Die hoofdoel van die risiko-gebaseerde metodologie is om faling van prosestoerusting te verhinder. Die metodologie vir risiko-gebaseerde inspeksie van metaaltoerusting is goed bekend en word suksesvol toegepas in die industrie. Dis is egter nie moontlik om al die tegnieke toe te pas op nie-metaaltoerusting nie weens die groot verskeidenheid van materiaaltipes. Hierdie artikel bespreek die data wat ingewin is op die risiko-gebaseerde metodologie vir nie-metaaltipeprosestoerusting, en stel

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Assessment on the sustainable use of alternative construction materials as a substitute to natural aggregates

    CSIR Research Space (South Africa)

    George, Theresa B

    2016-08-01

    Full Text Available , and identifies potential construction materials such as glass, slags and recycled asphalt pavement (RAP) that are locally available as alternative aggregate materials to virgin aggregates. An economic cost analysis conducted indicated that it is more cost...

  15. Reuse of materials and byproducts in construction waste minimization and recycling

    CERN Document Server

    Richardson, Alan

    2013-01-01

    This book examines the reuse of materials and byproducts in the construction industry. It investigates the main building materials and their use. The book also offers an overview of new green design guides that will encourage best practice.

  16. Non-metallic inclusions structure dimension in high quality steel with medium carbon contents

    Directory of Open Access Journals (Sweden)

    T. Lipiński

    2009-07-01

    Full Text Available The experimental material consisted of semi-finished products of high-grade, medium-carbon structural steel. The production process involved two melting technologies: steel melting in a 140-ton basic arc furnace with desulfurization and argon refining variants, and in a 100-ton oxygen converter. Billet samples were collected to analyze the content of non-metallic inclusions with the use of an optical microscope and a video inspection microscope. The results were processed and presented in graphic form.

  17. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  18. RECOMMENDED FOUNDATION FILL MATERIALS CONSTRUCTION STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report summarizes the technical basis for a recommended foundation fill materials standard for new construction houses in Florida. he radon-control construction standard was developed by the Florida Radon Research Program (FRRP). ill material standards are formulated for: (1)...

  19. A plastic micropump constructed with conventional techniques and materials

    NARCIS (Netherlands)

    Bohm, Sebastian; Olthuis, Wouter; Bergveld, P.

    1999-01-01

    A plastic micropump which can be produced using conventional production techniques and materials is presented. By applying well-known techniques and materials, economic fabrication of micropumps for various applications is feasible even at low production volumes. The micropump is capable of pumping

  20. Natural, low cost road construction materials: their occurrence and stabilization

    CSIR Research Space (South Africa)

    Clauss, KA

    2009-02-20

    Full Text Available stabilization design less of an art and more of a technical process. The chapters that follow discuss the occurrence of materials deposits, observe how materials may react upon stabilization, consider suitable test methods and give guidance on their application...

  1. Method for producing fabrication material for constructing micrometer-scaled machines, fabrication material for micrometer-scaled machines

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, F.J.

    1995-12-31

    A method for producing fabrication material for use in the construction of nanometer-scaled machines is provided whereby similar protein molecules are isolated and manipulated at predetermined residue positions so as to facilitate noncovalent interaction, but without compromising the folding configuration or native structure of the original protein biomodules. A fabrication material is also provided consisting of biomodules systematically constructed and arranged at specific solution parameters.

  2. The contributions of construction material waste to project cost ...

    African Journals Online (AJOL)

    Management, Faculty ... management of materials and waste leads to an increase in the total cost of building ... cost, quality and sustainability, as well as on the success of projects. (Nagapan ..... Moving beyond optimism bias and strategic ...

  3. A composite construction material that solidifies in water

    OpenAIRE

    Moriyoshi, Akihiro; Fukai, Ichiro; Takeuchi, Mikio

    1990-01-01

    A flexible, waterproof material that will solidify in water has long been desired in civil engineering. We have developed a new class of material, called Aquaphalt, which has these and other desirable properties. Aquaphalt is composed of an asphalt emulsion, cement and a water-absorbing polymer. The components are liquid at ambient temperature and can therefore be pumped, but they form a gel almost instantly when mixed. The hardened mixture is similar to hard bitumen, and has very low water p...

  4. Non-metallic Inclusions in Continuously Cast Aluminum Killed Steels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.

  5. Characterization of materials formed by rice husk for construction

    Science.gov (United States)

    Portillo-Rodríguez, A. M.

    2013-11-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.

  6. Alternatives to Conventional Construction Materials on Landfills. A Guide; Alternativa konstruktionsmaterial paa deponier. Vaegledning

    Energy Technology Data Exchange (ETDEWEB)

    Rihm, Thomas; Rogbeck, Yvonne; Svedberg, Bo; Eriksson, Maria

    2009-03-15

    Before a landfill can be sited, an application for a permit from the authorities is required. Already in the application process the consequences concerning impact on human health and on the environment must be described, including descriptions of e.g. bottom liners and capping constructions. Since there is a long period of time between when the permit is given and when the capping will be carried out, it is common practice, either to postpone decisions concerning capping details, or to delegate the decisions to the supervisory authorities to be made at a later stage. All constructions must however be approved by the authorities before they can be carried out. A construction must fulfil the demands for its function. For the capping this means that the percolation through it must be low, even in a long time perspective. A construction may not in itself cause adverse environmental effects, e.g. leaching of hazardous substances from the construction material. Thus, there are functional as well as environmental demands. Beside the functional demands given in the Swedish legislation, notably in the ordinance on landfilling, the construction must be physically stable, also in a long time perspective. The materials in the construction must have sufficient strength, and may not change over time, e.g. due to degradation, which could lead to malfunction. Demands on environmental behaviour can be divided into two parts. Humans and animals must be kept from direct contact with dangerous substances including dermal contact, inhalation of dust or gases and oral intake of soil, plants or berries. Secondly, dangerous substances may not be spread with surface or ground water to an extent that could lead to adverse effects on human health or on the environment. The impact on the environment is not only depending of the materials being used, but also on the construction design, where in the landfill the construction is situated and, not least, how the landfill is located. It is

  7. Applications of Nanostructured Carbon Materials in Constructions: The State of the Art

    Directory of Open Access Journals (Sweden)

    Shu-Nan Lu

    2015-01-01

    Full Text Available The most recent studies on the applications of nanostructured carbon materials, including carbon nanotubes, carbon nanofibers, and graphene oxides, in constructions are presented. First, the preparation of nanostructured carbon/infrastructure material composites is summarized. This part is mainly focused on how the nanostructured carbon materials were mixed with cementitious or asphalt matrix to realize a good dispersion condition. Several methods, including high speed melting mixing, surface treatment, and aqueous solution with surfactants and sonication, were introduced. Second, the applications of the carbon nanostructured materials in constructions such as mechanical reinforcement, self-sensing detectors, self-heating element for deicing, and electromagnetic shielding component were systematically reviewed. This paper not only helps the readers understand the preparation process of the carbon nanostructured materials/infrastructure material composites but also sheds some light on the state-of-the-art applications of carbon nanostructured materials in constructions.

  8. CISBAT 2007 - Environmental impacts of construction (ecological materials)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This is the eighth part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Environmental impacts of construction the following oral contributions are summarised: 'Nanostructured coatings for active solar facades' and 'Sol-gel organic-inorganic hybrids as binders for TISS paints'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings.

  9. Electric characterization of construction materials through radar data inversion

    NARCIS (Netherlands)

    Patriarca, C.

    2013-01-01

    The non-destructive evaluation with the aim of characterizing objects before or after treatment has taken place, and the monitoring of long-term performance is analyzed in this thesis. Generally, these test methods measure material properties or changes in these properties that decision makers are i

  10. Environmental Management of Waste Based on Road Construction Materials

    Directory of Open Access Journals (Sweden)

    Damijan Koletnik

    2012-03-01

    Full Text Available In 2008 the European Council adopted a revised framework for waste management in the EU, with an objective to encourage recycling and reuse of waste, in order to reduce landfills and potential environmental emissions. This framework also sets new recycling targets for construction and demolition waste by 2020, suggesting that at least 70 % of the waste should be recycled. Nigrad d.d. is a utility company providing services to several municipalities in North-East Slovenia. These services include repairs to public roads and pavements. This paper examines the origin, amount and fraction of construction waste produced, identifying current waste management practices. Based on the state-of-the art study new approaches are to be proposed, which will make it possible to decrease environmental impacts and costs, when providing public services and establishing sustainable service systems. To reach this objective a life-cycle analysis of the existing service has been carried out, which will help identify the system parts that have the most significant impact on the environment.DOI: http://dx.doi.org/10.5755/j01.erem.59.1.681

  11. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  12. Feasibility Study of Construction of Building Using Reusable Material

    Directory of Open Access Journals (Sweden)

    Darade M.M,

    2016-01-01

    Full Text Available Civil structures made of steel reinforced concrete normally suffer from corrosion of the steel by the salt, which results in the failure of those structures. Constant maintenance and repairing is needed to enhance the life cycle of those civil structures. There are many ways to minimize the failure of the concrete structures made of steel reinforce concrete. The Project aims to optimize the construction resources with applications to reduce, reuse and recycle to achieve the motive of saving planet, public and then profit. There is an unavoidable growth in the population for this, there is demand of urbanization. This consumes high amount of non-renewable resources and hence resources are getting exhausted creating a scarcity, which a major issue for present generation.

  13. Low cost construction technologies and materials - case study Mozambuique

    CSIR Research Space (South Africa)

    Kuchena, JC

    2009-09-01

    Full Text Available remain largely untapped. 10. Bibliography [1] ABCI (Associação Brasileira da Construção Industrializada), 1990. Manual Técnico de Alvenaria; Projecto / PW,. [2] ALBINO, J. E VERMULEN, J. P., 2005. Construir com Blocos de Terra Estabilizada; Manual...,LEM Zimbabwe,,Brazil, India 4 imported materials for manufacturing of soil-cement blocks (SSB) by a manual Ceratec pressing machine on site. 5. Observations • The average test results for compressive strength for the masonry units on the pilot...

  14. The dose from radioactivity of covering construction materials in Serbia

    Directory of Open Access Journals (Sweden)

    Manić Vesna M.

    2015-01-01

    Full Text Available The indoor dose due to the radiation of ceramic and granite tiles, marble, granite and travertine plates, as well as some components of covering materials, produced in Serbia or imported from other countries, was estimated in the work. Activity concentrations of 226Ra, 232Th, and 40K were measured by the standard gamma-spectrometry system. The lowest content of the radionuclides was found in white marble (ARa = 2 Bq/kg, ATh < 2 Bq/kg, and AK < 3 Bq/kg, while the highest activities were in some granite samples (Balmoral red: ARa = 200 Bq/kg, ATh = 378 Bq/kg, and AK = 1679, and Madura Gold: ARa = 273 Bq/kg, ATh = 20 Bq/kg, and AK = 1456 Bq/kg. The indoor absorbed dose rate in air due to the gamma radiation from covering materials was determined based on the specific absorbed dose rate computed in this work. Concentration of 222Rn that emanated into the indoor space was also calculated from the known 226Ra content. The radiation hazard estimated from the usage of each sample was expressed through the evaluated effective dose. Almost all samples, except one, fulfil the dosimetric criterion for safe use. [Projekat Ministarstva nauke Republike Srbije br. 171021 i br. 171025

  15. Effect of the structural parameters changes in the multi-strand tundish on the non-metallic inclusions distribution and separation

    Directory of Open Access Journals (Sweden)

    M. Warzecha

    2014-10-01

    Full Text Available The aim of presented studies was to investigate the fluid flow change and non-metallic inclusions removal changes due to tundish construction modifications. In presented study, numerical simulations were used. Numerical simulations are carried out with the finite-volume commercial code ANSYS Fluent. Steady-state casting conditions for the flow structure and the inclusions removal process are analysed.

  16. COMPATIBILITY OF NAPLS AND OTHER ORGANIC COMPOUNDS WITH MATERIALS UED IN WELL CONSTRUCTION, SAMPLING, AND REMEDIATION

    Science.gov (United States)

    Structural integrity of well construction, sampling, and remediation materials may be compromised at many hazardous sites by nonaqueous phase liquids (NAPLs) and their dissolved constituents. A literature review of compatibility theory and qualitative field experiences are provid...

  17. Heat and moisture transport in durian fiber based lightweight construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Charoenvai, S.; Khedari, J.; Hirunlabh, J.; Asasutjarit, C. [King Mongkut' s Univ. of Technology, Building Scientific Research Center, Thonburi, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Centre d' Etudes Fondamentales, Groupe de Mecanique, Acoustique et Instrumentation, Perpignan, 66 (France); Quenard, D.; Pratintong, N. [Centre Scientifique et Technique du Batiment (CSTB), Grenoble (France)

    2005-04-01

    This paper presents result on heat and moisture transport in durian (Durio zibethinus) fiber based lightweight construction materials composed of cement, sand and waste fiber from durian peel and the performance of the material was simulated with the surface treatment by using a computational tool. The commercial research software (WUFI 2D) was used to calculate heat and moisture transfer through a durian fiber based lightweight construction material. The materials were exposed to a climate condition similar to the one in Bangkok and the hygrothermal characteristics of the materials were investigated. The investigation reveals that the weekly mean water content on the surface of material was quite low. The effect of moisture on the apparent thermal performance of the composite was found to be higher as water absorbed in the pore structure contributed to higher thermal conductivity than the air it replaced. However, the mean value of thermal conductivity in material is still rather low as the mean value of water content in material is low. Coating the surface reduced the flow of moisture to or from the structure considerably. The results of simulation confirmed that the manufactured composite satisfied the requirement of construction materials. It is then reasonable to conclude that the use of such materials in the design and construction of passive solar buildings is promising. Laboratory investigation is undergoing to validate the simulated performance. (Author)

  18. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property... construction, maintenance or repair of commercial property or any other property not excepted in section 3(n... business for the construction, maintenance or repair of commercial property or any other property...

  19. Aspects of new material application for boilers construction; Aspekty wdrazania nowych materialow w budowie kotlow

    Energy Technology Data Exchange (ETDEWEB)

    Czerniawski, R. [RAFAKO S.A., Raciborz (Poland)

    1996-12-31

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab.

  20. Construction method of foam glass thermal insulation material in sloping roof

    Science.gov (United States)

    Hu, Longwei; Bu, Fangming; Guo, Fenglu; Zhang, Zimeng

    2017-04-01

    Foam glass thermal insulation board has the characteristics of fireproof, waterproof, corrosion resistant, noncombustible, mothproof, non-toxic, non-aging, non-radioactive, high mechanical strength and good dimensional stability. Foam glass thermal insulation material in sloping roof construction method is an effective solution to large angle sloping roof construction operation difficulties.

  1. A platform for communicating construction material information between e-commerce systems

    Institute of Scientific and Technical Information of China (English)

    Stephen C W Kong; LI Heng; SHEN Qi-ping

    2004-01-01

    E-commerce systems for construction material procurement are becoming increasingly important in Hong Kong. These E-commerce systems are non-interoperable and create problems for the buyers who use these systems to purchase construction materials. This paper presents the mobile agent-based approach and Web serv-ices-based approach for enabling interoperation of these systems in the E-Union environment.

  2. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    OpenAIRE

    Dipankar Sarkar; Manish Pal; Sarkar, Ashoke K.

    2016-01-01

    There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46...

  3. Construction materials as a waste management solution for cellulose sludge.

    Science.gov (United States)

    Modolo, R; Ferreira, V M; Machado, L M; Rodrigues, M; Coelho, I

    2011-02-01

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale. Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.

  4. Construction Material-Based Methodology for Military Contingency Base Construction: Case Study of Dhaka, Bangladesh

    Science.gov (United States)

    2016-08-01

    recycled steel Bangladesh, northeast India, and Myanmar Key players can be easily assessed within study area Wood, masonry Bangladesh Larger number...within a short distance of its source. Therefore, the study for the material was limited to the city of Dhaka. Cement, aggregate, steel, and iron ore...private industries and therefore, unseasoned timber is being used in almost all instances. A study of the wood seasoning practices in the wood furniture

  5. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  6. Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site

    Directory of Open Access Journals (Sweden)

    João de Lassio

    2016-01-01

    Full Text Available The construction industry is increasingly concerned with improving the social, economic, and environmental indicators of sustainability. More than ever, the growing demand for construction materials reflects increased consumption of raw materials and energy, particularly during the phases of extraction, processing, and transportation of materials. This work aims to help decision-makers and to promote life cycle thinking in the construction industry. For this purpose, the life cycle assessment (LCA methodology was chosen to analyze the environmental impacts of building materials used in the construction of a residence project in São Gonçalo, Rio de Janeiro, Brazil. The LCA methodology, based on ISO 14040 and ISO 14044 guidelines, is applied with available databases and the SimaPro program. As a result, this work shows that there is a substantial waste of nonrenewable energy, increasing global warming and harm to human health in this type of construction. This study also points out that, for this type of Brazilian construction, ceramic materials account for a high percentage of the mass of a total building and are thus responsible for the majority of environmental impacts.

  7. 46 CFR 160.028-3 - Materials, workmanship, construction, and performance requirements.

    Science.gov (United States)

    2010-10-01

    ... Red Flare Distress Signals § 160.028-3 Materials, workmanship, construction, and performance... material possessing excellent wearing qualities. (b) Workmanship. Signal pistols shall be of first class... pistol-projected parachute red flare distress signals of the type covered by Subpart 160.024. The...

  8. Prospective Mathematics Teachers' Views about Using Computer-Based Instructional Materials in Constructing Mathematical Concepts

    Science.gov (United States)

    Bukova-Guzel, Esra; Canturk-Gunhan, Berna

    2011-01-01

    The purpose of the study is to determine prospective mathematics teachers' views about using computer-based instructional materials in constructing mathematical concepts and to reveal how the sample computer-based instructional materials for different mathematical concepts altered their views. This is a qualitative study involving twelve…

  9. Law Absence and System Construction of Equal Material Assistance Rights of Farmers in China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Firstly,conception of farmers’ equal material assistance rights is introduced from the aspects of equal rights,material assistance rights,and farmers’ equal material assistance rights.Value function of farmers’ equal material assistance rights is pointed out,which can eliminate the partial policies with urban priority orientation.It is a necessary condition for maintaining the legal and institutional authority,as well as an inevitable choice to realize the social justice and harmony.Current status of the law absence of farmers’ equal material assistance rights in China is introduced,which is reflected in the lack of theoretical research on farmers’ equal material assistance rights in the law circle,the lack of procedural legal system of farmers’ equal material assistance rights at present,and the lack of actual law effectiveness of farmers’ equal material assistance rights at present.System construction is a turning point to change the law absence of farmers’ material assistance rights.Government should promote the economic development,provide material bases for the system construction of farmers’ material assistance rights,enhance the legal consciousness of farmers,cultivate the ability of farmers to participate in equal material assistance rights,strengthen the procedural legislation and judicial justice,and ensure the farmers’ material assistance rights.

  10. The possibility of using materials based on secondary gravel in civil construction

    Directory of Open Access Journals (Sweden)

    Galitskova Yulia

    2017-01-01

    Full Text Available By now, the wear and tear of housing stock is more than 50%. Each year the number of old and dilapidated housing is growing, but it is gradually replaced by modern buildings. However, wastes accumulated from dismantling of buildings and constructions, are underutilized and, usually are just stored at landfills, or used for temporary roads construction. The purpose of this research is to define construction wastes characteristics and to explore possibilities for recycling of wastes from construction materials production. The paper also analyzes housing stock condition and basic requirements to building materials used in construction; and demonstrates results building materials based on secondary gravel investigation. While working with materials based on waste requirements the authors conducted laboratory research. Thus, the paper presents the analysis of laboratory tests results that made it possible to draw conclusions about the possible use of building materials based on secondary gravel and about their conformity to specified requirements. The researchers also developed proposals and recommendations to improve the competitiveness of such materials.

  11. Energy-Efficient Devices for Transporting and Feeding Bulk Materials in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Ishkov Alexander

    2016-01-01

    Full Text Available Only in the construction industry millions of tons of bulk materials that need to be transported to the place of processing, storing and evenly or dosed feeding are recycled annually. Decreasing the costs of these processes will significantly reduce the cost of the finished product. The article presents a review of studies conducted in the field of storage, transport and feed bulk materials, and it describes the innovative design of energy-efficient disc vibrating feeder bulk materials.

  12. Study of the Causes and Magnitude of Wastage of Materials on Construction Sites in Jordan

    Directory of Open Access Journals (Sweden)

    Ghanim A. Bekr

    2014-01-01

    Full Text Available The research aims to study the causes and magnitude of wastage of construction materials on construction projects sites in Jordan. To achieve the research aim, the researcher had prepared a questionnaire form included questions about the causes of wastage and the estimated percentages of wastage of ten most popular kinds of materials used on construction sites in Jordan. Prior to the final formulation of the questionnaire form, a pilot survey was conducted. The form was revised in accordance with the feedback received. The number of causes adopted was 60 distributed on the six major categories. The form was distributed to 240 participants (clients, contractors, and consultants. The study revealed that the most important causes of wastage of materials on construction sites in Jordan are frequent design and client’s changes; rework due to workers mistakes; poor contract documents; wrong and lack of storage of materials; poor strategy for waste minimization; shortage and lack of experience of skilled workers; poor site conditions; damage during transportation; theft and vandalism; and mistakes in quantity surveying and over allowance. In addition the study concluded that the percentage of wastage materials is accounted for by values between 15% and 21% on Jordanian construction sites.

  13. Challenges of UK/Irish Contractors regarding Material Management and Logistics in Confined Site Construction

    Directory of Open Access Journals (Sweden)

    Spillane, John P

    2011-12-01

    Full Text Available The aim of this paper is to identify the various managerial issues encountered by UK/Irish contractors in the management of materials in confined urban construction sites. Through extensive literature review, detailed interviews, case studies, cognitive mapping, causal loop diagrams, questionnaire survey and documenting severity indices, a comprehensive insight into the materials management concerns within a confined construction site environment is envisaged and portrayed. The leading issues highlighted are: that contractors’ material spatial requirements exceed available space, it is difficult to coordinate the storage of materials in line with the programme, location of the site entrance makes delivery of materials particularly difficult, it is difficult to store materials on-site due to the lack of space, and difficult to coordinate the storage requirements of the various sub-contractors. With the continued development of confined urban centres and the increasing high cost of materials, any marginal savings made on-site would translate into significant monetary savings at project completion. Such savings would give developers a distinct competitive advantage in this challenging economic climate. As on-site management professionals successfully identify, acknowledge and counteract the numerous issues illustrated, the successful management of materials on a confined urban construction site becomes attainable.

  14. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  15. Environmental Impacts and Embodied Energy of Construction Methods and Materials in Low-Income Tropical Housing

    Directory of Open Access Journals (Sweden)

    Arman Hashemi

    2015-06-01

    Full Text Available This paper evaluates the current conditions of Ugandan low-income tropical housing with a focus on construction methods and materials in order to identify the key areas for improvement. Literature review, site visits and photographic surveys are carried out to collect relevant information on prevailing construction methods/materials and on their environmental impacts in rural areas. Low quality, high waste, and energy intensive production methods, as well as excessive soil extraction and deforestation, are identified as the main environmental damage of the current construction methods and materials. The embodied energy is highlighted as the key area which should be addressed to reduce the CO2 emissions of low-income tropical housing. The results indicate that the embodied energy of fired bricks in Uganda is up to 5.7 times more than general clay bricks. Concrete walling is identified as a much more environmentally friendly construction method compared to brick walling in East African countries. Improving fuel efficiency and moulding systems, increasing access to renewable energy sources, raising public awareness, educating local manufacturers and artisans, and gradual long-term introduction of innovative construction methods and materials which are adapted to local needs and conditions are some of the recommended actions to improve the current conditions.

  16. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  17. Leaching behaviour of rock materials and a comparison with slag used in road construction

    OpenAIRE

    Tossavainen, Mia

    2000-01-01

    Leaching characteristics are used for the evaluation of secondary materials used in road construction. In order to form a basis for comparison of the leachability, Swedish rock material have been investigated using the availability test NT ENVIR 003. Microscopic studies of the mineral composition, Acid-Base-Accounting and pH-measurements have been used to explain the leaching results. Overall, the content of identified opaque minerals is low and the leachable amounts of the heavy metal elemen...

  18. Heuristic economic assessment of the Afghanistan construction materials sector: cement and dimension stone production

    Science.gov (United States)

    Mossotti, Victor G.

    2014-01-01

    Over the past decade, the U.S. Government has invested more than $106 billion for physical, societal, and governmental reconstruction assistance to Afghanistan (Special Inspector General for Afghanistan Reconstruction, 2012a). This funding, along with private investment, has stimulated a growing demand for particular industrial minerals and construction materials. In support of this effort, the U.S. Geological Survey released a preliminary mineral assessment in 2007 on selected Afghan nonfuel minerals (Peters and others, 2007). More recently, the 2007 mineral assessment was updated with the inclusion of a more extensive array of Afghan nonfuel minerals (Peters and others, 2011). As a follow-up on the 2011 assessment, this report provides an analysis of the current use and prospects of the following Afghan industrial minerals required to manufacture construction materials: clays of various types, bauxite, gypsum, cement-grade limestone, aggregate (sand and gravel), and dimension stone (sandstone, quartzite, granite, slate, limestone, travertine, marble). The intention of this paper is to assess the: Use of Afghan industrial minerals to manufacture construction materials, Prospects for growth in domestic construction materials production sectors, Factors controlling the competitiveness of domestic production relative to foreign imports of construction materials, and Feasibility of using natural gas as the prime source of thermal energy and for generating electrical energy for cement production. The discussion here is based on classical principles of supply and demand. Imbedded in these principles is an understanding that the attributes of supply and demand are highly variable. For construction materials, demand for a given product may depend on seasons of the year, location of construction sites, product delivery time, political factors, governmental regulations, cultural issues, price, and how essential a given product might be to the buyer. Moreover, failure on the

  19. Construction and testing of simple airfoils to demonstrate structural design, materials choice, and composite concepts

    Science.gov (United States)

    Bunnell, L. Roy; Piippo, Steven W.

    1993-01-01

    The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.

  20. Construction Surveying, 3-27. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This short course on construction surveying was developed from military curriculum materials for use in technical and vocational education programs. Students completing the course should be able to perform engineering surveys related to area and route surveying (knowledge of basic survey techniques is a prerequisite). The course is divided into…

  1. Application of aging methods to estimate long term performance of secondary materials for road construction

    NARCIS (Netherlands)

    Akbarnejad, S.; Houben, L.J.M.; Molenaar, A.A.A.

    2012-01-01

    Long term performance of secondary materials is becoming a challenging aspect in road construction since due to their benefits they are being used on a large scale, but on the other hand their future behaviors are difficult to estimate. In this study, aging is proposed as a means of exploring the lo

  2. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The results are presented of an exhaustive literature search and evaluation concerning the properties and economics of commercially available nonmetallic well casing and screens. These materials were studied in terms of their use in low to intermediate temperature geothermal well construction.

  3. Stimulating the use of secondary materials in the construction industry: The role of certification

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2002-01-01

    Introduction of secondary materials in the construction industry is quite difficult and has not always been successful, even when they satisfy all necessary product demands and environmental (leaching) conditions. Besides the financial and commercial aspects the main problem is convincing the user

  4. 48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a), use the following clause: Balance of Payments...

  5. Stimulating The Use Of Secondary Materials In The Construction Industry: The Role Of Certification

    NARCIS (Netherlands)

    van Eijk, R.J.; Brouwers, Jos

    2002-01-01

    Introduction of secondary materials in the construction industry is quite difficult and has not always been successful, even when they satisfy all necessary product demands and environmental (leaching) conditions. Besides the financial and commercial aspects the main problem is convincing the user

  6. NVENTIONS IN THE NANOTECHNOLOGICAL AREA PROVIDE INCREASED RESISTANCE OF CONSTRUCTION MATERIALS AND PRODUCTS TO OPERATIONAL LOAD

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2013-12-01

    Full Text Available The invention «Dispersion of Carbon Nanotubes (RU 2494961» can be used in production of modifying additives for construction materials. Dispersion of carbon nanotubes contains, mass %: carbon nanotubes 1–20; surface active agent – sodium chloride of sulfonated derived naphthalene 1–20; fumed silica 5–15; water – the rest. Dispersion can additionally contain ethylene glycol as antifreeze. Dispersion is steady in storage, it is soluble in water, provides increased strength of construction materials. Invention «Building Structures Reinforcement Composition (RU 2493337» can beused in construction to reinforce concrete, brick and masonry structures. Composition contains glass or basalt roving taken in quantity 90÷100 parts by weight, soaked in polymer binder based on epoxy taken in quantity 0,001÷1,5 parts by weight. This invention provides high resistance to operational load.

  7. Stereogeneous construction – fabric-formed concrete as material and process

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: This paper contributes to studies of architectural potentials of fabric formwork for concrete by seeking to establish a theoretical concept that evaluates qualities of materials and principles of construction as well as aspects of the expression of concrete construction. Through...... planning and teaching workshops with students, categorizing and interpreting experimental data, and reflecting and communicating knowledge, the concept Stereogeneity developed as a response to questions about the nature of concrete cast in fabric forms and the relation between the molded and the mold....... The word describes concrete as material and process. Fabric Formwork is the pivotal formwork-tectonic topic of investigation in the experimental and analytical parts of the thesis work on which this paper is based. The youth of the architectural application of construction methods for fabric formwork...

  8. Stereogeneous construction – fabric-formed concrete as material and process

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2012-01-01

    På engelsk: This paper contributes to studies of architectural potentials of fabric formwork for concrete by seeking to establish a theoretical concept that evaluates qualities of materials and principles of construction as well as aspects of the expression of concrete construction. Through plann...... experimental, practical and analytical investigations of fabric-formed concrete and the core formwork-tectonic elements of its making....... planning and teaching workshops with students, categorizing and interpreting experimental data, and reflecting and communicating knowledge, the concept Stereogeneity developed as a response to questions about the nature of concrete cast in fabric forms and the relation between the molded and the mold....... The word describes concrete as material and process. Fabric Formwork is the pivotal formwork-tectonic topic of investigation in the experimental and analytical parts of the thesis work on which this paper is based. The youth of the architectural application of construction methods for fabric formwork...

  9. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    Science.gov (United States)

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given.

  10. Micro-encapsulated phase-change materials integrated into construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Schossig, P.; Henning, H.-M.; Gschwander, S. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Haussmann, T. [PSE GmbH-Forschung, Entwicklung, Marketing Solar Info Center, 79072 Freiburg (Germany)

    2005-11-15

    The idea of improving the thermal comfort of lightweight buildings by integrating phase-change materials (PCMs) into the building structure has been investigated in various research projects over several decades. Most of these attempts applied macro-capsules or direct immersion processes, which both turned out to present several drawbacks. Due to these problems, none of these PCM products was successful in the wider market. The new option to micro-encapsulate PCMs, a key technology which overcomes many of these problems, may make PCM products accessible for the building industry. This paper describes the work done at Fraunhofer ISE within a German government-funded project over the last 5 years, extending from building simulations to first measurements of full-size rooms equipped with PCM. The first products are now available on the market. (author) [Phase change material; Passive cooling; Energy efficient building; Microencapsulation].

  11. USE OF MIRROR PATTERN CUTTING OF NETTING MATERIALS FOR CONSTRUCTION OF LAKE BEACH SEINES

    Directory of Open Access Journals (Sweden)

    A. Nazarov

    2014-12-01

    Full Text Available Purpose. Justification and calculation of a new methodological approach to the construction of a standard beach seine (502 / 302 х 3.75 with the use of the properties of mirror netting ensuring the saving of the netting material, reduction of weight, price and drag resistance. Methodology. The carp age group selectivity of the constructed seine was assessed within fish fauna monitoring based on the catch analysis of monitoring gill nets with mesh sizes of 30-130 mm according to generally accepted methods [9, 10]. Calculation of netting materials and ropes was carried out according to generally accepted methods [12-14]. Seine resistance was calculated according to N. T. Senin formula for different netting materials and the angles of the movement of different seine parts in water [2]. The gear reliability and data processing were carried out according to standard methods [11, 14, 15]. Findings. A variant of the construction of the maximum lightweight beach lake seines made of mirror pattern netting taking into account the properties of the mirror pattern netting material, reduction of weight, price and drag resistance has been proposed. The provided recalculation of the properties of a serial seine made of rhombic mesh for the mirror netting seine taking into account netting properties allowed: 1 reducing the seine drag resistance value by 1,4 times; 2 reducing the weight of netting materials by 16.3% compared to the prototype; 3 increasing the seine selectivity when fishing older age groups of carp in non-drainable ponds. Originality. We presented the method of the calculation and construction of lake beach seines made of mirror netting, analyzed the technological stages of the construction of mirror netting, determined main qualitative and technological parameters, which had effect on the conditions of the construction and reliability of such fishing gears. A new method of the use of an insert of the combined netting material cutting ensuring

  12. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  13. A Construction System for CALL Materials from TV News with Captions

    Science.gov (United States)

    Kobayashi, Satoshi; Tanaka, Takashi; Mori, Kazumasa; Nakagawa, Seiichi

    Many language learning materials have been published. In language learning, although repetition training is obviously necessary, it is difficult to maintain the learner's interest/motivation using existing learning materials, because those materials are limited in their scope and contents. In addition, we doubt whether the speech sounds used in most materials are natural in various situations. Nowadays, some TV news programs (CNN, ABC, PBS, NHK, etc.) have closed/open captions corresponding to the announcer's speech. We have developed a system that makes Computer Assisted Language Learning (CALL) materials for both English learning by Japanese and Japanese learning by foreign students from such captioned newscasts. This system computes the synchronization between captions and speech by using HMMs and a forced alignment algorithm. Materials made by the system have following functions: full/partial text caption display, repetition listening, consulting an electronic dictionary, display of the user's/announcer's sound waveform and pitch contour, and automatic construction of a dictation test. Materials have following advantages: materials present polite and natural speech, various and timely topics. Furthermore, the materials have the following possibility: automatic creation of listening/understanding tests, and storage/retrieval of the many materials. In this paper, firstly, we present the organization of the system. Then, we describe results of questionnaires on trial use of the materials. As the result, we got enough accuracy on the synchronization between captions and speech. Speaking totally, we encouraged to research this system.

