WorldWideScience

Sample records for non-metal recyclable components

  1. Recycling of rare metals from the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Charlier, Frank; Dabruck, Jan Philipp

    2014-01-01

    The German Government decided in 2011 to phase out nuclear power. Thus, 17 power reactors will be shut down within the next 11 years and to be decommissioned. An interesting question is, in which extent rare metals of strategic economic importance can be recycled within the scope of decommissioning. To be named are valuable bulk metals like copper, aluminium and lead, but also rare metals like indium, niobium, vanadium, cobalt, or tin and rare earth metals. Due to high requirements in terms of material technology, materials found in nuclear reactor components are of particular importance when it comes to recycling. These include components of the primary cooling system (RPV-internals, control rods and grid-structures) components for process control systems and components from the non-nuclear part of reactors (pumps, valves, heat exchangers or boilers). Especially the radiologically controlled melt-down of metals is used as an alternative to free release or disposal. This process has some serious disadvantages, thus it seems to be appropriate optimizing the decommissioning process regarding recycling of valuable metals. The work schedule for pre-investigation is outlined for 18 months and can be summarized as follows: - Requesting design, operational and material data, - Data from a sample facility: detailed specification of used components, substances contained and data from related activation calculations, fluence-values and contamination, - Setting up a database to assign non-ferrous metals and components with additional data like activation and decay time possibly needed, concentration, distribution, total mass, aggregate state, state of chemical bonding and recyclability, - Determining the activation distribution to evaluate if a components is recyclable at all, thus: preparation of an MCNP-model, simulation of n-fluence and application of variance-reduction methods to optimize activation calculations, - Classification of recyclability considering the following

  2. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  3. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  4. Recycling of non-metallic fractions from waste printed circuit boards: A review

    International Nuclear Information System (INIS)

    Guo Jiuyong; Guo Jie; Xu Zhenming

    2009-01-01

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  5. Recycling of non-metallic fractions from waste printed circuit boards: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jiuyong; Guo Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  6. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  7. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  8. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  9. Typology of Options for Metal Recycling: Australia’s Perspective

    Directory of Open Access Journals (Sweden)

    Artem Golev

    2015-12-01

    Full Text Available While Australia has traditionally relied on obtaining metals from primary sources (namely mined natural resources, there is significant potential to recover metals from end-of-life-products and industrial waste. Although any metals recycling value chain requires a feasible technology at its core, many other non-technical factors are key links in the chain, which can compromise the overall viability to recycle a commodity and/or product. The “Wealth from Waste” Cluster project funded by the Commonwealth Scientific Industrial Research Organisation (CSIRO Flagship Collaboration Fund and partner universities is focusing on identifying viable options to “mine” metals contained in discarded urban infrastructure, manufactured products and consumer goods. A key aspect of this research is to understand the critical non-technical barriers and system opportunities to enhance rates of metals recycling in Australia. Work to date has estimated the mass and current worth of metals in above ground resources. Using these outcomes as a basis, a typology for different options for (metal reuse and recycling has been developed to classify the common features, which is presented in this article. In addition, the authors investigate the barriers and enablers in the recycling value chain, and propose a set of requirements for a feasible pathway to close the material loop for metals in Australia.

  10. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  11. Metal recycling technology and related issues in the United States, a BNFL perspective

    International Nuclear Information System (INIS)

    Bradbury, P.; Dam, S.; Starke, W.

    1995-01-01

    Radioactively contaminated metallic materials comprise a large part of the potential waste products which result from nuclear facility repair, refurbishment, and decommissioning. United States Government (Departments of Energy and Defense) facilities, U.S. nuclear power plants, and other commercial nuclear fuel cycle facilities have large inventories of radioactive scrap metal which could be decontaminated and recycled into useful radioactive and non-radioactive products. Residual radioactivity and recycling criteria is needed to avoid the high cost of disposal and the waste of natural resources. In the United Kingdom, BNFL has decommissioned the gaseous diffusion plant at Capenhurst and has recycled a large fraction of the metallic scrap into the metals market. Other structural materials have also been released as uncontaminated scrap. U.K. release criteria for residual radionuclide contamination have been applied to these operations. A variety of techniques were utilized to size reduce large components, to remove radioactivity, and to survey and release these materials. These methods and the application of release criteria has a direct relationship to methods which would be applicable in the U.S. and in other countries. This paper will describe the specific U.K. technology and experience in the decontamination, recycle, and release of scrap metal. It will also describe the U.S. environment for metal recycle, including the volumes and levels of contamination, and the current and proposed release criteria. Comparisons will be presented between the U.S. and U.K., both in technology and methodology for recycle and in regulatory criteria for residual radioactivity and material release and for ultimate decommissioning. The paper will then provide suggested approaches and criteria for U.S. recycling and decommissioning. (author)

  12. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  13. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    International Nuclear Information System (INIS)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-01-01

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies

  14. Summary reports of the R and D programme: recycling of non-ferrous metals (1986-1989)

    International Nuclear Information System (INIS)

    Donato, M.

    1992-01-01

    This document contains the summary reports of cost sharing research and development contracts funded under the recycling of non-ferrous metals subprogramme of the Commission of the European Communities. In particular from p.171 to 212 is described the recovery of rare earths by supported liquid membranes: synthesis and use of new selective macrocyclic and/or compartmental ligands

  15. Resource Efficient Metal and Material Recycling

    Science.gov (United States)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  16. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  17. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  18. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  19. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  20. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  1. INEL metal recycle annual report, FY-94

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business

  2. Unanticipated potential cancer risk near metal recycling facilities

    International Nuclear Information System (INIS)

    Raun, Loren; Pepple, Karl; Hoyt, Daniel; Richner, Donald; Blanco, Arturo; Li, Jiao

    2013-01-01

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction

  3. Unanticipated potential cancer risk near metal recycling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raun, Loren, E-mail: raun@rice.edu [Department of Statistics, MS 138, Rice University, P.O. Box 1892, Houston, TX 77251-1892 (United States); Pepple, Karl, E-mail: pepple.karl@epa.gov [State and Local Programs Group, Air Quality Policy Division, Office of Air Quality Planning and Standards, Policy, Analysis, and Communications Staff, Mail Drop C404-03, U.S. EPA, Research Triangle Park, NC 27711 (United States); Hoyt, Daniel, E-mail: hoyt.daniel@epa.gov [Air Surveillance Section, US EPA, Region 6, 6EN-AS, 1445 Ross Avenue, Dallas, TX 75202-2733 (United States); Richner, Donald, E-mail: Donald.Richner@houstontx.gov [Houston Department of Health and Human Services, Bureau of Pollution Control and Prevention, 7411 Park Place Blvd., Houston, TX 77087 (United States); Blanco, Arturo, E-mail: arturo.blanco@houstontx.gov [Pollution Control and Prevention, Environmental Health Division, Houston Department of Health and Human Services, 7411 Park Place Blvd., Houston, TX 77087 (United States); Li, Jiao, E-mail: jiao.li@rice.edu [Wiess School of Natural Science, Rice University, 6100 Main St., Houston, TX 77005 (United States)

    2013-07-15

    Metal recycling is an important growing industry. Prior to this study, area sources consisting of metal recycling facilities fell in a category of limited regulatory scrutiny because of assumed low levels of annual emissions. Initiating with community complaints of nuisance from smoke, dust and odor, the Houston Department of Health and Human Services (HDHHS) began a monitoring program outside metal recycler facilities and found metal particulates in outdoor ambient air at levels which could pose a carcinogenic human health risk. In a study of five similar metal recycler facilities which used a torch cutting process, air downwind and outside the facility was sampled for eight hours between 6 and 10 times each over 18 months using a mobile laboratory. Ten background locations were also sampled. Iron, manganese, copper, chromium, nickel, lead, cobalt, cadmium and mercury were detected downwind of the metal recyclers at frequencies ranging from 100% of the time for iron to 2% of the time for mercury. Of these metals, chromium, nickel, lead, cobalt, cadmium and mercury were not detected in any sample in the background. Two pairs of samples were analyzed for total chromium and hexavalent chromium to establish a ratio of the fraction of hexavalent chromium in total chromium. This fraction was used to estimate hexavalent chromium at all locations. The carcinogenic risk posed to a residential receptor from metal particulate matter concentrations in the ambient air attributed to the metal recyclers was estimated from each of the five facilities in an effort to rank the importance of this source and inform the need for further investigation. The total risk from these area sources ranged from an increased cancer risk of 1 in 1,000,000 to 6 in 10,000 using the 95th upper confidence limit of the mean of the carcinogenic metal particulate matter concentration, assuming the point of the exposure is the sample location for a residential receptor after accounting for wind direction

  4. WINCO Metal Recycle annual report, FY 1993

    International Nuclear Information System (INIS)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94

  5. WINCO Metal Recycle annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bechtold, T.E. [ed.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  6. Recovering valuable metals from recycled photovoltaic modules.

    Science.gov (United States)

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  7. Dining at the periodic table: metals concentrations as they relate to recycling.

    Science.gov (United States)

    Johnson, Jeremiah; Harper, E M; Lifset, Reid; Graedel, T E

    2007-03-01

    A correlation between the prices of a variety of substances and their dilutions in their initial matrices was shown in 1959 by T.K. Sherwood. The research presented here shows that the relationship holds for engineering metals today, which we termed the metals-specific Sherwood plot. The concentrations of metals in products (e.g., printed wiring boards and automobiles) and waste streams (e.g., municipal solid waste, and construction and demolition debris) were plotted with this correlation. In addition, for the products and waste streams that undergo disassembly at end-of-life, the metals concentrations of the disassembled components were also plotted. It was found that most of the metals that are currently targeted for recycling have post-disassembly concentrations that lie above the metals-specific Sherwood plot (i.e., have concentrations that are more enriched than minimum profitable ore grades). This suggests that material concentration plays a role in the viability of recycling at end-of-life. As products grow in complexity and the variety of materials used, analyses such as this one provide insight for policymakers and those interested in material sustainability into macro-level trends of material use and future recycling practices.

  8. Recycling of Metals and Materials: A Selected Bibliography.

    Science.gov (United States)

    Seidman, Ruth K., Comp.; Castrow, Lee, Comp.

    Recycling of metals and materials has as its purpose the easing of two major environmental crises. First, we re-utilize scarce and non-renewable resources. Second, solid waste disposal problems can be alleviated. Industry has long been concerned with reclaiming its own waste products, and is now beginning to respond to the need for dealing with…

  9. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  10. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  11. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  12. Fernald scrap metal recycling and beneficial reuse

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the open-quotes beneficial reuseclose quotes concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned

  13. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas

    International Nuclear Information System (INIS)

    Gogol, S.

    1997-01-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m 3 of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m 3 of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail

  14. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  15. Recycling of metals from metal containing industrial wastes by means of plasma

    International Nuclear Information System (INIS)

    Burkhard, R.

    1995-01-01

    Recovery of metals from complex mixed wastes is a challenging task of modern material and waste management strategies. Thermal methods are an important tool in this respect. Plasma turned out to be particularly useful for treatment of complex or toxic wastes and residuals. In order to study the recycling parameters and behaviour of different metal containing wastes at reasonable costs, two pilot plasma plants have been used and metal containing, industrial wastes like spent Raney-Nickel catalysts, copper and aluminium drosses, MMC's, scrap, and others were investigated. The heart of the plasma equipment used is the Rotating Hearth (PRH) with a central base orifice. The hearth of the furnace rotates with a speed which prevents the melt from dripping. For pouring, the rotational speed is lowered, which allows the melt to be dripped into a mould. The RIF2 is equipped with a transferred plasma torch which can be operated up to 200 kW. The furnace is equipped with a secondary combustion chamber (SCC). The gases leaving the SCC go through a quench/scrubber. A powerful fan maintains underpressure in the whole system. Waste and additives can be fed through a nitrogen-purged port batchwise or with a screw feeder. The main components of the waste material investigated are nickel and aluminium in Raney-Nickel. The goal to recycle it is to produce NiFe-alloys for further use in the steel industry, or even NiAl-alloy for new catalyst production by using aluminium scrap as reducing and alloying element respectively. Aluminium dross occurs as an unavoidable by-product of all aluminium melting operations. It consists of metallic aluminium, oxides, nitrides, and salts. The separation of the aluminium phase from the oxides is the main task for recycling the aluminium. The general result is: recovery of metals out of complex mixed waste by using plasma rotating hearth technology and appropriate furnace modifications is feasible and ecological-economically interesting. (author) 147

  16. The Relevance of Metal Recycling for Nuclear Industry Decommissioning Programmes

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, P.J., E-mail: nea@nea.fr [OECD Nuclear Energy Agency, Paris (France)

    2011-07-15

    The large amount of scrap metal arising from the decommissioning of nuclear facilities may present significant problems in the event that the facility owners seek to implement a management strategy based largely or fully on disposal in dedicated disposal facilities. Depending on whether disposal facilities currently exist or need to be developed, this option can be very expensive. Also, public reluctance to accept the expansion of existing disposal facilities, or the siting of new ones, mean that the disposal option should be used only after a wide consideration of all available management options. A comparison of health, environmental and socio-economic impacts of the recycling of lightly contaminated scrap metal, as compared with equivalent impacts associated with the production of replacement material, suggests that recycling has significant overall advantages. With present-day technologies, a large proportion of the metal waste from decommissioning can be decontaminated to clearance levels because most of the contamination is on or near the surface of the metal. In purely economic terms, it makes little sense for lightly contaminated scrap metal from decommissioning, which tends to be of high quality, to be removed from the supply chain and replaced with metal from newly-mined ore. In many countries, the metal recycling industry remains reluctant to accept metal from decommissioning. In Germany, the recycling industry and the decommissioning industry have worked together to develop an approach whereby such material is accepted for melting and the recycled material and is then used for certain defined end uses. Sweden also uses dedicated melting facilities for the recycling of metal from the nuclear industry. Following this approach, the needs of the decommissioning industry are being met in a way that also addresses the needs of the recycling industry. (author)

  17. Metal recycling - a renewable resource in Gulf Cooperative Countries region

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E. [Bahrain Univ. (Bahrain). Dept. of Chemical Engineering

    1995-12-01

    The exhaustion of natural resources and growing environmental awareness highlighted the necessity of metal recycling all over the world. The production/consumption activities in the GCC region do generate annually a huge amount of valuable ferrous and nonferrous metal scrap. This paper deals with the benefits of metal recycling to the GCC region in lights of energetic, environmental and economic points of view. (orig.) [Deutsch] Die abnehmenden Vorraete von Primaermetallen sowie das zunehmende Umweltbewusstsein machen das Metall-Recycling auf der ganzen Welt notwendig. Die Produktions- und Verbrauchsaktivitaeten in der GCC-Region erzeugen jaehrlich riesige Mengen von wertvollem eisen- und nicht eisenhaltigen Schrott. Dieser Beitrag befasst sich mit dem Energie-Verbrauch, dem Umweltschutz und der Wirtschaft des Recycling und stellt dessen Vorteile fuer die GCC-Region vor. (orig.)