  14. Comparing material wastage levels between conventional in-situ and prefabrication construction in Hong Kong

    Institute of Scientific and Technical Information of China (English)

    Vivian W Y Tam; C M Tam; L Y Shen

    2004-01-01

    Generation of construction wastes constitutes a major impact to the environment. Studies have beend directed toward reducing wastes of the various construction processes. However, contractors in Hong Kong are rather conservative and lack motivation to develop new technology for waste minimization. This paper examines the benefits of using prefabrication in reducing material wastage levels for some traditional in-situ trades such as concreting, rebar fixing, bricklaying, drywall, plastering, screeding and tiling in Hong Kong. By measuring thirty construction projects, it is been found that waste levels of all major construction trades can be effectively reduced. This is particularly significant in the trade of plastering where 100% saving can be achieved after adopting prefabrication. The standardized design of the building can also be useful in the adoption of prefabrication for private housing projects.

  15. Assessment of impact of construction materials on the ecological safety of home

    Directory of Open Access Journals (Sweden)

    Zhigulina Anna

    2017-01-01

    Full Text Available The article deals with the problems of creating environmentally friendly aerial environment within residential premises. The main sources causing air pollution of urban housing are determined and classified. The origins of air pollution sources of residential premises are adopted as the classifying criterion. The sources of contamination are defined and assessed. Particular attention is paid to the choice of environmentally friendly building materials. The methodology for assessing toxicity of industrial waste used in the production of housing materials is developed to assess the comfort and environmental safety of home. The idea of creating “Residential buldings ID” containing information on the construction materials used is introduced.

  16. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.

    Science.gov (United States)

    Rozes, Laurence; Sanchez, Clément

    2011-02-01

    Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

  17. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  18. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials.

    Science.gov (United States)

    Rodrigues, Patrícia; Silvestre, José D; Flores-Colen, Inês; Viegas, Cristina A; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha

    2017-06-13

    Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH-Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP-Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability.

  19. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials

    Science.gov (United States)

    Rodrigues, Patrícia; Silvestre, José D.; Flores-Colen, Inês; Viegas, Cristina A.; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha

    2017-01-01

    Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH—Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP—Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability. PMID:28773011

  20. The Promotion Strategy of Green Construction Materials: A Path Analysis Approach

    Directory of Open Access Journals (Sweden)

    Chung-Fah Huang

    2015-10-01

    Full Text Available As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials.

  1. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    Science.gov (United States)

    Deeb, Maha; Grimaldi, Michel; Lerch, Thomas Z.; Pando, Anne; Gigon, Agnès; Blouin, Manuel

    2016-04-01

    There is no information on how organisms influence hydrostructural properties of constructed Technosols and how such influence will be affected by the parent-material composition factor. In a laboratory experiment, parent materials, which were excavated deep horizons of soils and green waste compost (GWC), were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, but not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass, resulting in positive effects on available water in macropores. Organisms and their interaction with parent materials positively affected the hydrostructural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  2. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing.

  3. Compacted fly ash with additives: A potential construction material for hydraulic barriers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H.T.

    1991-05-14

    At Ontario Hydro's three coal-fired generating stations, ca 0.8 million tonnes of fly ash are produced annually, of which ca 25% is used in various engineering applications and in the production of construction materials. As part of research conducted to find further uses for this waste, tests were conducted to measure the hydraulic conductivity of specimens prepared by compacting mixtures of fly ash and selective additives. The main objective was to identify specimens with optimum proportions of fly ash to additive(s), yielding a hydraulic conductivity value of 10[sup [minus]9] m or less, for possible application as a liner material for solid waste landfills. Candidate additives included bentonite, red mud, limestone screenings, lime kiln dust, and southern Ontario clay. Results indicate that fly ash mixed with calcium bentonite and lime dust is the most promising construction material for hydraulic barriers. 6 refs., 3 figs., 2 tabs.

  4. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.

    Science.gov (United States)

    Wu, Zhong; Li, Lin; Yan, Jun-Min; Zhang, Xin-Bo

    2017-06-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state-of-the-art development on the fabrication of high-performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material-design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new-concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li-/Na-ion supercapacitors composed of battery-type electrodes and capacitor-type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high-performance supercapacitors.

  5. ENVIRONMENTAL IMPACT ANALYSIS OF HEAVY METAL CONCENTRATIONS IN WASTE MATERIALS USED IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Ivanka Netinger Grubeša

    2016-12-01

    Full Text Available Use of solid waste in place of conventional materials in civil engineering structures preserves natural resources and energy and avoids expensive and/or potentially harmful waste disposal. Many studies are investigating the application of waste materials in civil engineering structures. However, in an effort to find out new areas of waste materials utilization, the environmental impact of the installation of such materials in building structures often remains neglected. This study focused on the environmental aspect of the application of currently investigated waste materials in Croatia with an emphasis on heavy metal content. Heavy metal concentration in steel slag, river sediment, and biomass ash was measured, and the possibility of their use in road construction in accordance with currently valid legislation was assessed.

  6. Expanded polystyrene as the bearing building material of low energy construction

    Science.gov (United States)

    Mesaros, P.; Spisakova, M.; Kyjakova, L.; Mandicak, T.

    2015-01-01

    Sustainability of buildings is a really important issue for the construction industry. Sustainable buildings are characterized by the lower construction costs for energy consumption and operations, they are environmentally friendly, able to save natural resources and they are comfortable and healthy for their users. The European Union supports this trend through its Strategy 2020, respectively with document Energy Roadmap 2020. The strategy 2020 sets greenhouse gas emissions 20% lower than 1990, 20% of energy from renewable and 20% increase in energy efficiency. It manifests itself in introduction of modern technologies of house building. One potential for the energy saving is construction of low-energy buildings using modern materials. This paper focuses on the analysis of the low-energy buildings made by expanded polystyrene as the bearing building material. The paper analyzes their design and describes the benefits of this modern but unusual type of construction technology for houses. The examples from abroad clearly indicate that this technology has potential in modern architecture. The success and exploration of this technology potential in the conditions of Slovak construction sector is closely related to interest of investors and users of further sustainable houses which are design according the Strategy 2020 conditions.

  7. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  8. Study of improving the thermal response of a construction material containing a phase change material

    Science.gov (United States)

    Laaouatni, A.; Martaj, N.; Bennacer, R.; Elomari, M.; El Ganaoui, M.

    2016-09-01

    The use of phase change materials (PCMs) for improving the thermal comfort in buildings has become an attractive application. This solution contributes to increasing the thermal inertia of the building envelope and reducing power consumption. A building element filled with a PCM and equipped with ventilation tubes is proposed, both for increasing inertia and contributing to refreshing building envelope. A numerical simulation is conducted by the finite element method in COMSOL Multiphysics, which aims to test the thermal behaviour of the developed solution. An experimental study is carried out on a concrete block containing a PCM with ventilation tubes. The objective is to see the effect of PCM coupled with ventilation on increasing the inertia of the block. The results show the ability of this new solution to ensure an important thermal inertia of a building.

  9. Materials Design and System Construction for Conventional and New‐Concept Supercapacitors

    Science.gov (United States)

    Wu, Zhong; Li, Lin

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long‐term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state‐of‐the‐art development on the fabrication of high‐performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material‐design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new‐concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li‐/Na‐ion supercapacitors composed of battery‐type electrodes and capacitor‐type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high‐performance supercapacitors. PMID:28638780

  10. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F. [Argonne National Lab., IL (United States)

    1994-06-01

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited.

  11. New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    4 reports results of testing dierent types of commercially available stainless steels, Ni-based alloys as well as titanium and tantalum as possible metallic bipolar plates and construction materials for HTPEMEC. The corrosion resistance was measured under simulated conditions of high temperature PEM...... steam electrolyzer. Steady-state voltammetry was used in combination with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to evaluate the stability of the mentioned materials. It was found that stainless steels were the least resistant to corrosion under strong anodic...... stainless steel showed outstanding resistance to corrosion in selected media, while passivation of titanium was weak, and the highest rate of corrosion among all tested materials was observed for titanium at 120 °C. Today, there is a high interest in the eld towards investigation of new catalyst materials...

  12. Characterization of Coal Mine Overburden and Assessment as Mine Haul Road Construction Material

    Science.gov (United States)

    Mallick, Soumya Ranjan; Verma, Abhiram Kumar; Rao, Karanam Umamaheshwar

    2017-10-01

    This paper presents details of laboratory investigation carried out on coal mine overburden materials to check their suitability in base/sub-base of mine haul road pavement. In this investigation, strength characteristics of un- stabilized overburden materials are evaluated. Strength characteristics of overburden materials are obtained through laboratory tests by physical, mechanical, chemical and micro-structural analysis. The laboratory investigation shows untreated murrum, top soil and sub soil are not suitable to be used as mine haul road construction material. In this investigation, CBR method is used for layer thickness as well as cover thickness calculation. The paper also discusses the importance of various tests required for evaluation and assessment of mine haul road.

  13. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  14. Program-oriented approach to resource saving issues in construction materials industry

    Directory of Open Access Journals (Sweden)

    Novikova Galina

    2017-01-01

    Full Text Available The construction as a sector of the economy is one of the largest consumers of energy resources, and the building materials industry is today one of the most energy-intensive construction industry. At the enterprises of the building materials industry the different approaches and methods are used to solve resource and energy problems. Energy saving is considered not as an complex approach in the enterprise activity, but as activity for the implementation of specific energy-saving projects, which have limitations in time and in resources. The authors suggest to use a softwareoriented approach to solving the problems of resource and energy saving. For practical application of program-oriented approach we offer to use a structuring method of the decision-making, not previously used to solve problems of resource and energy saving.

  15. Characteristics of the magnetic control of separable ferrous impurities contained in raw construction materials

    Directory of Open Access Journals (Sweden)

    A.V. Sandulyak

    2013-04-01

    Full Text Available Currency of using the method of magnetic control of ferrous impurities for construction materials was noted. Especially it is important because of magnetic separators which are widely used for elimination of these impurities. There were shown the necessity of upgrading the present approach in order to realize the method of magnetic control. For example, it is necessary to take into account not only the rest of ferrous impurities (that is inevitable after limited numbers of operations but also a factor of involving sand particles. The concrete proposal how to develop the existing system of magnetic control of ferrous impurities in construction materials subjected to magnetic separation, is stated. The experimental-calculation model for such control is also shown. The main parameters of such model were estimated on the example of quartz sand and feldspar. The errors of standard methods of magnetic control were revealed for the first time.

  16. Leaching of additives from construction materials to urban storm water runoff

    DEFF Research Database (Denmark)

    Burkhardt, Mike; Zuleeg, S.; Vonbank, R.;

    2011-01-01

    in construction materials, i.e., biocides in facades’ render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol®1051 (all from facades) and mecoprop in storm water and receiving water exceeded...... the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 μg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials...

  17. Perceived visual informativeness (PVI): construct and scale development to assess visual information in printed materials.

    Science.gov (United States)

    King, Andy J; Jensen, Jakob D; Davis, LaShara A; Carcioppolo, Nick

    2014-01-01

    There is a paucity of research on the visual images used in health communication messages and campaign materials. Even though many studies suggest further investigation of these visual messages and their features, few studies provide specific constructs or assessment tools for evaluating the characteristics of visual messages in health communication contexts. The authors conducted 2 studies to validate a measure of perceived visual informativeness (PVI), a message construct assessing visual messages presenting statistical or indexical information. In Study 1, a 7-item scale was created that demonstrated good internal reliability (α = .91), as well as convergent and divergent validity with related message constructs such as perceived message quality, perceived informativeness, and perceived attractiveness. PVI also converged with a preference for visual learning but was unrelated to a person's actual vision ability. In addition, PVI exhibited concurrent validity with a number of important constructs including perceived message effectiveness, decisional satisfaction, and three key public health theory behavior predictors: perceived benefits, perceived barriers, and self-efficacy. Study 2 provided more evidence that PVI is an internally reliable measure and demonstrates that PVI is a modifiable message feature that can be tested in future experimental work. PVI provides an initial step to assist in the evaluation and testing of visual messages in campaign and intervention materials promoting informed decision making and behavior change.

  18. Identification of construction material pathologies in historical buildings using infrared thermography

    OpenAIRE

    Lerma Elvira, Carlos; Mas Tomas, Maria De Los Angeles; Gil Benso, Enrique; VERCHER SANCHIS, JOSÉ MARÍA

    2013-01-01

    [en] Study of historic buildings requires a pathology analysis of the construction materials used in order to define their conservation state. Usually we can find capillary moisture, salt crystallization or density differences by deterioration. Sometimes this issue is carried out by destructive testing which determine materials’ physical and chemical characteristics. However, they are unfavorable regarding the building’s integrity, and they are sometimes difficult to implement. This paper pre...

  19. Market Analysis of Environmentally Friendly Celulose Insulation Material in the Construction Business in Srinagar, India

    OpenAIRE

    Khan, Rakhshanda

    2009-01-01

    The purpose of this thesis is to analyze the market for environmentally-friendly cellulose insulation material in Srinagar, J&K, India. Insulation plays an important role when trying to decrease the energy consumption. At the same time, insulation creates better living conditions. Despite several benefits of insulation, the con-structions are not commonly insulated. To get a deeper understanding of this con-tradiction, this study focuses on questions: 1) what is the demand for cellulose insul...

  20. Systematic Study of Trace Radioactive Impurities in Candidate Construction Materials for EXO-200

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, D.S.; Grinberg, P.; Weber, P.; Baussan, E.; Djurcic, Z.; Keefer, G.; Piepke, A.; Pocar, A.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Akimov, D.; Bellerive, A.; Bowcock, M.; Breidenbach, M.; Burenkov, A.; Conley, R.; Craddock, W.; Danilov, M.; DeVoe, R.; Dixit, M.; Dolgolenko, A.; /Alabama U. /NRC-INMS /Neuchatel U. /Stanford U., Phys. Dept. /SLAC /Colorado State U. /Laurentian U. /Maryland U. /UC, Irvine

    2007-10-24

    The Enriched Xenon Observatory (EXO) will search for double beta decays of 136Xe. We report the results of a systematic study of trace concentrations of radioactive impurities in a wide range of raw materials and finished parts considered for use in the construction of EXO-200, the first stage of the EXO experimental program. Analysis techniques employed, and described here, include direct gamma counting, alpha counting, neutron activation analysis, and high-sensitivity mass spectrometry.

  1. Aggregates from natural and recycled sources; economic assessments for construction applications; a materials flow study

    Science.gov (United States)

    Wilburn, David R.; Goonan, Thomas G.

    1998-01-01

    Increased amounts of recycled materials are being used to supplement natural aggregates (derived from crushed stone, sand and gravel) in road construction. An understanding of the economics and factors affecting the level of aggregates recycling is useful in estimating the potential for recycling and in assessing the total supply picture of aggregates. This investigation includes a descriptive analysis of the supply sources, technology, costs, incentives, deterrents, and market relationships associated with the production of aggregates.

  2. Mold Susceptibility of Rapidly Renewable Building Materials Used in Wall Construction

    Science.gov (United States)

    2007-12-01

    from outside the home can be introduced through moisture absorption from the exterior, facility cracks and penetrations, and leaky windows or roofs...from clay, cement, steel , fiberglass and gypsum. If so, rapidly renewable materials may not be desirable as long- term sustainable construction...through the court adding additional 23 23 costs to the claims, which only exacerbates the media craze and lawsuit frenzy that is taking place

  3. Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

    OpenAIRE

    Lipiński T.; Wach A.

    2014-01-01

    Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an el...

  4. The Effect of Different Non-Metallic Inclusions on the Machinability of Steel

    OpenAIRE

    Niclas Ånmark; Andrey Karasev; Pär Göran Jönsson

    2015-01-01

    Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, ...

  5. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    Science.gov (United States)

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-09-06

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017. Published by Elsevier Ltd.

  6. Research into Behaviour Patterns Typical for Consumers of Construction Material as the Mission of Ecological Management

    Directory of Open Access Journals (Sweden)

    Ivanova Zinaida

    2016-01-01

    Full Text Available The objective of the co-authors is to study the motivation of purchasers of construction/finishing materials and the criteria that govern their selection. No systemic studies of consumer behavioral models and stereotypes in respect of residential housing have been performed so far. However, the environmentally determined management techniques, applicable to the production of building materials and construction of residential housing, are highly relevant both worldwide and in the Russian Federation. The co-authors have developed an original research methodology, drafted a questionnaire, and conducted a pilot survey. Its findings have proven that the price and quality of construction materials are the main factors that influence the decision making process in favor of particular items. Mere 14% of the respondents chose environmental friendliness as the decision making criterion. The findings of the focus group projects have also proven the trustworthiness of the stereotypes and behavioral models identified by the co-authors. The co-authors make a conclusion that further sociological surveys are needed to implement the patterns of environmentally determined management and to influence the value paradigms of the population.

  7. Study of capability of microorganisms to develop on construction materials used in space objects

    Science.gov (United States)

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  8. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in

  9. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High Test Hydrogen Peroxide (HTP) Propellant

    Science.gov (United States)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (greater than or equal to 70%) offers many advantages in space launch applications; however, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to %Active Oxygen Loss per week (%AOL/wk).

  10. Measurement of color in different construction materials. The restoration in sandstone buildings

    Directory of Open Access Journals (Sweden)

    García Pascua, N.

    1999-03-01

    Full Text Available The use of construction materials and their subsequent repair purposes include a search of knowledge and preservation of their original appearance. For this reason, the main aim of this study is to determine a color range which does not change with the possible actions on a building, both when restoration works which imply the use and repair of "ancient" materials are carried out, and when construction is carried out with new materials. It is necessary to obtain the quantification of this property in order to check its variation over the passage of time. Each construction material must be taken into account as an isolated problem, since the color is different in each case.

    El empleo de materiales de construcción y la aplicación sobre ellos de productos de reparación requiere un detallado estudio sobre su forma de actuación y la importancia de la conservación del aspecto original de los mismos. Por este motivo, el objetivo principal de este estudio es el determinar un intervalo de color que se conserve a pesar de todas las posibles intervenciones que se acometan en el edificio, tanto cuando se realizan trabajos de restauración, que implican el uso y reparación de materiales "viejos", o bien cuando se llevan a cabo trabajos de construcción con materiales nuevos. Es necesario cuantificar dicha propiedad para poder controlar el paso del tiempo. Cada material de construcción debe ser considerado como un problema aislado, ya que el color es distinto en cada caso.

  11. Laser welding of dissimilar materials for lightweight construction and special applications

    Science.gov (United States)

    Schimek, Mitja; Springer, André; Pfeifer, Ronny; Kaierle, Stefan

    2013-02-01

    Against the background of climate objectives and the desired reduction of CO2-emissions, optimization of existing industrial products is needed. To counter rising raw material costs, currently used materials are substituted. This will places new requirements on joining technologies for dissimilar material classes. The main difficulty lies in joining these materials cohesively without changing the properties of the base materials. Current research work at the LZH on joining dissimilar materials is being carried out for the automotive sector and for solar absorbers. For the automotive industry, a laser welding process for joining steel and aluminum without using additives is being investigated, equipped with a spectroscopic welding depth control to increase tensile strength. With a specially constructed laser processing head, it is possible to regulate welding penetration depth in the aluminum sheet, reducing the formation of intermetallic phases. Flat plate solar collectors are favorable devices for generating heat from solar energy. The solar absorber is the central part of a collector, consisting of an aluminum sheet and a copper tube which is attached to the aluminum sheet. Research on new laser welding processes aims at reducing the amount of energy required for production of these solar absorbers. In the field of joining dissimilar materials, laser joining processes, especially for special applications, will complement established joining techniques.

  12. Material Waste Minimisation Strategies among Construction Firms in South-South, Nigeria

    Directory of Open Access Journals (Sweden)

    Timothy Olubanwo Adewuyi

    2016-02-01

    Full Text Available This study examined material waste minimisation strategies practiced by construction firms in the study area, the amount of waste generated and the relationship between them. The data collected were analysed using mean score, Spearman Rank Correlation, Kruskal-Wallis H and Mann-Whitney U tests. It is revealed that the most commonly employed strategies are “ensuring that storage facilities are properly secured before staff leave on a daily basis”; “checking of deliveries for any shortages and/or damages”; and “using materials before expiry date” with mean scores of 4.46, 4.22, 4.20 respectively. A significant variation in the level of material waste generated by different category of firms was confirmed. There is also a significant relationship between the level of minimisation strategies adopted and the waste generated. Based on the R2 values, 18.8% to 49.4% of the material waste generated for all the material types studied could be explained by the material minimisation strategies adopted on site except for stone base with 9.4%. %. The study recommends that the players in the industry should step up efforts towards introducing incentives to motivate labour to minimise material wastage on site and the use of modular design system.

  13. THE DEVELOPMENT OF MATERIAL FLOW INFORMATION BASE OF MANAGEMENT AND ACCOUNTING IN THE CONSTRUCTION INDUSTRY

    Directory of Open Access Journals (Sweden)

    Degaltseva Z. V.

    2015-10-01

    Full Text Available This article discusses the problems of using indicators of material flow in the financial accounting management accounting system. The authors have created and described the classification of material costs in building units. It allows solving the problems of object of research specifying within a given material flow and inventory control within a given logistics systems. There are different approaches to the valuation of material costs in the article. An important aspect of measures for the integration development of accounting systems is the adoption of uniform valuation of building materials and structures. It is proved that the most rational combination of these types of records achieved by an adapted classification and measurement of building materials and structures to the conditions of formation of the budget for the project volume of construction works and the reflection of the actual volume of work in the financial accounting system. On the basis of the accounting policies and the organizational structure of the object of investigation of "Kubanstroykompleks" we have identified responsibility centers (sites for costs related to the material flow: Department of logistics and packaging and warehousing, which consists of a central and railroad warehouse

  14. Metals, non-metals and PCB in electrical and electronic waste--actual levels in Switzerland.

    Science.gov (United States)

    Morf, Leo S; Tremp, Josef; Gloor, Rolf; Schuppisser, Felix; Stengele, Markus; Taverna, Ruedi

    2007-01-01

    The chemical composition of waste of small electrical and electronic equipment (s-WEEE), a rapidly growing waste stream, was determined for selected metals (Cu, Sb, Hg etc.) and non-metals (Cl, Br, P) and PCBs. During a 3-day experiment, all output products and the s-WEEE input mass flows in a WEEE recycling plant were measured. Only output products were sampled and analyzed. Material balances were established, applying substance flow analysis (SFA). Transfer coefficients for the selected substances were also determined. The results demonstrate the capability of SFA to determine the composition of the highly heterogeneous WEEE for most substances with rather low uncertainty (2 sigma +/- 30%). The results confirm the growing importance of s-WEEE regarding secondary resource metals and potential toxic substances. Nowadays, the thirty times smaller s-WEEE turns over larger flows for many substances, compared to municipal solid waste. Transfer coefficient results serve to evaluate the separation efficiency of the recycling process and confirm--with the exception of PCB and Hg--the limitation of hand-sorting and mechanical processing to separate pollutants (Cd, Pb, etc.) out of reusable fractions. Regularly applied SFA would serve to assess the efficacy of legislative, organizational and technical measures on the WEEE.

  15. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  16. Experimental study on the performance of insulation materials in Mediterranean construction

    Energy Technology Data Exchange (ETDEWEB)

    Cabeza, L.F.; Castell, A.; Medrano, M.; Martorell, I.; Perez, G. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Fernandez, I. [Department of Materials Science and Metallurgical Engineering, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2010-05-15

    It is well known that it is necessary to insulate the buildings to decrease the thermal demand and to decrease the use of heating and cooling. Due to the high cost of fossil fuels and to the necessity to reduce CO{sub 2} emissions, and also due to the new building regulations more attention is paid to the insulation of buildings. Different insulation materials are available in the market. Usually, they are compared by their thermal conductivity and with theoretical calculations, but there are no experimental comparisons available, where the behavior of such insulation materials in a building is compared over time. This is why the authors started a comparison of three typical insulation materials, polyurethane, polystyrene, and mineral wool. For this purpose, four house-like cubicles were constructed (with a size of 2.4 m x 2.4 m x 2.4 m) and their thermal performance throughout the time was measured. The cubicles were built under a conventional Mediterranean construction system, differing only in the insulation material used. During 2008 and the first months of 2009 the performance of these cubicles was evaluated, and the results are presented in this paper. (author)

  17. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    Science.gov (United States)

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions.

  18. An Overview of the Use of Absolute Dating Techniques in Ancient Construction Materials

    Directory of Open Access Journals (Sweden)

    Jorge Sanjurjo-Sánchez

    2016-04-01

    Full Text Available The reconstruction of the chronology of historical buildings is a tricky issue, as usually there are not historical documents that allow the assessment of construction phases, and some materials are hardly reliable for the use of dating techniques (e.g., stone. However, in the last two decades, important advances on the use of absolute dating methods on building materials have increased the possibilities of reconstructing building chronologies, although some advances are still scarcely known among archaeologists and architects. Recent studies performed on several kinds of mortars, fired bricks, mud-bricks, and even stone surfaces have shown that it is possible to date them. Both radiocarbon and luminescence dating have been the most frequently used techniques but others such as archaeomagnetism can also be used in some cases. This paper intends to give an overview of the recent achievements on the use of absolute dating techniques for building materials.

  19. Development of construction materials using sulfite-rich scrubber sludge and fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Yoginder Chugh; Amit Patwardhan; Santosh Munish; Francois Botha [Southern Illinois University, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

    2006-11-15

    Construction materials with characteristics suitable for a variety of applications have been developed using up to 95% of coal combustion by-products comprising of sulfite-rich scrubber sludge and fly ash. These materials can be produced as soil-like mixes that can be prepared at the power plant, transported to the deployment site and compacted using conventional road building equipment without a need for forms. These developed materials provide an early strength of 5.8-8.3 MPa after 7-14 d and are environmentally benign. For a cattle feeding pad application, which is the focus of this paper, the cost is estimated be about 25-30% of the cost of developing a conventional concrete feeding pad. Following mix development and establishment of quality assurance/quality control protocols, a commercial cattle feeding pad has been designed and demonstrated using the developed mix. 15 refs., 3 figs., 7 tabs.

  20. Heuristic economic assessment of the Afghanistan construction materials sector: cement and dimension stone production

    Science.gov (United States)

    Mossotti, Victor G.

    2014-01-01

    Over the past decade, the U.S. Government has invested more than $106 billion for physical, societal, and governmental reconstruction assistance to Afghanistan (Special Inspector General for Afghanistan Reconstruction, 2012a). This funding, along with private investment, has stimulated a growing demand for particular industrial minerals and construction materials. In support of this effort, the U.S. Geological Survey released a preliminary mineral assessment in 2007 on selected Afghan nonfuel minerals (Peters and others, 2007). More recently, the 2007 mineral assessment was updated with the inclusion of a more extensive array of Afghan nonfuel minerals (Peters and others, 2011). As a follow-up on the 2011 assessment, this report provides an analysis of the current use and prospects of the following Afghan industrial minerals required to manufacture construction materials: clays of various types, bauxite, gypsum, cement-grade limestone, aggregate (sand and gravel), and dimension stone (sandstone, quartzite, granite, slate, limestone, travertine, marble). The intention of this paper is to assess the: Use of Afghan industrial minerals to manufacture construction materials, Prospects for growth in domestic construction materials production sectors, Factors controlling the competitiveness of domestic production relative to foreign imports of construction materials, and Feasibility of using natural gas as the prime source of thermal energy and for generating electrical energy for cement production. The discussion here is based on classical principles of supply and demand. Imbedded in these principles is an understanding that the attributes of supply and demand are highly variable. For construction materials, demand for a given product may depend on seasons of the year, location of construction sites, product delivery time, political factors, governmental regulations, cultural issues, price, and how essential a given product might be to the buyer. Moreover, failure on the

  1. THE COMPLEX USE OF LOCAL TYPES OF FUEL IN THE POROUS CONSTRUCTION MATERIALS PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. P. Voronova

    2014-01-01

    Full Text Available The article presents a comprehensive low-waste technology is the use of local fuels, which can be used in the technology of some porous building materials. Also provides new methods of preparation of porous building materials based on aggloporite using local fuels and waste energy on the basis of milled peat, fuel briquettes and wood chips allow to replace expensive imported components that comprise the raw mixtures (coal, anthracite.On the basis of mathematical modeling of cooling in reheat furnaces pusher drive developed a method of engineering calculation mode batch hardening in agglomeration. Submitted constructive solution for the development of the cooling charge with thermophysical rational justification cooling modes. A study of the temperature distribution within the charge depending on the different speeds of the belt sintering machine, and hence on the cooling time.The characteristics of the raw material deposits "Fanipol" and the optimal composition of the charge which includes loam, coal, milled peat. In industrial research obtained aggloporite this formulation has shown positive results in strength and density. Established that by decreasing the particle size of the fuel increases the redox potential of the combustion products, which reduces the height of the oxidizing zone and the speed of the sintering raw mix. These processes increase the productivity of sinter machine.Technology is implemented on the "Minsk factory of building materials". The tests analyzed production technology porous construction materials using milled peat with the addition of sawdust. The study results recommend further use of sapropel, which cost significantly lower raw material mixture of submissions and in their physical and mechanical properties much closer to the properties of milled peat.

  2. Construction

    Science.gov (United States)

    2002-01-01

    Harbor Deepening Project, Jacksonville, FL Palm Valley Bridge Project, Jacksonville, FL Rotary Club of San Juan, San Juan, PR Tren Urbano Subway...David. What is nanotechnology? What are its implications for construction?, Foresight/CRISP Workshop on Nanotechnology, Royal Society of Arts

  3. System definition study of deployable, non-metallic space structures

    Science.gov (United States)

    Stimler, F. J.

    1984-01-01

    The state of the art for nonmetallic materials and fabrication techniques suitable for future space structures are summarized. Typical subsystems and systems of interest to the space community that are reviewed include: (1) inflatable/rigidized space hangar; (2) flexible/storable acoustic barrier; (3) deployable fabric bulkhead in a space habitat; (4) extendible tunnel for soft docking; (5) deployable space recovery/re-entry systems for personnel or materials; (6) a manned habitat for a space station; (7) storage enclosures external to the space station habitat; (8) attachable work stations; and (9) safe haven structures. Performance parameters examined include micrometeoroid protection; leakage rate prediction and control; rigidization of flexible structures in the space environment; flammability and offgassing; lifetime for nonmetallic materials; crack propagation prevention; and the effects of atomic oxygen and space debris. An expandable airlock for shuttle flight experiments and potential tethered experiments from shuttle are discussed.

  4. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  5. Use of macrophyte plants, sand & gravel materials in constructed wetlands for greywater treatment

    Science.gov (United States)

    Qomariyah, S.; Ramelan, AH; Sobriyah; Setyono, P.

    2017-02-01

    Greywater discharged without any treatments into drainage channels or natural water bodies will lead to environmental degradation and health risk. Local macrophyte plants combined with natural materials of sand and gravel have been used in a system of constructed wetland for the treatment of the greywater. This paper presents the results of some studies of the system carried out in Indonesia, Thailand, and Costa Rica. The studies demonstrate the success of the constructed wetland systems in removing some pollutants of BOD, COD, TSS, pathogen, and detergent. The studies resulted in the treated water in a level of treatment that fulfils the requirement of the local standards for wastewater reuse as irrigation water, fishery, or other outdoor needs.