  18. Fatal chlorine gas exposure at a metal recycling facility: Case report.

    Science.gov (United States)

    Harvey, Robert R; Boylstein, Randy; McCullough, Joel; Shumate, Alice; Yeoman, Kristin; Bailey, Rachel L; Cummings, Kristin J

    2018-06-01

    At least four workers at a metal recycling facility were hospitalized and one died after exposure to chlorine gas when it was accidentally released from an intact, closed-valved cylinder being processed for scrap metal. This unintentional chlorine gas release marks at least the third such incident at a metal recycling facility in the United States since 2010. We describe the fatal case of the worker whose clinical course was consistent with acute respiratory distress syndrome (ARDS) following exposure to high concentrations of chlorine gas. This case report emphasizes the potential risk of chlorine gas exposure to metal recycling workers by accepting and processing intact, closed-valved containers. The metal recycling industry should take steps to increase awareness of this established risk to prevent future chlorine gas releases. Additionally, public health practitioners and clinicians should be aware that metal recycling workers are at risk for chlorine gas exposure. © 2018 Wiley Periodicals, Inc.

  19. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  20. BPEO/BPM in recycling of low level waste metal in the UK - 16210

    International Nuclear Information System (INIS)

    Dodd, Kevin; Robinson, Joe; Lindberg, Maria

    2009-01-01

    Best Practicable Environmental Option (BPEO) and Best Practicable Means (BPM) are concepts well established in the nuclear industry to help guide and inform waste management decision making. The recycling of contaminated metal waste in the UK is not well established, with the majority of waste disposed of at the Low Level Waste Repository (LLWR) at Drigg. This paper presents an overview of the Strategic BPEO study completed by Studsvik examining the options for low level metal waste management and a subsequent BPM study completed in support of a proposed metals recycling service. The environmental benefits of recycling metals overseas is further examined through the application of life cycle analysis to the metals recycling process. The methodologies used for both studies are discussed and the findings of these studies presented. These indicate that recycling contaminated metal is the preferred option, using overseas facilities until UK facilities are available. The BPM for metals recycling is discussed in detail and indicates that a tool box for processing metal waste is required to ensure BPM is applied on a case by case basis. This is supported by effective management of waste transport and waste acceptance criteria. Whilst the transport of contaminated metal overseas for treatment adds to the environmental burden of metals recycling, this when compared with the production of virgin metal, is shown to remain beneficial. The results of the Studsvik studies demonstrate the benefits of recycling metals, the options available for such a service and challenges that remain. (authors)

  1. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  2. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  3. Estimation of residual MSW heating value as a function of waste component recycling

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Semiao, Viriato

    2008-01-01

    Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems

  4. Topics under debate - Should uniform release criteria be established for metal recycling?

    International Nuclear Information System (INIS)

    Kennedy K.E. Jr., LaMastra, A.; McDonald, J.C.

    2001-01-01

    Many nuclear facilities have large quantities of metals that have potential value, but are slightly radioactive. These metals include copper, aluminium and steel that could be recycled and used in applications for which a small amount of radioactivity is not important. Perhaps it is possible to define the conditions under which these metals could be safely recycled. However, it is not clear that recycling of such metals would be considered to be useful by the metals industries, for a variety of reasons. In this debate, the merits and risks associated with recycling are discussed. Our participants are quite familiar with this question, and they have presented their views in the arguments and rebuttals that follow. (author)

  5. 20 years of experience on treatment of large contaminated components and on clearance of material for recycling

    International Nuclear Information System (INIS)

    Lorenzen, Joachim; Lindberg, Maria; Amcoff, Bjoern; Wirendal, Bo

    2005-01-01

    This paper will describe the treatment of contaminated, large, retired components from NPP:s, at low and intermediate activity waste levels for recycling in Sweden. Decontamination and melting of various large components, as well as other metal scrap, has been conducted at Studsvik since the mid 1980:ies. Experience on clearance for recycling, i.e. for unconditional re-use of the metals in the public domain will be described. The contaminated material may be Co-60 dominated as well as Uranium Bearing Waste. During these years different techniques for decontamination and segmentation as well as pre- and post treatment have been developed and successively applied at Studsvik melting facility in Nykoeping, Sweden. This collective experience is presently used for the planning and treatment of both domestic and foreign larger components, like heat exchangers, reactors vessel heads, turbine parts, steam generators, fuel bottles and Giant boilers. During 2005 one 300 ton full size, 400 m 3 Westinghouse Steam Generator is under treatment using advanced decontamination, segmentation and melting techniques to be applied in a specifically designed and confined environment. The conduction of demonstration projects as well as commercial projects will be explained and described. The Studsvik melting facility is today treating components and scrap metal comprising stainless and carbon steel as well as aluminium, copper, brass and lead. Studsvik RadWaste has licenses for treating not only components from Swedish nuclear facilities but also for processing components from nuclear industries outside Sweden, including temporary import and export within a limited time window for each international project. Direct clearance or clearance after limited decay storage at Studsvik site is possible. The high Recycling Rate is due to optimized production to leave an extremely low percentage of secondary waste, including post-treatment of the secondary waste volume. Further, the waste volume

  6. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    Science.gov (United States)

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  7. German experience in recycling of ferrous metallic residues from nuclear decommissioning by melting

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, Th.

    2008-01-01

    Due to the delay of commissioning of final depositories for nuclear waste on the one hand and the increasing amount of steel scrap resulting from operation and decommissioning of nuclear facilities on the other hand, recycling of ferrous metal scrap to packagings made of ductile cast iron becomes more and more economical. A pool of know-how from waste managers, radiation protection experts, metallurgists and foundry experts and their teamwork is required to run this recycling path successfully. Siempelkamp provides this combination of experience by operating a melting facility for slightly radioactive contaminated scrap as well as a foundry for manufacturing of ductile cast iron products for the nuclear industry, both licensed by the German Radiation Protection Ordinance. In 1989, the CARLA plant (Centrale Anlage zum Rezyklieren von leichtradioaktiven Abfollen) started operation. A medium frequency induction furnace with a capacity of 3,2 t is core of the plant. Tools for dismantling and cutting components to chargeable sizes are available. From the total of 23000 t of melted scrap, 12000 t have been recycled to the manufacturing of containers for transport and storage of medium- and high active waste and for shielding plates. Manufacture of the castings takes place in the Siempelkamp foundry located at the same site. 8000 t of melted scrap could be released for industrial recycling. Scrap metal which does not meet the metallurgical specification for cast iron, is converted into iron granules. Up to now more than 2000 t of iron granules have been recycled as additive for heavy concrete containers. This production is in cooperation with an external partner. With regard to the German situation, the cost for recycling is only half compared to high pressure compaction, long-term interim storage and final disposal. The advantage of recycling is approx. 90 % less volume compared to the volume resulting from other disposal paths. It can be concluded that the German

  8. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  9. Health risk and impact evaluation for recycling of radioactive scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Murphie, W.E.; Lilly, M.J. III

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service

  10. PNGMDR 2013-2015. ANDRA's opinion on the development of sector of recycling of VLA ferrous metallic waste

    International Nuclear Information System (INIS)

    2014-01-01

    The scope of this report is to state the ANDRA's opinion on the recycling of very-low-level metallic wastes, and mainly ferrous metallic wastes which are the main stream of them. After having evoked a study jointly performed by EDF, AREVA, the CEA and the ANDRA to assess the technical and economic feasibility of a valorisation of very-low-level metallic wastes in the nuclear sector, this study proposes an assessment of ferrous metals which might be recycled over about thirty years. After having outlined the strong motivation of the ANDRA for such a recycling, the report proposes an overview of the heterogeneous stream of metallic wastes, by distinguishing scrap materials from very heterogeneous origins like those brought to the Cires storage centre, and those with more homogeneous origins (for example, from dismantling activities). The next part proposes an overview of various non coordinated initiatives, notably by the ANDRA, on different storage sites. The report identifies the keys for a successful recycling of contaminated metals in Europe, and the main challenges for the recycling of very-low-level ferrous metal in France (in competition with direct storage, and with the application of the risk-related regulation for some metallic wastes). Some proposals made by the ANDRA are then stated: a reference industrial scheme, and a coordination of actors under the auspices of the State

  11. Overview of flow studies for recycling metal commodities in the United States

    Science.gov (United States)

    Sibley, Scott F.

    2011-01-01

    Metal supply consists of primary material from a mining operation and secondary material, which is composed of new and old scrap. Recycling, which is the use of secondary material, can contribute significantly to metal production, sometimes accounting for more than 50 percent of raw material supply. From 2001 to 2011, U.S. Geological Survey (USGS) scientists studied 26 metals to ascertain the status and magnitude of their recycling industries. The results were published in chapters A-Z of USGS Circular 1196, entitled, "Flow Studies for Recycling Metal Commodities in the United States." These metals were aluminum (chapter W), antimony (Q), beryllium (P), cadmium (O), chromium (C), cobalt (M), columbium (niobium) (I), copper (X), germanium (V), gold (A), iron and steel (G), lead (F), magnesium (E), manganese (H), mercury (U), molybdenum (L), nickel (Z), platinum (B), selenium (T), silver (N), tantalum (J), tin (K), titanium (Y), tungsten (R), vanadium (S), and zinc (D). Each metal commodity was assigned to a single year: chapters A-M have recycling data for 1998; chapters N-R and U-W have data for 2000, and chapters S, T, and X-Z have data for 2004. This 27th chapter of Circular 1196 is called AA; it includes salient data from each study described in chapters A-Z, along with an analysis of overall trends of metals recycling in the United States during 1998 through 2004 and additional up-to-date reviews of selected metal recycling industries from 1991 through 2008. In the United States for these metals in 1998, 2000, and 2004 (each metal commodity assigned to a single year), 84 million metric tons (Mt) of old scrap was generated. Unrecovered old scrap totaled 43 Mt (about 51 percent of old scrap generated, OSG), old scrap consumed was 38 Mt (about 45 percent of OSG), and net old scrap exports were 3.3 Mt (about 4 percent of OSG). Therefore, there was significant potential for increased recovery from scrap. The total old scrap supply was 88 Mt, and the overall new

  12. Capacity training for the personnel of radiation monitoring in metal recycling

    International Nuclear Information System (INIS)

    Caveda Ramos, C.A.; Dominguez Ley, O.

    2013-01-01

    In this work it a course for training for the personnel involved in the radiation monitoring of metal recycling is presented. The contents were elaborated taken into account the IAEA recommendations for the development of capacity and training activities in radiological safety and in the Guide for the control of radioactive material in metal recycling. The program is divided in eleven parts and the duration time is two weeks. Among the main covered topics are the requirements for radiation monitoring in metal recycling; response to detection of radioactive material and effects of the ionizing radiation in man and environment

  13. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    International Nuclear Information System (INIS)

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  14. Inspection and control of recycling metals in Iran

    International Nuclear Information System (INIS)

    Rostampour Samarin, A.

    2002-01-01

    Full text: Recently, the metal recycling industries have become aware of radioactive materials in metal scrap. There have been some cases where radiation sources were unintentionally smelted in the course of recycling metal scrap internationally. To solve the problem, industry and Regulatory Authority have jointly undertaken initiatives to increase awareness of the problem within the industry. Radiation detection systems have been installed by custom services and mills to lessen the potential for the risk to public health from radiation contamination and for financial losses. Based on above matters, the article presents how National Radiation Protection Department (NRPD) can lessen the imports of potential contamination through several means, such as the installation of monitoring system, and implementation of prevention measures. (author)

  15. A methodology for estimating potential doses and risks from recycling U.S. Department of Energy radioactive scrap metals

    International Nuclear Information System (INIS)

    MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is considering writing regulations for the controlled use of materials originating from radioactively contaminated zones which may be recyclable. These materials include metals, such as steel (carbon and stainless), nickel, copper, aluminum and lead, from the decommissioning of federal, and non-federal facilities. To develop criteria for the release of such materials, a risk analysis of all potential exposure pathways should be conducted. These pathways include direct exposure to the recycled material by the public and workers, both individual and collective, as well as numerous other potential exposure pathways in the life of the material. EPA has developed a risk assessment methodology for estimating doses and risks associated with recycling radioactive scrap metals. This methodology was applied to metal belonging to the U.S. Department of Energy. This paper will discuss the draft EPA risk assessment methodology as a tool for estimating doses and risks from recycling. (author)

  16. Evaluation of the costs and benefits of recycling radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Durman, E.C.; Tsirigotis, P.; MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is evaluating the economic and technical issues associated with the potential recycling of radioactive scrap metals (RSM). These metals, usually only slightly contaminated, originate primarily from the decommissioning and decontamination (D and D) of federal facilities, licensees of the Nuclear Regulatory Commission, and certain unlicensed industries. EPA conducted a study entitled Analysis of the Potential Recycling of Department of Energy Radioactive Scrap Metal, September 6, 1994, for the U.S. Department of Energy (DOE) to provide information and tools to DOE for assessing DOE's problem with RSM from the D and D of their sites. EPA is now initiating an evaluation of RSM recycling to support a recycling regulation. Although the study prepared for DOE will provide a useful start for the regulatory analysis, additional information must be gathered to analyze the impacts of a recycling regulation that will apply to all potential generators of RSM. This paper summarizes cost-benefit issues related to an RSM recycling regulatory analysis, including: the quantity of potentially recyclable contaminated metals; costs of disposal at federal and private waste repositories; all potential environmental, health, and safety, and market impacts; and the potential for adverse effects on radio-sensitive industries. (author)

  17. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    Science.gov (United States)

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  19. Energetic conditions of effective recycling of composite castings

    OpenAIRE

    J. Jackowski

    2009-01-01

    The most reasonable way of recycling the metal composite materials consists in separation of the components. In case of the composites with saturated reinforcement it is the only recycling method. The process of separation of the components always undergoes in the presence of an additional liquid phase called a recycling medium. In a three-phase system including the material of composite reinforcement – liquid composite matrix – liquid recycling medium, an important role for the recycling pro...

  20. Radioactive Scrap Metal (RSM) recycling: A doe white paper

    International Nuclear Information System (INIS)

    Chatterjee, S.; Moore, H.H.; Ghoshal, A.

    1992-01-01

    An effective White Paper on recycling radioactive scrap metals has been drafted at the request of the U.S. Department of Energy (DOE) recently. The paper has received the praise and commendation of the DOE's Director of Environmental Management. However, obstructionist posturing by the petty bureaucrats in DOE continues to plague the meaningful implementation of RSM recycling. The key findings of the White Paper study and its major recommendations have discussed in this paper. The study indicates that several technologies, such as melt refining and electro refining, are currently available for surface and volume decontamination of metals. The unit cost of decontamination was found to vary from $700 to $400/ton; recycling of most low-contaminated metals can therefore be cost-effective vis-a vis the average cost of low-level radioactive wastes disposal of %400 to $2800/ton. Major recycling demonstration projects with emphasis on restricted RSM reuse options have been recommended. Volume contamination standard for unrestricted release should be established only after adequate studies of health effects and scientific/industrial effects of RSM reuse has been conducted by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). Some of the significant technical data developed during this study have also been briefly discussed in this paper. (author)

  1. Metal Recycling in the UK - a decade of developments

    International Nuclear Information System (INIS)

    Robinson, Joe

    2014-01-01

    In the last 10 years, metal recycling in the UK has developed from a rarely used technique to a cornerstone of the UK national LLW strategy. The paper will explore the drivers for developing the metal recycling supply chain, policy and legislative developments, key milestones, and consider issues with market development both in its initial slow phases and now in a rapidly developing mode. The paper will contrast some of the initial inertia and blockers in the UK with the now-proven benefits of the approach, including financial, environmental and ethical. (author)

  2. Recycle and reuse of radioactive scrap metals within the department of energy

    International Nuclear Information System (INIS)

    Adams, V.; Murphie, W.; Gresalfi, M.

    2000-01-01

    The United States Department of Energy (DOE) National Center of Excellence for Metals Recycle (NMR) is pursuing recycle and reuse alternatives to burial of radioactive scrap metal. This approach is being implemented in a safe and environmentally sound manner, while significantly lowering dis-positioning cost and accelerating cleanup activities. This paper will define the NMR's success to date in promoting safe and cost effective recycle and reuse strategies for DOE's excess metals, through the use of case studies. The paper will also present actual volumes of metal moved by DOE into restricted and unrestricted uses since 1997. In addition, this paper will discuss the principle underlying the Three Building Decommissioning and Decontamination (D and D) Project in Oak Ridge, Tennessee. In January 2000, the Secretary of Energy placed a moratorium on the unrestricted release of volumetrically contaminated metals from the DOE sites. Pursuant to that moratorium, the Secretary also established a ''Re-Use and Recycling Task Force'' to conduct a review of DOE policies regarding the management and release of all materials for recycle and reuse from DOE facilities. This task force was charged to develop a set of recommendations to ensure the protection of public health and the environment, openness and public trust, and fiscal responsibility. This paper will present an overview of the DOE's present range of recycle and reuse alternatives to disposal, as practiced by the NMR, and discuss the policy and issues associated with the task force mission. (authors)

  3. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III; Nieves, L.A.; Chen, S.Y.

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A open-quotes tieredclose quotes concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  4. The study on recycle scheme of the metallic radioactive wastes (II)

    International Nuclear Information System (INIS)

    Shin, J. I.; Park, J. H.; Jung, K. J.

    2003-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  5. INEL metal recycle radioactive scrap metal survey report

    International Nuclear Information System (INIS)

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal

  6. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  7. Development for recycle of dismantled metal wastes by decommissioning of NPP

    International Nuclear Information System (INIS)

    Asami, Tomohiro; Sato, Hiroshi; Hatakeyama, Mutsuo

    2007-01-01

    For recycle of dismantled metal wastes generated by the decommissioning of nuclear power plant, we examined a melting test for melting characterization of stainless steel scrap, designed the conceptual process to produce the recycle products, and developed a recycle cost evaluation code which is useful to make a rational planning for the waste management program (cost, determination of process, etc.) of these metal wastes. This report gives the summary of these development carried out from 2001 to 2005. This work was performed under the sponsorship of Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  8. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-06-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals

  9. Recycle and reuse of materials and components from waste streams of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2000-01-01

    All nuclear fuel cycle processes utilize a wide range of equipment and materials to produce the final products they are designed for. However, as at any other industrial facility, during operation of the nuclear fuel cycle facilities, apart from the main products some byproducts, spent materials and waste are generated. A lot of these materials, byproducts or some components of waste have a potential value and may be recycled within the original process or reused outside either directly or after appropriate treatment. The issue of recycle and reuse of valuable material is important for all industries including the nuclear fuel cycle. The level of different materials involvement and opportunities for their recycle and reuse in nuclear industry are different at different stages of nuclear fuel cycle activity, generally increasing from the front end to the back end processes and decommissioning. Minimization of waste arisings and the practice of recycle and reuse can improve process economics and can minimize the potential environmental impact. Recognizing the importance of this subject, the International Atomic Energy Agency initiated the preparation of this report aiming to review and summarize the information on the existing recycling and reuse practice for both radioactive and non-radioactive components of waste streams at nuclear fuel cycle facilities. This report analyses the existing options, approaches and developments in recycle and reuse in nuclear industry

  10. Study of radiation portal monitor and its application to metal recycling industry

    International Nuclear Information System (INIS)

    Pujol, L.; Lara-Calleja, S.; Suarez-Navarro, M. J.; Gonzalez-Gonzalez, J. A.

    2009-01-01

    The industry of the iron and the steel in one of the most important sectors in Spain for its economic development. the recycling of metallic materials as well as the import of metallic scrap is very significant. Several reports on accidental dispersion or smelting of radioactive sources in metal recycling industries confirm the possibility that radioactive material might be mixed with scrap. In consequence, this type of accident shows the necessity of a rigorous and specific radiation control of the sector. The control of these materials with radioactive content can be carried out with radiation portal monitors installed at the entrance of these industries. The detection of radioactive materials presents special features as the continuous background acquisition or the minimisation of the relatively large number of innocent/nuisance detections. In the present work, we study a radiation portal monitor, the FHT-1388-T Thermo-Eberline. This is one of the usual radiation portal systems installed at the entrance of the metal recycling industry. Se study the characteristics and parameters of this portal monitor to optimise its use. furthermore, we propose some rapid tests for radiation portal systems in metal recycling industry. (Author) 16 refs

  11. Children with health impairments by heavy metals in an e-waste recycling area

    NARCIS (Netherlands)

    Zeng, Xiang; Xu, Xijin; Boezen, H. Marike; Huo, Xia

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals

  12. U.S. Department of Energy National Center of Excellence for Metals Recycle

    International Nuclear Information System (INIS)

    Adams, V.; Bennett, M.; Bishop, L.

    1998-05-01

    The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums

  13. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  14. Metal Exposures at three U.S. electronic scrap recycling facilities.

    Science.gov (United States)

    Ceballos, Diana; Beaucham, Catherine; Page, Elena

    2017-06-01

    Many metals found in electronic scrap are known to cause serious health effects, including but not limited to cancer and respiratory, neurologic, renal, and reproductive damage. The National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention performed three health hazard evaluations at electronic scrap recycling facilities in the U.S. to characterize employee exposure to metals and recommend control strategies to reduce these exposures. We performed air, surface, and biological monitoring for metals. We found one overexposure to lead and two overexposures to cadmium. We found metals on non-production surfaces, and the skin and clothing of workers before they left work in all of the facilities. We also found some elevated blood lead levels (above 10 micrograms per deciliter), however no employees at any facility had detectable mercury in their urine or exceeded 34% of the OELs for blood or urine cadmium. This article focuses on sampling results for lead, cadmium, mercury, and indium. We provided recommendations for improving local exhaust ventilation, reducing the recirculation of potentially contaminated air, using respirators until exposures are controlled, and reducing the migration of contaminants from production to non-production areas. We also recommended ways for employees to prevent taking home metal dust by using work uniforms laundered on-site, storing personal and work items in separate lockers, and using washing facilities equipped with lead-removing cleaning products.

  15. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  16. RECYCLING OF FERROUS METAL SHAVINGS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The most advanced and universal way of chips recycling of ferrous metals is the technology of direct chips remelting in rotational tilting furnaces (RBF directly at the enterprises-sources of waste generation. However common practice of iron and steel chips recycling is based on its briquetting and subsequent remelting in traditional furnaces.For cost reduction when chip briquetting and organization of hot briquetting sections in places of its formation highly efficient equipment – rotational dryer and RBF is proposed. The possibility and effectiveness of developed furnaces for lowand high-temperature chip heating in briquetting lines is proved. Thermal efficiency of such furnaces when dispersed materials heating is much higher than drum or feed-through furnaces. Hot briquetting of shavings reduces the pressing force, which reduces the specific energy consumption. The use of rotary kilns can reduce technological operations and equipment of production sites for the manufacture of briquettes

  17. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    Science.gov (United States)

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  18. Titanium recycling in the United States in 2004, chap. Y of Sibley, S.F., ed., Flow studies for recycling metal commodities in the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2010-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the titanium metal fraction of the titanium economy, which generates and uses titanium metal scrap in its operations. Data for 2004 were selected to demonstrate the titanium flows associated with these operations. This report includes a description of titanium metal supply and demand in the United States to illustrate the extent of titanium recycling and to identify recycling trends. In 2004, U.S. apparent consumption of titanium metal (contained in various titanium-bearing products) was 45,000 metric tons (t) of titanium, which was distributed as follows: 25,000 t of titanium recovered as new scrap, 9,000 t of titanium as titanium metal and titanium alloy products delivered to the U.S. titanium products reservoir, 7,000 t of titanium consumed by steelmaking and other industries, and 4,000 t of titanium contained in unwrought and wrought products exported. Titanium recycling is concentrated within the titanium metals sector of the total titanium market. The titanium market is otherwise dominated by pigment (titanium oxide) products, which generate dissipative losses instead of recyclable scrap. In 2004, scrap (predominantly new scrap) was the source of roughly 54 percent of the titanium metal content of U.S.-produced titanium metal products.

  19. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  20. Recycling-Oriented Product Characterization for Electric and Electronic Equipment as a Tool to Enable Recycling of Critical Metals

    Science.gov (United States)

    Rotter, Vera Susanne; Chancerel, Perrine; Ueberschaar, Maximilian

    To establish a knowledge base for new recycling processes of critical elements, recycling-orientated product characterization for Electric and Electronic Equipment (EEE) can be used as a tool. This paper focuses on necessary data and procedures for a successful characterization and provides information about existing scientific work. The usage of this tool is illustrated for two application: Hard Disk Drives (HDD) and Liquid Crystal Display (LCD) panels. In the first case it could be shown that Neodymium and other Rare Earth Elements are concentrated in magnets (25% by weight) and contribute largely to the end demand of Neodymium. Nevertheless, recycling is limited by the difficult liberation and competing other target metals contained in HDD. In the second case it could be shown that also for this application the usage of Indium is concentrated in LCDs, but unlike in magnets the concentration is lower (200 ppm). The design of LCDs with two glued glass layers and the Indium-Tin-Oxide layer in between make the Indium inaccessible for hydro-metallurgical recovery, the glass content puts energetic limitations on pyro-metallurgical processes. For the future technical development of recycling infrastructure we need an in depth understanding of product design and recycling relevant parameters for product characterization focusing on new target metals. This product-centered approach allows also re-think traditional "design for recycling" approaches.

  1. Summary of industrial impacts from recycled radioactive scrap metals

    International Nuclear Information System (INIS)

    Dehmel, J.-C.; Harrop, J.; MacKinney, J.A.

    1995-01-01

    During operation, decontamination, and dismantlement, nuclear facilities are generating significant quantities of radioactive scrap metal (RSM). Future decommissioning will generate even more RSM. The petroleum industry also generates RSM in the form of equipment contaminated with naturally occurring radioactivity. Finally, the accidental melting of radioactive sources in steel mills has generated smaller amounts of contaminated metals. Steel mills, smelters, and foundries could recycle these materials, which might then appear in finished products or as feedstocks used by other industries. If introduced in this manner, residual radioactivity can adversely affect the performance of certain products. Such products include computers and other devices that rely on integrated circuits. The most important effect of residual radioactivity on integrated circuits is a phenomenon known as 'single event upsets or soft errors.' Radioactivity can also adversely affect the performance of products such as photographic film and components designed to measure the presence of radioactivity. Radioactivity that raises background count-rates to higher levels could affect the performance of radiation monitoring systems and analytical equipment. Higher background count-rates would lead to reduced sensitivity and lower resolution in spectroscopic systems. The computer, photographic, and radiation measurement industries have taken steps to minimize the impact of residual radioactivity on their products. These steps include monitoring manufacturing processes, specifying material acceptance standards, and screening suppliers. As RSM is recycled, these steps may become more important and more costly. This paper characterizes potentially impacted industries and vulnerability and effects due to the presence of residual radioactivity. Finally, the paper describes practices used to limit the impact of residual radioactivity. (J.P.N.)

  2. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  3. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    Science.gov (United States)

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  4. Metal Radioactive Waste Recycling from the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Fajt, B.; Prah, M.

    1996-01-01

    In the dismantling process of nuclear power plants a large amount of metal residues are generated. The residues of interest are stainless steel, copper and aluminium and can be reprocessed either for restricted or unrestricted use. Although there are many questions about the further use of these materials it should be convenient to recycle them. This paper discusses the complexity of the management of these metals. The radiation protection requirements are the most important principles. For these purposes great efforts in the decontamination have to be made. Regulatory aspects, clearance levels as well as characteristic of steel recycling industry, radiological impact and new developments are discussed. (author)

  5. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  6. Economic Assessment for Recycling Critical Metals From Hard Disk Drives Using a Comprehensive Recovery Process

    Science.gov (United States)

    Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.

    2017-09-01

    Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.

  7. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Lu; Xia, Fafa; Ye, Qiuyu; Xiang, Xishu; Xie, Bing, E-mail: bxie@des.ecnu.edu.cn

    2015-12-15

    Highlights: • Rare metals (Ga, In) are separated and recycled from waste light-emitting diodes. • Pyrolysis, physical disaggregation and vacuum metallurgy separation are proposed. • There is no hazardous materials produced in this process. - Abstract: This work develops a novel process of recycling rare metals (Ga, In) from waste light-emitting diodes using the combination of pyrolysis, physical disaggregation methods and vacuum metallurgy separation. Firstly, the pure chips containing InGaN/GaN are adopted to study the vacuum separation behavior of rare metals, which aims to provide the theoretical foundation for recycling gallium and indium from waste light-emitting diodes. In order to extract the rare-metal-rich particles from waste light-emitting diodes, pyrolysis and physical disaggregation methods (crushing, screening, grinding and secondly screening) are studied respectively, and the operating parameters are optimized. With low boiling points and high saturation vapor pressures under vacuum, gallium and indium are separated from rare-metal-rich particles by the process of evaporation and condensation. By reference to the separating parameters of pure chips, gallium and indium in waste light-emitting diodes are recycled with the recovery efficiencies of 93.48% and 95.67% under the conditions as follows: heating temperature of 1373 K, vacuum pressure of 0.01–0.1 Pa, and holding time of 60 min. There are no secondary hazardous materials generated in the whole processes. This work provides an efficient and environmentally friendly process for recycling rare metals from waste light-emitting diodes.