  6. Thermal Performance of Typical Residential Building in Karachi with Different Materials for Construction

    Directory of Open Access Journals (Sweden)

    Nafeesa Shaheen

    2016-04-01

    Full Text Available This research work deals with a study of a residential building located in climatic context of Karachi with the objective of being the study of thermal performance based upon passive design techniques. The study helps in reducing the electricity consumption by improving indoor temperatures. The existing residential buildings in Karachi were studied with reference to their planning and design, analyzed and evaluated. Different construction?s compositions of buildings were identified, surveyed and analyzed in making of the effective building envelops. Autodesk® Ecotect, 2011 was used to determine indoor comfort conditions and HVAC (Heating, Ventilation, Air-Conditioning and Cooling loads. The result of the research depicted significant energy savings of 38.5% in HVAC loads with proposed building envelop of locally available materials and glazing.

  7. The aging of wire chambers filled with dimethyl ether: Wire and construction materials and freon impurities

    Energy Technology Data Exchange (ETDEWEB)

    Jibaly, M.; Majewski, S.; Chrusch, P. Jr.; Wojcik, R. (Florida Univ., Gainesville (USA). Dept. of Physics (USA)); Sauli, F.; Gaudaen, J. (European Organization for Nuclear Research, Geneva (Switzerland). EP-Div. (Switzerland))

    1989-11-10

    This is a complete summary of our study of the aging of different types of wire chambers, with a variety of construction materials and wires, filled with dimethyl ether (DME) of varying degrees of purity. The resistive Nicotin and Stablohm wires were corroded by DME, producing fast aging. The moderately resistive stainless steel wires were able to withstand extended irradiation (up to 1 C/cm) in high-purity DME without any apparent damage; and gold-plated tungsten and molybdenum wires exhibited a comparable behavior. Many construction materials were tested and recommendations are thus reached as to what kinds of materials are safe in building DME-operated wire chambers. Among many different Freon and hydrocarbon impurities detected in DME by means of gas chromatography (GC), Freon-11 was found to be mostly responsible for the aging, even with noncorrosive stainless steel or gold-plated wires. The availability and feasibility of obtaining Freon-free DME is reported as well. (orig.).

  8. By what means should nanoscaled materials be constructed: molecule, medium, or human?

    Science.gov (United States)

    Ariga, Katsuhiko; Hu, Xianluo; Mandal, Saikat; Hill, Jonathan P.

    2010-02-01

    There is great potential in nanoscale science and technology, and construction of macrosized materials and systems possessing nanoscale structural features is a crucial factor in the everyday application of nanoscience and nanotechnology. Because nanoscale substances are often constructed through self-assembly of unit molecules and nanomaterials, control of the self-assembly process is required. In order to establish general guidelines for the fabrication of materials with nanoscale structural characteristics, i.e., nanoscaled materials, we introduce here examples of recent research in related fields categorised as: (i) self-assembled structures with forms generally determined by intrinsic interactions between molecules and/or unit nanomaterials, (ii) self-assemblies influenced by their surrounding media, especially interfacial environments, (iii) modulation of self-assembly by artificial operation or external stimuli. Examples are not limited to organic molecules, which are often regarded as the archetypal species in self-assembly chemistry, and many examples of inorganic assemblies and hybrid structures are included in this review.

  9. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  10. Interactions between organisms and parent materials of a constructed Technosol shape its hydrostructural properties

    Science.gov (United States)

    Deeb, M.; Grimaldi, M.; Lerch, T. Z.; Pando, A.; Gigon, A.; Blouin, M.

    2015-12-01

    Constructed Technosols provide an opportunity to recycle urban waste, and are an alternative to the uptake of topsoil from the countryside. Despite potential problems of erosion, compaction or water holding capacity, their physical properties and the resulting water regulation services are poorly documented. In a laboratory experiment, excavated deep horizons of soils and green waste compost (GWC) were mixed at six levels of GWC (from 0 to 50 %). Each mixture was set up in the presence/absence of plants and/or earthworms, in a full factorial design (n = 96). After 21 weeks, hydrostructural properties of constructed Technosols were characterized by soil shrinkage curves. Organisms explained the variance of hydrostructural characteristics (19 %) a little better than parent-material composition (14 %). The interaction between the effects of organisms and parent-material composition explained the variance far better (39 %) than each single factor. To summarize, compost and plants played a positive role in increasing available water in macropores and micropores; plants were extending the positive effect of compost up to 40 and 50 % GWC. Earthworms affected the void ratio for mixtures from 0 to 30 % GWC and available water in micropores, not in macropores. Earthworms also acted synergistically with plants by increasing their root biomass and the resulting positive effects on available water in macropores. Organisms and their interaction with parent materials thus positively affected the hydro-structural properties of constructed Technosols, with potential positive consequences on resistance to drought or compaction. Considering organisms when creating Technosols could be a promising approach to improve their fertility.

  11. Measurement of the thermal conductivity from construction materials; Medicion de conductividad termica de materiales de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Lira Cortes, Leonel; Xaman Villasenor, Jesus P; Chavez Chena, Yvonne [CENIDET: Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico)

    2000-07-01

    In order to improve the calculation of thermal loads that allows to model the thermal behavior of constructions with aims of energy saving, it is necessary to count on the thermophysical properties of the materials used in the construction industry. Nevertheless at present in Mexico do not exist reported data of the materials that are made and used in our country, reason why it is chosen to take the results reported in the literature, whose values in their majority do not correspond to Mexican materials. In order to cover this necessity, at the CENIDET an instrument was developed to determine the thermal conductivity of insulating and construction materials. To date they have come with studies of different materials, which are provided by the manufacturers, with the intention of obtaining real data of thermal conductivity and to apply them with whole confidence in simulations of calculations of thermal loads. In this paper the results of measurement of the apparent thermal conductivity of two different materials from construction are presented, pumice stone block and block of tezontle (a porous volcanic rock).The measurement was made with an absolute and primary instrument according to norm ANSI/ASTM C-177-97. The operation principle of the apparatus is based on the technique of heat transference by conduction in permanent state between two plates, the experiment is carried out using an apparatus of hot plate with guard (APCG). Given the geographic zone where the studied materials are to be used, it is concluded that the obtained results show better properties for both with respect to reported values of similar materials, by virtue that these materials are intended to be applied in a humid climate as it is in the state of Puebla, Mexico. [Spanish] Para mejorar el calculo de cargas termicas que permita modelar el comportamiento termico de edificaciones con fines de ahorro de energia, es necesario contar con las propiedades termofisicas de los materiales utilizados

  12. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Directory of Open Access Journals (Sweden)

    Spišáková Marcela

    2015-11-01

    Full Text Available The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  13. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Science.gov (United States)

    Spišáková, Marcela; Mačková, Daniela

    2015-11-01

    The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  14. Social construction and materiality: the limits of indeterminacy in therapeutic settings.

    Science.gov (United States)

    Lannamann, J W

    1998-01-01

    By drawing parallels between the courtroom testimony of a Christian Science practitioner and an intersession conversation between systemic family therapists, I critique the abstract idealism of language-centered social constructionism. I argue that social constructionist inquiry that highlights the indeterminacy of meaning without a corresponding emphasis on the responsive embodied practices of family members glosses over the material conditions shaping the politics of interaction. The implications of this problem are discussed as they relate to the setting of family therapy, where social construction theory is often used to guide practical interventions.

  15. Quality and safety of construction materials; Calidad y seguridad de materiales de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Rodulfo Zabala, L.

    2015-07-01

    CEPCO represents 20 industrial sectors, which take charge of construction materials production, and whose expectations of European and Spanish legislation observance (specially the articles related to quality, security and environmental respect) reach a very high level. This performance is equally taken to their internal competitiveness and to their huge international enlargement produced on the recent years. In addition to this principle, the Confederation includes its own this principle, the Confederation includes its own doctrine of trying to consolidate important heights of quality related to the evolution of the product trough I+D+i. (Author)

  16. Proposal for Construction/Demonstration/Implementation of A Material Handling System

    Energy Technology Data Exchange (ETDEWEB)

    Jim Jnatt

    2001-08-24

    Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the

  17. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  18. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  19. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    Science.gov (United States)

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism.

  20. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  1. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High-Test Hydrogen Peroxide (HTP) Propellant

    Science.gov (United States)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (equal to or greater than 70%) offers many advantages in space launch applications. However, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to % Active Oxygen Loss per week (%AOL/wk).

  2. Non-metals in metals `98; Nichtmetalle in Metallen `98

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, D. [ed.

    1998-12-31

    The major topics discussed at the symposium are: (1) Thermodynamics and cinetics, (2) chemical, physical and physico-chemical examination methodology, (3) materials properties. 13 of the 25 papers presented at the symposium have been analysed and indexed for separate retrieval from the database. (orig./CB) [Deutsch] Themenschwerpunkte des diesjaehrigen Symposiums `Nichtmetalle in Metallen` sind: 1. Thermodynamik und Kinetik, 2. Chemische, physikalische und physikalisch-chemische Untersuchungsmethoden, und 3. Werkstoffeigenschaften. Von den insgesamt 25 Vortraegen wurden 13 Beitraege separat aufgenommen. (orig./MM)

  3. The Necessity to Strengthen the Construction Materials Management of Construction Engineering%加强建筑工程施工材料管理的必要性

    Institute of Scientific and Technical Information of China (English)

    杜军

    2014-01-01

    In recent years, with people’s increasing demand for construction, the construction industry has become a pilar industry of Chinese economy. No mater what kind of constr-uction projects, it requires the use of building materials for construction. Whether the construction materials management measures properly or not, it not only affects the overall con-struction quality, but also affects the project construction cost and time of the next phase ofwork.%近年来,随着人们对建筑的需求增多,建筑行业已经成为我国经济产业中支柱性产业。不论何种建筑工程,都需要使用建筑材料来进行施工,施工材料管理措施是否得当,不仅影响到整体施工质量,也会影响到工程施工成本及下一期工作的开展时间。

  4. AMS method for depth profiling of trace elements concentration in materialsConstruction and applications

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C.; Enachescu, M.

    2015-10-15

    The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications.

  5. AMS method for depth profiling of trace elements concentration in materials - Construction and applications

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.

    2015-10-01

    The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications.

  6. Lightweight Aggregate Made from Dredged Material in Green Roof Construction for Stormwater Management

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-07-01

    Full Text Available More than 1.15 million cubic meters (1.5 million cubic yards of sediment require annual removal from harbors and ports along Ohio’s Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow “infiltration” based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA, and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900–1100 °C, LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.

  7. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  8. Hypervelocity Impact Testing of Materials for Additive Construction: Applications on Earth, the Moon, and Mars

    Science.gov (United States)

    Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John

    2017-01-01

    Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.

  9. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    Directory of Open Access Journals (Sweden)

    Siavash Riahi

    2008-03-01

    Full Text Available Ionophore incorporated PVC membrane sensors are well-established analyticaltools routinely used for the selective and direct measurement of a wide variety of differentions in complex biological and environmental samples. Potentiometric sensors have someoutstanding advantages including simple design and operation, wide linear dynamic range,relatively fast response and rational selectivity. The vital component of such plasticizedPVC members is the ionophore involved, defining the selectivity of the electrodes' complexformation. Molecular recognition causes the formation of many different supramolecules.Different types of supramolecules, like calixarenes, cyclodextrins and podands, have beenused as a sensing material in the construction of ion selective sensors. Schiff's bases andcrown ethers, which feature prominently in supramolecular chemistry, can be used assensing materials in the construction of potentiometric ion selective electrodes. Up to now,more than 200 potentiometric membrane sensors for cations and anions based on Schiff'sbases and crown ethers have been reported. In this review cation binding and anioncomplexes will be described. Liquid membrane sensors based on Schiff's bases and crownethers will then be discussed.

  10. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors.

    Science.gov (United States)

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-03-11

    Ionophore incorporated PVC membrane sensors are well-established analyticaltools routinely used for the selective and direct measurement of a wide variety of differentions in complex biological and environmental samples. Potentiometric sensors have someoutstanding advantages including simple design and operation, wide linear dynamic range,relatively fast response and rational selectivity. The vital component of such plasticizedPVC members is the ionophore involved, defining the selectivity of the electrodes' complexformation. Molecular recognition causes the formation of many different supramolecules.Different types of supramolecules, like calixarenes, cyclodextrins and podands, have beenused as a sensing material in the construction of ion selective sensors. Schiff's bases andcrown ethers, which feature prominently in supramolecular chemistry, can be used assensing materials in the construction of potentiometric ion selective electrodes. Up to now,more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anioncomplexes will be described. Liquid membrane sensors based on Schiff's bases and crownethers will then be discussed.

  11. Construction of Multimedia Courseware and Web-based E-Learning Courses of "Biomedical Materials".

    Science.gov (United States)

    Xiaoying, Lu; Jian, He; Tian, Qin; Dongxu, Jiang; Wei, Chen

    2005-01-01

    In order to reform the traditional teaching methodology and to improve the teaching effect, we developed new teaching system for course "Biomedical Materials" in our university by the support of the computer technique and Internet. The new teaching system includes the construction of the multimedia courseware and web-based e-learning courses. More than 2000 PowerPoint slides have been designed and optimized and flash movies for several capitals are included. On the basis of this multimedia courseware, a web-based educational environment has been established further, which includes course contents, introduction of the teacher, courseware download, study forum, sitemap of the web, and relative link. The multimedia courseware has been introduced in the class teaching for "Biomedical Materials" for 6 years and a good teaching effect has been obtained. The web-based e-learning courses have been constructed for two years and proved that they are helpful for the students by their preparing and reviewing the teaching contents before and after the class teaching.

  12. Discussion on circulation material management of construction project construction cost management%论建设项目施工成本管理之周材管理

    Institute of Scientific and Technical Information of China (English)

    霍明华

    2016-01-01

    简述了建筑施工企业管理周转材料的常用方式,以材料现场积压、材料浪费、损失等方面,分析了目前周转材料管理中常见的问题,并提出了具体的解决方案,有利于降低企业施工成本,提高企业的成本管理水平。%The paper briefly describes common circulation material management methods of building construction enterprises,analyzes common circulation material management problems from aspects of material field overstocking,material waste and loss,and puts forward specific solving schemes,which will be good for reducing construction cost and improving cost management level.

  13. The carbon footprint and embodied energy of construction material: A comparative analysis of South African BRT stations

    National Research Council Canada - National Science Library

    J Hugo; A Barker; GH Stoffberg

    2014-01-01

      This article describes strategic design decisions that architects can make during the initial stages of a project to minimise the use of construction materials, reduce carbon emissions and increase energy efficiency...

  14. A Martian Fractionation Line Constructed from Oxygen Isotope Analyses of Bulk Material and Minerals from SNC Meteorites

    Science.gov (United States)

    Banerjee, N. R.; Ali, A.; Jabeen, I.; Osinski, G.; Al-Rawas, A. D.; Nasir, S.; Flemming, R.; Shivak, J.; Gregory, D.

    2013-09-01

    Precise triple oxygen isotope data of SNC Martian meteorites are obtained by laser-assisted fluorination technique. Martian fractionation line is constructed using bulk material and mineral separates of SNC meteorites.

  15. USAGE OF FILTERS FROM FIBROUS MATERIALS IN AMELIORATIVE AND HYDRO-TECHNICAL CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    V. T. Klimkov

    2016-01-01

    Full Text Available Construction of first drainage tubular systems has been facing such problem as their protection against silting-up by soil particles penetrating through input openings. Searches and investigations have led to usage of various fibrous materials which are playing the role of filters. At the beginning glass-fibre mats have been widely applied for this purpose. However, the mats possessing good filtration properties have had a number of fundamental disadvantages. Works executed at the Institute of Mechanics of Metal Polymeric Systems (Gomel, Republic of Belarus have played a big role in usage of plastic materials. A new technology has been developed with the purpose to obtain thermally-bonded fibres from thermoplastic material. The fibres have been called as polyethylene mats. Investigation of their properties has been carried out under load and it has revealed that their lateral and longitudinal permeability becomes equal at specified pressures, in other words the material takes an isotropic state. The considered interactions of filtrating material and skeleton frame have shown that the main water filtration occurs directly above perforation holes while the material above blind frame sections does not participate in the process. Due to this a new design of the filtrating element has been developed and it can be used in water intake systems for surface and underground water. The filtrating element consists of the skeleton frame with openings and a filtration covering which is installed on the frame. Water-feeding groove cavities are located on the skeleton frame and they are dispersing from perforation holes in the form of beams. These grooves can have side branches of the second, third and other orders. As beam-like arrangement of grooves creates the shortest flow paths for filtrated water from periphery to frame holes and area of groove cross section exceeds the area of poral holes in water in-take covering by a factor of hundreds, it is possible

  16. Using sorbent waste materials to enhance treatment of micro-point source effluents by constructed wetlands

    Science.gov (United States)

    Green, Verity; Surridge, Ben; Quinton, John; Matthews, Mike

    2014-05-01

    Sorbent materials are widely used in environmental settings as a means of enhancing pollution remediation. A key area of environmental concern is that of water pollution, including the need to treat micro-point sources of wastewater pollution, such as from caravan sites or visitor centres. Constructed wetlands (CWs) represent one means for effective treatment of wastewater from small wastewater producers, in part because they are believed to be economically viable and environmentally sustainable. Constructed wetlands have the potential to remove a range of pollutants found in wastewater, including nitrogen (N), phosphorus (P), biochemical oxygen demand (BOD) and carbon (C), whilst also reducing the total suspended solids (TSS) concentration in effluents. However, there remain particular challenges for P and N removal from wastewater in CWs, as well as the sometimes limited BOD removal within these treatment systems, particularly for micro-point sources of wastewater. It has been hypothesised that the amendment of CWs with sorbent materials can enhance their potential to treat wastewater, particularly through enhancing the removal of N and P. This paper focuses on data from batch and mesocosm studies that were conducted to identify and assess sorbent materials suitable for use within CWs. The aim in using sorbent material was to enhance the combined removal of phosphate (PO4-P) and ammonium (NH4-N). The key selection criteria for the sorbent materials were that they possess effective PO4-P, NH4-N or combined pollutant removal, come from low cost and sustainable sources, have potential for reuse, for example as a fertiliser or soil conditioner, and show limited potential for re-release of adsorbed nutrients. The sorbent materials selected for testing were alum sludge from water treatment works, ochre derived from minewater treatment, biochar derived from various feedstocks, plasterboard and zeolite. The performance of the individual sorbents was assessed through

  17. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  18. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels

    Directory of Open Access Journals (Sweden)

    Niclas Ånmark

    2015-02-01

    Full Text Available Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc. are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  19. The effect of a self-constructed material on children’s physical activity during recess

    Directory of Open Access Journals (Sweden)

    Antonio Méndez-Giménez

    Full Text Available ABSTRACT OBJECTIVE To analyze whether an intervention supported by free play with a self-constructed material increases the level of physical activity of students during recess. METHODS The participants were 166 children of third to sixth grade, between nine and 12 years old (average = 10.64; SS = 1.13. An experimental project was conducted with pre-test and post-test measurement, and a control group. Experimental group participants built cardboard paddles (third and fourth and flying rings (fifth and sixth, a material they used freely for one week during recess. ActiGraph-GT3X accelerometers were used to measure physical activity. An ANOVA of repeated measures was used to find differences between groups and genders. RESULTS Significant intervention effects were found in the analyzed variables: sedentary activity (F = 38.19; p < 0.01, light (F = 76.56; p < 0.01, moderate (F = 27.44; p < 0.01, vigorous (F = 61.55; p < 0.01, and moderate and vigorous (F = 68.76; p < 0.01. Significant gender differences were shown (time × group × gender for moderate (F = 6.58; p < 0.05 and vigorous (F = 5.51; p < 0.05 activity. CONCLUSIONS The self-constructed material is effective to increase the physical activity levels of children during recess; it decreases sedentary activity and light physical activity and increases the time devoted to moderate physical activity and vigorous physical activity, both in boys and in girls. The boys had an increase in vigorous physical activity and the girls in moderate physical activity. Due to its low cost, this strategy is recommended for administrators and teachers to increase the physical activity of children during recess.

  20. Environmental quality of primary and secundary construction materials in relation to re-use and protection of soil and surface water

    NARCIS (Netherlands)

    Aalbers ThG; Wilde PGM de; Rood GA; Vermij PHM; Saft RJ; Beek AIM van de; Broekman MH; Masereeuw P; Kamphuis Ch; Dekker PM; Valentijn EA; LAE-RIVM

    1996-01-01

    To support the General Administrative Order on Construction Materials (Soil and Surface Waters Protection) this document supplies information on: 1) the quantification of the standard values for the application of construction materials ; 2) the environmental quality (characterization) of constructi

  1. Empirical Evaluation of Construction Material Waste Generated on Sites in Nigeria

    Directory of Open Access Journals (Sweden)

    Adewuyi, T.O.

    2014-01-01

    Full Text Available The study investigates the level of construction material waste generated on building sites in South-South, Nigeria. The objective is to empirically establish the level of waste generated on building sites and compare such with the allowable value in estimates. Data were collected from 30 on-going public building projects for six months. The level of material waste was calculated in percentages while one way ANOVA was employed to compare the waste values among the States in the zone. The significant difference between actual and allowable values of waste was tested using paired t-test. The level of material waste was found to be 11.69, 12.10, 10.45, 14.54, and 12.07 for concrete blocks, steel reinforcement, timber, and tiles respectively. It was concluded that these values are significantly different, with p-values < 0.05, from the allowable waste. The study recommends that the values of waste derived by this study be adopted in estimates

  2. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed.

  3. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    Science.gov (United States)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  4. Simulating The Impact Of The Material Flow In The Jordanian Construction Supply Chain And Its Impact On Project Performance

    Directory of Open Access Journals (Sweden)

    Dr. Ghaith Al-Werikat

    2015-08-01

    Full Text Available With the new developments and challenges within the construction industry improving the construction supply chain is becoming a major concern to both governments and industries. Improving the construction supply chain helps in improving the quality of construction projects reducing cost wastes delays and other disruptions. This paper discusses the analysis of material flow in the construction supply chain. The methodology consisted of preliminary investigations survey and simulation development to analyse the extent of impact that material flow has on construction projects in Jordan. Both the main survey and the investigations revealed that material flow delays are caused mainly by 3 types of delays late delivery wrong specification and material damaged on site. The highest impact regarding late deliveries was scaffolding with a 16 probability of occurrence a 2-day delay on the activitys duration. Concrete ranked highest regarding wrong specification with a 19 probability of occurrence an 8-day delay the activitys duration. Regarding materials damaged on site bricks ranked highest with a 9 probability of occurrence a 3-day delay on the duration. The simulation results exhibited a delay of 50 on the projects duration and a probability of a delay occurring is 9.2.

  5. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    A monostatic amplitude and phase stepped-frequency radar approach have been proposed to detect small non-metallic buried anti-personnel (AP) mines. An M-56 AP-mine with a diameter of 54 mm and height of 40 mm, only, has been successfully detected and located in addition to small metallic mine...

  6. Soil effects on GPR detection of buried non-metallic mines

    NARCIS (Netherlands)

    Hendrickx, J.M.H.; Hong, S.H.; Miller, T.; Borchers, B.; Rhebergen, J.B.

    2003-01-01

    Landmines are a major problem in many areas of the world. In spite of the fact that many different types of landmine sensors have been developed, the detection of non-metallic landmines remains very difficult. The objective of this contribution is to synthesize our work related to the effects of soi

  7. Practical implications of the relation between the clay mineral content and the plasticity index of dolerite road construction material

    CSIR Research Space (South Africa)

    Kleyn, E

    2009-04-01

    Full Text Available or the introduction of more expensive commercially manufactured materials. For this reason the naturally occurring materials have to be better assessed and utilised. The weathered rock most widely used for road construction in South Africa, yet also notorious for its...

  8. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L

    2013-01-01

    A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.

  9. New steel-materials for bridge-construction; Kyoryo yoto no shinkozai oyobi shinkenzai

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Y.; Fujii, Y.; Suzuki, A.; Takagi, M.; Nishiumi, K.; Kusunoki, T.; Tsuzuki, T.; Usami, A. [Nippon Steel Corp., Tokyo (Japan)

    1998-07-31

    Nippon Steel Corporation is exerting endeavors for the development of various technologies which concern materials, designing, and execution in the field of bridges. Outlined in this report are the merits and effects of some fruits of such endeavors, which involve a new weather-resistant steel to reduce the maintenance cost, longitudinally profiled steel plates to reduce the manufacturing cost, rectangular steel tubes using a high-tenacity steel, long-span-conscious grating slabs and steel elements to save labor in bridge construction, etc. For instance, the newly developed weather-resistant steel is a product intended for use for Japan`s big cities and trunk lines near the seashore, and is so designed as to contain 5% Ni to withstand seashore climate after studies and tests. This steel will contribute to the reduction in the cost for maintaining bridges in seashore belts where the conventional weather-resistant steel does not work effectively or in snowy regions where the use of snow-melting agents is inevitable. In another example, the steel is used for the construction of Nippon Steel Corporation`s Minami-Ohashi Bridge situated in the sea-facing zone of Nagoya Works of the corporation, where tests are still under way. 18 refs., 23 figs., 4 tabs.

  10. 废弃电路板中非金属组分的回收利用%Recycling of non-metallic fractions from waste printed circuit boards

    Institute of Scientific and Technical Information of China (English)

    刘旸; 刘静欣; 江晓健; 郭学益

    2016-01-01

    废弃电路板是电子废弃物的重要组成部分。目前工业生产及工艺开发多针对极具经济回收价值的电路板金属组分。然而,占电路板质量分数70%的非金属组分却关注较少。文章分析了废弃电路板非金属组分的组成及其有害组分,其含有树脂及玻璃纤维等有价成分和溴、夹杂重金属等污染环境的物质,其回收利用对于资源循环利用及环境保护均有重要意义。非金属组分回收利用主要有物理处理和化学处理2种技术:物理处理技术主要将非金属组分用作结构材料填料、塑料改性剂和建筑材料改性剂;化学处理技术通过焚烧将非金属组分用作燃料和熔剂或通过热解回收或溶剂分解回收可将非金属组分转化为化工产品。这2种技术在非金属组分资源化利用上各有优势,都已有部分工业化应用。%Waste printed circuit boards (WPCBs) are important parts in the electronic waste. Nowadays, recov-ering metals from WPCBs are developed but non-metallic fractions which accounts for 70% of waste printed circuit boards have not been effectively utilized. The non-metallic fractions and hazards in waste printed cir-cuit boards were analyzed in this paper. The results show that resins and glass fiber in non-metallic fractions can be recycled and bromine and heavy metals could pollute environment. Recovering non-metallic fractions are important to recycling and environment, which can be divided into physical recycling technology and chemical recycling technology, with the formal using non-metallic fractions as the filler materials, plastic modifier or building material modifiers, and the latter using non-metallic fractions as the fuel and smelting flux through incineration or convert non-metallic fractions into chemical products through pyrolysis or solvent decomposition. Both technologies have their own advantages in resource utilization of non-metallic fractions, and partly

  11. Physical properties and hydrological response of green roof substrates based on recycled construction materials

    Science.gov (United States)

    Vanwalleghem, Tom; Hayas, Antonio; Jiménez-Quiñones, Daniel; Peña, Adolfo; Giráldez, Juan Vicente

    2015-04-01

    Green roofs in urban areas improve the building's energy efficiency and provide a wide array of additional environmental benefits. Characterizing and predicting the physical properties and hydrological response of green roofs is necessary to understand the roof's heat balance, which is controlled to a large extent by the substrate's water content, to predict the runoff response and functioning as a part of sustainable urban drainage systems and to plan irrigation of the plants in drier climates. This study examines 10 different extensive green roof substrates, based on recycled construction materials. Green roof simulation decks were installed in boxes of 0,6 m x 0,4 m to a depth of 70 mm, 10 with and 10 without plants. Total water holding capacity of the substrates varied between 10,4 - 23,9 %, with an additional 19 % retained by the drainage layer and geotextiles used in the simulation deck. An important compaction of 30 % on average was observed after 1,5 months. Final bulk densities are between 1457 - 1993 kg m-3. In an evaporation experiment, it was shown that the water evaporated from the green roofs is controlled mainly by the relative moisture content. Substrate properties exerted only a secondary control, with the lowest evaporation rates from the substrates with highest coarse crushed aggregate content and with the highest clay content. The evaporation model proposed here was shown to work well to simulate the evolution of the water balance and therefore the specific unit weight over longer time periods in all substrates, with a Nash-Sutcliffe model efficiency of 0.989. Finally, plants were found to grow satisfactorily in all substrates. Therefore, when regular irrigation is provided, it was concluded that green roofs based on recycled construction materials are a viable option. Future research will have to explore the long-term plant dynamics under water-limited conditions.

  12. UTILIZATION OF INDUSTRIAL BYPRODUCT AS RAW MATERIAL IN CONSTRUCTION INDUSTRY- A REVIEW

    Directory of Open Access Journals (Sweden)

    VAISHALI SAHU

    2013-02-01

    Full Text Available A large quantity of sludge rich in nutrients and microorganisms is generated every year from water and wastewater treatment plants, the final destination of which affects the environment. Generally, dewatered sludge is disposed of by spreading on the land or by land filling. However, space limitations on existing landfill sites and problems of waste stabilization have prompted investigation into alternative reuse techniques and disposal routes for sludge. A more reasonable approach is to view the sludge as a resource that can be recycled or reused. Many researchers have exploited the reuse of lime sludge from water treatment plant and sewage sludge ash as an inexpensive source of soil stabilizer in sub grade stabilization and soft cohesive soil respectively. Sewage sludge pellets (SSP has replaced sand in concrete manufacturing for pavements. The use of SSP as substituting material in raw mix formulation in Portland cement manufacturing has been studied by many researchers. Experimental results showed the feasibility of the partial replacement (15 and 30% of cement by sewage sludge ash (SSA in mortars. This paper highlights the potential of dried sludge, sludge pellets and sludge ash in various building materials for construction.

  13. EVALUATION OF THERMAL INSULATION FOR THREE DIFFERENT MATERIALS USED IN CONSTRUCTION AND COMPLETION OF EXTERNAL WALLS

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2010-05-01

    Full Text Available Summers increasingly hot are bringing large thermal problems within homes and businesses, leading to increased demand for installation of air conditioners and the consequent high energy consumption. Constructions with thermal insulation on its external walls thatcould reduce energy use or even supply the use of such equipment. Due to these factors the present study was to evaluate the insulation in three boxes built with different materials, one made of wooden boards with plain walls, and two built with plywood, wall insulation andinterior walls filled with rice husk and Styrofoam®. The boxes were built after placed in drying oven at 40 °C, then noted the temperature inside the same interval every five minutes using a digital thermometer. The box with inner Styrofoam® showed the lowest variation among the three evaluated, followed by the box of rice husk. These two materials also showed good thermal initial, unlike the box built only with wood, which showed a large interiorheating, lay in a drying oven.

  14. Recycling waste brick from construction and demolition of buildings as pozzolanic materials.

    Science.gov (United States)

    Lin, Kae-Long; Wu, Hsiu-Hsien; Shie, Je-Lueng; Hwang, Chao-Lung; An Cheng

    2010-07-01

    This investigation elucidates the pozzolic characteristics of pastes that contain waste brick from building construction and demolition wastes. The TCLP leaching concentrations of waste brick for the target cations or heavy metals were all lower than the current regulatory thresholds of the Taiwan EPA. Waste brick had a pozzolanic strength activity index of 107% after 28 days. It can be regarded as a strong pozzolanic material. The compressive strengths of waste brick blended cement (WBBC) that contain 10% waste brick increased from 71.2 MPa at 28 days to 75.1 MPa at 60 days, an increase of approximately 5% over that period. At 28 days, the pozzolanic reaction began, reducing the amount of Ca(OH)(2) and increasing the densification. The intensity of the peak at 3640 cm(- 1) associated with Ca(OH)(2) is approximately the same for ordinary Portland cement (OPC) pastes. The hydration products of all the samples yield characteristics peaks at 978 cm(-1) associated with C-S-H, and at ~3011 cm(-1) and 1640 cm(-1) associated with water. The samples yield peaks at 1112 cm(-1), revealing the formation of ettringite. In WBBC pastes, the ratio Q(2)/Q(1) increases with curing time. These results demonstrate that increasing the curing time increases the number of linear polysilicate anions in C-S-H. Experimental results reveal that waste brick has potential as a pozzolanic material in the partial replacement of cement.

  15. 30 CFR 717.18 - Dams constructed of or impounding waste material.

    Science.gov (United States)

    2010-07-01

    ... all conditions of construction and operation of the impoundment. Sufficient foundation investigations... section. (b) Construction of dams. (1) Waste shall not be used in the construction of dams unless... of § 77.216(a) of this title, shall be approved by the regulatory authority before construction...