  8. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    Science.gov (United States)

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  9. Supply and demand of some critical metals and present status of their recycling in WEEE.

    Science.gov (United States)

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Chang, Chein-Chi

    2017-07-01

    New development and technological innovations make electrical and electronic equipment (EEE) more functional by using an increasing number of metals, particularly the critical metals (e.g. rare and precious metals) with specialized properties. As millions of people in emerging economies adopt a modern lifestyle, the demand for critical metals is soaring. However, the increasing demand causes the crisis of their supply because of their simple deficiency in the Earth's crust or geopolitical constraints which might create political issues for their supply. This paper focuses on the sustainable supply of typical critical metals (indium, rare earth elements (REEs), lithium, cobalt and precious metals) through recycling waste electrical and electronic equipment (WEEE). To illuminate this issue, the production, consumption, expected future demand, current recycling situation of critical metals, WEEE management and their recycling have been reviewed. We find that the demand of indium, REEs, lithium and cobalt in EEE will continuously increasing, while precious metals are decreasing because of new substitutions with less or even without precious metals. Although the generation of WEEE in 2014 was about 41.9 million tons (Mt), just about 15% (6.5 Mt) was treated environmentally. The inefficient collection of WEEE is the main obstacle to relieving the supply risk of critical metals. Furthermore, due to the widespread use in low concentrations, such as indium, their recycling is not just technological problem, but economic feasibility is. Finally, relevant recommendations are point out to address these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recycling of electric appliances. Utilization of the new EU regulation; Recycling von Elektrogeraeten. Nutzen der neuen EU-Richtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Friege, Henning [Awista GmbH, Duesseldorf (Germany)

    2012-10-15

    In the light of a shortage of resources the recycling of secondary raw materials and especially of metals from electric appliances is increasingly gaining importance. If one is to believe the announcements, everything is regulated in the best way. But when one considers closer the data from the recycling of resources and especially the non-ferric (NF) metals from electric and electronic appliances, this still is not a success story - we ought to write it.

  11. Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Philip W.; Ellwood, Michael J.; Tagliabue, Alessandro; Twining , Benjamin S. (ANU); (Liverpool); (Tasmania); (Bigelow)

    2017-03-01

    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals.

  12. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  13. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    Science.gov (United States)

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Current status of scrap metal recycling and reuse in USA and European countries

    International Nuclear Information System (INIS)

    Matsumoto, Akira

    1997-01-01

    Recycling and reuse of natural resources has become a global issue to be pursued, but less effective without voluntary efforts from the every industries and of the individuals. In Japan, recycling and reuse of the scrap metal from dismantling of the nuclear facilities are currently noticed as a promising option and the responsible government organizations just started activities to develope the system for enabling and encouraging the nuclear facility owners to recycle their waste. Coincidently, there have been many reports published recently, which inform successful results of the method and the activities of the international organizations for the same intention. Taking this opportunity, current trends of scrap metal recycling and reuse in the experienced countries are reviewed and the proposals from IAEA, EC and OECD/NEA on the relating issues are summarized and compared in this paper. (author)

  15. Formal recycling of e-waste leads to increased exposure to toxic metals: an occupational exposure study from Sweden.

    Science.gov (United States)

    Julander, Anneli; Lundgren, Lennart; Skare, Lizbet; Grandér, Margaretha; Palm, Brita; Vahter, Marie; Lidén, Carola

    2014-12-01

    Electrical and electronic waste (e-waste) contains multiple toxic metals. However, there is currently a lack of exposure data for metals on workers in formal recycling plants. The objective of this study was to evaluate workers' exposure to metals, using biomarkers of exposure in combination with monitoring of personal air exposure. We assessed exposure to 20 potentially toxic metals among 55 recycling workers and 10 office workers at three formal e-waste recycling plants in Sweden. Workers at two of the plants were followed-up after 6 months. We collected the inhalable fraction and OFC (37-mm) fraction of particles, using personal samplers, as well as spot samples of blood and urine. We measured metal concentrations in whole blood, plasma, urine, and air filters using inductively coupled plasma-mass spectrometry following acid digestion. The air sampling indicated greater airborne exposure, 10 to 30 times higher, to most metals among the recycling workers handling e-waste than among the office workers. The exposure biomarkers showed significantly higher concentrations of chromium, cobalt, indium, lead, and mercury in blood, urine, and/or plasma of the recycling workers, compared with the office workers. Concentrations of antimony, indium, lead, mercury, and vanadium showed close to linear associations between the inhalable particle fraction and blood, plasma, or urine. In conclusion, our study of formal e-waste recycling shows that workers performing recycling tasks are exposed to multiple toxic metals. Copyright © 2014. Published by Elsevier Ltd.

  16. Leachability of heavy metals from scrap dirt sampled at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, Peter Engelund; Christensen, Thomas Højlund

    2000-01-01

    Column and batch leaching experiments were performed to quantify leaching of heavy metals (Pb, Cu, Cd and Zn) from scrap dirt representing different activities at two iron scrap and metal recycling facilities. The scrap dirt is often found directly upon the bare unprotected soil at recycling...... battery salvage locations was different, showing lower pH and signi®cant leaching of lead (up to 8000 mg Pb l±1), cadmium (up to 40 mg Cd l±1), and zinc (up to 2000 mg Zn l±1). The column and batch leaching experiments gave comparable results at the order of magnitude level, and both approaches are......, at that level, useful for evaluation of leaching potentials from scrap dirt. The experiments showed that scrap dirt at recycling facilities constitutes only a modest leaching problem, but a long-term soil pollution problem from a land-use perspective. Leaching experiments with compost solution indicated...

  17. A systems approach to the management of a contaminated metal recycle project

    International Nuclear Information System (INIS)

    Pincock, L.; Wahnachaffe, S.

    1994-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is working with private industry to recycle contaminated metal from the dismantling and decommissioning of Department of Energy sites and commercial reactors. The recycled metal could be used in many applications such as fabrication of canisters and waste boxes for the storage of spent nuclear fuel and radioactive waste. Management of technical projects similar to this is difficult because these projects consist of a myriad of complex and interrelated issues ranging from technical feasibility to stakeholder acceptance. Systems Analysis provides a way to deal with many complex issues and supports effective decision making

  18. Valuable metals - recovery processes, current trends, and recycling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Peter; Lorenz, Tom; Martin, Gunther; Brett, Beate; Bertau, Martin [Institut fuer Technische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, 09599, Freiberg (Germany)

    2017-03-01

    This Review provides an overview of valuable metals, the supply of which has been classified as critical for Europe. Starting with a description of the current state of the art, novel approaches for their recovery from primary resources are presented as well as recycling processes. The focus lies on developments since 2005. Chemistry strategies which are used in metal recovery are summarized on the basis of the individual types of deposit and mineral. In addition, the economic importance as well as utilization of the metals is outlined. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. 77 FR 65886 - Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American...

    Science.gov (United States)

    2012-10-31

    ... FEDERAL MARITIME COMMISSION [Docket No. 12-09] Century Metal Recycling PVT. LTD v. Dacon Logistics, LLC dba CODA Forwarding, Great American Alliance Insurance Company, Avalon Risk Management, HAPAG... Recycling Pvt. Ltd d/ b/a/CMR American, LLC (Century Metal), hereinafter ``Complainant,'' against Dacon...

  20. Physical properties of recycled PET non-woven fabrics for buildings

    Science.gov (United States)

    Üstün Çetin, S.; Tayyar, A. E.

    2017-10-01

    Recycled fibers have been commonly used in non-woven production technology for engineering applications such as textile engineering and civil engineering. Nonwovens including recycled fibers can be utilized in insulation, roofing and floor separation applications. In this study, physical performance properties such as drape, bending resistance, tensile strength, and breaking elongation values of non-woven fabrics consisting of v-PET (virgin) and r-PET (recycled) fibers in five different blend ratios are examined comparatively. The test results indicated that r-PET can be used in non-wovens for civil engineering applications such as insulation, roofing and floor separation fulfilling the acceptable quality level values.

  1. Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications

    Directory of Open Access Journals (Sweden)

    Till Zimmermann

    2014-03-01

    Full Text Available Metal mobilization in general, as well as the number of metals used in products to increase performance and provide sometimes unique functionalities, has increased steadily in the past decades. Materials, such as indium, gallium, platinum group metals (PGM, and rare earths (RE, are used ever more frequently in high-tech applications and their criticality as a function of economic importance and supply risks has been highlighted in various studies. Nevertheless, recycling rates are often below one percent. Against this background, secondary flows of critical metals from three different end-of-life products up to 2020 are modeled and losses along the products’ end-of-life (EOL chain are identified. Two established applications of PGM and RE–industrial catalysts and thermal barrier coatings–and CIGS photovoltaic cells as a relatively new product have been analyzed. In addition to a quantification of future EOL flows, the analysis showed that a relatively well working recycling system exists for PGM-bearing catalysts, while a complete loss of critical metals occurs for the other applications. The reasons include a lack of economic incentives, technologically caused material dissipation and other technological challenges.

  2. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation

  3. Fixed-base recycling of contaminated metals in the commercial market

    International Nuclear Information System (INIS)

    Loiselle, V.

    1993-01-01

    Since the establishment of the first fixed-base commercial decontamination facility in 1982, commercial processors have cleaned and recycled more than 120 million lb of metals for productive reuse. This represents enough metal to duplicate the Eiffel Tower eight times. This paper examines the economic conditions that led to the foundation of this industry and the types of decontamination technology that have been successfully employed by the processors

  4. Innovative technologies for recycling contaminated concrete and scrap metal

    International Nuclear Information System (INIS)

    Bossart, S.J.; Moore, J.

    1993-01-01

    Decontamination and decommissioning of US DOE's surplus facilities will generate enormous quantities of concrete and scrap metal. A solicitation was issued, seeking innovative technologies for recycling and reusing these materials. Eight proposals were selected for award. If successfully developed, these technologies will enable DOE to clean its facilities by 2019

  5. Solid-State Recycling of Light Metal Reinforced Inclusions by Equal Channel Angular Pressing: A Review

    Directory of Open Access Journals (Sweden)

    Al-Alimi Sami.

    2017-01-01

    Full Text Available Solid-state recycling of light metals reinforced inclusions through hot Equal Channel Angular Pressing (ECAP is performed to directly recycle metal scraps and reduce cost of material in engineering applications. The ECAP is one of the most important method in severe plastic deformation (SPD that can convert light metals into finished products. This paper reviews several experimental and numerical works that have been done to investigate the effects of the ECAP parameters such as die angles, material properties, outer corner angle, friction coefficient, temperature, size of chips, pressing force, ram speed and direct effects of number of passes on the strain distributions. It also includes the performance enhancement of aluminium matrix composite reinforced ceramic-based particles that derived from direct recycled aluminium chips for sustainable manufacturing practices.

  6. Demonstration test on manufacturing 200 l drum inner shielding material for recycling of reactor operating metal scrap

    International Nuclear Information System (INIS)

    Umemura, A.; Kimura, K.; Ueno, H.

    1993-01-01

    Low-level reactor wastes should be safely recycled considering those resource values, the reduction of waste disposal volume and environmental effects. The reasonable recycling system of reactor operating metal scrap has been studied and it was concluded that the 200 liter drum inner shielding material is a very promising product for recycling within the nuclear industry. The drum inner shielding material does not require high quality and so it is expected to be easily manufactured by melting and casting from roughly sorted scrap metals. This means that the economical scrap metal recycling system can be achieved by introducing it. Furthermore its use will ensure safety because of being contained in a drum. In order to realize this recycling system with the drum inner shielding material, the demonstration test program is being conducted. The construction of the test facility, which consists of a melting and refining furnace, a casting apparatus, a machining apparatus etc., was finishing in September, 1992

  7. Fatigue damage assessment of recycled metals and alloys | Ayensu ...

    African Journals Online (AJOL)

    Cyclic fatigue tests were conducted on recycled polycrystalline metals and alloys at room and elevated tempera-ures to determine the fatigue strength, endurance limit and endurance ratio. Annealed and polished stainless steel (Fe-18Cr-8Ni), mild steel (Fe-0.25Cr), aluminium (Al), alpha-brass (Cu-30 % Zn) and copper ...

  8. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison

    International Nuclear Information System (INIS)

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C.

    2012-01-01

    Highlights: ► We quantified 11 metals in surface matrices from e-waste recycling sites at the Philippines. ► Dust had statistical higher levels of metal contamination and health risk compared to soil. ► Formal and informal sites had different metal contaminations. ► Intra-Asian comparison provided common insight on metal contamination from e-waste recycling. - Abstract: We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, “formal” and “informal”) revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p < 0.005), excluding informal dust (p = 0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites.

  9. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  10. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  11. The analysis on the current status of the overseas recycle technology of the metallic radioactive wastes

    International Nuclear Information System (INIS)

    Shin, Jae In; Kim, Hee Reyoung; Jung, Kee Jung

    2002-05-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  12. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  13. Impact of metals recycling on a Swedish BWR decommissioning project

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially contaminated metals. By proper management of the waste streams significant amounts can be free released and recycled either directly or after decontamination and melting. A significant part of the required work should be performed early in the process to make the project run smoothly without costly surprises and delays. A large portion of the clearance activities can be performed on-site. This on-site work should focus on the so called low-risk for contamination material. Other material can be decontaminated and released on site if schedule and the available facility areas so allow. It should be noted that the on-site decontamination and clearance activities can be a significant bottle neck for a decommissioning project. The availability of and access to a specialized metals recycling facility is an asset for a decommissioning project. This paper will describe the forecasted positive impact of a well-structured metals characterisation, categorisation and clearance process for a BWR plant decommissioning project. The paper is based on recent studies, performed projects and recent in-house development. (authors)

  14. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ''tiered'' concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  15. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    Science.gov (United States)

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  17. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill

    International Nuclear Information System (INIS)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-chun; Kim, Wonbaek

    2009-01-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to 5.0 mm. The fractions of milled printed circuit boards of size 5.0 mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards

  18. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    Science.gov (United States)

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  19. Assessing dietary exposure to cadmium in a metal recycling community in Vietnam: Age and gender aspects

    Energy Technology Data Exchange (ETDEWEB)

    Minh, Ngo Duc [Vietnamese Academy of Agriculture Sciences, Soils and Fertilizers Research Institute (SFRI), Tu Liem, Hanoi (Viet Nam); Hough, Rupert Lloyd, E-mail: rupert.hough@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH (United Kingdom); Thuy, Le Thi [Vietnamese Academy of Agriculture Science, Institute of Agricultural Environment (IAE), Tu Liem, Hanoi (Viet Nam); Nyberg, Ylva [Department of Crop Production Ecology, PO Box 7043, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala (Sweden); Mai, Le Bach [National Institute of Nutrition, 48b Tang Bat Ho, Hoan Kiem, Hanoi (Viet Nam); Vinh, Nguyen Cong [Vietnamese Academy of Agriculture Sciences, Soils and Fertilizers Research Institute (SFRI), Tu Liem, Hanoi (Viet Nam); Khai, Nguyen Manh [Faculty of Environmental Sciences, Ha Noi University of Science (HUS-VNU), 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Oeborn, Ingrid [Department of Crop Production Ecology, PO Box 7043, Swedish University of Agricultural Sciences (SLU), SE-750 07 Uppsala (Sweden)

    2012-02-01

    This study estimates the dietary exposure to cadmium (Cd), and associated potential health risks, for individuals living and working in a metal recycling community (n = 132) in Vietnam in comparison to an agricultural (reference) community (n = 130). Individual-level exposure to Cd was estimated through analysis of staple foodstuffs combined with information from a food frequency questionnaire. Individual-level exposure estimates were compared with published 'safe' doses to derive a Hazard Quotient (HQ) for each member of the study population. Looking at the populations as a whole, there were no significant differences in the diets of the two villages. However, significantly more rice was consumed by working age adults (18-60 years) in the recycling village compared to the reference village (p < 0.001). Rice was the main staple food with individuals consuming 461 {+-} 162 g/d, followed by water spinach (103 {+-} 51 kg/d). Concentrations of Cd in the studied foodstuffs were elevated in the metal recycling village. Values of HQ exceeded unity for 87% of adult participants of the metal recycling community (39% had a HQ > 3), while 20% of adult participants from the reference village had an HQ > 1. We found an elevated health risk from dietary exposure to Cd in the metal recycling village compared to the reference community. WHO standard of 0.4 mg Cd/kg rice may not be protective where people consume large amounts of rice/have relatively low body weight. - Highlights: Black-Right-Pointing-Pointer First individual-level risk assessment of cadmium in recycling villages of Vietnam. Black-Right-Pointing-Pointer Dietary analysis undertaken for a recycling community and an agricultural community. Black-Right-Pointing-Pointer No significant differences were found between the diets of the two populations. Black-Right-Pointing-Pointer 87% of people in the recycling community had elevated health risk. Black-Right-Pointing-Pointer WHO standard (0.4 mg Cd/kg rice) may

  20. Recycling decontaminated scrap metal from the nuclear industry

    International Nuclear Information System (INIS)

    Bordas, F.

    2000-01-01

    The Commissariat a l'Energie Atomique (CEA) has set up a pilot program for recycling decontaminated scrap metal. In decommissioning its enriched uranium production facilities at Pierrelatte, the CEA has accumulated some 700 metric tons of scrap metal from dismantled uranium hexafluoride transport containers. The containers were decontaminated by SOCATRI at the Tricastin site, then cut up and recycled by a steelmaker. The project was submitted to the Ionizing Radiation Protection Office, the Nuclear Facilities Safety Division and the Regional Directorate for Industry, Research and Environmental Protection for approval. It was also submitted to the Ministry of Industry's Nuclear Information and Safety Council and to the Permanent Secretariat for Industrial Pollution Problems (an informational group chaired by the Prefect of the Provence Alpes-Cote d Azur region and including representatives of local and regional authorities, associations, elected officials and the media). The permit was granted for this program under the terms of a prefectorial decree stipulating additional requirements for the steelmaker, and contingent on the demonstration of full control over the operations, demonstrated traceability and the absence of any significant harmful effects. The key elements of this demonstration include the choice of operators, identification of the objects, itemization of the operations, discrimination of operators, the contractual framework of the operations, the signature of agreements by the CEA with SOCATRI and with the steelmaker, documentary monitoring of the operations, contradictory inspections and measurements, second-level inspection by the CEA/Valrho, audits of the operators and impact assessments. All the procedures of operations related to the scrap metal are described in quality assurance documents. (author)

  1. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    Energy Technology Data Exchange (ETDEWEB)

    Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S. (Energy Systems)

    2011-02-22

    Each year, more than 25 million vehicles reach the end of their service life throughout the world, and this number is rising rapidly because the number of vehicles on the roads is rapidly increasing. In the United States, more than 95% of the 10-15 million scrapped vehicles annually enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, over 75% of automotive materials, primarily the metals, are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobile hulks, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials - commonly called shredder residue - constitutes about 25% of the weight of the vehicle, and it is disposed of in landfills. This practice is not environmentally friendly, wastes valuable resources, and may become uneconomical. Therefore, it is not sustainable. Over the past 15-20 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles, including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has been focused on developing technology to separate and recover non-metallic materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lightweighting materials - primarily polymers, polymer composites, high-strength steels, and aluminum - will be used in manufacturing these

  2. Design of the Advanced Virgo non-degenerate recycling cavities

    International Nuclear Information System (INIS)

    Granata, M; Barsuglia, M; Flaminio, R; Freise, A; Hild, S; Marque, J

    2010-01-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  3. 1993/2003 recycling status; Bilan du recyclage 1993/2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This book presents the status of wastes recycling in France for 5 families of materials (ferrous metals, non-ferrous metals, paper-cardboard, glass, plastics) and 8 end-life products (scrapped vehicles, electric and electronic wastes, tyres, packing materials, battery cells and chargeable batteries, spent oils and solvents). The significant changes between 1993 and 2003, the amount of secondary materials used in the French industry, the cost of end-life products recycling, the main medium and long-term factors of development, the technical and economical limits of recycling and the actions foreseen to optimize its development are described. This document includes also a CD-Rom. (J.S.)

  4. Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, C. [Degussa Huels AG, Hanau (Germany)

    1999-09-01

    Precious metal catalysts for catalytic Naphta Reforming, Isomerization, Hydrogenation and other chemical and petrochemical processes are valuable assets for oil refineries and chemical companies. At the end of the service life of a reactor load of catalyst, the efficient and reliable recovery of the precious metals contained in the catalyst is of paramount importance. More than 150 years of technological advances at Degussa-Huels have resulted in refining methods for all kinds of precious metal containing materials which guarantee an optimum technical yield of the precious metals included. The refining of catalysts today is one of the important activities in the precious metals business unit. In the state-of-the-art precious metal refinery at Hanau in the centre of Germany, a wide variety of processes for the recovery of all precious metals is offered. These processes include accurate preparation, sampling and analysis as well as both wet-chemical and pyrometallurgical recovery techniques. Special emphasis in this presentation is laid on the advantages of pyrometallurgical processes for certain kinds of catalysts. To avoid any risks during transport, sampling and treatment of the spent catalyst, all parties involved in the recycling chain strictly have to follow the relevant safety regulations. Under its commitment to 'Responsible Care' standard procedures have been developed which include pre-shipment samples, safety data sheets/questionnaires and inspection of spent catalysts. These measures not only support a safe and environmentally sound catalyst recycling but also enable to determine the most suitable and economic recovery process - for the benefit of the customer. (orig.)

  5. Capacity training for the personnel of radiation monitoring in metal recycling; Curso de capacitacion para el personal que realiza la vigilancia radiologica en el reciclaje de metales

    Energy Technology Data Exchange (ETDEWEB)

    Caveda Ramos, C.A.; Dominguez Ley, O., E-mail: caveda@cphr.edu.cu [Centro de Proteccion e Higiene de las Radiaciones, La Habana (Cuba)

    2013-07-01

    In this work it a course for training for the personnel involved in the radiation monitoring of metal recycling is presented. The contents were elaborated taken into account the IAEA recommendations for the development of capacity and training activities in radiological safety and in the Guide for the control of radioactive material in metal recycling. The program is divided in eleven parts and the duration time is two weeks. Among the main covered topics are the requirements for radiation monitoring in metal recycling; response to detection of radioactive material and effects of the ionizing radiation in man and environment.

  6. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Recycled scrap metal and soils/debris with low radioactive contents

    International Nuclear Information System (INIS)

    Carriker, A.W.

    1996-01-01

    Two types of large volume bulk shipments of materials with low radioactivity have characteristics that complicate compliance with normal transport regulations. Scrap metal for recycling sometimes contains radioactive material that was not known or identified by the shipper prior to it being offered for transport to a scrap recycle processor. If the radioactive material is not detected before the scrap is processed, radiological and economic problems may occur. If detected before processing, the scrap metal will often be returned to the shipper. Uranium mill-tailings and contaminated soils and debris have created potential public health problems that required the movement of large volumes of bulk material to isolated safe locations. Similarly, old radium processing sites have created contamination problems needing remediation. The US Department of Transportation has issued exemptions to shippers and carriers for returning rejected scrap metal to original shippers. Other exemptions simplify transport of mill-tailings and debris from sites being remediated. These exemptions provide relief from detailed radioassay of the radioactive content in each conveyance as well as relief from the normal requirements for packaging, shipping documents, marking, labelling, and placarding which would be required for some of the shipments if the exemptions were not issued. (Author)

  8. Status of electronic waste recycling techniques: a review.

    Science.gov (United States)

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  9. Application of capillary hysteresis phenomenon for evaluation of recycling possibility of selected MMC

    Directory of Open Access Journals (Sweden)

    D. Nagolska

    2011-07-01

    Full Text Available Properties of composites made through saturation of ceramic reinforcement preforms with liquid metal are the cause of growing use of these materials. Taking increasing requirements regarding environment protection into consideration, already during design of such materials one should think of a way of their recycling at the end of life. The recycling of these materials is conducted by separation of components. Determining optimal superficial conditions of a recycling system: liquid metal matrix – reinforcement preform – medium enables automatic course of the recycling process, but does not guarantee high yield of metal. With identical superficial conditions of the recycling system and different structure of reinforcement preforms significant differences in metal yield can be obtained. Identification of a type of a capillary present in reinforcement preforms may allow to determine, already during stage of material design, which types of composites will undergo the recycling process better and for which types one has to accept decreased yield of matrix metal. This identification can be done on the basis of an analysis of results obtained during examination conducted with mercury porosimetry, comparing acquired hysteresis graphs with model graphs proposed by de Boer for adsorbent analysis. Considering the analysis of image of structure of examined reinforcement preforms makes the identification process easier and faster.

  10. Current studies on the decommissioning materials recycling at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Fujiki, K.; Nakamura, H.

    1993-01-01

    Rational treatment of a large volume of solid wastes resulting from the reactor dismantling is a key to success to carry out the decommissioning smoothly. From this viewpoint, the Japan Atomic Energy Research Institute (JAERI) has been conducting development of the recycling technology for metal waste and an investigation study on the rational recycling system for the dismantling wastes recycling. With respect to the development of the recycling technology, series of melting tests using non-contaminated metals, metal waste dismantled from JPDR or imitated waste using radioisotopes have been conducted. The basic characteristics of the radionuclides transport behavior during the melting have been understood. In the investigation study on the rational recycling system, a scenario of recycling the wastes was developed based on the amount of waste arising from decommissioning nuclear power plants, and necessary processing facilities were examined, and safety and economy of the process were evaluated

  11. New Engineering Solutions in Creation of Mini-BOF for Metallic Waste Recycling

    Science.gov (United States)

    Eronko, S. P.; Gorbatyuk, S. M.; Oshovskaya, E. V.; Starodubtsev, B. I.

    2017-12-01

    New engineering solutions used in design of the mini melting unit capable of recycling industrial and domestic metallic waste with high content of harmful impurities are provided. High efficiency of the process technology implemented with its use is achieved due to the possibility of the heat and mass transfer intensification in the molten metal bath, controlled charge into it of large amounts of reagents in lumps and in fines, and cut-off of remaining process slag during metal tapping into the teeming ladle.

  12. Vanadium recycling for fusion reactors

    International Nuclear Information System (INIS)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ''hands-on'' refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided

  13. Children with health impairments by heavy metals in an e-waste recycling area.

    Science.gov (United States)

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Proceedings of the Symposium on Recycling of Metals arising from Operation and Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2014-04-01

    The Symposium for the Recycling of Metals Arising from Operation and decommissioning of Nuclear Facilities was held in April 2014 at Studsvik's facility in Nykoeping, Sweden. The Symposium, hosted by Studsvik in conjunction with the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD) and the International Atomic Energy Agency (IAEA), covered a wide range of topics concerning current practice, experiences and innovations within the management of contaminated metallic radioactive material. The primary objective was to understand the differing approaches to clearance and recycling of materials from the nuclear industry across Europe in order to appreciate the issues faced from recovering resources once the material meets a country's clearance requirements. The outcome of the symposium has provided some interesting reflections for national and international bodies to consider when developing waste management guidance and policies. Over the three days of the symposium, presentations split into six topical sessions and posters regarding the recycling of contaminated metals were viewed by more than 150 people from 19 different countries. A series of group discussions were also held following each session to promote learning about current practices, highlight strategic issues related to metals recycling and develop professional networks across the industry. To stimulate discussion, a series of questions were posed at each group and the outcomes captured for inclusion within this report

  15. Recycling of Metal Containing Waste by Liquid-Liquid Extraction

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1999-01-01

    Through the years, a large number of liquid-liquid extraction have been proposed for metal waste recovery and recycling(1,2). However, few of them have achieved commercial application. In fact, relatively little information is available on practical operation and economic feasibility. This presentation will give complementary information by describing and comparing three processes, based on the Am MAR hydrometallurgical concept and representing three different modes of operation

  16. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  17. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as … well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  18. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  19. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    Science.gov (United States)

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Guidance document for multi-facility recycle/reuse/free release of metals from radiological control area

    International Nuclear Information System (INIS)

    Gogol, S.; Starke, T.

    1997-01-01

    Approximately 15% of the Low Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and modification of existing facilities. To address this waste stream, Los Alamos has developed a scrap metal recycling program that is operated by the Environmental Stewardship Office to minimize the amount of LLW metal sent for LLW landfill disposal. Past practice has supported treating all waste metals generated within RCA's as contaminated. Through the metal recycling project, ESO is encouraging the use of alternatives to LLW disposal. Diverting RSM from waste landfill, disposal protects the environment, reduces the cost of operation, and reduces the cost of maintenance and operation at landfill sites. Waste minimization efforts also results in a twofold economic reward: The RSM has a market value and decontamination reduces the volume and therefore the amount of the radioactive waste to be buried within landfills

  1. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.

    Science.gov (United States)

    Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen

    2018-02-01

    The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.