  16. PHYSICAL AND MECHANICAL PROPERTIES OF BLACK WOOD (EBONY AS A CONSTRUCTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-01-01

    Full Text Available This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures   Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.   REFERENCES Aghayere A & Jason V. 2007. Structural Wood Design: A Practice-Oriented Approach Using the ASD Method. John Wiley & Sons, Inc., New Jersey Boen T. 2009. Constructing Seismic Resistant Masonry Houses in Indonesia. United Nation. Chauf KA. 2005. Karakteristik Mekanik Kayu Kamper sebagai Bahan Konstruksi. Majalah Ilmiah MEKTEK . Vol 7 : 41-47. Dolan JD. 2004. Timber Structures. Pp 628-669 in Wai FC & Eric ML (Eds Handbook of Structural Engineering – 2nd

  17. The effect of a self-constructed material on children's physical activity during recess.

    Science.gov (United States)

    Méndez-Giménez, Antonio; Cecchini, José-Antonio; Fernández-Río, Javier

    2017-06-26

    To analyze whether an intervention supported by free play with a self-constructed material increases the level of physical activity of students during recess. The participants were 166 children of third to sixth grade, between nine and 12 years old (average = 10.64; SS = 1.13). An experimental project was conducted with pre-test and post-test measurement, and a control group. Experimental group participants built cardboard paddles (third and fourth) and flying rings (fifth and sixth), a material they used freely for one week during recess. ActiGraph-GT3X accelerometers were used to measure physical activity. An ANOVA of repeated measures was used to find differences between groups and genders. Significant intervention effects were found in the analyzed variables: sedentary activity (F = 38.19; p sexo. Se encontraron efectos de intervención significativos en las variables analizadas: actividad sedentaria (F = 38,19; p sexo (tiempo x grupo x sexo) para la actividad moderada (F = 6,58; p < 0,05) y vigorosa (F = 5,51; p < 0,05). El material autoconstruido es eficaz para aumentar los niveles de actividad física de los niños en el recreo; disminuye la actividad sedentaria y la actividad física ligera, y aumenta el tiempo dedicado a la actividad física moderada y actividad física vigorosa, tanto en varones como en mujeres. Los varones aumentaron más la actividad física vigorosa y las mujeres, la actividad física moderada. Por su bajo coste, se recomienda esta estrategia a gestores y profesores para incrementar la actividad física de los niños durante el recreo.

  18. The basic construction materials industry and today’s vast housing shortage

    Directory of Open Access Journals (Sweden)

    Oteiza, I.

    2008-12-01

    Full Text Available This paper documents some of the aspects of the major challenge facing world-wide building: humanity's daunting shortage of basic housing, monographically focusing on what this means for the basic building materials industry. These needs have created the greatest demand ever for ex-novo solutions and an exponential increase in slum rehabilitation and improvement, translated here into the need for construction materials and more specifically, cement, as the emblematic component of buildings.El trabajo aborda en forma documentada, algunos aspectos del mayor de los retos que tiene planteado a nivel cosmopolita el sector de la edificación: las ingentes necesidades de habitabilidad básica que padece la humanidad, centrándose en forma monográfica en lo que ello supone para la industria de materiales básicos de edificación. Necesidades que se traducen en la mayor demanda histórica de soluciones ex-novo y en el aumento exponencial de rehabilitación y mejora de tugurios, que los autores traducen en necesidades de materiales de construcción, y de forma más concreta, de cemento, como material emblemático de la edificación.El trabajo, mediante el análisis de casos, muestra la muy diferente repercusión que tienen los materiales sobre los presupuestos finales de lo ejecutado, según se trate del mundo desarrollado (MD o de países en vías de desarrollo (PVD. Por otra parte, estudia la incidencia general del sector 'informal' de la construcción, concluyendo que éste, en muchos países, es el consumidor mayoritario de materiales -specialmente cemento-y que a nivel mundial los PVD lo son tanto en producción como en consumo.

  19. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-Ling; CUI Li-Hua; OUYANG Ying; LONG Cui-Fen; TANG Xiao-Dan

    2011-01-01

    Constructed wetlands (CWs) are engineered systems that utilize natural systems including wetland vegetations,soils,and their associated microbial assemblages to assist in treating wastewater.The kinetic adsorption of ammonium nitrogen (NH4+-N) by CW substrate materials such as blast furnace slag (BFS),zeolite,ceramsite,vermiculite,gravel,paddy soil,red soil,and turf,was investigated using batch experiments and kinetic adsorption isotherms.Both Freundlich and Langmuir isotherms could adequately predict the NH4+-N adsorption process.The maximum adsorption capacities of NH4+-N,estimated from the Langmuir isotherm,ranked as:zeolite (33 333.33 mg kg-1) > turf (29274.01 mg kg-1) > BFS (5 000mg kg-1) > vermiculite (3333.33 mg kg-1) > gravel (769.23 mg kg-1) > paddy soil (588.24 mg kg-1) > red soil (555.56mg kg-1) > ceramsite (107.53 mg kg-1).Some properties of the substrate materials,including bulk density,specific gravity,hydraulic conductivity,uniformity coefficient (K60),curvature coefficient (Cc),organic matter,pH,exchangeable (or active) Cu,Fe,Zn and Mn,total Cu,and Fe,Mn,Zn,Cd,Pb and Ca,had negative correlations with NH4+-N adsorption.Other properties of the substrate materials like particle diameter values of D10,D30 and D60 (the diameters of particle sizes of a substrate material at which 10%,30% and 60%,respectively,of the particles pass through the sieve based on the accumulative frequency),cation exchange capacity (CEC),exchangeable (or active) Ca and Mg,and total K and Mg had positive correlations with NH4+-N adsorption.In addition,active K and Na as well as the total Na had significant positive correlations with NH4+-N adsorption.This information would be useful for selection of suitable substrate materials for CWs.

  20. Permittivity Investigations of the Road Construction Raw Materials for Purposes of GPR Data Interpretations

    Science.gov (United States)

    Krysiński, Lech

    2014-05-01

    Permittivity is the major material property governing the formation of GPR response signal in diagnostic measurements. Every quantitative interpretation refers explicitly or implicitly to discussion of permittivity values. Thus, the recognition of permittivity for materials typical of the given technological area is necessary to make use of diagnostic measurements. Collection of several tens of stone cores representing different outcrops was investigated in order to obtain cross-sectional view of permittivity for stone materials being in use in Polish road construction industry as components of stone-asphalt mixtures. The main task was to estimate the typical permittivity values for stone materials treated as representation of several major petrological types. The capacimetry (at 50 MHz) was used as major and very efficient method of permittivity assessment and formation of the samples was subordinated to demands of this method. This method allows for determination of permittivity variability on the lateral surface of the cylindrical sample, giving the insight into the major features of the permittivity spatial distribution characteristic for the given rock. For the most homogeneous samples (in terms of permittivity distribution) the permittivity was measured also on the core top at frequency 2 GHz using impulse GPR reflectometry. No clear proofs for considerable permittivity frequency dependence were found (in the frame of the two methods precision) for these rocks. This conclusion can be related generally to major rock-forming minerals at least in dry igneous rocks. Only solid rocks obtained from regular massive outcrops were included to this first cross-sectional sampling, while artificial synthetic materials and natural gravels of postglacial origin were omitted since additional problems occur in these cases. This first experience allowed to recognize practical problems related to the sampling procedure. The collected data allow for provisional identification

  1. Crack barriers improve the mechanical and thermal properties of non-metallic sinter materials

    Science.gov (United States)

    Gruenthaler, K. H.; Heinrich, W.; Janes, S.; Nixdorf, J.

    1979-01-01

    Means of improving the tensile strength of ceramic composites by introducing ductile intermediate layers capable of absorbing the elastic energy at the rupture front are studied. Tests with an Al203 laminate with niobium inclusions showed that crack propagation could be successfully precluded by dissipation of the energy by deformation and/or delamination at the inclusion/matrix interface.

  2. Impact of defectiveness on the parameters of the acoustoelectric transformations in heterogeneous non-metallic materials

    Science.gov (United States)

    Fursa, T. V.; Lyukshin, B. A.; Utsyn, G. E.; Dann, D. D.

    2015-04-01

    The article studies acoustoelectric transformations of concrete with a crack. The research presents three-dimensional modeling and 3D visualization of wave processes in a concrete sample with a surface crack. The parameters of the electrical response are found to reflect the processes of interaction between the acoustic wave front and the defect and boundaries of the sample.

  3. Assessing the environmental performance of construction materials testing using EMS: An Australian study.

    Science.gov (United States)

    Dejkovski, Nick

    2016-10-01

    This paper reports the audit findings of the waste management practices at 30 construction materials testing (CMT) laboratories (constituting 4.6% of total accredited CMT laboratories at the time of the audit) that operate in four Australian jurisdictions and assesses the organisation's Environmental Management System (EMS) for indicators of progress towards sustainable development (SD). In Australia, waste indicators are 'priority indicators' of environmental performance yet the quality and availability of waste data is poor. National construction and demolition waste (CDW) data estimates are not fully disaggregated and the contribution of CMT waste (classified as CDW) to the national total CDW landfill burden is difficult to quantify. The environmental and human impacts of anthropogenic release of hazardous substances contained in CMT waste into the ecosphere can be measured by construing waste indicators from the EMS. An analytical framework for evaluating the EMS is developed to elucidate CMT waste indicators and assess these indicators against the principle of proportionality. Assessing against this principle allows for: objective evaluations of whether the environmental measures prescribed in the EMS are 'proportionate' to the 'desired' (subjective) level of protection chosen by decision-makers; and benchmarking CMT waste indicators against aspirational CDW targets set by each Australian jurisdiction included in the audit. Construed together, the EMS derived waste indicators and benchmark data provide a composite indicator of environmental performance and progress towards SD. The key audit findings indicate: CMT laboratories have a 'poor' environmental performance (and overall progress towards SD) when EMS waste data are converted into indicator scores and assessed against the principle of proportionality; CMT waste recycling targets are lower when benchmarked against jurisdictional CDW waste recovery targets; and no significant difference in the average

  4. A computer based approach for Material, Manpower and Equipment managementin the Construction Projects

    Science.gov (United States)

    Sasidhar, Jaladanki; Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.

    2017-07-01

    The success of any construction project will depend on efficient management of resources in a perfect manner to complete the project with a reasonable budget and time and the quality cannot be compromised. The efficient and timely procurement of material, deployment of adequate labor at correct time and mobilization of machinery lacking in time, all of them causes delay, lack of quality and finally affect the project cost. It is known factor that Project cost can be controlled by taking corrective actions on mobilization of resources at a right time. This research focuses on integration of management systems with the computer to generate the model which uses OOM data structure which decides to include automatic commodity code generation, automatic takeoff execution, intelligent purchase order generation, and components of design and schedule integration to overcome the problems of stock out. To overcome the problem in equipment management system inventory management module is suggested and the data set of equipment registration number, equipment number, description, date of purchase, manufacturer, equipment price, market value, life of equipment, production data of the equipment which includes equipment number, date, name of the job, hourly rate, insurance, depreciation cost of the equipment, taxes, storage cost, interest, oil, grease, and fuel consumption, etc. is analyzed and the decision support systems to overcome the problem arising out improper management is generated. The problem on labor is managed using scheduling, Strategic management of human resources. From the generated support systems tool, the resources are mobilized at a right time and help the project manager to finish project in time and thereby save the abnormal project cost and also provides the percentage that can be improved and also research focuses on determining the percentage of delays that are caused by lack of management of materials, manpower and machinery in different types of projects

  5. Natural radioactivity of materials used in industry and construction in Serbia.

    Science.gov (United States)

    Todorović, Dragana J; Janković, Marija M

    2011-01-01

    Four different kinds of materials (feldspar, gypsum, clay and kaolin) commonly used in building construction and industry in Serbia were analyzed for their natural radioactivity, using gamma spectrometry. The radium equivalent activity, Ra(eq), the absorbed dose rate, D, the annual effective dose, D(E), and the external hazard index, H(ex), were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The radium equivalent activities calculated in all samples are lower than the maximum admissible value 370 Bq kg(-1) set in the UNSCEAR report. The absorbed dose rate in air was found to vary from 0.02 to 0.19 μGy h(-1). Considering the fact that the average gamma dose rate indoors in Europe is 0.07 μGy h(-1), gamma dose rate calculated for feldspar, clay and kaolin samples exceed this limit. The obtained results for annual effective dose exceed limits of 0.41 mSv for feldspar, clay and kaolin samples. If the H(ex) exceeds unity, we might conclude that the potential external dose(s) to exposed individual(s) will exceed the acceptable level, and some action may be required. The obtained values of H(ex) are lower than unity for all investigated samples. All samples were measured immediately after preparation, except 10 samples of feldspar, because a comparative analysis were made between 215 samples which were measured immediately after preparation and 10 samples which were measured after radioactive equilibrium was reached in order to detect differences in the obtained concentrations.

  6. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    Energy Technology Data Exchange (ETDEWEB)

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  7. Dosimetry of radium equivalent in construction material of brick works in Sao Jose do Sabugi City - Paraiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eduardo Eudes Nobrega de; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Spacov, Isabel Cristina Guerra; Fernandez, Zahily Herrero, E-mail: eduardo.eudes@ufpe.br, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: neideden@hotmail.com, E-mail: isabelspacov@gmail.com, E-mail: zahily1985@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia

    2015-07-01

    The earth's crust has in its composition the Naturally Occurring Radioactive Material (NORM) that may have increased concentration due to activities of exploration and extraction of environmental resources. The civil construction is an economic activity that requires the use of much of the natural resources, such as the raw material of brick works, like clays, mainly used for the production of bricks and tiles. These construction materials may contain high levels of natural radioactive elements, even with concentrations higher than the limits established, given that the levels vary according to the composition of rocks and soil, due to the geological formation and may result in increased exposure of humans to natural radioactive activities. In this context, the radioecological dosimetry is defined in terms of Radium Equivalent activity (Ra{sub eq}), that ensure radiometric conditions for the use of material derived from clays before its final application in housing construction, an initiative that ensures the radioecological safety of population. Thus, this study aimed to establish the calculation of Ra{sub eq} in the raw material of brick works located in Sao Jose do Sabugi city, state of Paraiba, in an area adjacent to the uranium deposits of Espinharas, to estimate the risks associated with primordial radionuclides attributed to TENORM activities (Technologically Enhanced Naturally Occurring Radioactive Materials) from the extraction and use of clay as a raw material in the manufacture of bricks and tiles. Analyses were performed by High Resolution Gamma Spectrometry, with HPGe-Be detector, assuming the state of secular radioactive equilibrium. The results ranged from 183.2 to 747.78 Bq/kg, with an average of 494.6 Bq/kg which exceeded the limit of 370 Bq/kg established by UNSCEAR for construction materials. Some samples obtained values exceeded by up the double this limit, suggesting control and radiometric certification for application of this material

  8. The mineral base and productive capacities of metals and non-metals of Kosovo

    Energy Technology Data Exchange (ETDEWEB)

    Rizaj, M.; Beqiri, E.; McBow, I.; O' Brien, E.Z.; Kongoli, F. [University of Prishtina, Prishtina (Kosovo)

    2008-08-15

    All historical periods of Kosovo - Ilirik, Roman, Medieval, Turkish, and former Yugoslavian - are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  9. The mineral base and productive capacities of metals and non-metals of Kosovo

    Science.gov (United States)

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E. Z.; Kongoli, F.

    2008-08-01

    All historical periods of Kosovo—Ilirik, Roman, Medieval, Turkish, and former Yugoslavian—are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  10. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  11. Non-metallic catalysts for diamond synthesis under high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    孙力玲; 吴奇; 戴道扬; 张君; 秦志成; 王文魁

    1999-01-01

    Recent results on conversion from graphite to diamond by aid of non-metallic catalysts are reviewed. The current status of experimental advances is presented and typical examples from relevant literature are provided for understanding the mechanism of the graphite-diamond conversion by aid of these non-metallic catalysts. Furthermore, a tendency of graphite-diamond transformation assisted by carbonates, sulfates or phosphorus under high pressure and high temperature has been investigated by calculating the activation energy and transformation probability of the carbon atoms over a potential barrier. It was found that the activation energy is highly sensitive to the catalyst chosen. The probability sequence of graphite-diamond transformation with these catalysts was put forward.

  12. Motion behavior of non-metallic particles under high frequency magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-tao; GUO Qing-tao; YU Feng-yun; LI Jie; ZHANG Jian; LI Ting-ju

    2009-01-01

    Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.

  13. Construction materials used in the historical Roman era bath in Myra.

    Science.gov (United States)

    Oguz, Cem; Turker, Fikret; Kockal, Niyazi Ugur

    2014-01-01

    The physical, chemical, and mechanical properties of mortars and bricks used in the historical building that was erected at Myra within the boundaries of Antalya Province during the Roman time were investigated. The sample picked points were marked on the air photographs and plans of the buildings and samples were photographed. Then petrographic evaluation was made by stereo microscope on the polished surfaces of construction materials (mortar, brick) taken from such historical buildings in laboratory condition. Also, microstructural analyses (SEM/EDX, XRD), physical analyses (unit volume, water absorption by mass, water absorption by volume, specific mass, compacity, and porosity), chemical analyses (acid loss and sieve analysis, salt analyses, pH, protein, fat, pozzolanic activity, and conductivity analyses), and mechanical experiments (compressive strength, point loading test, and tensile strength at bending) were applied and the obtained results were evaluated. It was observed that good adherence was provided between the binder and the aggregate in mortars. It was also detected that bricks have preserved their originality against environmental, atmospheric, and physicochemical effects and their mechanical properties showed that they were produced by appropriate techniques.

  14. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    Science.gov (United States)

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size <0.045 mm), the content of the Al-Si glass phase and the surface characteristics were the main factors, which could affect the accessibility of PAHs for leaching. The mobility of PAHs from OSA of CFB and PF boilers was 20.2 and 9.9%, respectively. Hardening of OSA-based materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  15. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  16. USE OF CONSTRUCTION AND DEMOLITION WASTES AS RAW MATERIALS IN CEMENT CLINKER PRODUCTION

    Institute of Scientific and Technical Information of China (English)

    Christos-Triantafyllos Galbenis; Stamatis Tsimas

    2006-01-01

    The aim of the present paper was to investigate the possibility of utilizing Construction and Demolition(C&D) wastes as substitutes of Portland cement raw meal. The C&D wastes that were so used, were the Recycled Concrete Aggregates (RCA) and the Recycled Masonry Aggregates (RMA) derived from demolished buildings in Attica region, Greece. RCA and RMA samples were selected because of their calcareous and siliceous origin respectively,which conformed the composition of the ordinary Portland cement raw meal. For that reason, six samples of cement raw meals were prepared: one with ordinary raw materials, as a reference sample, and five by mixing the reference sample with RCA and RMA in appropriate proportions. The effect on the reactivity of the generated mixtures, was evaluated on the basis of the free lime content (fCaO) in the mixtures sintered at 1350℃, 1400℃ and 1450℃. Test showed that the added recycled aggregates improved the burnability of the cement raw meal without affecting negatively the cement clinker properties. Moreover, the formation of the major components (C3S, C2S, C3A and C4AF) of the produced clinkers(sintered at 1450℃) was corroborated by X-Ray Diffraction (XRD).

  17. Measurement of the thermal conductivity of construction materials using a thin film probe

    Directory of Open Access Journals (Sweden)

    Kasayapanand, N.

    2007-05-01

    Full Text Available The objective of this research work was to develop a thin film thermal conductivity probe for measuring thermal property of construction materials. This probe was developed based on the line heat sourceprinciple. The thermal conductivity can be determined from the slope of linear relation between the temperature differences ΔT and logarithm of time ln(t. The probe was tested by measuring the thermal conductivityof three kinds of specimens comprising of polystyrene foam (PS, autoclaved aerated concrete (ACC and gypsum board (GB The range of electrical power supply rate for the probe was varied from 0.15 to1.59 W. The thermal conductivity values obtained with this method were greater compared to the results obtained using the ASTM C 177. The difference of thermal conductivity between line two methods decreasedwith the increase of the power supply rate. The mean difference for PS, ACC and GB was 4.33%, 6.15% and 42.34% respectively. According to the restriction of minimum thickness requirement of specimen for testingwith the guard hot plate apparatus (ASTM C 177, it was necessary to overlay one GB slab on another. As a result, the mean difference of thermal conductivity for GB was considerably high.

  18. Sulfate removal and sulfur transformation in constructed wetlands: The roles of filling material and plant biomass.

    Science.gov (United States)

    Chen, Yi; Wen, Yue; Zhou, Qi; Huang, Jingang; Vymazal, Jan; Kuschk, Peter

    2016-10-01

    Sulfate in effluent is a challenging issue for wastewater reuse around the world. In this study, sulfur (S) removal and transformation in five batch constructed wetlands (CWs) treating secondary effluent were investigated. The results showed that the presence of the plant cattail (Typha latifolia) had little effect on sulfate removal, while the carbon-rich litter it generated greatly improved sulfate removal, but with limited sulfide accumulation in the pore-water. After sulfate removal, most of the S was deposited with the valence states S (-II) and S (0) on the iron-rich gravel surface, and acid volatile sulfide was the main S sink in the litter-added CWs. High-throughput pyrosequencing revealed that sulfate-reducing bacteria (i.e. Desulfobacter) and sulfide-oxidizing bacteria (i.e. Thiobacillus) were dominant in the litter-added CWs, which led to a sustainable S cycle between sulfate and sulfide. Overall, this study suggests that recycling plant litter and iron-rich filling material in CWs gives an opportunity to utilize the S in the wastewater as both an electron acceptor for sulfate reduction and as an electron donor for nitrate reduction coupled with sulfide oxidation. This leads to the simultaneous removal of sulfate, nitrate, and organics without discharging toxic sulfide into the receiving water body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Material and Social Construction: A Framework for the Adaptation of Buildings

    Directory of Open Access Journals (Sweden)

    Jesse M. Keenan

    2014-12-01

    Full Text Available This article is a formulation of a framework for understanding the nature of change, particularly climate change, as it applies to the scale of a building. Through an exploration of various scientific and social scientific literutre, the article positions the concept of adaptation as the appropriate mode for understanding and managing change. Through the classification of a duality of material and social construction in the ontological composition of a building, various lines of thought relating to adaptive capacity and adaptive cycling within systems theory are appropriated within an integrated framework for adaptation. Specifically, it is theorized that as buildings as objects are developing greater capacities for intergrated operations and management through artificial intelligence, they will possess an ex ante capacity to autonomously adapt in dynamic relation to and with the ex post adaptation of owners and operators. It is argued that this top-down and bottom-up confluence of multi-scalar dynamic change is consistent with the prevailing theory of Panarchy applied in social-ecological systems theory. The article concludes with normative perspectives on the limitations of systems theory in architecture, future directions for research and an alternative positioning of professional practices.

  20. Development of drainage water quality from a landfill cover built with secondary construction materials.

    Science.gov (United States)

    Travar, Igor; Andreas, Lale; Kumpiene, Jurate; Lagerkvist, Anders

    2015-01-01

    The aim of this study was to evaluate the drainage water quality from a landfill cover built with secondary construction materials (SCM), fly ash (FA), bottom ash (BA) sewage sludge, compost and its changes over time. Column tests, physical simulation models and a full scale field test were conducted. While the laboratory tests showed a clear trend for all studied constituents towards reduced concentrations over time, the concentrations in the field fluctuated considerably. The primary contaminants in the drainage water were Cl(-), N, dissolved organic matter and Cd, Cu, Ni, Zn with initial concentrations one to three orders of magnitude above the discharge values to the local recipient. Using a sludge/FA mixture in the protection layer resulted in less contaminated drainage water compared to a sludge/BA mixture. If the leaching conditions in the landfill cover change from reduced to oxidized, the release of trace elements from ashes is expected to last about one decade longer while the release of N and organic matter from the sludge can be shortened with about two-three decades. The observed concentration levels and their expected development over time require drainage water treatment for at least three to four decades before the water can be discharged directly to the recipient. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Construction Materials Used in the Historical Roman Era Bath in Myra

    Directory of Open Access Journals (Sweden)

    Cem Oguz

    2014-01-01

    Full Text Available The physical, chemical, and mechanical properties of mortars and bricks used in the historical building that was erected at Myra within the boundaries of Antalya Province during the Roman time were investigated. The sample picked points were marked on the air photographs and plans of the buildings and samples were photographed. Then petrographic evaluation was made by stereo microscope on the polished surfaces of construction materials (mortar, brick taken from such historical buildings in laboratory condition. Also, microstructural analyses (SEM/EDX, XRD, physical analyses (unit volume, water absorption by mass, water absorption by volume, specific mass, compacity, and porosity, chemical analyses (acid loss and sieve analysis, salt analyses, pH, protein, fat, pozzolanic activity, and conductivity analyses, and mechanical experiments (compressive strength, point loading test, and tensile strength at bending were applied and the obtained results were evaluated. It was observed that good adherence was provided between the binder and the aggregate in mortars. It was also detected that bricks have preserved their originality against environmental, atmospheric, and physicochemical effects and their mechanical properties showed that they were produced by appropriate techniques.

  2. NON-METALLIC IMPURITIES AND FORMING OF THE STRUCTURE OF THE MODIFIED HIGH-MANGANESE STEEL

    Directory of Open Access Journals (Sweden)

    A. I. Garost

    2006-01-01

    Full Text Available The composition and morphology of chemical associations (non-metallic impurities and other ‘‘secondary” phases at modification of high-manganese steel by nitrogen and nitrideforming elements (vanadium are investigated. The optimal compositions of steel for production of castings are offered. The technology of the steel wear-resistance modification by vanadium of waste of industrial enterprises is worked out.

  3. Amending soils with sediment material from constructed wetlands increases phosphorus sorption

    Science.gov (United States)

    Laakso, Johanna; Uusitalo, Risto; Leppänen, Janette; Yli-Halla, Markku

    2017-04-01

    Sediment of agricultural constructed wetlands (CWs) is comprised of matter eroded from surrounding fields. This material is rich in aluminium (Al) and iron (Fe) (hydr)oxides that have a high affinity for phosphorus (P). Sediment material returned to fields could therefore affect soil P retention characteristics. We incubated a clay soil with a high soil test P (STP, 24 mg PAc l-1; extracted with pH 4.65 ammonium acetate buffer) and a sandy loam with excessive STP (210 mg PAc l-1) for three weeks with increasing amounts of CW sediment: 0, 2, 5, 10 and 50% of the sample volume. After incubation, the soil-sediment mixtures were studied with the quantity/intensity (Q/I) technique, using chemical extractions and by exposing the mixtures to simulated rainfall. Sorption affinity for P regularly increased with increasing the sediment share of the mixtures, the 0% sediment content having the lowest and 50% sediment content the highest P sorption. With 0% sediment application, the value of equilibrium P concentration (EPC0) determined by Q/I technique, was 0.69 and 44.3 mg l-1 for clay soil and sandy loam, respectively. With 2-5% sediment amendment, the EPC0 decreased 13-36% for clay soil and 13-54% for sandy loam. The 50% sediment mixtures had EPC0 of 0.05 mg l-1 for both soils. At a practically feasible sediment addition rate of 5%, dissolved reactive P (DRP) in percolating water from simulated rainfall decreased by 55% in the clay soil and 54% in sandy loam (p<0.001 in both cases). Particulate-P (PP) also showed a decreasing trend with increasing sediment addition rate. Upon prolonged simulated rainfall, the decreasing effect of sediment on DRP and PP declined somewhat. The effects of sediment addition can be attributed partly to increased salt concentrations in the sediment, which have a short-term effect on P mobilisation, but mostly to increased concentrations of Al and Fe (hydr)oxides, increasing long-term P sorption capacity. Amending the soils with sediment material

  4. Behavior of Non-metallic Inclusions in Centrifugal Induction Electroslag Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    (para)In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3~4um. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6mu, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4~#U00d7tex010^{-5} in order to further reduce the amount and size of TiN inclusions.

  5. Leightweight construction, a key technology for materials saving, energy efficiency and climate protection. Proceedings of the colloquium; Leichtbau, eine Schluesseltechnologie fuer Material-, Energieeffizienz und Klimaschutz. Tagungsband zum Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Otto; Bicker, Marc (eds.)

    2009-07-01

    At the fourth Landshut colloquium on lightweight construction, 24 papers were presented by experts of science and practice on the following subjects: 1. Composite structures; 2. Surface technology and coatings; 3. Foamed aluminium and magnesium; 4. Aluminium and foamed aluminium; 5. Joining techniques; 4. Bolted joints; 6. Metal composites and foamed materials; 7. Core materials for sandwich structures; 8. Fabrication technologies of fibre-reinforced composites; 9. Forming and efficient use of materials; 10. Aluminium moulds; 11. Simulation and optimisation; 12. Lightweight construction in aircraft and vehicle engineering. [German] Im vierten Landshuter Leichtbau-Colloquium-Band werden insgesamt 24 Beitraege von Experten aus Wissenschaft und Praxis aus folgenden Themengebieten vorgestellt: 1. Werkstoffverbundstrukturen, 2. Oberflaechentechnik und -beschichtungen, 3. Aluminiumschaeume und Magnesium, 4. Aluminium und Aluminiumschaeume, 5. Verbindungstechnik, 5. Schraubverbindungen, 6. Metallische Verbundwerkstoffe und Schaeume, 7. Kernmaterialien fuer Sandwichstrukturen, 8. Fertigungstechnologien Faserverbundstrukturen, 9. Umformen / Effizienter Materialeinsatz, 10. Urformen mit Aluminium, 11. Simulation und Optimierung und 12. Leichtbau im Luftfahrzeug- und Fahrzeugbau.

  6. Antenna Construction & Propagation of Radio Waves, 5-1. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of five individualized, self-paced chapters dealing with antenna construction and propagation of radio waves. Covered in the individual lessons are the following topics: basic electricity; antenna transmission-line fundamentals; quarter-wave antennas, half-wave antennas, and associated radio…

  7. Evaluation of Characteristics of Non-Metallic Inclusions in P/M Ni-Base Superalloy by Automatic Image Analysis

    Institute of Scientific and Technical Information of China (English)

    Li; Xinggang; Ge; Changchun; Shen; Weiping

    2007-01-01

    Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic image analysis,is proposed for estimation of the content,size and amount of non-metallic inclusions in superalloy.The methodology for the practical application of this method is described and the factors affecting the precision of the estimation are discussed.In the experiment,the characteristics of the non-metallic inclusions in Ni-base P/M superalloy are analyzed.

  8. Compound soil-tyre chips modified by cement as a road construction material

    Directory of Open Access Journals (Sweden)

    Panu Promputthangkoon

    2013-10-01

    Full Text Available This research attempts to overcome the two problems of low-quality soil and a growing number of discarded tyres bymixing low-CBR soil with recycled tyre chips. The compound soil-tyre chips was then stabilised by Portland cement with theaim of using them as a new material in road construction in order to reduce the occurrence of shrinkage cracks. To achievethe purposes of this research three standard geotechnical testing programmes were employed: (1 modified compaction tests,(2 California Bearing Ratio tests (CBR, and (3 unconfined compression tests. The modified compaction test results provedthat for the mixtures having very low tyre chips and cement content, the behaviour is very complex. It was also observed thatthe greater the percentage of rubber added the lower the global density. However, this is predictable as the specific gravityof the rubber is much lower than that of the soil. For the relationship between the optimum moisture content (OMC and thecement content, it was observed that there is no clear pattern.For the specimens having no cement added, the CBR for unsoaked specimens was observed to be greater than that forsoaked specimens. However, when the cement was introduced the CBR test showed that the resistance to penetration for thesoaked specimens was significantly greater, indicating the effects of cement added on the strength. In addition, it was foundthat the CBR values for both soaked and unsoaked specimens gradually increased with the increase of cement content.Lastly, the unconfined compressive strength progressively increased with the increased percentage of cement.

  9. Effect of three investing materials on tooth movement during flasking procedure for complete denture construction

    Science.gov (United States)

    Salloum, Alaa’a M.