  2. Facile preparation of highly hydrophilic, recyclable high-performance polyimide adsorbents for the removal of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jieyang; Zheng, Yaxin; Luo, Longbo; Feng, Yan [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhang, Chaoliang [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Xu, E-mail: wx19861027@163.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu, Xiangyang, E-mail: lxy6912@sina.com [State Key Laboratory of Polymer Material and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2016-04-05

    Highlights: • High-performance polyimide was used as heavy metal adsorbents. • The contradiction between hydrophilicity and high performance of PI was solved. • Adsorption amount for Cu{sup 2+} of PI/silica was 77 times higher than that of PI. • The adsorption ability remained steady for more than 50 recycling processes. - Abstract: To obtain high-performance adsorbents that combine excellent adsorption ability, thermal stability, service life and recycling ability, polyimide (PI)/silica powders were prepared via a facile one-pot coprecipitation process. A benzimidazole unit was introduced into the PI backbone as the adsorption site. The benzimidazole unit induced more hydroxyls onto the silica, which provided hydrophilic sites for access by heavy metal ions. By comprehensively analyzing the effect of hydrophilcity, agglomeration, silica polycondensation, specific surface area and PI crystallinity, 10% was demonstrated to be the most proper feed silica content. The equilibrium adsorption amount (Q{sub e}) for Cu{sup 2+} of PI/silica adsorbents was 77 times higher than that of pure PI. Hydrogen chloride (HCl) was used as a desorbent for heavy metal ions and could be decomplexed with benzimidazole unit at around 300 °C, which was lower than the glass transition temperature of PI. The complexation and decomplexation process of HCl made PI/silica adsorbents recyclable, and the adsorption ability remained steady for more than 50 recycling processes. As PI/silica adsorbents possess excellent thermal stability, chemical resistance and radiation resistance and hydrophilicity, they have potential as superior recyclable adsorbents for collecting heavy metal ions from waste water in extreme environments.

  3. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP's off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing

  4. Recycle of contaminated scrap metal, Volume 1. Semi-annual report, September 1993--January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume I covers: executive summary; task 1.1 design CEP system; Task 1.2 experimental test plan; Task 1.3 experimental testing.

  5. Challenges of metal recycling and an international covenant as possible instrument of a globally extended producer responsibility.

    Science.gov (United States)

    Wilts, Hennning; Bringezu, Stefan; Bleischwitz, Raimund; Lucas, Rainer; Wittmer, Dominic

    2011-09-01

    As illustrated by the case studies of end-of-life vehicles and waste electric and electronic equipment, the approach of an extended producer responsibility is undermined by the exports of used and waste products. This fact causes severe deficits regarding circular flows, especially of critical raw materials such as platinum group metals. With regard to global recycling there seems to be a responsibility gap which leads somehow to open ends of waste flows and a loss or down-cycling of potential secondary resources. Existing product-orientated extended producer responsibility (EPR) approaches with mass-based recycling quotas do not create adequate incentives to supply waste materials containing precious metals to a high-quality recycling and should be amended by aspects of a material stewardship. The paper analyses incentive effects on EPR for the mentioned product groups and metals, resulting from existing regulations in Germany. It develops a proposal for an international covenant on metal recycling as a policy instrument for a governance-oriented framework to initiate systemic innovations along the complete value chain taking into account product group- and resource group-specific aspects on different spatial levels. It aims at the effective implementation of a central idea of EPR, the transition of a waste regime still focusing on safe disposal towards a sustainable management of resources for the complete lifecycle of products.

  6. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  7. Recycling of merchant ships

    Directory of Open Access Journals (Sweden)

    Magdalena Klopott

    2013-12-01

    Full Text Available The article briefly outlines the issues concerning ship recycling. It highlights ships' high value as sources of steel scrap and non-ferrous metals, without omitting the fact that they also contain a range of hazardous substances. Moreover, the article also focuses on basic ship demolition methods and their environmental impact, as well as emphasizes the importance of “design for ship recycling” philosophy.

  8. Recovery of the secondary raw materials, recycling

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter the recovery and recycling of secondary raw materials is explained. This chapter consists of the following parts: Paper and tetrapaks; Car wrecks; Scrap metal; Plastics; Used tires; Electrical and electronic equipment; Glass; Accumulators and batteries; Spent oil; Low-and non-waste technology.

  9. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  10. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP`s off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility.

  11. Recycle of contaminated scrap metal, Volume 2. Semi-annual report, September 1993--January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    Catalytic Extraction Processing (CEP) has been demonstrated to be a robust, one-step process that is relatively insensitive to wide variations in waste composition and is applicable to a broad spectrum of DOE wastes. Catalytic Processing Unit (CPU) design models have been validated through experimentation to provide a high degree of confidence in our ability to design a bulk solids CPU for processing DOE wastes. Two commercial CEP facilities have been placed in commission and are currently processing mixed low level wastes. These facilities provide a compelling indication of the maturity, regulatory acceptance, and commercial viability of CEP. In concert with the DOE, Nolten Metal Technology designed a program which would challenge preconceptions of the limitations of waste processing technologies: demonstrate the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal could be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP would concentrate the radionuclides in a durable vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP would convert hazardous organics to valuable industrial gases, which could be used as an energy source; recover volatile heavy metals--that CEP's off-gas treatment system would capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory. The execution of this program resulted in all objectives being met. Volume II contains: Task 1.4, optimization of the vitreous phase for stabilization of radioactive species; Task 1.5, experimental testing of Resource Conservation and Recovery Act (RCRA) wastes; and Task 1.6, conceptual design of a CEP facility

  12. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    Science.gov (United States)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  13. Evaluation of Pollution of Soils and Particulate Matter Around Metal Recycling Factories in Southwestern Nigeria

    OpenAIRE

    Akinade S. Olatunji; Tesleem O. Kolawole; Moroof Oloruntola; Christina Günter

    2018-01-01

    Background. Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. Objectives. The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. Methods. Sixty samples (...

  14. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  15. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  16. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  17. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  18. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China.

    Science.gov (United States)

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia

    2016-09-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.

  19. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China

    Science.gov (United States)

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N.; Ho, Shuk-mei; Chen, Aimin; Huo, Xia

    2017-01-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metals concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consists of residential areas, kindergarten/school and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012–2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentration of Pb, Cd, Cr and Mn were 448.73, 0.71, 63.90 and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71 and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P≤ 0.05) than the reference area and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination and pollution load index indicated that all sampling points had high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr and Mn for children in exposed area was 0.99 and 1.62 for soil and dust respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk. PMID:27230155

  20. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    Energy Technology Data Exchange (ETDEWEB)

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  1. An industry response to recycle 2000

    International Nuclear Information System (INIS)

    Motl, G.P.; Loiselle, V.

    1996-01-01

    The US DOE is expected to issue a policy early this year articulating DOE's position on the recycle of DOE radioactive scrap metal. In anticipation of this 'Recycle 2000' initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality

  2. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlpfarrer, Philipp, E-mail: philipp-johannes.stuhlpfarrer@stud.unileoben.ac.at; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  3. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    Science.gov (United States)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution

    International Nuclear Information System (INIS)

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-01-01

    Highlights: • Removal of plastics. • Enrichment of In, Ga and Ge. • Low temperature. • No dioxines. - Abstract: The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400 °C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200 °C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones.

  5. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  6. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Trudeau, J. [Metaldyne, Inc., Twinsburg, OH (United States); Cleary, B. [Metaldyne, Inc., Twinsburg, OH (United States); Hackett, M. [Metaldyne, Inc., Twinsburg, OH (United States); Greene, W. A. [SpinTek FIltrations, LLC, Los Alamitos, CA (United States)

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  7. Residue levels of molinate in rice field soil: their effects on populations of aquatic flora and fauna under recycling and non-recycling practices in the MUDA area

    International Nuclear Information System (INIS)

    Nashriyah Mat; Azimahtol Hawariah Lope Pihie

    2002-01-01

    A study to evaluate the effects of Molinate residue levels in rice field soil on populations of weed and aquatic fauna in the recycling and the non-recycling areas of Muda was carried out. Molinate residue levels in soil, Simpson Index of Diversity and Importance Value (IV) of weeds, and Sequential Comparison Index of aquatic fauna were measured. No marked variation between the recycled (B 111) and non-recycled (D 111) area was observed for the population parameters and residue levels measured. (Author)

  8. Assessing dietary exposure to cadmium in a metal recycling community in Vietnam: Age and gender aspects

    International Nuclear Information System (INIS)

    Minh, Ngo Duc; Hough, Rupert Lloyd; Thuy, Le Thi; Nyberg, Ylva; Mai, Le Bach; Vinh, Nguyen Cong; Khai, Nguyen Manh; Öborn, Ingrid

    2012-01-01

    This study estimates the dietary exposure to cadmium (Cd), and associated potential health risks, for individuals living and working in a metal recycling community (n = 132) in Vietnam in comparison to an agricultural (reference) community (n = 130). Individual-level exposure to Cd was estimated through analysis of staple foodstuffs combined with information from a food frequency questionnaire. Individual-level exposure estimates were compared with published ‘safe’ doses to derive a Hazard Quotient (HQ) for each member of the study population. Looking at the populations as a whole, there were no significant differences in the diets of the two villages. However, significantly more rice was consumed by working age adults (18–60 years) in the recycling village compared to the reference village (p 3), while 20% of adult participants from the reference village had an HQ > 1. We found an elevated health risk from dietary exposure to Cd in the metal recycling village compared to the reference community. WHO standard of 0.4 mg Cd/kg rice may not be protective where people consume large amounts of rice/have relatively low body weight. - Highlights: ► First individual-level risk assessment of cadmium in recycling villages of Vietnam. ► Dietary analysis undertaken for a recycling community and an agricultural community. ► No significant differences were found between the diets of the two populations. ► 87% of people in the recycling community had elevated health risk. ► WHO standard (0.4 mg Cd/kg rice) may not be protective for rice-based cultures.

  9. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  10. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Report on achievements in fiscal 1998. Research and development of a technology to promote non-ferrous metal based material recycling. (Research on component technologies and a total system); 1998 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu seika hokokusho. Kenkyu kaihatsu yoso gijutsu kenkyu, total system kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is intended to research and develop a high level aluminum recycling technology to realize the 'product to product' philosophy to return different aluminum scraps into the original materials, while attempting to develop and unify the aluminum recycling technologies and promote utilization of LNG. This fiscal year has studied the following methods as the component technology research: (1) an inclusion removing method, (2) a crystal sorting method, (3) a vacuum distillation method, and (4) a semi-melting method. The studies on (1), (2) and (3) were performed on identification of basic data and systematization to determine the life and facility specifications, with the full-swing demonstration tests being waited to start in fiscal 1999. The research and development on the item (4) was determined technologically feasible although additional discussions are required on the engineering aspect for practical application. The component technology study thereon will be finished with the current fiscal year. For the demonstration tests among the studies on total system technologies, the crystal sorting method and the vacuum distillation method had the achievements obtained in the research of the component technologies reflected directly to the facility design and fabrication. There has been no large-scale facility fabrication for the inclusion removing method and effective utilization of ash remaining in dross, and the researches were performed as scheduled. (NEDO)

  12. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  13. Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana

    Directory of Open Access Journals (Sweden)

    Vincent Nartey Kyere

    2017-10-01

    Full Text Available The rapidly increasing annual global volume of e-waste, and of its inherently valuable fraction, has created an opportunity for individuals in Agbogbloshie, Accra, Ghana to make a living by using unconventional, uncontrolled, primitive and crude procedures to recycle and recover valuable metals from this waste. The current form of recycling procedures releases hazardous fractions, such as heavy metals, into the soil, posing a significant risk to the environment and human health. Using a handheld global positioning system, 132 soil samples based on 100 m grid intervals were collected and analysed for cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, lead (Pb and zinc (Zn. Using geostatistical techniques and sediment quality guidelines, this research seeks to assess the potential risk these heavy metals posed to the proposed Korle Ecological Restoration Zone by informal e-waste processing site in Agbogbloshie, Accra, Ghana. Analysis of heavy metals revealed concentrations exceeded the regulatory limits of both Dutch and Canadian soil quality and guidance values, and that the ecological risk posed by the heavy metals extended beyond the main burning and dismantling sites of the informal recyclers to the school, residential, recreational, clinic, farm and worship areas. The heavy metals Cr, Cu, Pb and Zn had normal distribution, spatial variability, and spatial autocorrelation. Further analysis revealed the decreasing order of toxicity, Hg>Cd>Pb> Cu>Zn>Cr, of contributing significantly to the potential ecological risk in the study area.

  14. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  15. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III

    1994-11-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. Preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping

  16. Aluminium beverage can recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lewinski, A von

    1985-08-01

    Canned beverages have become a controversial issue in this era of ecological sensitivity. METALL has already discussed the problem of can recycling. The present article discusses the technical aspects of aluminium can recycling. Two further articles will follow on aluminium can recycling in North America and on the results of European pilot projects.

  17. Heavy metals distribution and risk assessment in soil from an informal E-waste recycling site in Lagos State, Nigeria.

    Science.gov (United States)

    Isimekhai, Khadijah A; Garelick, Hemda; Watt, John; Purchase, Diane

    2017-07-01

    Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p  Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.

  18. Decontamination and provenance tracking. The key to acceptable recycle of nuclear materials

    International Nuclear Information System (INIS)

    Bradbury, D.; Elder, G.R.; Wood, C.J.

    2002-01-01

    Decommissioning of nuclear plants and components demands the proper management of the process, both for economic reasons and for retaining public confidence in the continued use of nuclear power. Surface decontamination has an important role to play in decommissioning. A new development, the EPRI DFDX process, produces secondary waste from decontamination in the form of powdered metal rather than ion exchange resin, thereby reducing the volume of secondary waste for storage and eventual disposal. The process has been patented and licensed and is due to be field-tested on a number of sites starting in 2002. Although the purpose of the process is to clean materials sufficiently to achieve unrestricted release, in practice there is some public unease at the prospect of formerly contaminated materials passing into unrestricted use. Greater public support for recycle can be achieved by recording the provenance of decontaminated materials and recycling them back into restricted uses in the nuclear industry. Because the materials have first been decontaminated to below free release levels, there is no objection to using non-radioactive facilities for the recycling and manufacturing activities, provided that the materials are properly tracked to prevent their uncontrolled release. (author)

  19. Radiological control criteria for materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.; Wallo, A. III.

    1995-01-01

    Pacific Northwest Laboratory (PNL) is conducting technical analyses to support the U.S. Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, are risk-based and were developed through analysis of generic radiation exposure scenarios and pathways. The analysis includes evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analysis considers 42 key radionuclides that DOE operations are known to generate and that may be contained in recycled or reused metals or equipment. The preliminary results are compared with similar results reported by the International Atomic Energy Agency, by radionuclide grouping. (author)

  20. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  1. Recycling of steelmaking dusts: The Radust concept

    Directory of Open Access Journals (Sweden)

    Jalkanen H.

    2005-01-01

    Full Text Available Recycling of dusts and other wastes of steelmaking is becoming to a necessity of two reasons: due to high contents of iron oxides dusts are valuable raw material for steelmaking and tightening environmental legislation makes the landfill disposal of wastes more expensive. Fine dust fractions from various stages of steelmaking route contain besides iron and carbon heavy metals especially zinc and lead and heavy hydrocarbons that are acceptable neither for landfill disposal nor for recycling back to processes without any spe4cial treatments. Some theoretical and practical aspects concerning high temperature treatments of steelmaking dusts for removal of hazardous components and production of clean high iron raw material for recycling is discussed in this paper. The Radust technology developed at Koverhar steelwork in Finland for treatment of the most problematic fine fractions of blast furnace and oxygen converter dusts is shortly presented and discussed.

  2. Control criteria for residual contamination in materials considered for recycle and reuse

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Hill, R.L.; Aaberg, R.L.

    1993-11-01

    Pacific Northwest Laboratory (PNL) is collecting data and conducting technical analyses to support the US Department of Energy (DOE), Office of Environmental Guidance, Air, Water, and Radiation Division (DOE/EH-232) in determining the feasibility of developing radiological control criteria for recycling or reuse of metals or equipment containing residual radioactive contamination from DOE operations. The criteria, framed as acceptable concentrations for release of materials for recycling or reuse, will be risk-based and will be developed through analysis of radiation exposure scenarios and pathways. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and non-health-related impacts of residual radioactivity on electronics and film. The analyses will consider 42 key radionuclides that are generated during DOE operations and may be contained in recycled or reused metals or equipment

  3. Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area

    International Nuclear Information System (INIS)

    Wang Thanh; Fu Jianjie; Wang Yawei; Liao Chunyang; Tao Yongqing; Jiang Guibin

    2009-01-01

    Scalp hair samples were collected at an electronic waste (e-waste) recycling area and analyzed for trace elements and heavy metals. Elevated levels were found for Cu and Pb with geometric means (GMs) at 39.8 and 49.5 μg/g, and the levels of all elements were found in the rank order Pb > Cu >> Mn > Ba > Cr > Ni > Cd > As > V. Besides Cu and Pb, Cd (GM: 0.518 μg/g) was also found to be significantly higher compared to that in hair samples from control areas. Differences with age, gender, residence status and villages could be distinguished for most of the elements. The high levels of Cd, Cu and Pb were likely found to be originated from e-waste related activities, and specific sources were discussed. This study shows that human scalp hair could be a useful biomarker to assess the extent of heavy metal exposure to workers and residents in areas with intensive e-waste recycling activities. - Human scalp hair samples can be used to indicate environmental and occupational exposure of heavy metals due to intensive electronic waste recycling activities.

  4. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  5. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  6. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  7. Recyclable hydrogen storage system composed of ammonia and alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hikaru [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Miyaoka, Hiroki; Hino, Satoshi [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Nakanishi, Haruyuki [Higashi-Fuji Technical Center, Toyota Motor Corporation, 1200 Misyuku, Susono, Shizuoka 410-1193 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Department of Quantum Matter, AdSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

    2009-12-15

    Ammonia (NH{sub 3}) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H{sub 2}) at room temperature, resulting that alkali metal amides (MNH{sub 2}) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH{sub 2} back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH{sub 3} were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H{sub 2} flow condition below 300 C. (author)

  8. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    International Nuclear Information System (INIS)

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-01-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals

  9. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    Science.gov (United States)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  10. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms.

    Science.gov (United States)

    García-García, Jorge D; Sánchez-Thomas, Rosina; Moreno-Sánchez, Rafael

    2016-01-01

    Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  12. Recovering metallic fractions from waste electrical and electronic equipment by a novel vibration system

    International Nuclear Information System (INIS)

    Habib, Muddasar; Miles, Nicholas J.; Hall, Philip

    2013-01-01

    Highlights: ► This work focuses on demonstrating a new scaled up technology to separate the metallic and non-metallic fractions of PCBs. ► PCBs comminuted to <1 mm in size resulted in metallic grade concentration of 95% in some of the recovered products. ► Good separation was observed at 40 mm particle bed height due to the formation of well-structured global convection currents. ► The work reported here contributes to the development of a new approach to dry, fine particle separation. - Abstract: The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1 mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products

  13. Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment.

    Science.gov (United States)

    Chancerel, Perrine; Rotter, Vera Susanne; Ueberschaar, Maximilian; Marwede, Max; Nissen, Nils F; Lang, Klaus-Dieter

    2013-10-01

    The supply of critical metals like gallium, germanium, indium and rare earths elements (REE) is of technological, economic and strategic relevance in the manufacturing of electrical and electronic equipment (EEE). Recycling is one of the key strategies to secure the long-term supply of these metals. The dissipation of the metals related to the low concentrations in the products and to the configuration of the life cycle (short use time, insufficient collection, treatment focusing on the recovery of other materials) creates challenges to achieve efficient recycling. This article assesses the available data and sets priorities for further research aimed at developing solutions to improve the recycling of seven critical metals or metal families (antimony, cobalt, gallium, germanium, indium, REE and tantalum). Twenty-six metal applications were identified for those six metals and the REE family. The criteria used for the assessment are (i) the metal criticality related to strategic and economic issues; (ii) the share of the worldwide mine or refinery production going to EEE manufacturing; (iii) rough estimates of the concentration and the content of the metals in the products; (iv) the accuracy of the data already available; and (v) the occurrence of the application in specific WEEE groups. Eight applications were classified as relevant for further research, including the use of antimony as a flame retardant, gallium and germanium in integrated circuits, rare earths in phosphors and permanent magnets, cobalt in batteries, tantalum capacitors and indium as an indium-tin-oxide transparent conductive layer in flat displays.

  14. Catalyst recycling via specific non-covalent adsorption on modified silicas

    NARCIS (Netherlands)

    Kluwer, A.M.; Simons, C.; Knijnenburg, Q.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2013-01-01

    This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular

  15. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    Science.gov (United States)

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  16. Recycling of metals: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Damgaard, Anders; Larsen, Anna W; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of metals in post-consumer waste are assessed from a waste management perspective; here the material recovery facility (MRF), for the sorting of the recovered metal. The GHG accounting includes indirect upstream emissions, direct activities at the MRF as well as indirect downstream activities in terms of reprocessing of the metal scrap and savings in terms of avoided production of virgin metal. The global warming factor (GWF) shows that upstream activities and the MRF causes negligible GHG emissions (12.8 to 52.6 kg CO(2)-equivalents tonne(-1) recovered metal) compared to the reprocessing of the metal itself (360-1260 kg CO(2)-equivalents tonne(-1) of recovered aluminium and 400- 1020 kg CO(2)-equivalents tonne(- 1) of recovered steel).The reprocessing is however counterbalanced by large savings of avoided virgin production of steel and aluminium. The net downstream savings were found to be 5040-19 340 kg CO(2)-equivalents tonne(-1) of treated aluminium and 560-2360 kg CO(2)-equivalents tonne(-1) of treated steel. Due to the huge differences in reported data it is hard to compare general data on the recovery of metal scrap as they are very dependent on the technology and data choices. Furthermore, the energy used in both the recovery process as well as the avoided primary production is crucial. The range of avoided impact shows that recovery of metals will always be beneficial over primary production, due to the high energy savings, and that the GHG emissions associated with the sorting of metals are negligible.

  17. The development and prospects of the end-of-life vehicle recycling system in Taiwan.

    Science.gov (United States)

    Chen, Kuan-chung; Huang, Shih-han; Lian, I-wei

    2010-01-01

    Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the "End-of-life vehicle recycling guidelines" under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection-Disposal-Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars. 2010 Elsevier Ltd. All rights reserved.

  18. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  19. Formability of aluminium sheets manufactured by solid state recycling

    Science.gov (United States)

    Kore, A. S.; Nayak, K. C.; Date, P. P.

    2017-09-01

    Conventional recycling practices for non-ferrous metallic scrap involves melting followed by purification. This practice is suitable for recycling when the large volume of scrap is available. Though such recycling reduces consumption of diminishing metallic resources, high energy requirement and material loss during melting and purification limit its applicability. In the present work, manufacturing of solid state recycled aluminium sheet by hot rolling is explored and its formability characterized. Aluminium chips were divided into smaller particles (1~2mm) by crushing. After stress relief annealing, chips were cold compacted into square slabs (75*75mm section) of different thicknesses. Another similar set of slabs was made by hot compaction. The compacted slabs were hot rolled over a number of passes at 400°C. Each slab was reduced to approximately 90% thickness to get the sheet thickness in the range of 0.6 to 1.5 mm. Microstructure revealed good interface bonding between the chip particles. Mechanical properties of the sheet from room temperature up to 200°C and at different strain rates were characterized by a number of tensile tests. Circular blanks from sheet were drawn into cylindrical cups and strain distribution was observed along different directions of rolling using circle grid analysis.

  20. Recycling light metals : Optimal thermal de-coating

    NARCIS (Netherlands)

    Kvithyld, A.; Meskers, C.E.M.; Gaal, S.; Reuter, M.

    2008-01-01

    Thermal de-coating of painted and lacquered scrap is one of the new innovations developed for aluminum recycling. If implemented in all recycling and optimized as suggested in this article, recovery would be improved with considerable economic impact. Generally, contaminated scrap is difficult to

  1. Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida.

    Science.gov (United States)

    Townsend, Timothy; Tolaymat, Thabet; Leo, Kevin; Jambeck, Jenna

    2004-10-01

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil. Waste material that is reused in a manner similar to soil must first be characterized to examine potential risks to human health and the environment. In Florida, samples of C&D debris fines from 13 C&D debris recycling facilities were characterized for 11 total and leachable heavy metal concentrations. Total metal concentration results (mg/kg) were compared to existing data on background Florida soil concentrations and to Florida's risk-based soil cleanup target levels (SCTLs). All of the detected metals were found to be elevated with respect to background. The 95% upper confidence level of arsenic from 99 samples was 3.2 mg/kg; arsenic presented the greatest limitation to reuse when compared to the SCTLs. Lead was not found to pose a major problem, likely because of the relatively new building infrastructure in Florida, which results in less demolition debris and less material impacted by lead-based paint. The results of batch leaching tests conducted using simulated rainwater (mg/l) were compared directly to risk-based groundwater levels for Florida and were found not to pose a risk using existing risk assessment policies.

  2. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki, E-mail: itai@sci.ehime-u.ac.jp [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Otsuka, Masanari [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Asante, Kwadwo Ansong [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Muto, Mamoru [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu [CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan)

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant.

  3. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    International Nuclear Information System (INIS)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-01-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant

  4. Handling and final storage of radioactive metal components

    International Nuclear Information System (INIS)

    Loennerberg, B.; Engelbrektson, A.; Neretnieks, I.

    1978-06-01

    After the dismounting of the fuel elements, the next stage is to undertake the final storing of the metal components, which have kept the fuel rods together. The components are transmitted to a pool where they are cut into pieces, compacted and placed in wire baskets. These are transferred in a water channel to a cell, where the metal components are embedded into concrete blocks. Thus the baskets are placed in prefabricated concrete containers, after which the metal parts are embedded into cement grout, injected from the bottom of the containers. The blocks are finally stored in rock tunnels constituting a storage similar to the repositories for vitrified waste and spent fuel, although somewhat simplified, taking advantage of the much lower amount of radioactive material in the case of metal components. Thus a depositioning depth of 300 m in rock is very much on the safe side and it is appropriate in this case to fill the tunnels with concrete, ensuring by its alcalinity a suffi ciently low rate of dissolution of the metal and migration of radioactive substances

  5. Chalcopyrite—bearer of a precious, non-precious metal

    Science.gov (United States)

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  6. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  7. FY1998 research report on the R and D on recycling technology. Part 1; 1998 nendo recycle nado kankyo gijutsu kekyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop recycling technology for reduction of environmental burden caused by waste, and promotion of recycling of wastes. As for advanced recycling technology for PET bottles, the facility was improved for improvement of a facility operability and product quality. Study was made on the effect of a raw bale quality and recycled flake colors on a product quality, the forming test with PS or PET labels, and the concentration and effect of washing liquid circulated in flake washing process. As for recycling technology of hard-to-dispose waste plastics, facility improvement and demonstration test were made for continuous operation of dry-distillation/gasification of shredder dusts and separation of nonferrous metals and glass. Study was also made on pulverizing and recycling technologies of FRP bath tubs, and such pulverization costs were estimated. As for production technology of chemical feed and fuel from wastes, study was made on removal technology of non-flammable substances, development of alkaline additives, reacting condition, development of reactors, and use technology as chemical feed. (NEDO)

  8. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China.

    Science.gov (United States)

    Tang, Xianjin; Shen, Chaofeng; Shi, Dezhi; Cheema, Sardar A; Khan, Muhammad I; Zhang, Congkai; Chen, Yingxu

    2010-01-15

    The present study was conducted to investigate the levels and sources of heavy metals (Cu, Cr, Cd, Pb, Zn, Hg and As) and persistent organic compounds including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils taken from Wenling, an emerging e-waste recycling city in Taizhou, China. The results suggested that most heavy metals exceeded the respective Grade II value of soil quality standards from State Environmental Protection Administration of China and also exceeded the Dutch optimum values. Total PAHs in soil ranged from 371.8 to 1231.2 microg/kg, and relatively higher PAHs concentrations were found in soils taken from simple household workshops. PCBs were detectable in all samples with total concentrations ranging from 52.0 to 5789.5 microg/kg, which were 2.1-232.5 times higher than that from the reference site (24.9 microg/kg). Results of this study suggested soil in the Wenling e-waste recycling area were heavily contaminated by heavy metals, PAHs and PCBs. Furthermore, compared with large-scale plants, simple household workshops contributed more heavy metals, PAHs and PCBs pollution to the soil environment, indicating that soil contamination from e-waste recycling in simple household workshops should be given more attention.

  10. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    Science.gov (United States)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.

  11. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility.