    2015-01-01

    Problem statement Tooth movement has been shown to occur during and after the processing of complete dentures. An understanding of this phenomenon may permit one to construct functional complete dentures that require less occlusal adjustment in the articulator and in the patient’s mouth. Purpose The purpose of this study was to examine the effects of three different investing methods on tooth movement occurring during the processing of simulated maxillary complete dentures. Material and methods Forty-five similar maxillary dentures were made using heat-polymerized acrylic resin, and assigned randomly to three experimental groups (n = 15 each) according to investing method: plaster–plaster–plaster (P–P–P), plaster–stone–stone (P-S-S), and plaster–mix (P–M). Specimens in all experimental groups were compression molded with denture base resin. Transverse interincisor (I–I) and intermolar (M–M) distances, and anteroposterior incisor–molar (LI–LM and RI–RM) distances, were measured with digital calipers at the wax denture stage (pre-polymerization) and after denture decasting (post-polymerization). Analysis of variance and Tukey’s test were used to compare the results. Results M–M, LI–LM, and RI–RM movement was significantly greater in the P–P–P group than in the P–S–S and P–M groups; no significant difference in I–I movement was observed among groups. Transverse movement along M–M and I–I was significantly greater than anteroposterior movement in the P–P–P group; no significant difference among measurements was observed in the other two groups. Conclusion The study results indicate that the use of dental stone or a 50:50 mixture of plaster and stone for investing of dentures is an important factor in efforts to control the magnitude of tooth movement. PMID:26792971

  10. Deformation and fracture properties of metals with non-metallic inclusions; Verformung und Bruch von Metallen mit nichtmetallischen Einschluessen

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Soppa, E. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-12-31

    Microstructural effects due to formation of non-uniform lines of non-metallic inclusions in the matrix are examined with respect to their macro-, meso-, and micromechanical effects in the alloy Al(6061) reinforced by SiC inclusions. A comparative analysis of results obtained with various microstructures reveals essential differences in the formation of shear bands, stress peaks, and strain concentrations in the material structure. The maxima and the distribution of those field variables are determined not only by the arrangement of inclusions clusters in the stringers but also depend on the presence and number of single-particle inclusions in pure matrix material. The banding of the microstructure causes a strongly anisotropic behaviour in terms of stress and strain distributions. (orig./CB) [Deutsch] In diesem Beitrag werden Gefuegeeinfluesse aufgrund unterschiedlich starker zeiliger Anordnungen der Teilchen in der Matrix im Hinblick auf ihre makro-, meso- und mikromechanischen Auswirkungen am Beispiel einer SiC-teilchenverstaerkten Aluminiumlegierung Al(6061) untersucht. Ein Vergleich der Ergebnisse verschiedener Gefuege zeigt wesentliche Unterschiede hinsichtlich der Ausbildung von Scherbaendern, Spannungsspitzen und von Dehnungskonzentrationen im Werkstoffgefuege. Die Maxima und die Verteilung dieser Feldgroessen sind nicht nur abhaengig davon, wie die Teilchen in den Zeilen angeordnet sind, sondern auch davon, ob einzelne Teilchen in reinen Matrixbereichen vorhanden sind. Die Zeiligkeit des Gefueges fuehrt zu einem stark anisotropen Verhalten hinsichtlich Spannungs- und Dehnungsverteilungen. (orig.)

  11. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    Directory of Open Access Journals (Sweden)

    Gilson Morales

    2010-12-01

    Full Text Available This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects considering the eco-design theory. Moreover, the scale allowed classifying the materials and processes environmental impact through four score categories which resulted in a single final impact score. It was concluded that the EI scale could be cheap, accessible, and relevant tool for environmental impact controlling and reduction, allowing the planning and material specification to minimize the construction negative effects caused in the environment.

  12. Geothermal systems materials: a workshop/symposium

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Sixteen papers are included. A separate abstract was prepared for each. Summaries of workshops on the following topics are also included in the report: non-metallic materials, corrosion, materials selection, fluid chemistry, and failure analysis. (MHR)

  13. [Constructing images and territories: thinking on the visuality and materiality of remote sensing].

    Science.gov (United States)

    Monteiro, Marko

    2015-01-01

    This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.

  14. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  15. Non-Metallic Biomaterials for Tooth Repair and Replacement. By Pekka Vallittu, Woodhead Publishing, 2013; 406 pages. Price £145.00/US$245.00/€175.00 ISBN 978-0-85709-244-1

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-01-01

    Full Text Available 1. Discusses the properties of enamel and dentin and their role in adhesive dental restoration;2. Chapters also examine the wear properties of dental ceramics, glasses and bioactive glass ceramics for tooth repair and replacement;3. Dental composites and antibacterial restorative materials are also considered;4. Provides a concise overview of non-metallic biomaterials for dental clinicians, materials scientists and academic researchers alike.As the demand for healthy, attractive teeth increases, the methods and materials employed in restorative dentistry have become progressively more advanced. Non-metallic biomaterials for tooth repair and replacement focuses on the use of biomaterials for a range of applications in tooth repair and, in particular, dental restoration.

  16. Non-metallic, non-Fermi-liquid resistivity of FeCrAs from 0 to 17 GPa.

    Science.gov (United States)

    Tafti, F F; Wu, W; Julian, S R

    2013-09-25

    An unusual, non-metallic resistivity of the 111 iron-pnictide compound FeCrAs is shown to be relatively unchanged under pressures of up to 17 GPa. Combined with our previous finding that this non-metallic behaviour persists from at least 80 mK to 800 K, this shows that the non-metallic phase is exceptionally robust. Antiferromagnetic order, with a Néel temperature TN ∼ 125 K at ambient pressure, is suppressed by pressure at a rate of 7.0 ± 0.4 K GPa(-1), falling to ∼50 K at 10 GPa. We conclude that the formation of a spin-density-wave gap at TN does not play an important role in the non-metallic resistivity of FeCrAs at low temperatures.

  17. Materialising Bodies: There Is Nothing More Material than a Socially Constructed Body

    Science.gov (United States)

    Larsson, Håkan

    2014-01-01

    Over the last one of two decades, researchers within the physical education (PE) and sport pedagogy research frequently use the concept "the material body". An initial purpose of this article is to explore what a concept of a "material body" might mean. What other bodies are there? Who would dispute the materiality of bodies? I…

  18. The Effect of Fine Non-Metallic Inclusions on the Fatigue Strength of Structural Steel

    Directory of Open Access Journals (Sweden)

    Lipiński T.

    2015-04-01

    Full Text Available The article discusses the results of a study investigating the effect of the number of fine non-metallic inclusions (up to 2 µm in size on the fatigue strength of structural steel during rotary bending. The study was performed on 21 heats produced in an industrial plant. Fourteen heats were produced in 140 ton electric furnaces, and 7 heats were performed in a 100 ton oxygen converter. All heats were desulfurized. Seven heats from electrical furnaces were refined with argon, and heats from the converter were subjected to vacuum circulation degassing.

  19. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology.

    Science.gov (United States)

    Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J

    2016-07-05

    The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Review of Post and Core Application with Emphasize on Non Metallic Posts

    Directory of Open Access Journals (Sweden)

    Shahroodi MH

    2001-05-01

    Full Text Available Many different methods are suggested to restore endodontically treated teeth. Prefabricated posts can not be indicated for all teeth and cast posts require extra time and cost. In addition, with the introduction of full ceramic restorations, achieving the ideal esthetic with metal post underneath them may be problematic or impossible because the darkness of the metallic posts may show through the highly translucent all ceramic restorations. In this article the review of litature and describiton of applied methods of different procedure in restoring the root canal therapied teeth and few techniques of non metallic posts fabrication such as fiber reinforced composite and zirconium oxide posts have been described.

  1. Patina in the construction of the poetic bronze image: science of materials, art and philosophy

    National Research Council Canada - National Science Library

    Silva, Claudia; Vélez, Gabriel; Colorado, Henry A

    2017-01-01

    .... Of these properties, the formation of the patina is the one that contributes most to the construction of its poetic image, since it is the one that, along with the form, suddenly appears before...

  2. What role can Life Cycle Assessment play in the selection of green construction materials?

    CSIR Research Space (South Africa)

    Ampofo-Anti, NL

    2009-07-01

    Full Text Available The green building movement aims to foster the environmental sustainability of construction products by maximising resource efficiency while minimising concomitant pollution throughout the building life cycle. However, green building principles...

  3. Bricolage as Institutional Maintenance Work: integrating new construction materials into heritage buildings

    OpenAIRE

    Colombero, Sylvain

    2014-01-01

    International audience; Listed-buildings refers to buildings that are protected by the state because of their recognized status as national patrimony. Many listed buildings are currently undergoing various construction works, such as renovation or extension, to preserve them while keeping intact the function for which they were originally built. Increased use of construction practices pertaining to Sustainable Development is calling for insight into the process through which these kinds of bu...

  4. Effectiveness of Shot Peening In Suppressing Fatigue Cracking At Non-Metallic Inclusions In Udimet(Registered Trademark)720

    Science.gov (United States)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, T.; Bonacuse, P. J.

    2006-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced over an order of magnitude by cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens with and without shot peened test sections at 427 C and 650 C. The low cycle fatigue lives and failure initiation sites varied as functions of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with the introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. These inclusions reduced fatigue life by up to 100X, when compared to lives of material without inclusions residing at specimen surface. Large inclusions produced the greatest reductions in life for tests at low strain ranges and high strain ratios. Shot peening improved life in many cases by reducing the most severe effects of inclusions.

  5. A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances.

    Science.gov (United States)

    Banerji, B; Banerji, J B

    1984-08-01

    Cane and bamboo have been found to be viable and alternative basic construction materials for orthotic/prosthetic appliances and rehabilitation aids. Amongst the appliances made, the night splint and the upper limb splints have proved effective in field trials. The lower limb orthoses and prosthesis however are still at an experimental stage. Of the rehabilitation aids, walkers, crutches and wheelchairs have been found to be remarkably useful, cheap and light.

  6. EI Scale: an environmental impact assessment scale related to the construction materials used in the reinforced concrete

    OpenAIRE

    Gilson Morales; Antonio Edésio Jungles; Sheila Elisa Scheidemantel Klein; Juliana Guarda

    2010-01-01

    This study aimed to create EI Scal, an environmental impact assessment scal, related to construction materials used in the reinforced concrete structure production. The main reason for that was based on the need to classify the environmental impact levels through indicators to assess the damage level process. The scale allowed converting information to estimate the environmental impact caused. Indicators were defined trough the requirements and classification criteria of impact aspects consid...

  7. Construction and operation of a system for secure and precise medical material distribution in disaster areas after Wenchuan earthquake.

    Science.gov (United States)

    Cheng, Yongzhong; Xu, Jiankang; Ma, Jian; Cheng, Shusen; Shi, Yingkang

    2009-11-01

    After the Wenchuan Earthquake on May 12th , 2008, under the strong leadership of the Sichuan Provincial Party Committee, the People's Government of Sichuan Province, and the Ministry of Health of the People's Republic of China, the Medical Security Team working at the Sichuan Provincial Headquarters for Wenchuan Earthquake and Disaster Relief Work constructed a secure medical material distribution system through coordination and interaction among and between regions, systems, and departments.

  8. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  9. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  10. Solution behavior of hydrogen isotopes and other non-metallic elements in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, V.A.; Calaway, W.F.; Veleckis, E.; Yonco, R.M.

    1976-01-01

    Results of experimental studies to measure selected thermodynamic properties for systems of lithium with non-metallic elements are reported. Investigations of the Li-H, Li-D, and Li-T systems have led to the elucidation of the dilute solution behavior and the H/D/T isotope effects. In the case of the Li-H and Li-D systems, the principal features of the respective phase diagrams have been delineated. The solubility of Li-D in liquid lithium has been measured down to 200/sup 0/C. The solubility of Li/sub 3/N in liquid lithium and the thermal decomposition of Li/sub 3/N have also been studied. From these data, the free energy of formation of Li/sub 3/N and the Sieverts' constant for dissolution of nitrogen in lithium have been determined. Based on studies of the distribution of non-metallic elements between liquid lithium and selected molten salts, it appears that molten salt extraction offers promise as a means of removing these impurity elements (e.g., H, D, T, O, N, C) from liquid lithium.

  11. 3D construction and repair from welding and material science perspectives

    Science.gov (United States)

    Marya, Surendar; Hascoet, Jean-Yves

    2016-10-01

    Additive manufacturing, based on layer-by-layer deposition of a feedstock material from a 3D data, can be mechanistically associated to welding. With feedstock fusion based processes, both additive manufacturing and welding implement similar heat sources, feedstock materials and translation mechanisms. From material science perspectives, additive manufacturing can take clue from lessons learned by millennium old welding technology to rapidly advance in its quest to generate fit for service metallic parts. This paper illustrates material science highlights extracted from the fabrication of a 316 L air vent and the functional repair of a Monel K500 (UNS N0500) with Inconel 625.

  12. Construction of material and life science experimental facility under high intensity proton accelerator project

    CERN Document Server

    Ikeda, Y

    2002-01-01

    The outline of construction of 1MW pulse spallation neutron source in the MLF experimental facility is explained in this paper. The object, project activities, project team and construction of group are stated. 1MW pulse nuclear spallation neutron source, neutron source design and technical problems, Hg target, the basic parameters, neutron source station, moderator, reflector, shield, shutter, low temperature system, facility, spectrometer, and neutron experimental device are explained. The nuclear calculation code and nuclear data used as technical support and computer environment are illustrated. (S.Y.)

  13. Growing grass: a smart material interactive display, design and construction history

    NARCIS (Netherlands)

    Minuto, Andrea; Nijholt, Anton

    2012-01-01

    In this paper we will present the design process and development of 'Follow the Grass', our smart material interactive pervasive display, with related technical detailed explanation. We will present the design steps and prototypes with instructions for the use of smart materials (NiTiNOL) to create

  14. Polyimide/graphene nanocomposite materials to construct a low resistive RPC

    Science.gov (United States)

    Han, R.; Yan, J. Y.; Tian, G. F.; shen, Z. C.; Liao, B.; Liu, Q.

    2016-11-01

    The development of low resistivity material to increase the rate capability of Resistive Plate Chambers (RPCs) has been attracting more and more attention recently. This paper presents a new type of such a material. The new material is based on polyimide doped with carbon. The electrical volume resistivity of this material could be controlled using different percentages of the doping carbon. The standard thickness of polyimide carbon films is around 40 μm which does not allow to use it as such to build the RPC electrodes. To overcome this, we developed a new stress method to make the gap between two polyimide carbon films. In this paper we will introduce the new detector material, the new type of RPC and the cosmic bench test results. In the future, if the polyimide is widely used in RPCs, the electrical properties changed by high energy particles should be well-studied.

  15. Characterization of traditional raw materials used in housing construction in Huambo region - Angola

    Science.gov (United States)

    Pedro, Elsa; Duarte, Isabel; Varum, Humberto; Pinho, António; Norman, Antónia

    2016-04-01

    The sustainability of buildings associated to the use of raw earth has motivated the studies and the development of techniques and methods in the context of this type of construction. In the region of Huambo, Angola, these construction techniques are widely used, especially for low-income families who represent the majority of the population. Much of the buildings in Huambo province are built with adobe. Due to the climate in this region, subtropical, hot and humid, with altitudes above 1000 meters and extensive river system, these buildings are particularly vulnerable to the action of water and develop, in many situations, early degradation. The Huambo Province is located in central Angola, has 36 km2 area and approximately 2 million inhabitants. This work aims to evaluate, by conducting in-situ tests, physical and mechanical properties of adobe blocks typically used in the construction of those buildings. The methodology is based on field campaigns where in-situ expeditious tests were performed in soils (smell test, color, touch, brightness, sedimentation, ball, hardness, etc.) and tests on adobes blocks made with traditional procedures, particularly in terms of durability and erodibility (erosion test at Geelong method; evaluation test of wet / dry cycle, applying the New Zealand standards 4297: 1998; 4297: 1998 and 4297: 1999). The results will contribute to the characterization of the geomaterials and methods used in construction with earth in Huambo Province, contributing to the improvement of these sustainable solutions, with a strong presence in this region. The results of this study will also contribute to the proposal of constructive solutions with improved performance characteristics, comfort, safety and durability.

  16. Assessment of adolescent self-constructed material use in physical education

    OpenAIRE

    Fernández-Río, Javier; Méndez-Giménez,Antonio; Méndez-Alonso, David

    2012-01-01

    the goals of this research project were three: study how secondary education students value self-made materials, assess their effects while used to teach sport, and analyze how the students’ perspective on these materials change over age and gender. Students from a high school in the north part of Spain agreed to participate. They belonged to 1st, 2nd, and 4th year of secondary education. They were asked to build their own self-made cardboard ringo with recycled materials to use it during an ...

  17. Clay raw materials from the Triassic Red Beds (Northern JaéUy Spain for making ceramic construction materials

    Directory of Open Access Journals (Sweden)

    Vázquez, M.

    2004-03-01

    Full Text Available The suitability of Triassic Red Beds from northern Jaén in the production of structural clay products has been evaluated. These materials have high phyllosilicate contents (36-69%, although some samples are enriched in quartz (<8-54% and feldspars (<5-2I%. Dolomite (<5-20% and calcite (< 7% are present. Illite is the main phyllosilicate (96-74%, kaolinite values are rather low (<17% and chlorite is present in low content (<14%. The studied samples have high silica (39.2-74.8% and alumina (6.9-18.3% content. K4ost of the samples have low CaO and MgO concentrations (<6%. <2 pm (64-36% and 2-20 pm (68-36% are the predominant grain size fraction of the studied samples. Low plasticity for extrusion process of the Triassic Red Beds is not appropriated for making bricks and roofing tiles by themselves. However, water absorption and linear shrinkage values are often suitable for manufacturing bricks. A small number of samples are appropriated for making roofing tiles, due to the its high firing shrinkage. Mixing of these materials with different proportions of complementary raw materials would allow to make porous bodies.

    En este trabajo se ha evaluado el uso de las Capas Rojas Triásicas de la Cobertera Tabular del Macizo Ibérico del norte de la provincia de Jaén para elaborar materiales cerámicos. Estos materiales tienen altos contenidos en filosilicatos (36-69%, aunque algunas muestras son ricas en cuarzo (hasta 54% y feldespatos (hasta 21%. Los carbonatos presentes en las muestras son dolomita (<5-20% y calcita (<7%. La illita es el principal filosilicato (96-74%, mientras que la caolinita y la clorita están presentes en bajos contenidos (< 17%. Las muestras estudiadas tienen altos contenidos en sílice (39,2-74,8% y alúmina (6,9-18,3%. La mayoría de estas arcillas tienen bajas concentraciones de CaO y MgO (<6%. Las fracciones granulométricas predominantes son la< 2 pm (64-36% y la situada entre 2 y 20 pm (68-36%. La baja plasticidad

  18. Depth Profiling of Dark and Light Green Bacan: Construction of Material Characters Models from Elemental Analysis and Mineralogical Characterization

    Directory of Open Access Journals (Sweden)

    Rizky Arief Shobirin

    2016-09-01

    Full Text Available We have demonstrated the evolutional depth profiling methods for local minerals of Bacan in order to establish the sold price and maintenance of minerals sector in Indonesia. The depth profiling methods was performed by elemental analysis and mineralogical characterisation using X-ray fluorescence (XRF and X-ray diffraction (XRD. We refined materials parameters then constructed the materials models to describe the difference of materials characters. These results described that the brighter Bacan minerals having higher distortion parameters that provided information of higher piezoelectricity, optical activity, and enantiomorphism characters, and the darker Bacan minerals having much higher foreign elements abundance, expanded atomic bond lengths, pseudo-symmetric, and larger crystallite size which reflects its crystal formation chronology.

  19. Evaluation of possibilities of using tetra - pak waste as a material to plate production for construction industry

    Directory of Open Access Journals (Sweden)

    K. Korniejenko

    2010-07-01

    Full Text Available Tetra-pak is a popular packing material, which is using as aseptic packaging of liquid food products, especially: fruit juice, beverages and milk. After single use a packing are throw out. Carton could not be reuse because the material has contact with food and must be aseptic. The paper describes the way of recycling tetra-pak waste in the world. It is focus on possibilities to optimize the mechanical properties of composite material and modifications of its property depending on the type and amount of added polyethylene and method of manufacture. Main physic-mechanical properties of plate made from tetra – pak waste are presented. This property can be interesting for the construction industry.

  20. 75 FR 62181 - Annual Materials Report on New Bridge Construction and Bridge Rehabilitation

    Science.gov (United States)

    2010-10-07

    ... the NBI: steel, concrete, pre-stressed concrete, and other. The category ``other'' includes wood, timber, masonry, aluminum, wrought iron, cast iron, and other. Material type is the predominate type...

  1. Functional Inorganic Materials with Complex Form: Construction, Self-assembly Principles and Property

    Institute of Scientific and Technical Information of China (English)

    YU Shuhong; YANG Jian; LIU Biao; GUO Xiaohui; CUI Xianjin

    2011-01-01

    There is a rich and long history of gaining inspiration from the nature for the design of practical materials and systems.Biominerals are well-known composites of inorganic and organic materials in the form of fascinating shapes and highly ordered structures existing in the natural world, such as pearl, oyster shells, corals, ivory, sea urchin spines, cuttlefish bone, limpet teeth, magnetic crystals in bacteria and human bones that are created by living organisms.During the past few decades, it has become one of the most influencing subjects in materials proteins, which involve in all the processes of multicell organisms, such as fertilization, differentiation, development, immunity, infection, and cancer.chemistry to explore new bio-inspired strategies for selfassembling or surface-assembling molecules or colloids to generate materials with controlled morphologies,

  2. ZeroWaste BYG: Redesigning construction materials towards zero waste society

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Schmidt, Jacob Wittrup; Ottosen, Lisbeth M.

    2014-01-01

    The ZeroWaste research group (www.zerowaste.byg.dtu.dk) at the Department of Civil Engineering was established in 2012 and covers the broad range of expertise required for turning waste materials into attractive, new materials. Members of the group have developed methods for removal of heavy metals...... and phosphorous from waste incineration, sewage sludge and other bio ashes [1], providing the basis to make these ash types an attractive, new material for the building sector.The amount of waste increases and it is both difficult and expensive to handle many waste types as e.g.different ashes. At the same time...... there are fewer natural resources and the general consumption increases. We wish to utilize alternative and new ash types as raw material in concrete, similarly to what was previously seen with fly ash from coal combustion and microsilica, which were both transformed from problematic waste to valuable raw...

  3. Assessment of adolescent self-constructed material use in physical education

    Directory of Open Access Journals (Sweden)

    Fernández-Río, Javier

    2012-07-01

    Full Text Available the goals of this research project were three: study how secondary education students value self-made materials, assess their effects while used to teach sport, and analyze how the students’ perspective on these materials change over age and gender. Students from a high school in the north part of Spain agreed to participate. They belonged to 1st, 2nd, and 4th year of secondary education. They were asked to build their own self-made cardboard ringo with recycled materials to use it during an ultimate learning unit. A hybrid instructional method (tactical games + sport education was used along 8-10 sessions. After the intervention, subjects filled out a 15-item questionnaire (1-5 likert point scale. Overall results showed that subjects did not consider that building the ringo was hard. Finding the material was not difficult, either. They also thought that using the ringo was more fun than using the traditional Frisbee. Younger students valued the experience higher than older subjects. The usage of self-made materials was more attractive, motivating and useful for 1st year subjects. They also though that this type of material had helped them improve their throwing and catching skills. They even wanted to use it in extracurricular settings

  4. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  5. X-ray detection of ingested non-metallic foreign bodies.

    Science.gov (United States)

    Saps, Miguel; Rosen, John M; Ecanow, Jacob

    2014-05-08

    To determine the utility of X-ray in identifying non-metallic foreign body (FB) and assess inter-radiologist agreement in identifying non-metal FB. Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects (clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego™, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count the number of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value. Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads (negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects (mean 8, 67%). Six unique objects (50%) were identified by all radiologists and four unique objects (33%) were not identified by any radiologist (plastic bead, Lego™, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist (mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was

  6. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  7. Microfungal contamination of damp buildings--examples of risk constructions and risk materials.

    Science.gov (United States)

    Gravesen, S; Nielsen, P A; Iversen, R; Nielsen, K F

    1999-06-01

    To elucidate problems with microfungal infestation in indoor environments, a multidisciplinary collaborative pilot study, supported by a grant from the Danish Ministry of Housing and Urban Affairs, was performed on 72 mold-infected building materials from 23 buildings. Water leakage through roofs, rising damp, and defective plumbing installations were the main reasons for water damage with subsequent infestation of molds. From a score system assessing the bioavailability of the building materials, products most vulnerable to mold attacks were water damaged, aged organic materials containing cellulose, such as wooden materials, jute, wallpaper, and cardboard. The microfungal genera most frequently encountered were Penicillium (68%), Aspergillus (56%), Chaetomium (22%), Ulocladium, (21%), Stachybotrys (19%) and Cladosporium (15%). Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum were the most frequently occurring species. Under field conditions, several trichothecenes were detected in each of three commonly used building materials, heavily contaminated with S. chartarum. Under experimental conditions, four out of five isolates of S. chartarum produced satratoxin H and G when growing on new and old, very humid gypsum boards. A. versicolor produced the carcinogenic mycotoxin sterigmatocystin and 5-methoxysterigmatocystin under the same conditions.

  8. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  9. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  10. Nuclide, metal and non metal levels in percolated water from soils fertilized with phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Camilla Bof; Knupp, Eliana Aparecida Nonato; Palmieri, Helena E.L.; Jacomino, Vanusa Maria Feliciano, E-mail: cgbs@cdtn.b [Nuclear Technology Development Center (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Taddei, Maria Helena; Ciqueira, Maria Celia [Pocos de Caldas Lab., (LAPOC/CNEN), Pocos de Caldas, MG (Brazil)

    2009-07-01

    Systematic generation of residues is more and more worrying in today.s world; adequate storage and reutilization are of great importance. Since generation of residues has become impossible to avoid, the possibility of reuse must be studied and researched. An example of these residues is phosphogypsum, which is generated in phosphoric acid production at the rate of around 4.8 tons for each ton of phosphoric acid produced. Many studies seek to reuse phosphogypsum in agriculture as a source of calcium and sulfur, potassium or aluminum, especially in soils from Brazil's cerrado regions. Though phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of heavy metals, non metals (As and Se), fluorides and natural radionuclides. Thus, its uncontrolled use as a soil conditioner can lead to contamination of underground water. (author)

  11. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    Science.gov (United States)

    Pustal, B.; Schelnberger, B.; Bührig-Polaczek, A.

    2016-03-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content.

  12. Nondestructive indication of fatigue damage and residual lifetime in ferromagnetic construction materials

    Science.gov (United States)

    Tomáš, Ivan; Kovářík, Ondřej; Vértesy, Gábor; Kadlecová, Jana

    2014-06-01

    A new revolutionary attitude toward investigation of fatigue damage in cyclically loaded steel samples is reported. The measurement is based on the method of magnetic adaptive testing, which--in contrast to traditional magnetic hysteresis investigations--picks up the relevant information from systematic measurement and evaluation of whole minor magnetic hysteresis loops and their derivatives. Satisfactory correlations between nondestructively measured magnetic descriptors and actual lifetime of the fatigued material were found. The presented method is able to serve as a powerful tool for indication of changes, which occur in the structure of the inspected objects during their industrial service lifetime, as long as they are manufactured from ferromagnetic materials.

  13. A dialogue regarding "The material co-construction of hard science fiction and physics"

    Science.gov (United States)

    Geelan, David; Prain, Vaughan; Hasse, Cathrine

    2015-12-01

    Science fiction and the `technofantasies' of the future that it provides may attract some students to study physics. The details and assumptions informing these `imaginaries' may, on the other hand, be unattractive to other students, or imply that there is not a place for them. This forum discussion complements Cathrine Hasse's paper discussing the ways in which gender and other interests interact in the `entanglement' of physics and science fiction. The conversation interrogates some of the issues in Cathrine's paper, and brings in complementary literatures and perspectives. It discusses the possibility of a `successor science' and new, more inclusive ways of imagining and constructing our possible futures.

  14. Surface constructions of nano TiO_2 as the environmental and energy materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiO_2 has attracted an increasing attention because of its variety of potential applications in environments and energies,such as gas sensing,self-cleaning,solar energy conversion, wettability and photo-catalysis applications.In this presentation,we summarize some progress in surface constructions of nano TiO_2 and its characterizations of physicochemistry and properties. (1)Superhydrophobic nanostructure TiO_2 films Superhydrophobic nanotube,nanopore and sponge-like structure TiO_2 films are fabricated ...

  15. Verification of Design and Construction Techniques for Gaillard Island Dredged Material Disposal Area, Mobile, Alabama.

    Science.gov (United States)

    1986-08-01

    34turbidity plume study" was conducted by Timothy Sullivan, of the MDO. The purpose of the study was to determine the thickness and aerial ex- tent of a...actual velume cut from the channel would be only 7.2 million cubic yards. 92. The Lenel Bean dredge excavated about 5.3 million cubic yards of material

  16. Some material and construction aspects regarding in situ recycling of road pavements in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2006-07-01

    Full Text Available detailed information regarding the effect of the in situ processing on the original material properties or the consistency of mixing and effectiveness of deep compaction has been reported. A project, in which the shoulder and base of a national road were...

  17. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.;

    2011-01-01

    ). Several grades of stainless steels were tested as well as tantalum, niobium, titanium, nickel alloys and silicon carbide. The corrosion rate was evaluated by means of mass loss at free corrosion potential as well as under various levels of polarization. The only corrosion resistant material in 85...

  18. Influence of oils and materials of construction on formation of high-temperature deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gutenev, B.S.; Poroikov, N.P.; Bakunin, V.N.

    1988-01-01

    A correlation was established between the quantity of deposits formed on the hot surfaces of gas turbine engines and the oil composition and material composition and corrosion behavior for those engine parts in contact with the oil. A test stand was designed for determining the effect of engine materials on deposit formation. Test results established that the strongest catalytic effects on the process of high-temperature deposit formation derive from copper, lead, and brass components. The metals were tested in a range of synthetic lubricating oils. Data were compared on interactions of the oils with a steel surface and were ranked in order of decreasing tendency to form deposits. Maximum working temperatures for the oils were determined. The effects of oil additives on deposition were also assessed.

  19. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Materiality, Technology, and Constructing Social Knowledge through Bodily Representation: A View from Prehistoric Guernsey, Channel Islands.

    Science.gov (United States)

    Kohring, Sheila

    2015-04-22

    The role of the human body in the creation of social knowledge-as an ontological and/or aesthetic category-has been applied across social theory. In all these approaches, the body is viewed as a locus for experience and knowledge. If the body is a source of subjective knowledge, then it can also become an important means of creating ontological categories of self and society. The materiality of human representations within art traditions, then, can be interpreted as providing a means for contextualizing and aestheticizing the body in order to produce a symbolic and structural knowledge category. This paper explores the effect of material choices and techniques of production when representing the human body on how societies order and categorize the world.

  1. Use of non-standardised micro-destructive techniques in the characterization of traditional construction materials

    Science.gov (United States)

    Ioannou, Ioannis; Theodoridou, Magdalini; Modestou, Sevasti; Fournari, Revecca; Dagrain, Fabrice

    2013-04-01

    The characterization of material properties and the diagnosis of their state of weathering and conservation are three of the most important steps in the field of cultural heritage preservation. Several standardised experimental methods exist, especially for determining the material properties and their durability. However, they are limited in their application by the required size of test specimens and the controlled laboratory conditions needed to undertake the tests; this is especially true when the materials under study constitute immovable parts of heritage structures. The current use of other advanced methods of analysis, such as imaging techniques, in the aforementioned field of research offers invaluable results. However, these techniques may not always be accessible to the wider research community due to their complex nature and relatively high cost of application. This study presents innovative applications of two recently developed cutting techniques; the portable Drilling Resistance Measuring System (DRMS) and the scratch tool. Both methods are defined as micro-destructive, since they only destroy a very small portion of sample material. The general concept of both methods lies within the forces needed to cut a material by linear (scratch tool) or rotational (DRMS) cutting action; these forces are related to the mechanical properties of the material and the technological parameters applied on the tool. Therefore, for a given testing configuration, the only parameter influencing the forces applied is the strength of the material. These two techniques have been used alongside a series of standardised laboratory tests aiming at the correlation of various stone properties (density, porosity, dynamic elastic modulus and uniaxial compressive strength). The results prove the potential of both techniques in assessing the uniaxial compressive strength of stones. The scratch tool has also been used effectively to estimate the compressive strength of mud bricks. It

  2. Technology Transfer Opportunities for the Construction Engineering Community: Materials and Diagnostics.

    Science.gov (United States)

    1986-02-27

    34 .. CC .0 clj 0 C.C. -" C 4)4) 0 C.27 ROOF BLISTER VALVE Charles Korhonen U.S. Army Cold Regions Research and Engineering Laboratory Annually, the Army...7122 (within Illinois). REFERENCES 1. A. Kumar, E. C. Segan, and J. Bukowski , "Ceramic Coated Anodes for Cathodic Protection," Materials Performance...Chief of Engineers. References: (Available from the author) 1. "Roof Moisture Surveys: Yesterday, Today and Tomorrow," by Wayne Tobiasson and Charles

  3. Construction and Application of a National Data-Sharing Service Network of Material Environmental Corrosion

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2007-12-01

    Full Text Available This article discusses the key features of a newly developed national data-sharing online network for material environmental corrosion. Written in Java language and based on Oracle database technology, the central database in the network is supported with two unique series of corrosion failure data, both of which were accumulated during a long period of time. The first category of data, provided by national environment corrosion test sites, is corrosion failure data for different materials in typical environments (atmosphere, seawater and soil. The other category is corrosion data in production environments, provided by a variety of firms. This network system enables standardized management of environmental corrosion data, an effective data sharing process, and research and development support for new products and after-sale services. Moreover this network system provides a firm base and data-service platform for the evaluation of project bids, safety, and service life. This article also discusses issues including data quality management and evaluation in the material corrosion data sharing process, access authority of different users, compensation for providers of shared historical data, and finally, the related policy and law legal processes, which are required to protect the intellectual property rights of the database.

  4. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination

    Energy Technology Data Exchange (ETDEWEB)

    Barada, Daisuke [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Center for Optical Research and Education (CORE), Utsunomiya University, Utsunomiya 321-8585 (Japan); Juman, Guzhaliayi; Yoshida, Itsuki [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Miyamoto, Katsuhiko; Omatsu, Takashige, E-mail: omatsu@faculty.chiba-u.jp [Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522 (Japan); Molecular Chirality Research Center, Chiba University, Chiba 263-8522 (Japan); Kawata, Shigeo [Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Ohno, Seigo [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan)

    2016-02-01

    It was discovered that optical vortices twist isotropic and homogenous materials, e.g., azo-polymer films to form spiral structures on a nano- or micro-scale. However, the formation mechanism has not yet been established theoretically. To understand the mechanism of the spiral surface relief formation in the azo-polymer film, we theoretically investigate the optical radiation force induced in an isotropic and homogeneous material under irradiation using a continuous-wave optical vortex with arbitrary topological charge and polarization. It is revealed that the spiral surface relief formation in azo-polymer films requires the irradiation of optical vortices with a positive (negative) spin angular momentum and a positive (negative) orbital angular momentum (constructive spin-orbital angular momentum coupling), i.e., the degeneracy among the optical vortices with the same total angular momentum is resolved.

  5. Ceramic Carbon/Polypyrrole Materials for the Construction of Bienzymatic Amperometric Biosensor for Glucose

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10-5 and 1.3×10-3 mol/L of glucose. The biosensor showed a good suppression of inter- ference and a negligible deviation in the amperometric detection.

  6. The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds

    Science.gov (United States)

    Oh, Yong-Jun; Lee, Bong-Sang; Hong, Jun-Hwa

    2002-03-01

    The fracture toughness of two high copper reactor pressure vessel welds having low upper shelf energy was evaluated in accordance with the master curve method of ASTM E1921. The resultant data were correlated to the metallurgical factors involved in the brittle fracture initiation to provide a metallurgical-based understanding of the master curve. The tests were performed using pre-cracked Charpy V-notched specimens and the master curve was made with an average of T0 values determined at different temperatures. In all specimens, the cleavage fracture initiated at non-metallic inclusion ranging from 0.7 to 3.5 μm in diameter showing a scatter with the specimens and testing temperatures. Temperature dependency of the triggering particle size was not found. The fracture toughness ( KJC) was inversely proportional to the square root of the triggering inclusion diameter ( di) at respective temperatures. From this relationship, we determined median KJC values which correspond to the average value of triggering inclusion diameter of all tested specimens and defined them as a modified median KJC ( K'JC(med) ). The obtained K'JC(med) values showed quite smaller deviation from the master curve at different temperatures than the experimental median KJC values. This suggests that the master curve is on the premise of a constant dimension of key microstructural factor in a material regardless of the testing temperature. But the inclusion size at trigger point played an important role in the absolute position of the master curve with temperature and the consequent T0 value.

  7. The effect of non-metallic inclusions on the fracture toughness master curve in high copper reactor pressure vessel welds

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yong-Jun E-mail: yjoh@kaeri.re.kr; Lee, Bong-Sang; Hong, Jun-Hwa

    2002-03-01

    The fracture toughness of two high copper reactor pressure vessel welds having low upper shelf energy was evaluated in accordance with the master curve method of ASTM E1921. The resultant data were correlated to the metallurgical factors involved in the brittle fracture initiation to provide a metallurgical-based understanding of the master curve. The tests were performed using pre-cracked Charpy V-notched specimens and the master curve was made with an average of T{sub 0} values determined at different temperatures. In all specimens, the cleavage fracture initiated at non-metallic inclusion ranging from 0.7 to 3.5 {mu}m in diameter showing a scatter with the specimens and testing temperatures. Temperature dependency of the triggering particle size was not found. The fracture toughness (K{sub J{sub C}}) was inversely proportional to the square root of the triggering inclusion diameter (d{sub i}) at respective temperatures. From this relationship, we determined median K{sub J{sub C}} values which correspond to the average value of triggering inclusion diameter of all tested specimens and defined them as a modified median K{sub J{sub C}} (K{sup '}{sub J{sub C}}{sub (med)}). The obtained K{sup '}{sub J{sub C}}{sub (med)} values showed quite smaller deviation from the master curve at different temperatures than the experimental median K{sub J{sub C}} values. This suggests that the master curve is on the premise of a constant dimension of key microstructural factor in a material regardless of the testing temperature. But the inclusion size at trigger point played an important role in the absolute position of the master curve with temperature and the consequent T{sub 0} value.

  8. Usage of Local Raw Material in the Construction of Candi Pengkalan Bujang (Site 18, Bujang Valley, Kedah

    Directory of Open Access Journals (Sweden)

    Zuliskandar Ramli

    2014-03-01

    Full Text Available The aim of this study is to determine whether the ancient bricks from Candi Pengkalan Bujang (Site 18 are made from local raw material or not. Candi Pengkalan Bujang (Site 18 which is located in the cemetery area of Pengkalan Bujang Mosque, Kedah has unearthed various interesting artefacts; among them are the Sung Dynasty celadon findings and also kala carvings made from granite. The main construction materials used to build the temple consisted of laterite, slates, bricks and also granite. Laterite and bricks were used to build the lower part (foot of the temple while granite stones were used as the pillar bases, door sills, stone hem and also kala. The upper part of the temple is believed to have been built using wooden structures and the roof used palm leaves. Natural rock resources used to build this temple were local resources based on the distribution of the rocks that are aplenty in Bujang Valley. Scientific analysis on the bricks also showed that local raw material was used to produce these bricks. Scientific analysis using the X-ray fluorescence technique and X-ray diffraction technique can determine the chemical composition of the bricks, among others the mineral content of the bricks as well as the major element and trace element content. The analysis showed that open burning technique was used in the process of producing the bricks while the major and trace element content analysis showed the clay used was obtained from the Muda River and Bujang River basin. This usage of local raw material also demonstrated the local wisdom in temple construction technology and also technique in producing bricks that had existed since the 5th century AD.

  9. Influence of non-metallic inclusions on the strength properties of screws made of 35B2+Cr steel after softening

    OpenAIRE

    Krawczyk, J.; Pawłowski, B

    2012-01-01

    Purpose: This paper presents the results of the research on the influence of non-metallic inclusions on strength properties of 35B2+Cr steel screws.Design/methodology/approach: The investigations were carried out on screws after softening. The investigated steels with different fraction of non-metallic inclusions were delivered by three different suppliers.Findings: It was proved, that in spite of the level of fraction of non-metallic inclusions compatible with the corresponding standards, th...

  10. Radioactivity concentration measurement and analysis in construction floor materials of Korea

    Science.gov (United States)

    Kim, G. H.; Lee, H. K.; Cho, J. H.

    2016-05-01

    In this study, the radioactive concentrations contained in samples of commonly used building floor materials were measured. This result can be used as basic information for public health and the environment. Among building floor materials, samples of induction blocks, cement bricks, artificial granite blocks and compact high-pressure blocks were chosen and used. A detailed gamma nuclide analysis was performed with a multichannel analyzer by putting these samples on a high-purity germanium detector which is a semiconductor detector. In order to measure the concentration of radionuclides, a spectrum file was obtained by analyzing the concentration of gamma radionuclides and setting the measurement time as 1000, 4000, 7000 and 10,000 s. According to the study results, K-40, Bi-214, Pb-214, Ra-226 and U-235 were detected in the induction blocks measured at 10,000 s and K-40, Th-230, Bi-214, Pb-214, Ra-226 and Na-22 were detected in the cement bricks measured at 10,000 s. K-40, Bi-214, Pb-214, Th-234, U-235 and Ra-223 were detected in the artificial granite blocks measured at 10,000 s and K-40, Bi-214, Pb-214, Th-234, Ra-226, Ra-223 and Mn-54 were detected in the compact high-pressure blocks. In conclusion, low-level radioactivity was detected in building floor materials, so it is thought that measures to reduce radioactivity and further studies on this will be needed.

  11. Biocalcarenites as construction materials in Santa Marina de Aguas Santas Church at Cordoba, Spain

    Directory of Open Access Journals (Sweden)

    Meroño, J. E.

    2009-03-01

    Full Text Available This study consisted in characterizing the materials used to build Santa Marina de Aguas Santas Church at Cordoba and locating the original quarries. The techniques used in the lithological and chemical characterization included XRD, petrographic microscopy and electron dispersive scanning microscopy. The chemical index of weathering (CIW was used to quantify the state of stone decay. The lithology and different types of alterations observed were mapped. A comparison of the material on the building to ancient quarries identified “Naranjo” as the possible site where the stone was originally quarried.Para la caracterización litológica y determinación del grado de alteración de los materiales pétreos se han empleado las siguientes técnicas: difracción de rayos X (método del polvo, microscopía petrográfica (sobre lámina delgada y microscopía de barrido con EDS (energía dispersiva de rayos X, para determinar la composición química. El estado de degradación del material pétreo se ha cuantificado a partir del índice químico de alteración (CIW. Se han realizado cartografías sobre la fachada oeste: a de las litologías presentes y b de los diferentes tipos de alteración observados. La comparación de muestras del edificio con las de antiguas canteras ha permitido identificar la del Naranjo como la posible cantera de origen.

  12. The material co-construction of hard science fiction and physics

    Science.gov (United States)

    Hasse, Cathrine

    2015-12-01

    This article explores the relationship between hard science fiction and physics and a gendered culture of science. Empirical studies indicate that science fiction references might spur some students' interest in physics and help develop this interest throughout school, into a university education and even further later inspire the practice of doing science. There are many kinds of fiction within the science fiction genre. In the presented empirical exploration physics students seem particularly fond of what is called `hard science fiction': a particular type of science fiction dealing with technological developments (Hartwell and Cramer in The hard SF renaissance, Orb/TOR, New York, 2002). Especially hard science fiction as a motivating fantasy may, however, also come with a gender bias. The locally materialized techno-fantasies spurring dreams of the terraforming of planets like Mars and travels in time and space may not be shared by all physics students. Especially female students express a need for other concerns in science. The entanglement of physics with hard science fiction may thus help develop some students' interest in learning school physics and help create an interest for studying physics at university level. But research indicates that especially female students are not captured by the hard techno-fantasies to the same extent as some of their male colleagues. Other visions (e.g. inspired by soft science fiction) are not materialized as a resource in the local educational culture. It calls for an argument of how teaching science is also teaching cultural values, ethics and concerns, which may be gendered. Teaching materials, like the use of hard science fiction in education, may not just be (yet another) gender bias in science education but also carrier of particular visions for scientific endeavours.

  13. Thermal-vacuum facility with in-situ mechanical loading. [for testing space construction materials

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.; Holzer, R. P.; Uffen, B.; Mabson, G.

    1978-01-01

    The paper describes a thermal-vacuum space simulator used to assess property changes of fiber-reinforced polymer composite systems. The facility can achieve a vacuum of approximately .0000001 torr with temperatures ranging from -200 to +300 F. Some preliminary experimental results are presented for materials subjected to thermal loading up to 200 F. The tests conducted include the evaluation of matrix modulus and strength, coefficients of thermal expansion, and fracture toughness. Though the experimental program is at an early stage, the data appear to indicate that these parameters are influenced by hard vacuum.

  14. Scientific basis for creation of construction materials based on titanium and alumina minerals

    Science.gov (United States)

    Kotova, O.; Shmakova, A.; Ponaryadov, A.

    2017-02-01

    Currently there is a need in affordable and accessible materials with specific physical and chemical properties. Al- and Ti-minerals are excellent test objects for correlation between structure and physical properties of mineral. For example, corundum and ilmenite are related to the same structural type (rhombohedral lattice R3) and possess various physical properties. With the help of modern equipment we studied titanium- and aluminum-containing concentrates of natural raw and also products of various kinds of influences on them, which showed signs of nanostructuring. We observed methods of directional change of physical and chemical characteristics of Al- and Ti-minerals and creation of new commercial products.

  15. Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs

    Directory of Open Access Journals (Sweden)

    E. Zea Escamilla

    2015-09-01

    Full Text Available This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI. All the amounts were converted from their original units (length, volume and amount into mass (kg units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road and international (freight ship, which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article “Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs”[5

  16. The Role of Vernacular Construction Techniques and Materials for Developing Zero-Energy Homes in Various Desert Climates

    Directory of Open Access Journals (Sweden)

    Farajallah Alrashed

    2017-02-01

    Full Text Available Hot desert regions, like Saudi Arabia, are very challenging in terms of building energy consumption. The role of the housing sector in the country is critical as it accounts for half of the total national electricity consumption. It is important to apply sustainable energy concepts in this sector, and the application of Zero-Energy Homes (ZEHs could be an appropriate option in this regard. In ZEHs, the energy demand needs to be reduced significantly before employing renewable energy, and a way to achieve that is through applying vernacular construction techniques and materials. This study aims to investigate the role of courtyard, mushrabiyah and adobe construction for the development of ZEHs in the five main Saudi climatic zones represented by Dhahran, Guriat, Riyadh, Jeddah and Khamis Mushait. A base house is designed, modelled and compared with measured electricity values. The comparison between the base house and the houses adapted with these techniques and materials is undertaken based on the annual electricity demand and the maximum power demand, and findings reveal that mushrabiyah can reduce them by 4% and 3%, respectively, while adobe can reduce them by 6% and 19%, respectively. Courtyards are found to be not helpful in terms of energy saving.

  17. Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs.

    Science.gov (United States)

    Zea Escamilla, E; Habert, G

    2015-09-01

    This data article presents the life cycle inventories of 20 transitional shelter solutions. The data was gathered from the reports 8 shelter designs [1]; 10 post-disaster shelter designs [2]; the environmental impact of brick production outside of Europe [3]; and the optimization of bamboo-based post-disaster housing units for tropical and subtropical regions using LCA methodologies [4]. These reports include bill of quantities, plans, performance analysis, and lifespan of the studied shelters. The data from these reports was used to develop the Life Cycle Inventories (LCI). All the amounts were converted from their original units (length, volume and amount) into mass (kg) units and the transport distance into ton×km. These LCIs represent the production phases of each shelter and the transportation distances for the construction materials. Two types of distances were included, local (road) and international (freight ship), which were estimated based on the area of the country of study. Furthermore, the digital visualization of the shelters is presented for each of the 20 designs. Moreover, this data article presents a summary of the results for the categories Environment, Cost and Risk and the contribution to the environmental impact from the different building components of each shelter. These results are related to the article "Global or local construction materials for post-disaster reconstruction? Sustainability assessment of 20 post-disaster shelter designs"[5].

  18. Utilization of concrete as a construction material in the concept of Radioactive Waste Storage in Slovak Republic

    Directory of Open Access Journals (Sweden)

    Igor Hudoba

    2007-01-01

    Full Text Available The nuclear power energy for the production of electricity seems to be, along with the alterantive ways like the wind, solar and geothermal energy, the only possibility how to cover the increasing needs for the energy in the human population. The adoption of nuclear power energy concept for the production of electricity is always a hot topic of discussion not only on the professional, but also on the political level. The join of problem of the electricity production in nuclear power plants is the disposal and storing of radioactive waste. The increasing amount of low and medium radioactive waste needs a serious concept of a long term policy in the radioactive waste management. In general, a period of 300 years is a minimum time span in which the storing facilities have to guarantie the safety of human population and environment against radiation and radiation-chemical danger. A correct design of the storage place for the radioactive waste is a challenge for experts in the fields of material science, geoscience, construction etc. This paper is dealing with the basic information about the concept, material and construction basis of the low a medium radioactive waste storage in Slovak Republic.

  19. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    Directory of Open Access Journals (Sweden)

    Marwen Bouasker

    2014-04-01

    Full Text Available The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  20. Hospital construction materials: poor shielding capacity with respect to signals transmitted by mobile telephones.

    Science.gov (United States)

    Hanada, E; Watanabe, Y; Antoku, Y; Kenjo, Y; Nutahara, H; Nose, Y

    1998-01-01

    Electromagnetic interference (EMI) with electronic medical equipment by the handsets of mobile telephones is a well documented problem in hospitals. To gain information about how to build an EMI-free hospital and how to make rooms safe for mobile telephone handset use in the hospital building the authors measured the shielding capacities of a concrete wall, concrete blocks, a steel door, and steel-surfaced partition panels. The shielding capacities of these materials were 2-7 dB for the concrete wall, 6-8 dB for the concrete blocks, 19-27 dB for the steel door, and 20-37 dB for the steel-surfaced partition panels. These results indicate that care should be taken to shield electronic equipment from signals coming from neighboring rooms and from those under and above any patient room in which such equipment is in use. Electricity-conductive paint, electricity-conductive wallpaper, and electricity-conductive cloth are examples of inexpensive materials that can increase shielding capacity.

  1. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Science.gov (United States)

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  2. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.

    Science.gov (United States)

    Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-04-25

    Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.

  3. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  4. Application of disintigratory technology for the modification of materials used in the construction of wells. Part II.

    Directory of Open Access Journals (Sweden)

    AGZAMOV Farit Akramovich,

    2017-06-01

    Full Text Available Disintegrator technology was widely used in the construction industry and in the oil and gas industry. In the process of drilling wells, powdery materials are used, the quality of which often determines the results of the well construction as an engineering structure. The application of disintegrator technology in the processing of clay powders which are one of the main components used to produce washing liquids has shown the high efficiency of this technology. One of the main multi-tonnage materials used in the construction of deep wells for oil and gas is Portland cement. However, the specific conditions of the well and work performance technology establish additional requirements for both grouting cement and also mortar and stone which are obtained from this binder. That refers to high water-cement ratios, rigid frames for density, water loss, sedimentation stability of solutions, high strength and low permeability of the stone. High corrosive activity of reservoir fluids and high temperatures, which often exceeds 100–150оC, set increased requirements to corrosion and thermal resistance of hardening products. The use of modifying additives and mechanoactivation of cements and grouting mixtures allows us to effectively solve these problems. The results of the study how mechanochemical activation of siliceous additives effects on the structure of their surfaces are presented and the increase in the rate of interaction of silica with calcium hydroxide, which is necessary forincreasing the life of a plugging stone, is experimentally proven. Improved structure of the produced cement stone after the disintegration treatment of cement is shown.

  5. The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Lubin, J.H.; Portengen, L.; Blair, A.; Attfield, M.D.; Silverman, D.T.; Stewart, P.A.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no histori

  6. Lipophilic super-absorbent polymer gels as surface cleaners for oil and grease from metal and non-metal surfaces

    Science.gov (United States)

    The objective of this research is to develop a new cleaning technology based on lipophilic super-absorbent swelling gels for the removal of oil, grease and particulate matters from metal and non-metal surfaces. It is desired that the cleaner is in solid form and is VOC-exempt, HAP-free, non-toxic, n...

  7. Super-Absorbent polymer gels for oil and grease removal from metal and non-metal surfaces

    Science.gov (United States)

    The objective of this research is to develop a new surface cleaning technology for removal of oil, grease and particulate matters from metal and non-metal surfaces. It is desired that the cleaner is in solid form and is VOC-exempt, HAP-free, non-toxic, non-corrosive, non-ozone depleting, recyclable...

  8. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    Science.gov (United States)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried

  9. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    Science.gov (United States)

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Epoxy asphalt concrete is a perspective material for the construction of roads

    Science.gov (United States)

    Vyrozhemskyi, Valerii; Kopynets, Ivan; Kischynskyi, Sergii; Bidnenko, Nataliia

    2017-09-01

    An effective way to increase the durability of asphalt concrete pavements that are subject to high traffic loads and adverse weather and climatic factors is the use of polymer additives which drastically improve the rheological and physical-mechanical properties of bitumen. The use of thermosetting polymers including epoxy resins for asphalt and bitumen modification is seen as a perspective solution for this issue. Conducted at DerzhdorNDI SE studies have proved high riding qualities of asphalt pavements that contain epoxy resins. When replacing 20-35% of bitumen with epoxy component, a significant improvement in strength characteristics of asphalt pavement is noted, especially at elevated temperatures. Specific feature of epoxy asphalt concrete is its ability to gain strength over a long-term operation. Thus, despite the increased cost of epoxy asphalt concrete, long service life of pavements on its basis (up to 30 years as predicted) ensures a high profitability of using this material, especially on the roads with heavy traffic and severe traffic conditions.

  11. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  12. Absorption of non-metallic inclusions by steelmaking slags—a review

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Reis

    2014-04-01

    Full Text Available The formation of non-metallic inclusions during steelmaking is inevitable and, when not properly controlled, can cause performance and production problems. Slag is one of the resources available to carry out this control. In steelmaking, it is generally understood that inclusions are naturally absorbed by slag when flotation is sufficient. However, separation and dissolution may define the inclusion absorption capacity of slag. The discussion in this review explains the relationship between separation and the contact angle at the steel/inclusion interface, which differentiates the mechanism from liquid and solid inclusions. Whereas liquid particles show more predictable behavior in experimental observations, thermodynamic analysis is necessary in order to describe the removal of solid particles. Among other findings, it is evident that slag viscosity and the formation of compounds at the inclusion/slag interface strongly influence inclusion dissolution capacity. Following a detailed description of findings in the literature, this review considers the most influential factors to aid in optimizing slags for inclusion absorption.

  13. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    to an HP8753C Network Analyzer through a 5 m long Sucoflex coaxial cable. The data are collected automatically using an HPIB interface. The collected data contains both the amplitude and phase information of the reflection coefficient. Data are measured at up to a maximum of 401 different frequencies...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum......, steel, and wood. The presented results are based on probe-data measured at 100 different frequencies at each measurement point and a coarser mesh-grid of 10 mm by 10 mm, since it is found that less probe-data is needed. Our experiments show that even less amount of probe-data may be necessary....

  14. A finite element thermal analysis of various dowel and core materials

    Directory of Open Access Journals (Sweden)

    Shanti Varghese

    2012-01-01

    Conclusion: Non-metallic dowel and core materials such as fibre reinforced composite dowels (FRC generate greater stress than metallic dowel and core materials. This emphasized the preferable use of the metallic dowel and core materials in the oral environment.

  15. Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials

    Directory of Open Access Journals (Sweden)

    Lisset Maritza Luna-Cañas

    2014-01-01

    Full Text Available La acumulación de residuos sólidos agroindustriales no administ rados especialmente en los países en vías de desarrollo ha dado lugar a una creciente preocupación ambiental. El reciclaje de tales res iduos como un material de construcción sostenible parece ser un a solución viable no sólo al problema de la contaminación, sino también un a opción económica para diseñar edificios verdes. El presente t rabajo estudia la aplicación de varios residuos agroindustriales en la fabricación de ladrillos, que incluyen cáscara de cacao, aserr ín, cáscara de arroz y caña de azúcar. En primer lugar, se determinó la compos ición mineralógica y química de los residuos y del suelo arcill oso. A continuación, los ladrillos se fabricaron con diferentes cantid ades de residuos (5%, 10% y 20%. El efecto de la adición de es tos residuos en el comportamiento tecnológico del ladrillo se evaluó mediant e ensayos de resistencia a la compresión, resistencia a la flex ión y durabilidad. Con base en los resultados obtenidos, las cantidad es óptimas de residuos agroindustriales para obtener ladrillos fueron mezclando 10% de cáscara de cacao y 90% de suelo arcilloso. Est os porcentajes producen ladrillos cuyas propiedades mecánicas e ran adecuadas para su uso como materias primas secundarias en la pr oducción de ladrillos.

  16. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  17. Shield construction methods. Recent status and examples of development of material transportation systems; Shirudo koho. Saikin no shizai hanso system kaihatsu genkyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, M.; Tazaki, A.; Makigami, S. [Tomoe Electric Manufacturing Company, Limited, Tokyo (Japan)

    1998-03-25

    Material transportation in a shield construction is assigned to transporting segments, aggregates, and pipes, particularly the segment transportation being the major assignment. Other materials are transported in spare moments between the segment transportation as required. The other materials can often be transported by utilizing segment transporting vehicles. Thus, for a transportation system in the shield construction, a segment transportation system which can synchronize with construction cycles based on those for a shield excavation machine is considered most importantly, and developed as the main force. The segment transportation system is classified into a rail type transportation system and a tire type transportation system. A high-speed transportation system of the former type transports materials at as high speed as 8 to 15 km/h. An Abt-system railway type steep-slope transportation system operates on slopes as steep as 20 to 40%. The tire transportation system is advantageous from an environmental preservation viewpoint. This paper introduces examples of constructions using a high-speed construction system for long tunnel construction, a steep-slope material transportation system, and an automatic trackless system. 2 figs., 2 tabs.

  18. 略论公路施工项目材料管理模式%Discuss the Material Management Mode of Highway Construction Project

    Institute of Scientific and Technical Information of China (English)

    吕希军

    2014-01-01

    公路施工项目中,材料费用占总支出的比重较大。对于现如今企业管理的模式,如何加强施工单位的材料管理,达到降低工程施工成本的目的,成为企业发展的关键。本文通过对施工中材料的管理做出了讨论。%In the highway construction project, material costs account for the proportion of total spending is bigger. For today's enterprise management mode, how to strengthen the management of construction materials and achieve the goal of reducing construction cost so as to become the key of the enterprises development. This article mainly discusses the material management in highway engineering construction.

  19. Construction management

    CERN Document Server

    Pellicer, Eugenio; Teixeira, José C; Moura, Helder P; Catalá, Joaquín

    2014-01-01

    The management of construction projects is a wide ranging and challenging discipline in an increasingly international industry, facing continual challenges and demands for improvements in safety, in quality and cost control, and in the avoidance of contractual disputes. Construction Management grew out of a Leonardo da Vinci project to develop a series of Common Learning Outcomes for European Managers in Construction. Financed by the European Union, the project aimed to develop a library of basic materials for developing construction management skills for use in a pan-European context. Focused exclusively on the management of the construction phase of a building project from the contractor's point of view, Construction Management covers the complete range of topics of which mastery is required by the construction management professional for the effective delivery of new construction projects. With the continued internationalisation of the construction industry, Construction Management will be required rea...

  20. Using expanded real options analysis to evaluate capacity expansion decisions under uncertainty in the construction material industry

    Directory of Open Access Journals (Sweden)

    Momani, Amer Mohammad

    2016-08-01

    Full Text Available Capacity expansion generally requires large capital expenditure on illiquid assets. Therefore, decisions to enlarge capacity must support the organisation’s strategic objectives and provide valuable input for the budgeting process. This paper applies an expanded form of Real Options Analysis (ROA to generate and evaluate capacity expansion strategies under uncertainty in the construction material industry. ROA is applied to different expansion strategies associated with different demand scenarios. Evaluating a wider variety of strategies can reduce risk and sponsor decisions that maximise the firm’s value. The case study shows that the execution of a lead expansion strategy with 10-year intervals under a 50 per cent demand satisfaction scenario produces superior results.

  1. Improved tunable filter-based multispectral imaging system for detection of blood stains on construction material substrates

    Science.gov (United States)

    Janchaysang, Suwatwong; Sumriddetchkajorn, Sarun; Buranasiri, Prathan

    2013-06-01

    We present the improved tunable filter based multispectral imaging system for detecting blood stains on construction materials. Based upon the reflectance and Kubelka Munk absorbance spectra stocked from our previous work, we modify the blood discrimination criteria to make the system more efficient by replacing the old criteria which make use of polynomial fitting with new criteria associated with a few wavelengths images. The newly established criteria are tested to be able to detect blood against other stains almost as efficient as the old criteria, while the number of spectral images required for detecting blood stains are reduced significantly from 64 to 9 spectral images. The reduction of required spectral images will reduce the time needed for image capturing and blood detection criteria application with little sacrificing of the specificity and sensitivity of the system.

  2. Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers

    Science.gov (United States)

    Burmistr, M. V.; Boiko, V. S.; Lipko, E. O.; Gerasimenko, K. O.; Gomza, Yu. P.; Vesnin, R. L.; Chernyayev, A. V.; Ananchenko, B. A.; Kovalenko, V. L.

    2014-05-01

    Novel polymer composite materials (PCM) based on resole phenol-formaldehyde resins modified with polyamide and reinforced with a combination of organic and inorganic fibrous fillers have been developed. PCM are characterized by a Charpy impact strength of up to 250 kJ/m2, an ultimate strength in static bending of up to 468 MPa, an ultimate strength in compression of up to 178 MPa, a Martens thermal stability of up to 300 °C, a friction coefficient of up to 0.12, and mass wear of up to 0.76 mg/(cm2 · km). They can be used for the fabrication of products intended for antifriction and constructional purposes.

  3. Versatile strategy to access fully functionalized benzodifurans: redox-active chromophores for the construction of extended pi-conjugated materials.

    Science.gov (United States)

    Yi, Chenyi; Blum, Carmen; Lehmann, Mario; Keller, Stephan; Liu, Shi-Xia; Frei, Gabriela; Neels, Antonia; Hauser, Jürg; Schürch, Stefan; Decurtins, Silvio

    2010-05-21

    An efficient synthetic approach to construct a fully substituted benzo[1,2-b:4,5-b']difuran (BDF) 2a via base-catalyzed double annulations is presented. Compound 2a can readily undergo Suzuki, Heck, and Sonogashira coupling reactions to afford in good yields a manifold of extended pi-conjugated BDF derivatives, e.g., with pyridine termini (4-6) and with different spacers. These are highly luminescent materials that undergo two reversible one-electron oxidations. Remarkably, their photophysical and electrochemical properties can be largely tuned by methylation or protonation. Consequently, they can function as pH-dependent fluorescence switches. Finally, the observed electronic properties are explained on the basis of density functional theory.

  4. Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuanyuan; Zhang, Lei, E-mail: zhanglei63@126.com

    2017-07-05

    Highlights: • A novel sensor material based on ionic liquids@nickel cobaltate was constructed. • Various morphologies of NiCo{sub 2}O{sub 4} were synthesized for electrocatalytic comparison. • ILs@NiCo{sub 2}O{sub 4}-P was used to detect cumulative toxic metals for the first time. • The sensor displayed well reproducibility, excellent selectivity and sensitivity. • The method was applied to detect practical samples with satisfactory results. - Abstract: The different morphologies of magnetic nickel cobaltate (NiCo{sub 2}O{sub 4}) electrocatalysts, consisting of nanoparticles (NiCo{sub 2}O{sub 4}-N), nanoplates (NiCo{sub 2}O{sub 4}-P) and microspheres (NiCo{sub 2}O{sub 4}-S) were fabricated. It was found that the electrocatalytic properties of the sensing materials were strongly dependent on morphology and specific surface area. The porous NiCo{sub 2}O{sub 4} hexagonal nanoplates coupled with ILs as modified materials (ILs@NiCo{sub 2}O{sub 4}-P) for the simultaneous determination of thallium (Tl{sup +}), lead (Pb{sup 2+}) and copper (Cu{sup 2+}), exhibited high sensitivity, long-time stability and good repeatability. The enhanced electrocatalytic activity was attributed to relatively large specific surface area, excellent electronic conductivity, and unique porous nanostructure. The analytical performance of the constructed electrode on detection of Tl{sup +}, Pb{sup 2+} and Cu{sup 2+} was examined using differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the electrode showed a good linear response to Tl{sup +}, Pb{sup 2+}and Cu{sup 2+} in the concentration range of 0.1–100.0, 0.1–100.0 and 0.05–100.0 μg/L, respectively. The detection limits (S/N = 3) were 0.046, 0.034 and 0.029 μg/L for Tl{sup +}, Pb{sup 2+} and Cu{sup 2+}, respectively. The fabricated sensor was successfully applied to detect trace Tl{sup +}, Pb{sup 2+} and Cu{sup 2+} in various water and soil samples with satisfactory results. Hence, this work

  5. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  6. Fostering Student Sense Making in Elementary Science Learning Environments: Elementary Teachers' Use of Science Curriculum Materials to Promote Explanation Construction

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory T.; Biggers, Mandy

    2013-01-01

    While research has shown that elementary (K-5) students are capable of engaging in the scientific practice of explanation construction, commonly-used elementary science curriculum materials may not always afford them opportunities to do so. As a result, elementary teachers must often adapt their science curriculum materials to better support…

  7. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  8. Utilization of Palm Oil Fuel Ash and Rice Husks in Unfired Bricks for Sustainable Construction Materials Development

    Directory of Open Access Journals (Sweden)

    Saleh A.M

    2014-01-01

    Full Text Available The production of sustainable construction component could prevent and control the pollution and environmental degradation in Malaysia. This is a key area in Malaysia’s Green Strategies (Ministry of Science, Technology and the environment, 2002. This paper reports on the laboratory investigation to establish the potential of utilizing Palm Oil Fuel Ash (POFA and Rice Husk (RH in developing green construction components. Malaysian Palm Oil Council (MPOC reported that currently Malaysia’s contribution to world palm oil production is 39% and has taken 44% of world exports. Consequently it will increase the POFA production in palm oil manufacturing and this waste sometimes dispose in open area near the factory. On the other hand Malaysia also producing more 300k hectares of paddy production, thus rice husk is also a concern as an agricultural waste. The research objective is to study on the potential of utilizing of agricultural waste in developing of green bricks. This research involved laboratory investigations. In this research 2% - 10% of POFA and 1% - 5% RH were used in the mix composition of the brick’s weight. Addition of POFA was aimed to reduce the cement usage and RH was added to reduce sand in the bricks. The bricks were manually pressed in Materials Laboratory in Faculty of Architecture, Planning and Surveying, UiTM Shah Alam. The result showed that the addition of POFA and RH are able to reduce the density but in contrast the compressive strength were decrease compare to the control unit.

  9. CONSTRUCTION OF DOUBLE CHAMBERED MICROBIAL FUEL CELL (MFC USING HOUSEHOLD MATERIALS AND BACILLUS MEGATERIUM ISOLATE FROM TEA GARDEN SOIL

    Directory of Open Access Journals (Sweden)

    Debajit Borah

    2013-08-01

    Full Text Available The current study was carried out for the isolation and screening of potential bioelectricity generating bacteria from tea garden soil samples and also to construct an indigenous microbial fuel cell (MFC using house hold materials. Bacillus megaterium was found to the best isolate for the production of bioelectricity, out of a total of 25 bacterial isolates from soil samples of Lepetkata Tea Estate of Dibrugarh district of Assam. The isolate was identified on the basis of staining techniques and biochemical characteristics. Double chambered MFC was constructed by using two poly acrylic containers of 500 ml volume each. The two chambers were connected using an agar salt bridge and carbon rods were used as electrodes. The electricity generated by the isolate was compared using glucose and fructose as sole carbon source in minimal media. The maximum voltage was found to be 440 mV in presence of glucose as sole carbon source after 84 hrs of incubation at room temperature. The voltage was further increased up to 698 mV after the media was supplemented with 1.5 % (w/v yeast extract, which would have served as additional source of vitamin to the bacteria to proliferate. During the entire study, the experimental set up was allowed to incubate at room temperature and occasional shaking was done manually, hence no external electricity was required. With all the above features the isolate Bacillus megaterium was found to be a good source of bioelectricity.

  10. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    Science.gov (United States)

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  11. Processing of ash and slag waste of heating plants by arc plasma to produce construction materials and nanomodifiers

    Science.gov (United States)

    Buyantuev, S. L.; Urkhanova, L. A.; Kondratenko, A. S.; Shishulkin, S. Yu; Lkhasaranov, S. A.; Khmelev, A. B.

    2017-01-01

    simultaneously to receive a condensed product in the form of carbon sublimated nanoparticles, which can be found further use in construction materials, in particular in high-strength concrete and other materials.

  12. Development of a versatile experimental setup for the evaluation of the photocatalytic properties of construction materials under realistic outdoor conditions.

    Science.gov (United States)

    Suárez, S; Portela, R; Hernández-Alonso, M D; Sánchez, B

    2014-10-01

    samples at the same time. The suitability of the system for the evaluation of the DeNO x properties of construction elements at realistic outdoor conditions was demonstrated. The designed experimental device can be used 24/7 for testing materials under real fluctuations of NO x concentration, temperature, UV irradiation, and relative humidity and the presence of other outdoor air pollutants such as VOCs, SO x , or NH3. The chamber-based design allows comparing a photocatalytic material with respect to a reference substrate without the photoactive phase, or even the comparison of several outdoor elements at the same time.

  13. Evaluating the Performance of Absolute RSSI Positioning Algorithm-Based Microzoning and RFID in Construction Materials Tracking

    Directory of Open Access Journals (Sweden)

    M. Truijens

    2014-01-01

    Full Text Available High accuracy of construction materials tracking with radio frequency identification technology (RFID is challenging to achieve. The microzoning method consists essentially of an absolute received signal strength indication (RSSI positioning algorithm on the basis of measuring the distance of tag from antennas base. In this paper, we analyse and examine the effects of microzoning method on the performance of RFID tags. A system was set up whereby RFID tags and antennas with the microzoning method were developed and studied. The performance of the tag antennas was studied with the practical read-range measurements. The study results showed that this absolute algorithm worked reliably and was suitable for RFID applications requiring identification of positions of onsite materials and components. The results also showed that the algorithm achieved a large read range and high accuracy. The study investigates the RFID solutions for Australian LNG (liquefied natural gas industry and was initiated by the collaboration between Woodside Energy, Curtin University, and Industrial Automation Group Pty Ltd.

  14. Detection of Non-metallic Inclusions in Centrifugal Continuous Casting Steel Billets

    Science.gov (United States)

    Wang, Qiangqiang; Zhang, Lifeng; Seetharaman, Sridhar; Yang, Shufeng; Yang, Wen; Wang, Yi

    2016-06-01

    In the current study, automated particle analysis was employed to detect non-metallic inclusions in steel during a centrifugal continuous casting process of a high-strength low alloy steel. The morphology, composition, size, area fraction, amount, and spatial distribution of inclusions in steel were obtained. Etching experiment was performed to reveal the dendrite structure of the billet and to discuss the effect of centrifugal force on the distribution of oxide inclusions in the final solidified steel by comparing the solidification velocity with the critical velocity reported in literature. It was found that the amount of inclusions was highest in samples from the tundish (~250 per mm2), followed by samples from the mold (~200 per mm2), and lowest in billet samples (~86 per mm2). In all samples, over 90 pct of the inclusions were smaller than 2μm. In steel billets, the content of oxides, dual-phase oxide-sulfides, and sulfides in inclusions were found to be 10, 30, and 60 pct, respectively. The dual-phase inclusions were oxides with sulfides precipitated on the outer surface. Oxide inclusions consisted of high Al2O3 and high MnO which were solid at the molten steel temperature, implying that the calcium treatment was insufficient. Small oxide inclusions very uniformly distributed on the cross section of the billet, while there were more sulfide inclusions showing a banded structure at the outside 25 mm layer of the billet. The calculated solidification velocity was higher than the upper limit at which inclusions were entrapped by the solidifying front, revealing that for oxide inclusions smaller than 8μm in this study, the centrifugal force had little influence on its final distribution in billets. Instead, oxide inclusions were rapidly entrapped by solidifying front.

  15. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  16. An attempt to elaborate a construct to measure the degree of explicitness and implicitness in ELT materials

    Directory of Open Access Journals (Sweden)

    Pascual Cantos Gómez

    2010-06-01

    Full Text Available The concepts of explicit and implicit (knowledge are at the core of SLA studies. We take explicit as conscious and declarative (knowledge; implicit as unconscious, automatic and procedural (knowledge (DeKeyser, 2003; R. Ellis, 2005a, 2005b, 2009; Hulstjin, 2005; Robinson, 1996; Schmidt, 1990, 1994. The importance of those concepts and components, we believe, must also be acknowledged in language teaching, and consequently in language teaching materials. However, explicitness and implicitness are rather complex constructs; such complexity allows for multiple nuances and perspectives in their analysis, and this fact poses a real challenge for their identification in the learning and teaching process and materials. We focus here on ELT materials and aim at the building of a reliable construct which may help in the identification of their potential for promoting implicit and explicit components. We first determined the features to identify the construct for implicitness and explicitness; next, we validated it and then we applied it to the analysis of the activities included in three sample units of three textbooks. The results were computed along a continuum ranging from 0 to 10 in each activity. The systematization and computation of results will hopefully offer a reliable figure regarding the identification of the degree of explicitness and/or implicitness in the materials analysed.Los conceptos de (conocimiento explícito e implícito constituyen uno de los puntos centrales en los estudios sobre la adquisición de lenguas extranjeras. Por explícito se entiende (conocimiento consciente o declarativo; por implícito, (conocimiento no consciente, automático y procedimentalizado (DeKeyser, 2003; R. Ellis, 2005a, 2005b, 2009; Hulstjin, 2005; Robinson, 1996; Schmidt, 1990, 1994. La importancia de ambos conceptos debe trasladarse también al campo de la enseñanza de idiomas y por lo tanto a los materiales docentes. Sin embargo, lo explícito e impl

  17. Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals.

    Science.gov (United States)

    Dong, Yuanyuan; Zhang, Lei

    2017-03-18

    The different morphologies of magnetic nickel cobaltate (NiCo2O4) electrocatalysts, consisting of nanoparticles (NiCo2O4-N), nanoplates (NiCo2O4-P) and microspheres (NiCo2O4-S) were fabricated. It was found that the electrocatalytic properties of the sensing materials were strongly dependent on morphology and specific surface area. The porous NiCo2O4 hexagonal nanoplates coupled with ILs as modified materials (ILs@NiCo2O4-P) for the simultaneous determination of thallium (Tl(+)), lead (Pb(2+)) and copper (Cu(2+)), exhibited high sensitivity, long-time stability and good repeatability. The enhanced electrocatalytic activity was attributed to relatively large specific surface area, excellent electronic conductivity, and unique porous nanostructure. The analytical performance of the constructed electrode on detection of Tl(+), Pb(2+) and Cu(2+) was examined using differential pulse anodic stripping voltammetry (DPASV). Under optimal conditions, the electrode showed a good linear response to Tl(+), Pb(2+)and Cu(2+) in the concentration range of 0.1-100.0, 0.1-100.0 and 0.05-100.0μg/L, respectively. The detection limits (S/N=3) were 0.046, 0.034 and 0.029μg/L for Tl(+), Pb(2+) and Cu(2+), respectively. The fabricated sensor was successfully applied to detect trace Tl(+), Pb(2+) and Cu(2+) in various water and soil samples with satisfactory results. Hence, this work provided a promising material for electrochemical determination of cumulative toxic metals individually and simultaneously.

  18. Numerical analysis of the non-metallic inclusions distribution and separation in a two-strand tundish

    Directory of Open Access Journals (Sweden)

    T. Merder

    2013-04-01

    Full Text Available The tundish plays an important role in the challenging task of a “clean steel” production process. The flow of the liquid steel in tundish has a crucial influence on non-metallic inclusions distribution and separation. The article presents computational studies of non-metallic inclusions separation in a two-strand industrial tundish during steady-state casting. Tundish capacity is 7,5 t. First, flow structure in the tundish was investigated using water model of the industrial tundish in a 1:2 scale. The experimental results, regarding RTD characteristics were used to validate numerical model. With validated model, particle distribution and separation in the two-strand tundish were investigated numerically. For modelling the separation of particles at the fluid surface, a modified boundary condition has been implemented.

  19. Recycling construction materials by multi-agent based coordination assistant system; Recycle suishin no tame no kensetsu fukusanbutsu yuzu chosei shien system

    Energy Technology Data Exchange (ETDEWEB)

    Ono, t.; Hagihara, J. [Tokyo Electric Power Co. Inc., Tokyo (Japan); Akiyoshi, M. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-10-01

    This paper reports on the coordination assistant system for recycling construction materials. We deal with planning coordination among many people or organizations. It is difficult to design an assistant system for such a job by top-down approach because generally coordination is made asynchronously and relevant members are not fixed. So we applied `multi-agent technique` to design the system. We studied a planning method based on `maximum flow and minimum cost algorithm` for recycling construction materials among many sites, and studied planning data management in asynchronous negotiations. The prototype system was implemented in Java. We expect to increase recycling materials through the planning simulation between many construction sites, and also expect to make this system a good platform on evaluating the recycling policy by changing relevant rules and parameters such as transportation and recycling costs. 9 refs., 9 figs.

  20. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  1. 复合材料在桥梁建设中的应用%Applications of composite materials in bridge construction

    Institute of Scientific and Technical Information of China (English)

    唐莹; 郭添悦

    2014-01-01

    In this paper, the use of composite materials in bridge construction was described from the points of new bridge and bridge reinforcement.The potential application of composite materials in the future was also proposed on the field of bridge construction .%从新建桥梁和桥梁加固两个方面阐述了复合材料的在桥梁工程中的应用,并针对未来复合材料在桥梁中的应用做了展望。

  2. Materials engineering. Pt. 2. Applications. 4. upd. ed.; Werkstofftechnik. T. 2. Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Wolfgang [Technische Univ. Berlin (Germany). Inst. fuer Werkstofftechnik

    2009-07-01

    The second part of this textbook provides a detailed introduction to modern materials engineering for students. Subjects: (E) Materials production (metals, plastics, ceramics, glass); (F) Working of materials (metals, plastics, inorganic non-metals, effects of working on materials characteristics); (G) Applications (protection against corrosion, scaling, and wear; lightweight construction; materials in mechanical engineering; product engineering; transportation and traffic; energy engineering and chemical engineering; electrical engineering). (orig.) [German] Der zweite Band des Lehrbuches der Werkstofftechnik ist als eine umfassend angelegte Einfuehrung in die moderne Werkstofftechnik fuer Studenten gedacht und ist wie folgt gegliedert: (E) Werkstoffherstellung (Herstellung von Metallen, Kunststoffen, Keramik und Glas); (F) Werkstoffverarbeitung (Metallische Werkstoffe - Kunststoffe - Nichtmetallisch anorganische Werkstoffe - Verarbeitungsbedingte Eigenschaftsaenderungen); (G) Werkstoffanwendung (Korrosions-, Verzunderungs-, Verschleissschutz - Leichtbau - Werkstoffe in Maschinenbau, Fertigungstechnik, Verkehrswesen, Energie-/Verfahrenstechnik und Elektrotechnik). (orig.)

  3. Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam

    Directory of Open Access Journals (Sweden)

    Ming-chao Li

    2015-10-01

    Full Text Available This study used the finite element method (FEM to analyze the stress field and seepage field of a roller-compacted concrete (RCC dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conventional vibrated concrete (CVC, and grout-enriched vibrated RCC (GEVR, corresponding to the design schemes S1 through S4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30% to 50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seepage flow for physical model tests and anti-seepage structure selection in RCC dams.

  4. Building construction materials effect in tropical wet and cold climates: A case study of office buildings in Cameroon

    Directory of Open Access Journals (Sweden)

    Modeste Kameni Nematchoua

    2016-03-01

    Full Text Available This paper presents the results of an experimental study that was conducted in 15 office buildings in the humid and cold tropics during the working hours of the dry and rainy seasons in Cameroon. This was with the aim to study the effects that local and imported materials had on indoor air quality. To achieve this objective, the adaptive model approach has been selected. In accordance with the conditions of this model, all workers were kept in natural ventilation and, in accordance with the general procedure, a questionnaire was distributed to them, while variables, like air temperature, wind speed, and relative humidity were sampled. The results showed a clear agreement between expected behaviour, in accordance with the characteristics of building construction, and its real indoor ambience once they were statistically analysed. On the other hand, old buildings showed a higher percentage of relative humidity and a lower degree of indoor air temperature. Despite this, local thermal comfort indices and questionnaires showed adequate indoor ambience in each group of buildings, except when marble was used for external tiling. The effect of marble as an external coating helps to improve indoor ambience during the dry season. This is due to more indoor air and relative humidity being accumulated. At the same time, these ambiences are degraded when relative humidity is higher. Finally, these results should be taken cognisance of by architects and building designers in order to improve indoor environment, and overcome thermal discomfort in the Saharan area.

  5. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    Science.gov (United States)

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-01

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  6. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  7. Review on Insensitive Non-metallic Energetic Ionic Compounds of Tetrazolate Anions%不敏感四唑非金属含能离子化合物的研究进展

    Institute of Scientific and Technical Information of China (English)

    毕福强; 樊学忠; 许诚; 王伯周; 郑亚峰; 葛忠学; 刘庆

    2012-01-01

    四唑非金属含能离子化合物是近年来逐渐发展起来的一类新型不敏感含能材料.综述了以氨基四唑、硝基四唑、硝氨基四唑、偶氮四唑和呋咱取代四唑为阴离子的不敏感非金属含能离子化合物的研究进展,结果表明,5位连有硝基和硝氨基等传统含能基团的四唑离子化合物的感度普遍较高,而以氨基四唑、偶氮四唑和4-氨基-3-(四唑基)呋咱为阴离子的含能化合物有望在不敏感含能材料领域得到广泛应用,并进而提出了不敏感四唑非金属含能离子化合物研究的发展方向.%Non-metallic energetic ionic compounds of tetrazolate anion are a kind of insensitive energetic materials. The progresses in the insensitive non-metallic energetic salts of aminotetrazolate, nitrotetrazolate, nitraminotetrazolate, azotetrazolate and furazan fuctionalized tetrazolate anions were reviewed in detail. It is found that most of ionic compounds based on tetrazolate anions which contain traditional energetic functionalities upon the carbon of positon 5 such as nitro and nitrimino functionalities, show high sensitivities, while the sensitivities of ionic compounds based on 5-aminotetrazolate, 5, 5'-azotetrazolate and 5-(4-aminofurazan-3-yl)tetrazolate are so low that they can be used as insensitive energetic materials. Furthermore, new trends in research of insensitive non-metallic energetic ionic compounds of tetrazolate anion were proposed.

  8. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  9. 绿色供应链进程下建筑材料管理探究%Study on Construction Materials Management in Green Supply Chain Process

    Institute of Scientific and Technical Information of China (English)

    段文凤; 董金辉

    2015-01-01

    Through tracing the origin of green supply chain, this paper analyzed the current situation of material management in construction, discussed the problems of procuring and using building materials in the green construction, recycling the construction waste in green scrap under the green supply chain process in construction industry, proposed the mode to play the initiative of the green supply chain members from the perspective of recycled building materials manufacturers, material suppliers and engineering contractors.%本文通过追溯绿色供应链的起源,并对建筑材料管理现状进行分析,论述了建设行业绿色供应链进程下建筑材料在绿色施工中的采购使用问题和绿色报废中的建筑材料回收问题,并分别从再生建材制造商、材料供应商、工程承包商的角度提出了发挥绿色供应链各成员能动性的途径。

  10. Meaning-Construction in warring states philosophical discourse : a discussion of the palaeographic materials from Tomb Guōdiàn One

    NARCIS (Netherlands)

    Meyer, Dirk

    2008-01-01

    This book analyzes a defined corpus of philosophic texts from the Warring States period. It treats texts as objects in their own right and, in a broad sense, discusses the relationship between material conditions of text and manuscript culture, writing, techniques of meaning-construction, and philos

  11. Numerical 2D and 3D Investigation of Non-Metallic (Glass, Carbon) Fiber Pull-Out Micromechanics 9in Concrete Matrix)

    OpenAIRE

    Khabaz, A; Krasņikovs, A; Kononova, O; Mačanovskis, A

    2010-01-01

    Short non-metallic (glass, carbon) fibre use for concrete disperse reinforcment is of particular interest, because of much higher fibre/matrix interface area value comparing to industrially produced steel fibres.

  12. 电教教材建设的实践与思考%Practice and thinking of audio-visual teaching materials construction

    Institute of Scientific and Technical Information of China (English)

    杨宝强; 刘守东; 王莹

    2013-01-01

    电教教材已成为提高教育教学质量、全面实施素质教育的重要手段和培养学生创新精神及实践能力的重要途径。文章系统分析和梳理了空军工程大学电教教材建设理论与实践工作,提出了“着眼复合型人才培养,完善建设体系;发挥人才和技术优势,形成建设合力;实行全流程精细化管理,确保建设质量;推进数字资源共建共享,提高使用效益”的建设策略,对于高等院校探索信息化人才培养,打造精品电教教材有一定的借鉴意义和参考价值。%Audio-visual teaching materials are the important means of improving teaching quality and implementing quality-oriented education .They are also an important way to cultivate students 'innovative spirit and practical ability .This article analyzes the theory and practice of audio-visual teaching material construction at our university .Then it puts forward construction strategies as follows:focusing on the compound-type talents training and improving construction system; giving play to the advantages of talents and technology to form construction power; carrying out whole-process fine management to ensure the quality of construction; and promoting co-construction and sharing of digital resources to enhance using benefits .This study has valuable reference for information professional training and top-quality audio-visual teaching material construction .

  13. 可重复使用材料在绿色施工中的应用%Application of repeatedly-usable materials in green construction

    Institute of Scientific and Technical Information of China (English)

    校婧

    2015-01-01

    Through comparing the engineering application of construction field fabricating concrete components and traditional construction tech-nology,the article specifically describes fabricated concrete components advantages,such as green environmental protection,saving materials, saving construction duration,reducing cost and sustainable development and so on,which meets national green construction demands.%通过施工现场预制混凝土构件与传统施工工艺在工程中的应用对比,对预制混凝土构件所具有的绿色环保、节约材料、节省工期、降低造价、可持续发展等优点做了详细的阐述,符合国家绿色施工的要求。

  14. Erosion Control of Scour during Construction. Report 4. Stability of Underlayer Material Placed in Advance of Construction to Prevent Scour; Hydraulic Model Investigation.

    Science.gov (United States)

    1983-06-01

    CONSTRUCTION TO PREVENT SCOUR Hydraulic Model Investigation by Lyndell Z . Hales, James R. Houston S.Hydraulics Laboratory .’, ! 1- N U.S. Army Engineer...hiVeStI9.e e1(_____________________________ 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(ek) 8. CONTRACT OR GRANT NUMBER(.) Lyodlell Z . Hiles James R...us t tO geerate ’ the reIpre-senatativye stonle weight, W it it the itlet-eayt’ tsectiatte. The e-xptressioni tir this- ctiese-rvi v- stabiltity

  15. 浅析高职课程立体化教材建设%Analysis on the Construction of Stereoscopic Teaching Materials in Higher Vocational Course

    Institute of Scientific and Technical Information of China (English)

    皮连根; 孙海波

    2012-01-01

    立体化教材是信息社会发展的产物,是网络社会发展的需要,具有形式多元化、设计立体化及内容系统化等特点,根据高职院校立体化教材建设的现状,探讨了当前立体化教材建设的思路与对策。%Stereoscopic teaching materials is the product of the development of information society, the need of social network development, the form of a plurality, three- dimensional design and the content of the system fea- tures. According to the present situation of teaching material construction in vocational college, this paper discusses the stereoscopic teaching material construction and puts forward countermeasures.

  16. Experimental and numerical investigation of concrete structures with metal and non-metal reinforcement at impulse loadings

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.; Kudyakov, K. L.

    2016-11-01

    Manufacturing durable and high-strength concrete structures has always been a relevant objective. Therefore special attention has been paid to non-metallic composite reinforcement. This paper considers experimental and numerical studies of nature of fracture and crack formation in concrete beams with rod composite reinforcement. Fiber glass rods, 6 mm in diameter, have been used as composite reinforcement. Concrete elements have been tested under dynamic load using special pile driver. The obtained results include patterns of fracture and crack formation, maximum load value and maximum element deflection. Comparative analysis of numerical and experimental studies has been held.

  17. Influence of Low-Alloy Cast Steel Modification on Primary Structure Refinement, Type and Shape of Non-Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    Bartocha D.

    2015-04-01

    Full Text Available In the article there are presented methods and results of investigation which main aim were determination of influence of melting technology (gas extraction, vacuum refining, slag refining and extraction, deoxidation and degassing and type of used modifiers on the type and shape of non-metallic inclusions and the primary structure refining. Low alloy cast steel melted in laboratory conditions, in an inductive furnace was investigated. Additions of FeNb, FeV, FeTi and FeZr modifiers were applied. The contents of oxygen and nitrogen in obtained cast steel were determined.

  18. 非金属矿物在医药行业的应用与前景%Medicinal Application and Prospect of Non-metallic Mineral

    Institute of Scientific and Technical Information of China (English)

    鲍康德; 周春晖

    2012-01-01

    Deep procession of non-metallic mineral and application on bio-/medicinal area is a new high-technical industry. This paper summarizes the appl ication history and status in quo of non-metallic minerals in pharmaceutical industry; identification, classification and development tendency of non-metallic minerals for pharmaceutical use. The focus is to introduce the development history of non-metallic minerals for pharmaceutical use, and explore the application prospect of non-metallic minerals in pharmaceutical industry, so as to provide theory basis for sufficiently exploring the potential of non-metallic minerals.%非金属矿物深加工并被用于生物医药领域系高新技术产业.本文综述了非金属矿物的医药应用历史、现状;药用非金属矿物的鉴别、分类和发展趋势.重点介绍了非金属矿物的药用开发历程,并展望了非金属矿物在医药行业的应用前景,以期为充分发掘非金属矿物的潜能提供理论指导.

  19. Wood products and other building materials used in new residential construction in Canada, with comparison to previous studies

    Science.gov (United States)

    Joe Elling; David B. McKeever

    2015-01-01

    New residential construction is a critical driver of the demand for lumber, structural panels and engineered wood products in Canada. For the period 2010 through 2013, residential construction accounted for roughly 23 percent of the lumber consumed in Canada and 47 percent of structural panel usage. Insufficient data concerning imports and exports prevent estimates of...

  20. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  1. Colloquium 3: Thermal insulation materials in construction and in high-temperature plants. Lectures; Kolloquium 3: Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E.; Gross, U.; Walter, G. [comps.

    1999-07-01

    Colloquium 3, ''Thermal insulation materials in construction and in high-temperature plants'' focused, for one thing, on the inter-relationships between the development of thermal insulation materials for construction and high-temperature applications and the development of processes and plants and, for another, on the standards of and amendments to the thermal protection ordinance. Calcium silicate and Silcapor as a thermal protection material and a high-temperature thermal insulant, respectively, are dealt with inter alia. The use of thermal insulants in industrial furnaces and different methods for measuring thermal conductivity are described. Further topics are the elements of the energy conservation ordinance being drafted, and thermal-insulation construction materials such as bricks and foam mortar. Ten papers are individually listed in the Energy database. (orig.) [German] Im Mittelpunkt des Kolloquium 3 ''Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen'' stehen die wechselseitigen Zusammenhaenge zwischen der Entwicklung von Waermedaemmstoffen fuer das Bauwesen und die Hochtemperaturanwendung einerseits und der Prozess-und Anlagenentwicklung anderseits sowie die Normung und die Novellierung der Waermeschutzverordnung. Es wird u.a. auf den Waermedaemmstoff Calciumsilicat eingegangen ebensowie auf Silcapor als Hochtemperaturd ammstoff. Der Einsatz von Waermedaemmstoffen in Industrieoefen sowie die unterschiedlichen Messmethoden der Waermeleitfaehigkeit werden beschrieben. Weitere Themen sind die Grundlagen der kuenftigen Energiesparverordnung sowie waermedaemmende Baustoffe wie Ziegel und Porenbeton. Fuer die Datenbank Energy wurden zehn Arbeiten separat aufgenommen.

  2. Study on Non-Metallic Inclusions in Laser-Welded TRIP-Aided Nb-Microalloyed Steel

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2014-10-01

    Full Text Available The work concerns the studies on non-metallic inclusions occuring in laser-welded Si-Al TRIP steel containing Nb and Ti microadditions. Laser welding tests of 2 mm thick thermomechanically rolled sheets were carried out using keyhole welding and a solid-state laser. The results of laser welding in the air atmosphere for the heat input value of 0.048 kJ/mm are included. The distribution, type and chemical composition of non-metallic inclusions formed in the base metal, heat-affected zone, and fusion zone are analysed in detail. It was found that the base metal contains rare, fine oxysulphides. Their chemical composition was modified by rare earth elements. Numerous oxide inclusions of a various size and a chemical composition occur in the fusion zone. The dependence between a size of particles and their chemical composition was observed. A microstructure of steel was assessed using light microscopy and scanning electron microscopy techniques.

  3. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  4. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  5. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Directory of Open Access Journals (Sweden)

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  6. 建筑材料在建筑表皮中的生态运用%Building Materials in Ecological Application of the Construction Skin

    Institute of Scientific and Technical Information of China (English)

    邓玮; 徐峰

    2012-01-01

    本文以建筑材料为切人点,着重阐述了建筑材料在建筑表皮中的生态运用策略。建筑材料的使用贯穿了建筑建造、维护以及改造等整个生命周期。材料会对建筑的外观、性能和建造成本造成影响。经过几十年的发展科研人员对材料的特性有了新的了解。材料有了全生命周期评价(LCA),当材料选择时可以考虑在建造过程中的可持续问题。通过材料在建筑表皮中的分层组成方式的分析模拟,设备的控制以及空腔等系统和材料自身物理性能,来完成应对气候和建筑微气候的适应及其变化。%This article to the point of building materials, focused on the ecological strategy of building material in the skin. Construction materials use · d throughout the building of the construction, maintenance and transformation throughout the life cycle. Material impact on the appearance, performance and construction of the building cost, After several decades of development researchers new understanding of the properties of the materials. Materials have a life-cycle assessment (LCA), when the material can be taken into account in the construction of sustainability issues in the process. By material in the skin of a hierarchical composition analysis of simulation, device control, and systems such as cavities and the physical properties of the material itself, to complete the adaptation to climate and building micro-climate and its changes.

  7. Non-Metallic Transducer Mounting Brackets (AN/BQQ-5/6 Spherical Array Transducers)

    Science.gov (United States)

    1992-06-15

    susceptible to moisture permeation into the bulk polymer phase, while moisture penetration into the glass-resin interface may be the predominant mechanism...material. These surface cracks appear to be present only in the hard liquid crystal polymer skin that forms during the molding of the Vectra material...Portsmouth Connector," NRL-USRD Letter Report No. 9464 to NAVSEA, 25 Apr 1988. 7. J.S. Thornton, R.E. Montgomery, and J.F. Cartier , "Failure Rate Model for

  8. Creation of Polyurethane Injection Materials, Their Pilot-industrial Production, Development and Industrial Introduction of the Technology of Strengthening and Restoring the Operability of Damaged Constructions and Buildings

    Directory of Open Access Journals (Sweden)

    Marukha, V.І.

    2015-01-01

    Full Text Available Polyurethane and foam polyurethane fluid injection materials not conceding foreign analogues and technology technology of restoration and strengthening the operability of concrete and reinforced concrete structures and buildings damaged by cracks were developed. Normative and technical documentation on the injection materials and technological processes was created. The diagnosticrestoring complex for implementing the above technologies was designed, installed and utilized at the construction sites. The equipment is designed and manufactured; the technology of the research and industrial production of «A» and «B» components of injecting polyurethane materials is designed and developed. The pilot-scale batch is manufactured. Technological processes of preparation and application of the «A» and «B» componentsof the injecting materials in industrial conditions are worked out and implemented.

  9. 高校图书馆教材馆藏建设之思考%Considerations about the Construction of Teaching Materials Collection in University Library

    Institute of Scientific and Technical Information of China (English)

    梁敏雅

    2015-01-01

    This paper expounds the important significance and the current status of the construction of library's teaching materials collection, puts forward the collecting principles of the teaching materials, and probes into the collecting scope and collecting path of teaching materials and the utilization of teaching materials collection.%阐述了图书馆教材馆藏建设的重要意义及高校图书馆教材馆藏建设现状,提出了教材入藏的原则,探讨了教材馆藏的入藏范围、入藏途径以及教材馆藏的利用.

  10. 浅析输变电工程施工中的物资管理%Analysis of the Materials Management in the Engineering Construction of Power Transmission

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      物资管理,是现代企业管理的一项重要内容。输变电工程施工中,物资管理具有重要的意义,它有利于降低电力企业的生产成本,从根本上保证了工程施工质量。%The materials management is an important part of modern business management. In the engineering construction of power transmission, the materials management is of great significance, which is conducive to reducing electricity prod-uction costs, and fundamental y guarantees the quality of engi-neering construction.

  11. Sandwich construction

    Science.gov (United States)

    Marshall, A.

    A form of composites known as structural sandwich construction is presented in terms of materials used, design details for solving edging and attachment problems, and charts of design material analysis. Sandwich construction is used in nearly all commercial airliners and helicopters, and military air and space vehicles, and it is shown that this method can stiffen a structure without causing a weight increase. The facing material can be made of 2024 or 7075 aluminum alloy, titanium, or stainless steel, and the core material can be wood or foam. The properties of paper honeycomb and various aluminum alloy honeycombs are presented. Factors pertaining to adhesive materials are discussed, including products given off during cure, bonding pressure, and adaptability. Design requirements and manufacturing specifications are resolved using numerous suggestions.

  12. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  13. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  14. Economic and ecologic importance of the non - metalic deposits in basalt maars of Southern Slovakia

    Directory of Open Access Journals (Sweden)

    Vass Dionýz

    1998-03-01

    Full Text Available By investigation of the basalt maars infill in Luèenská kotlina Depression the diatomite and alginite deposits have been found. Both maars belong to Podreèany basalt formation, Pontian (Late Miocene in age. By technological investigation it was proved the diatomite can be used in the building trade as raw materil for light tiles convenient especially for the construction of the saddle roof with attic appatments. The alginite can be used in the agriculture and horticulture, as a fertiliser becouse of humus, nutritive end same trace elements, a desodorant in livestoc feedlots, a water and nutritive elements trap to distribute them for the growing plants. The alginite can be used as well as in pharmacy and in different industrial branches. Both deposits are of high significance for the ecology and the nature protection.

  15. SU-F-E-10: Student-Driven Exploration of Radiographic Material Properties, Phantom Construction, and Clinical Workflows Or: The Extraordinary Life of CANDY MAN

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, RN; Riblett, MJ; Hugo, GD [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: To develop a hands-on learning experience that explores the radiological and structural properties of everyday items and applies this knowledge to design a simple phantom for radiotherapy exercises. Methods: Students were asked to compile a list of readily available materials thought to have radiation attenuation properties similar to tissues within the human torso. Participants scanned samples of suggested materials and regions of interest (ROIs) were used to characterize bulk attenuation properties. Properties of each material were assessed via comparison to a Gammex Tissue characterization phantom and used to construct a list of inexpensive near-tissue-equivalent materials. Critical discussions focusing on samples found to differ from student expectations were used to revise and narrow the comprehensive list. From their newly acquired knowledge, students designed and constructed a simple thoracic phantom for use in a simulated clinical workflow. Students were tasked with setting up the phantom and acquiring planning CT images for use in treatment planning and dose delivery. Results: Under engineer and physicist supervision, students were trained to use a CT simulator and acquired images for approximately 60 different foodstuffs, candies, and household items. Through peer discussion, students gained valuable insights and were made to review preconceptions about radiographic material properties. From a subset of imaged materials, a simple phantom was successfully designed and constructed to represent a human thorax. Students received hands-on experience with clinical treatment workflows by learning how to perform CT simulation, create a treatment plan for an embedded tumor, align the phantom for treatment, and deliver a treatment fraction. Conclusion: In this activity, students demonstrated their ability to reason through the radiographic material selection process, construct a simple phantom to specifications, and exercise their knowledge of clinical

  16. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  17. Cold Weather Construction Materials. Part 2. Field Validation of Laboratory Tests on Regulated-Set Cement for Cold Weather Concreting.

    Science.gov (United States)

    1982-12-01

    patches, slipform tunnel liners and cast-in- place roof decking. Letters requesting information (construction problems, cracking, durability, cost, etc...this minimum mst be verified. Once known, this will also dictate the earliest times at which formwork or concrete protection could be removed. The

  18. Inductive sensor to detect metal impurities in non-metallic medium

    Science.gov (United States)

    Bykovsky, N. A.; Puchkova, L. N.; Fanakova, N. N.

    2017-02-01

    The mathematical model for an induction detector intended for detection of metal impurities is examined. The detector consists of three coils. The centre coil serves to induct a magnetic moment in the metal sample, and side coils are used to record this moment during the sample propulsion through the detector. It is shown that at an identical value of the magnetic field induction, created by the induction coil in the unit volume of the sample, the induced magnetic moment is defined by magnetic susceptibility for ferromagnetics, and for nonmagnetic materials – by their electric conductivity.

  19. Spanish experiences with marginal and special materials on the construction of road embankments; Experiencias de utilizacion de materiales marginales y especiales en terraplenes viarios en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Cano Linares, H.; Perucho Martinez, A.

    2015-07-01

    The use of existing materials along the alignment of a road is an essential problem within the Sustainable Development policies, which is being promoting worldwide since a long time. In the Word road Association (PIARC-AIPCR) this subject has being investigated by different Technical Committees during last decades. Additionally, the review of the article 330 Embankment of PG-3 (FOM 1382/2002) has opened the door to new non-conventional materials, as wastes and artificial materials, to be used on embankments. This could come to adequate solutions, technically, and environmentally, contributing with national legislation on valorisation policies. In this sense, the use of marginal materials and wastes con represent and important save on natural resources and dumping sites. In Spain, some experiences with marginal materials and wastes have being carried out. The work presented has consisted in compiling and analysing the experiences executed with marginal materials and wastes on Spanish road embankments. Although there are many other cases, 24 cases published with adequate information have being analysed, summarising aspects as: materials problems arrangement solutions or treatments employed. Analysing these experiences and making them public can be a way to transmit confidence, help to improve knowledge, and progress on the preparation of recommendations. This work has being carried out on the frame of the Project Geotechnical Engineering, Materials and Structures and Impact of Infrastructure in Civil engineering (TTIGEM), within the frame Program Border Cooperation Spain-External Borders (POCTEFEX); particularly in the Activity 2 related to Technology Transfer of Construction Materials, including marginal materials and wastes. (Author)

  20. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water

    Science.gov (United States)

    Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna

    2016-10-01

    Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.

  1. Effect of Non-metallic Inclusions in Fe-Al-Ti-O-N-S Alloy on Grain Size

    Science.gov (United States)

    Choi, Wonjin; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2016-06-01

    The effect of characteristics of non-metallic inclusions in Fe-Al-Ti-O-N-S alloys with various compositions at 1473 K (1200 °C) on the microstructure was studied. The ASTM grain size number was determined in as-cast and heated samples by the optical microscopy, and the inclusion types in each sample were determined from composition analysis by field-emission scanning electron microscope with energy-dispersive spectroscopy. The TiN-based inclusions certainly had a positive effect on the grain refinement. On the other hand, TiS-based inclusions exhibited no influence on the decrease of grain size. In addition, the formation and evolution behavior of inclusions by heating solid-state Fe-Al-Ti-O-N-S alloys with those locations were clarified. A different change of inclusions in alloys was observed depending on the distribution and composition of inclusions.

  2. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  3. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-02-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  4. Standard practice for process compensated resonance testing via swept sine input for metallic and Non-Metallic parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to identify metallic and non-metallic parts’ resonant pattern differences that can be used to indentify parts with anomalies causing deficiencies in the expected performance of the part in service. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the audio, or ultrasonic, resonant frequency ranges, or both. PCRT is used in the presence of manufacturing process variance to distinguish acceptable parts from those containing significant anomalies in physical characteristics expected to significantly alter the performance. Such physical characteristics include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density related anomalies...

  5. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction

    Science.gov (United States)

    Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping

    2016-07-01

    The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.

  6. Estimating environmental value losses from earth materials excavation and infilling for large-scale airport construction: a case of Dalian Offshore Airport, Dalian, China.

    Science.gov (United States)

    Yan, Hua-Kun; Wang, Nuo; Wu, Nuan; Song, Nan-Qi; Zhu, Dao-Li

    2017-07-21

    Large-scale airport construction removes large quantities of earth materials, resulting in serious environmental pollution and ecosystem damage. However, studies of environmental concerns caused by the materials used in airport construction are still preliminary, and those case studies on the impacts of large-scale offshore airport development are very limited. China's Dalian Offshore Airport is considered here to study the environmental value loss from 240 million m(3) of materials excavations and 21 km(2) of artificial island infillings. The findings show that the calculated annual environmental value loss for the development of the Dalian Offshore Airport is approximately US$7.75 million, including US$1.81 million and US$1.47 million of direct economic loss of timber resources and marine biology resources, respectively, and US$1.53 million and US$2.79 million value losses of forest and marine ecosystem services damaged caused by materials excavation and infilling, respectively. The conclusions of this study provide an important foundation to quantitatively analyse the environmental impact of the Dalian Offshore Airport's development and can be used as a reference for similar engineering and environment impact assessment programs.

  7. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

    Science.gov (United States)

    Wang, Yong; Tang, Haiyan; Wu, Tuo; Wu, Guanghui; Li, Jingshe

    2017-04-01

    The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

  8. Enhanced hydrogen desorption properties of magnesium hydride by coupling non-metal doping and nano-confinement

    Science.gov (United States)

    He, Daliang; Wang, Yulong; Wu, Chengzhang; Li, Qian; Ding, Weizhong; Sun, Chenghua

    2015-12-01

    Magnesium hydride (MgH2) offers excellent capacity to store hydrogen, but it suffers from the high desorption temperature (>283 °C for starting release hydrogen). In this work, we calculated the hydrogen desorption energy of Mg76H152 clusters with/without non-metal dopants by density functional theory method. Phosphorus (P), as identified as the best dopant, can reduce the reaction energy for releasing one hydrogen molecule from 0.75 eV (bulk MgH2) to 0.20 eV. Inspired by the calculation, P-doped ordered mesoporous carbon (CMK-3) was synthesized by one-step method and employed as the scaffold for loading MgH2 nanoparticles, forming MgH2@P/CMK-3. Element analysis shows that phosphorus dopants have been incorporated into the CMK-3 scaffold and magnesium and phosphorus elements are well-distributed in carbon scaffold hosts. Tests of hydrogen desorption confirmed that P-doping can remarkably enhance the hydrogen release properties of nanoconfined MgH2 at low temperature, specifically ˜1.5 wt. % H2 released from MgH2@P/CMK-3 below 200 °C. This work, based on the combination of computational calculations and experimental studies, demonstrated that the combined approach of non-metal doping and nano-confinement is promising for enhancing the hydrogen desorption properties of MgH2, which provides a strategy to address the challenge of hydrogen desorption from MgH2 at mild operational conditions.

  9. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries.

    Science.gov (United States)

    Fan, Zhuang-Jun; Yan, Jun; Wei, Tong; Ning, Guo-Qing; Zhi, Lin-Jie; Liu, Jin-Cheng; Cao, Dian-Xue; Wang, Gui-Ling; Wei, Fei

    2011-04-26

    We report on the fabrication of 3D carbonaceous material composed of 1D carbon nanofibers (CNF) grown on 2D graphene sheets (GNS) via a CVD approach in a fluidized bed reactor. Nanographene-constructed carbon nanofibers contain many cavities, open tips, and graphene platelets with edges exposed, providing more extra space for Li(+) storage. More interestingly, nanochannels consisting of graphene platelets arrange almost perpendicularly to the fiber axis, which is favorable for lithium ion diffusion from different orientations. In addition, 3D interconnected architectures facilitate the collection and transport of electrons during the cycling process. As a result, the CNF/GNS hybrid material shows high reversible capacity (667 mAh/g), high-rate performance, and cycling stability, which is superior to those of pure graphene, natural graphite, and carbon nanotubes. The simple CVD approach offers a new pathway for large-scale production of novel hybrid carbon materials for energy storage.

  10. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium-sulfur batteries

    Science.gov (United States)

    Yu, Qiuhong; Lu, Yang; Peng, Tao; Hou, Xiaoyi; Luo, Rongjie; Wang, Yange; Yan, Hailong; Liu, Xianming; Kim, Jang-Kyo; Luo, Yongsong

    2017-03-01

    A promising hybrid material composed of tubular polypyrrole (T-PPy)-wrapped monodisperse biomass-derived carbon nanospheres (BCSs) was first synthesized successfully via a simple hydrothermal approach by using watermelon juice as the carbon source, and further used as an anchoring object for sulfur (S) of lithium-sulfur (Li-S) batteries. The use of BCSs with hydrophilic nature as a framework could provide large interface areas between the active materials and electrolyte, and improve the dispersion of T-PPy, which could help in the active material utilization. As a result, BCS@T-PPy/S as a cathode material exhibited a high capacity of 1143.6 mA h g-1 and delivered a stable capacity up to 685.8 mA h g-1 after 500 cycles at 0.5 C, demonstrating its promising application for rechargeable Li-S batteries.

  11. Environmental construction of nano-material design codes. The example of simulation codes used in the CMD workshop

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Mikiya [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Kizu, Kyoto (Japan)

    2003-05-01

    Generally it is well known that the R and D works on new materials or devices will play a central role on the evolution of future society. But, the old ways based on the empirical and experimental approach have already reached the limit, especially for dealing with a strange substance and material. The structure of a substance and material is needed to be dealt with in detail by quantum mechanics, because the limit on accuracy has come in sight in the calculation using a classical theory. The research on the latest electronic state calculation technique founded on quantum mechanics made a great advance as the technique of solving these problems as well as the technique of a computational materials design. It enables the prediction of material properties because it is based on First Principles. Therefore, in the future it is expected to have a very high possibility of becoming a breakthrough in such a situation. In this article, the example calculation results by PC cluster on the codes (MACHIKANEYAMA-2000, OSAKA-2000) used in the CMD (Computational Materials Design) workshop, held on Sep. 19-21, at ITBL-Building and International Institute for Advanced Studies under the auspices of the University of Osaka, are described. Furthermore, the graphical user interfaces on the codes are examined. (author)

  12. Engineering geological characterization of volcanic rocks of ethiopian and sardinian highlands to be used as construction materials

    OpenAIRE

    Engidasew, Tesfaye Asresahagne

    2014-01-01

    This thesis presents the results of the study conducted on the “Geoengineering characterization of volcanic rocks from Ethiopian and Sardinian highlands to be used as construction materials”. Though, the two project areas are geographically far apart, both are partly covered with volcanic rocks mainly consisting of basic and subordinate felsic rocks. The research was conducted in two countries; part I, the Ethiopian Project area located on the northwestern central Highlands of ...

  13. Relationship between index testing and California Bearing Ratio values for natural road construction materials in South Africa

    CSIR Research Space (South Africa)

    Breytenbach, IJ

    2010-10-01

    Full Text Available of the South African Institution of Civil Engineering ? Volume 52 Number 2 October 2010 65 TECHNICAL PAPER JOURNAL OF THE SOUTH AFRICAN INSTITUTION OF CIVIL ENGINEERING Vol 52 No 2, October 2010, Pages 65?69, Paper 761 IZAK BREYTENBACH (Pr Sci Nat... and has lectured to undergraduate and postgraduate mining, civil engineering, engineering geology and geology students. His research interests include durability of basic igneous rocks for use in civil engineering construction, problem soils and safe...

  14. Use of ferrous industrial wastes as binding materials for construction; Empleo de residuos industriales siderurgicos como materiales aglomerantes en construccion

    Energy Technology Data Exchange (ETDEWEB)

    Mymrin, V.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-12-01

    Several ferrous and non ferrous metallurgical wastes, slag, powdered wastes, alkaline liquors, etc., can be used as binding materials to produce new building materials. These materials can be used in place of concretes made of cement, crushed stones, sand and gravel mixtures in several applications, road, industrial and airport foundations, etc. They are leaching resistant, so heavy metals do not migrate to the environment. These new materials, with a new structure, are obtained by mixing in right proportion of two or three industrial wastes or with mixtures of two of them and natural soils without any addition of traditional binders like and without heating. The main advantages are the solution of the problem of disposal of industrial wastes and the lower cost of the new materials, 5 to 6 times cheaper than traditional. Several examples of roads existing in Russia, even in Siberia and other northern regions, demonstrate the benefit of this process because after 20 years they still offer a good performance. (Author) 8 refs.

  15. Energy cogeneration contributions in the wood quality as civil construction material; Contribuicoes da cogeracao de energia na qualidade da madeira como material de construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carlos Roberto de

    1993-07-01

    This work presents the practicable technical alternative for the improvement of solid wood quality used in the building construction. Through the reality of the solid wood Amazon Region's production and actual generation conception; cogeneration, economy and efficiency on the energy application; the alternative displayed proposes the modification on the lay-out production and production process seeking the best quality obtention of the solid wood; the replace of the petroleum derived energetics by biomass (residues) and the introduction on the production site, the solid wood drying process. The production alternatives proposed can contribute for the solid wood production cost reduction, through the fuel economy, the imperfect number piece reduction and transportation cost production reduction. Contributing significantly for the cost/benefit/quality wood relations, enabling its placement of the consuming market on the Northeast, Southeast, South and Middle west Regions and so on the international market with competitive costs. (author)

  16. The corrosion of titanium and some other construction materials during hydrogen peroxide bleaching according to the field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hyoekyvirta, O.; Pohjanne, P.; Heinaevaara, A. [Oy METSA-BOTNIA Ab, Kaskinen' s mill, 64260 Kaskinen (Finland); Hirvonen, J. [VTT Automation, Industrial Automation, P.O. Box 1301, FIN-02044 (Finland); Lewenstam, A. [Center for Process Analytical Chemistry and Sensor Technology ' ProSens' Abo Akademi University, 20500 Abo (Finland)

    1999-07-01

    In a Finnish pulp mill, the field measurements of different materials were performed in different stages of peroxide bleaching: P{sub 1} and P{sub 2}. The field measurements were performed with three different sensors. The sensors were designed in co-operation with Valmet Automation Kajaani Oy. Each sensor measured the corrosion potential, the redox potential and the weight losses of three different materials. Simultaneously, the data of the most important parameters of bleaching, i.e. temperature, pH, peroxide flow rate and concentration, mass flow, consistency, residuals, flow rate and concentration of alkaline, were collected in the data logger by a dedicated program. The results proved that the corrosion of different materials (stainless steel S31654, nickel-based alloy N10276 and titanium Gr. 5) could be estimated with field experiments. The uniform corrosion of titanium occurred in a certain bleaching situation. The field measurements gave a good estimation of whether the material dissolved during process operation or process disorders. Our results clearly show that the mixing of the chemicals can be reliably estimated, and thus advantageous for a pulp mill. The materials studied withstood the bleaching significantly better if the chemicals were mixed directly with a pulp. Usually the chemicals are mixed with alkaline and then added to the pulp. The field measurements could also be applied in ozone and in the peracetic acid bleaching stage. The sensors can be utilized as tools during process monitoring or diagnostics. With the aid of monitoring it is possible to clarify how the different process operation models affect the corrosion of materials. (author)

  17. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  18. Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    CERN Document Server

    Busanov, O A; Gavriljuk, Yu M; Gezhaev, A M; Kazalov, V V; Kornoukhov, V N; Kuzminov, V V; Moseev, P S; Panasenko, S I; Ratkevich, S S; Yakimenko, S P

    2013-01-01

    The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for double neutrinoless betas-decay of Mo-100.

  19. Background radioactivity of construction materials, raw substance and ready-made CaMoO4 crystals

    Directory of Open Access Journals (Sweden)

    Busanov O.A.

    2014-01-01

    Full Text Available The results of measurements of natural radioactive isotopes content in different source materials of natural and enriched composition used for CaMoO4 scintillation crystal growing are presented. The crystals are to be used in the experiment to search for neutrinoless double beta decay of 100Mo.

  20. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: a mesocosm experiment.

    Science.gov (United States)

    Ahn, C; Mitsch, W J; Wolfe, W E

    2001-03-01

    We investigated the use of flue-gas-desulfurization (FGD) by-products from electric power plant wet scrubbers as liners in wetlands constructed to improve water quality. Mesocosm experiments were conducted over two consecutive growing seasons with different phosphorus loadings. Wetland mesocosms using FGD liners retained more total and soluble reactive phosphorus, with lower concentrations in the leachate (first year) and higher concentrations in the surface water (second year). Leachate was higher in conductivity (second year) and pH (both years) in lined mesocosms. Surface outflow did not reveal any significant difference in physicochemical characteristics between lined and unlined mesocosms. There was no significant difference in total biomass production of wetland plants between lined and unlined mesocosms although lower average stem lengths and fewer stems bearing flowers were observed in mesocosms with FGD liners. Potentially phytotoxic boron was significantly higher in the belowground biomass of plants grown in lined mesocosms with low phosphorus loading. A larger-scale, long-term wetland experiment close to full scale is recommended from this two-year mesocosm study to better predict the potentially positive and negative effects of using FGD by-products in constructed wetlands.

  1. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material

    Directory of Open Access Journals (Sweden)

    Deepak Gupta

    2017-02-01

    Full Text Available This paper reports the results of an investigation carried out on clay soil stabilized with pond ash (PA, rice husk ash (RHA and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio (CBR tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%–45% and 5%–20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy (SEM and X-ray diffraction (XRD analyses were carried out, respectively. The results obtained indicated a decrease in the maximum dry density (MDD and a simultaneous increase in the optimum moisture content (OMC with the addition of PA and RHA. Multiple linear regression analysis (MLRA showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.

  2. Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles.

    Science.gov (United States)

    Chaudhari, Abhijeet K; Han, Intaek; Tan, Jin-Chong

    2015-06-25

    A synergistic approach is described to engineer supramolecular hybrid materials based on metal-organic frameworks, encompassing HKUST-1 nanoparticles formed in situ, coexisting with an electrically conducting gel fiber network. Following findings were made: (a) multistimuli-responsive structural transformation via reversible sol-gel switching, and (b) radical conversion of a soft hybrid gel into a mechanically malleable, viscoelastic matter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigating the Possibility of Geopolymer to Produce Inorganic-Bonded Wood Composites for Multifunctional Construction Material – A Review

    Directory of Open Access Journals (Sweden)

    Siti Noorbaini Sarmin

    2014-09-01

    Full Text Available Wood-based composites are widely used in consumer products, either in structural or non-structural applications. One of the basic elements for wood-based composites is the binder itself. Recent years have seen great development and trends in the field of eco-friendly binders in wood-based composite. There have been many concerns on the effects of formaldehyde and volatile organic compounds (VOC released from wood-based products. Researchers have put lot of effort into developing environmental friendly products with enhanced sustainability. Binder materials with a focus on geopolymers (i.e., alumino-silicates are discussed in this publication. The development and utilization of geopolymeric binders is relatively new in the field of wood-based composites. Up to the present there has been insufficient information regarding the manufacturing conditions and properties of wood-nonwood composite materials prepared using a geopolymeric binder. This paper considers the background of geopolymer materials and the possibilities of producing inorganic-bonded wood composite using geopolymer.

  4. Tetraarylboronic acid resorcinarenes: Synthesis, molecular recognition, and templates for the construction of three-dimensional electronic organic materials

    Science.gov (United States)

    Lewis, Patrick Tyrone

    The resorcinarenes are remarkable cyclic aromatic tetramers whose impressive impact in the disciplines of molecular recognition, materials science and supramolecular chemistry has been the subject of extensive study and recent review. The potential utility of these materials as chemosensors, catalysts, energy storage and drug delivery agents has been studied or proposed. Research involving resorcinarene molecular containers (careceplexes, carecerands, hemicarcerands) has resulted in landmark achievements including the stabilization of encapusulated cyclobutadiene and benzyne. Functionalization of the resorcinarene lower rim has begun to attract attention as a means to enhance the properties of the parent macrocycles. There has been only one report (1989), however, describing the extension of their lower cavity conjugation. We have performed direct, fourfold conjugation extension of the lower rim. Our findings would allow for the fabrication of heteropolyfunctional, directional molecular scaffolds embodying new receptors and supramolecular materials. We have thus (1) performed a gram scale synthesis and direct isolation of boronic acid functionalized stereoisomeric resorcinarenes; (2) polyfunctionalized at divergent macrocyclic sites, affording chiral and achiral resorcinarene octols and cavitands; (3) presented preliminary evidence that the relatively little-explored C2h resorcinarenes can compete effectively with their C4v counterparts in both covalent and non-covalent binding of polar guests; (4) reported their use in the colorimetric differentiation of carbohydrates; and (5) extended the lower cavity by fourfold aryl coupling under Suzuki conditions.

  5. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Science.gov (United States)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  6. On building construction enterprises to reduce material cost management methods%建筑施工企业降低物资成本的管理方法

    Institute of Scientific and Technical Information of China (English)

    马蓉

    2012-01-01

    This paper made analysis according to the existing problems in current material management of construction enterprises, pointed out the causes of problems, from the management methods, purchasing plans, purchasing cost and other aspects, put forward the necessary measures to reduce the material management cost, and made specific elaboration.%针对目前建筑施工企业物资管理中存在的问题进行了分析,指出了问题产生的根源,从管理方法、采购计划、采购成本等方面入手,提出了降低物资管理成本的必要措施,并作了具体阐述。

  7. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Mitsch, W.J.; Wolfe, W.E.

    2001-07-01

    This paper investigates the use of flue gas desulfurization (FGD) by-products from power plant wet scrubbers as liners in wetlands constructed to improve water quality. Mesocosm experiments were conducted over two consecutive growing seasons with different phosphorus loadings. Wetland mesocosms using FGD liners retained more total and soluble reactive phosphorus, with lower concentrations in the leachate (first year) and higher concentrations in the surface water (second year). Leachate was higher in conductivity (second year) and pH (both years) in lined mesocosms. Surface outflow did not reveal any significant difference in physicochemical characteristics between lined and unlined mesocosms. There was no significant difference in total biomass production of wetland plants between lined and unlined mesocosms.

  8. Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-11-01

    Full Text Available China is the largest non-metallic mineral producer in the world and one of the key consumers of four major non-metallic mineral products, including cement, refractories, plate glass and ceramics. The non-metallic mineral products industry’s rapid growth has brought about a large demand for energy. The present study provides an overview of China’s non-metallic mineral products industry in terms of production, energy consumption and carbon dioxide emissions. In this industry, the energy efficiency is relatively low and the level of carbon dioxide emission is much higher than developed countries’ average. This study interprets the effects of some newly issued policies and analyses the influential factors in achieving energy conservation and emission reduction goals. It also discusses the prospects for saving energy and emission reduction in the industry. Retrofitting facilities and using new production technologies is imperative. Additionally, implementing market-based policies, promoting industrial transformation and effective international cooperation would help decrease carbon dioxide emissions and energy consumption.

  9. Effect of Calcium Treatment on Non-Metallic Inclusions in Ultra-Low Oxygen Steel Refined by High Basicity High Al2O3 Sla

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; WANG Xin-hua; JIANG Min; WANG Wan-jun

    2011-01-01

    The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final

  10. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.

    Science.gov (United States)

    Pofale, Arun D; Nadeem, Mohammed

    2012-01-01

    This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.

  11. 浅议屋面卷材防水的施工与维护%Construction and Maintenance of Waterproof Reefing with Coiled Material

    Institute of Scientific and Technical Information of China (English)

    魏周苔

    2011-01-01

    屋面防水工程是保证建筑物能够发挥正常使用功能和使用年限的一项重要因素.合理选择卷材品种、严格控制卷材质量、规范防水施工工艺是保证防水质量的关键环节;科学管理、定期检查、及时维修是决定屋面使用寿命的重要因素.探讨了对屋面卷材防水施工及维护的有关技术问题.%Waterproof roofing is an important factor to guarantee the function and the service life of the building. Reasonable choice of the coiled material, the Quality control inspection and construction technology standard is the key to waterproof quality. Scientific managencent, timely repairment are decisive to the service life of the roof. The technological problem about the construction and maintenance of the waterproof roofing with coiled material were disscussed in detail.

  12. Analysis of the thermal and optical properties of some construction materials; Analisis de las propiedades termicas y opticas de algunos materiales de construccion

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin Hernandez, Karla F. [Universidad Nacional Autonoma de Mexico, Huauchinango, Puebla (Mexico)

    2000-07-01

    In this paper the optical and thermal properties of some materials of construction of greater application in a region of the state of Puebla, are obtained and presented, with the purpose of extending the bibliography and at the same time to analyze the importance that these properties have in the field of energy saving and to know the normative aspects in Mexico, as well as the control that is held of the construction materials. The properties that were analyzed are: Optical (Transmittance, reflectance, absorbency and emittance), Thermal (Thermal conductivity). [Spanish] En este trabajo se obtienen y se presentan las propiedades opticas y termicas de algunos materiales de construccion de mayor aplicacion en una region del estado de Puebla, con el fin de ampliar la bibliografia y al mismo tiempo de analizar la importancia que dichas propiedades tienen en el campo del ahorro energetico y de conocer los aspectos de la normativa en Mexico, asi como el control que se tiene de los materiales de construccion. Las propiedades que se analizaron son: Opticas (Transmitancia, reflectancia, absortancia y emitancia) Termica (Conductividad termica).

  13. 白汉双语教育及其教材建设%Bai-Chinese Bilingual Education and Teaching Material Construction

    Institute of Scientific and Technical Information of China (English)

    张霞

    2012-01-01

    白汉双语教育是教学中同时使用汉语和汉字、白语和拼音白文的双语双文型的双语教育活动。白汉双语教育工作主要在白族人口比例最高的大理州剑川县西中小学和石龙小学开展。为配合白汉双语教育工作的开展,有关部门编写、出版了三种类型的白汉双语教育教材。白汉双语教育工作的开展及其教材建设丰富了民汉双语教育理论和学科建设。%[ Bai-Chinese bilingual education refers to the bilingual education using mandarin, Chinese character, Bai language, and Bai phonetic character in the class. Bai-Chinese bilingual education has been carried out mostly in Xizhong Primary School and Shilong Primary School of Jianehuan County in Dali Prefecture where there is the highest population of Bai people. To carry out Bai- Chinese bilingual education, three types of teaching materials have been compiled. The practice of Bai-Chinese bilingual education and the teaching material construction have enriched the theory and subject construction of minority language and Chinese bilingual education.

  14. Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco.

    Science.gov (United States)

    Argane, R; El Adnani, M; Benzaazoua, M; Bouzahzah, H; Khalil, A; Hakkou, R; Taha, Y

    2016-01-01

    In some developing countries, base-metal residues that were abandoned in tailing ponds or impoundments are increasingly used as construction material without any control, engineering basis, or environmental concern. This uncontrolled reuse of mine tailings may constitute a new form of pollution risks for humans and ecosystems through metal leaching. Therefore, the aim of the current study is to assess mine drainage, metal mobility, and geochemical behavior of two abandoned mine tailings commonly used in the upper-Moulouya region (eastern Morocco) as fine aggregates for mortar preparation. Their detailed physical, chemical, and mineralogical properties were subsequently evaluated in the context of developing appropriate alternative reuses to replace their conventional disposal and limit their weathering exposure. The obtained results showed that both tailings contain relatively high quantities of residual metals and metalloids with lead (ranging between 3610 and 5940 mg/kg) being the major pollutant. However, the mineralogical investigations revealed the presence of abundant neutralizing minerals and low sulfide content which influence mine drainage geochemistry and subsequently lower metals mobility. In fact, leachate analyses from weathering cell kinetic tests showed neutral conditions and low sulfide oxidation rates. According to these results, the tailings used as construction material in the upper-Moulouya region have very low generating potential of contaminated effluents and their reuse as aggregates may constitute a sustainable alternative method for efficient tailing management.

  15. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    Science.gov (United States)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  16. Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet(trademark) 720

    Science.gov (United States)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, Tiffany; Bonacuse, Peter J.

    2005-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

  17. Implementation and application of a method for quantifying metals and non-metals in drainage water from soils fertilized with phosphogypsum; Implementacao e aplicacao de metodologia para dosagem de metais e nao metais em aguas de drenagem de solos adubados com fosfogesso

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Camila Goncalves Bof

    2010-07-01

    Phosphogypsum is a waste generated in phosphoric acid production by the 'wet process'. The immense amount of phosphogypsum yearly produced (around 150 million tons) is receiving attention from environmental protection agencies all over the word, given its potential of contamination. In Brazil, this material has been used for many decades, especially for agricultural application on cropland. Although the phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of impurities, such as metals (Cd, Cr, Cu, Pb), non-metals (As and Se) and radioactive elements from natural series of {sup 232}Th and {sup 238}U. Therefore, its continuous application as an agricultural agent can result not just in soil contamination, but also contamination of the surface and groundwater due to the runoff and infiltration process. The concern associated with the contamination of aquatic environments increases; when water is used for human consumption, requiring progressive adoption of more restrictive limits. However, some of the conventional analytical techniques used to determine the maximum limit of contaminants in water have detection limits above the maximum limits established by the environmental legislation. This work was aimed to evaluate the mobility of metals and non-metals in soils and, consequently, the contamination of drainage water through greenhouse-scale leaching and transport of toxic elements from soils fertilized with phosphogypsum. Hence, methods were studied and implemented for determination of metals (Cd, Cr, Cu and Pb) using Furnace Graphite Atomic Absorption Spectrometry (GF AAS), as well as for non-metals (As and Se) using Inductively Coupled Plasma Mass Spectrometry (lCP-MS). Effects of different chemical modifiers on the determination of Cd, Cr, Cu and Pb concentration by GF AAS were also investigated. In general, it was observed that the metal and non-metal concentration were below than the actual detection limit of the

  18. Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials

    Science.gov (United States)

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Chang, Huicong; Yang, Yang; Zhou, Ying

    2016-01-01

    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale.

  19. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery.

    Science.gov (United States)

    Klibanov, Alexander L; Shevchenko, Talent I; Raju, Balasundar I; Seip, Ralf; Chin, Chien T

    2010-11-20

    We investigated the preparation of ultrasound-triggered drug delivery system, based on a pendant complex of microbubble coated with liposomes. Biotinylated decafluorobutane microbubbles were coated with biotinylated liposomes via a streptavidin linker. Liposomes were prepared incorporating calcein and thrombin. Based on initial concentration of calcein, over 1 um(3) payload volume per each microbubble-liposome particle was achieved, when 100 nm liposomes were used. Insonation of microbubble-liposome pendants in vitro resulted in the complete destruction of microbubbles and triggered release of a significant fraction of the entrapped material. Treatment with 1MHz ultrasound (5 pulses, 100 ms, 7 MPa peak negative acoustic pressure) resulted in the release of ~30% of entrapped calcein, as estimated by the fluorescence quenching assay. Thrombin release from liposomes complexed with microbubbles (11% of entrapped material) due to ultrasound treatment was estimated by a chromogenic substrate study. Prior to insonation, substrate hydrolysis was at background level. Ultrasound-triggered release of thrombin from the pendant complexes caused an acceleration of blood clotting.

  20. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.