    Science.gov (United States)

    Wang, Guiyin; Zhang, Shirong; Xu, Xiaoxun; Zhong, Qinmei; Zhang, Chuer; Jia, Yongxia; Li, Ting; Deng, Ouping; Li, Yun

    2016-11-01

    Soil washing, an emerging method for treating soils contaminated by heavy metals, requires an evaluation of its efficiency in simultaneously removing different metals, the quality of the soil following remediation, and the reusability of the recycled washing agent. In this study, we employed N,N-bis (carboxymethyl)-l-glutamic acid (GLDA), a novel and readily biodegradable chelator to remove Cd, Pb, and Zn from polluted soils. We investigated the influence of washing conditions, including GLDA concentration, pH, and contact time on their removal efficiencies. The single factor experiments showed that Cd, Pb, and Zn removal efficiencies reached 70.62, 74.45, and 34.43% in mine soil at a GLDA concentration of 75mM, a pH of 4.0, and a contact time of 60min, and in polluted farmland soil, removal efficiencies were 69.12, 78.30, and 39.50%, respectively. We then employed response surface methodology to optimize the washing parameters. The optimization process showed that the removal efficiencies were 69.50, 88.09, and 40.45% in mine soil and 71.34, 81.02, and 50.95% in polluted farmland soil for Cd, Pb, and Zn, respectively. Moreover, the overall highly effective removal of Cd and Pb was connected mainly to their highly effective removal from the water-soluble, exchangeable, and carbonate fractions. GLDA-washing eliminated the same amount of metals as EDTA-washing, while simultaneously retaining most of the soil nutrients. Removal efficiencies of recycled GLDA were no >5% lower than those of the fresh GLDA. Therefore, GLDA could potentially be used for the rehabilitation of soil contaminated by heavy metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida

    International Nuclear Information System (INIS)

    Townsend, Timothy; Tolaymat, Thabet; Leo, Kevin; Jambeck, Jenna

    2004-01-01

    A major product recovered from the processing and recycling of construction and demolition (C and D) debris is screened soil, also referred to as fines. A proposed reuse option for C and D debris fines is fill material, typically in construction projects as a substitute for natural soil. Waste material that is reused in a manner similar to soil must first be characterized to examine potential risks to human health and the environment. In Florida, samples of C and D debris fines from 13 C and D debris recycling facilities were characterized for 11 total and leachable heavy metal concentrations. Total metal concentration results (mg/kg) were compared to existing data on background Florida soil concentrations and to Florida's risk-based soil cleanup target levels (SCTLs). All of the detected metals were found to be elevated with respect to background. The 95% upper confidence level of arsenic from 99 samples was 3.2 mg/kg; arsenic presented the greatest limitation to reuse when compared to the SCTLs. Lead was not found to pose a major problem, likely because of the relatively new building infrastructure in Florida, which results in less demolition debris and less material impacted by lead-based paint. The results of batch leaching tests conducted using simulated rainwater (mg/l) were compared directly to risk-based groundwater levels for Florida and were found not to pose a risk using existing risk assessment policies

  13. Reusing and recycling in Saskatchewan: Environmental benefits of reusing and recycling

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    After an introduction explaining the environmental benefits of reusing and recycling, as well as providing suggestions on minimizing waste and conserving energy, a directory of recyclers and handlers of various kinds of waste in Saskatchewan is presented. Names, addresses/telephone numbers, and types of materials accepted are given for recyclers of animal products, clothing or textiles, glass, compostable materials, industrial hardware, metals, office products, paper, plastic, and tires. Collection depots in the SARCAN recycling program for beverage containers are listed, giving town name, address, hours of operation, and telephone number. Receivers of waste dangerous goods are listed under the categories of ozone-depleting substances, waste batteries, solvents, lubricating oils and oil filters, paint, flammable liquids, antifreeze, drycleaning waste, and miscellaneous.

  14. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  15. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  16. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

    Science.gov (United States)

    Zheng, Xiaohong; Gao, Wenfang; Zhang, Xihua; He, Mingming; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-01

    Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn 4+ into Mn 2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH 4 ) 2 Mn(SO 3 ) 2 ·H 2 O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  18. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  19. Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Kar, Mega [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Leyma, Raphlin; Chib, Sonia; Roller, Alexander [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg (South Africa); Krachler, Regina [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); MacFarlane, Douglas R. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria)

    2017-02-15

    Highlights: • Thioglycolate-based ionic liquids have been synthesized and their physicochemical properties have been examined. • The developed ionic liquids can efficiently remove Cu(II) and Cd(II). • Loaded ionic liquids can be recycled by application of different stripping protocols. - Abstract: Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by {sup 1}H and {sup 13}C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.

  20. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments.

    Science.gov (United States)

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Ma, Yinfa

    2010-08-01

    Heavy metal contaminants in environment, especially in drinking water, are always of great concern due to their health impact. Due to the use of heavy metals as catalysts during plastic syntheses, particularly antimony, human exposure to metal release from plastic bottles has been a serious concern in recent years. The aim and scope of this study were to assess metal contaminations leaching out from a series of recycling plastic bottles upon treatments. In this study, leaching concentrations of 16 metal elements were determined in 21 different types of plastic bottles from five commercial brands, which were made of recycling materials ranging from no. 1 to no. 7. Several sets of experiments were conducted to study the factors that could potentially affect the metal elements leaching from plastic bottles, which include cooling with frozen water, heating with boiling water, microwave, incubating with low-pH water, outdoor sunlight irradiation, and in-car storage. Heating and microwave can lead to a noticeable increase of antimony leaching relative to the controls in bottle samples A to G, and some even reached to a higher level than the maximum contamination level (MCL) of the US Environmental Protection Agency (USEPA) regulations. Incubation with low-pH water, outdoor sunlight irradiation, and in-car storage had no significant effect on antimony leaching relative to controls in bottle samples A to G, and the levels of antimony leaching detected were below 6 ppb which is the MCL of USEPA regulations. Cooling had almost no effect on antimony leaching based on our results. For the other interested 15 metal elements (Al, V, Cr, Mn, Co, Ni, Cu, As, Se, Mo, Ag, Cd, Ba, Tl, Pb), no significant leaching was detected or the level was far below the MCL of USEPA regulations in all bottle samples in this study. In addition, washing procedure did contribute to the antimony leaching concentration for polyethylene terephthalate (PET) bottles. The difference of antimony leaching

  1. The formal electronic recycling industry: Challenges and opportunities in occupational and environmental health research.

    Science.gov (United States)

    Ceballos, Diana Maria; Dong, Zhao

    2016-10-01

    E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    International Nuclear Information System (INIS)

    Nieves, L.A.; Burke, C.J.

    1995-01-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of open-quotes voluntariness of risk assumption,close quotes of open-quotes disaster potential,close quotes and of open-quotes benefitclose quotes are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling

  3. Lithium actinide recycle process demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.K.; Pierce, R.D.; McPheeters, C.C. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Several pyrochemical processes have been developed in the Chemical Technology Division of Argonne Laboratory for recovery of actinide elements from LWR spent fuel. The lithium process was selected as the reference process from among the options. In this process the LWR oxide spent fuel is reduced by lithium at 650{degrees}C in the presence of molten LiCl. The Li{sub 2}O formed during the reduction process is soluble in the salt. The spent salt and lithium are recycled after the Li{sub 2}O is electrochemically reduced. The oxygen is liberated as CO{sub 2} at a carbon anode or oxygen at an inert anode. The reduced metal components of the LWR spent fuel are separated from the LiCL salt phase and introduced into an electrorefiner. The electrorefining step separates the uranium and transuranium (TRU) elements into two product streams. The uranium product, which comprises about 96% of the LWR spent fuel mass, may be enriched for recycle into the LWR fuel cycle, stored for future use in breeder reactors, or converted to a suitable form for disposal as waste. The TRU product can be recycled as fast reactor fuel or can be alloyed with constituents of the LWR cladding material to produce a stable waste form.

  4. The Diffusion Effect of MSW Recycling

    OpenAIRE

    Yi-Tui Chen; Fu-Chiang Yang; Shih-Heng Yu

    2017-01-01

    The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator t...

  5. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    Science.gov (United States)

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  6. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.

    Science.gov (United States)

    Huang, Kui; Li, Jia; Xu, Zhenming

    2011-06-01

    A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5mm. (4) The size of particles between 0.5 and 2mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Urban Biomining Meets Printable Electronics: End-To-End at Destination Biological Recycling and Reprinting

    Science.gov (United States)

    Rothschild, Lynn J. (Principal Investigator); Koehne, Jessica; Gandhiraman, Ram; Navarrete, Jesica; Spangle, Dylan

    2017-01-01

    Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a limited lifespan. Thus, current mission architectures must compensate for replacement. In space, spent electronics are discarded; on earth, there is some recycling but current processes are toxic and environmentally hazardous. Imagine instead an end-to-end recycling of spent electronics at low mass, low cost, room temperature, and in a non-toxic manner. Here, we propose a solution that will not only enhance mission success by decreasing upmass and providing a fresh supply of electronics, but in addition has immediate applications to a serious environmental issue on the Earth. Spent electronics will be used as feedstock to make fresh electronic components, a process we will accomplish with so-called 'urban biomining' using synthetically enhanced microbes to bind metals with elemental specificity. To create new electronics, the microbes will be used as 'bioink' to print a new IC chip, using plasma jet electronics printing. The plasma jet electronics printing technology will have the potential to use martian atmospheric gas to print and to tailor the electronic and chemical properties of the materials. Our preliminary results have suggested that this process also serves as a purification step to enhance the proportion of metals in the 'bioink'. The presence of electric field and plasma can ensure printing in microgravity environment while also providing material morphology and electronic structure tunabiity and thus optimization. Here we propose to increase the TRL level of the concept by engineering microbes to dissolve the siliceous matrix in the IC, extract copper from a mixture of metals, and use the microbes as feedstock to print interconnects using mars gas simulant. To assess the ability of this concept to influence mission architecture, we will do an analysis of the infrastructure required to execute

  8. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  9. End-of-Life in the railway sector: Analysis of recyclability and recoverability for different vehicle case studies.

    Science.gov (United States)

    Delogu, Massimo; Del Pero, Francesco; Berzi, Lorenzo; Pierini, Marco; Bonaffini, Davide

    2017-02-01

    The railway system represents one of the most resource-efficient answer to our ever-growing demand for transport service and the development trends for the following years forecast a substantial increase in this sector. Considering the European Union, rolling stock realizes a significant share of both goods and passengers carriage while it is responsible for a derisory quota of environmental impact and energy consumption involved by transportation. Contrary to the low environmental impact, the amount of End-of-Life (EoL) waste generated by rolling stocks in relation to the number of vehicles is notable, much greater than in the case of road vehicles. As railway vehicles are constituted by many heterogeneous components, the EoL rolling stock is a precious source of materials, whose recycling brings measurable economic benefits and needs to be appropriately debated. The paper presents calculation of recoverability/recyclability rate for different typologies of vehicles representative of railway transport; calculation is performed on the basis of primary data and according to the recyclability and recoverability calculation method issued by UNIFE in the context of Product Category Rules (PCR). The typologies of railway vehicles taken into account are electric metro, diesel commuter train and high-speed electric train. The analysis envisages also to replicate the calculation in case innovative materials and manufacturing technologies are adopted in the construction of car-body structure. Results show that recyclability/recoverability rates are abundantly over the quota of 90% for each one of the three trains, these latter being made in major part of metals that benefit from very efficient recovery processes. The adoption of innovative materials and manufacturing technologies for car-body structure involves a scarce reduction of recyclability and recoverability rates (about 2% and 0.2% respectively) due to the introduction of components and materials characterized by

  10. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2014-05-01

    Full Text Available The concept of the circular economy proposes new patterns of production, consumption and use, based on circular flows of resources. Under a scenario where there is a global shift towards the circular economy, this paper discusses the advent of two parallel and yet-to-be-connected trends for Australia, namely: (i responsible minerals supply chains and (ii additive manufacturing, also known as 3D production systems. Acknowledging the current context for waste management, the paper explores future interlinked questions which arise in the circular economy for responsible supply chains, additive manufacturing, and metals recycling. For example, where do mined and recycled resources fit in responsible supply chains as inputs to responsible production? What is required to ensure 3D production systems are resource efficient? How could more distributed models of production, enabled by additive manufacturing, change the geographical scale at which it is economic or desirable to close the loop? Examples are given to highlight the need for an integrated research agenda to address these questions and to foster Australian opportunities in the circular economy.

  11. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  12. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR Prepared Using Hot Press Forging (HPF Process

    Directory of Open Access Journals (Sweden)

    Azlan Ahmad

    2017-09-01

    Full Text Available Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  13. On the Role of Processing Parameters in Producing Recycled Aluminum AA6061 Based Metal Matrix Composite (MMC-AlR) Prepared Using Hot Press Forging (HPF) Process.

    Science.gov (United States)

    Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah

    2017-09-19

    Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.

  14. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  15. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  16. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  17. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  18. Report on joint research in fiscal 1999. Research and development of technology to promote recycling of non-ferrous metal materials (Report on achievement in researches of demonstration tests and total system technology); 1999 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu seika hokokusho. Jissho shiken kenkyu, total system gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Development has been in progress on promotion of recycling the non-ferrous metal materials, particularly aluminum, base metals and rare metals (such as copper). For aluminum, researches were made on demonstration of the crystal separation process, vacuum deposition process, molten scrap cleaning technology, and residual dross utilizing technology. In the crystal separation process to remove Fe and Si, and the vacuum deposition process to remove Zn, trial operation and adjustments were performed on the demonstration and testing facilities, making simulation in the scale of 1000 tons a month possible. In the molten scrap cleaning technology, discussions were given on a method to install on the trough a filter permitting micro inclusions in the molten scrap, but no results as have been expected were obtained. The residual dross was used on a trial basis for applications such as road aggregate and refractory materials. In the exhaust treatment, it was recognized effective that activated carbon and slaked lime are used simultaneously to remove hydrochloric acid and dioxins. In developing a technology to regenerate high-grade copper from sludge dust, discussions were given on design, fabrication, and trial operation of the demonstration facilities, partly by using a demonstration plant, with regard to the five related technologies including a technology for high precision refining of scraps, and high-speed metal melting technology. (NEDO)

  19. Composition of waste materials and recyclables

    DEFF Research Database (Denmark)

    Götze, Ramona

    involves several steps to prepare the samples mechanically and/or chemically for final analysis. Not all sample preparation methods are equally well suited for specific waste characterization purposes. The correctness of results and practical feasibility of sample preparation was strongly affected...... for future modelling and assessment of waste management systems. The analyzed fractions were selected based on material properties with relevance for potential recycling processes. The physico-chemical analysis revealed chemical differences between residual and source-segregated samples for several fractions....... The results for parameters associated with organic matter confirmed the idea of cross-contaminated recyclables in residual waste, whereas the results for heavy metals and trace elements were more complex. For many fractions rather high metal contents were found to be intrinsic properties of the recyclables...

  20. Recycling of petroleum-contaminated sand.

    Science.gov (United States)

    Taha, R; Ba-Omar, M; Pillay, A E; Roos, G; al-Hamdi, A

    2001-08-01

    The environmental impact of using petroleum-contaminated sand (PCS) as a substitute in asphalt paving mixtures was examined. An appreciable component of PCS is oily sludge, which is found as the dregs in oil storage tanks and is also produced as a result of oil spills on clean sand. The current method for the disposal of oily sludge is land farming. However, this method has not been successful as an oil content of reuse of the sludge in asphalt paving mixtures was therefore considered as an alternative. Standard tests and environmental studies were conducted to establish the integrity of the materials containing the recycled sludge. These included physical and chemical characterization of the sludge itself, and an assessment of the mechanical properties of materials containing 0%, 5%, 22% and 50% oily sludge. The blended mixtures were subjected to special tests, such as Marshall testing and the determination of stability and flow properties. The experimental results indicated that mixtures containing up to 22% oily sludge could meet the necessary criteria for a specific asphalt concrete wearing course or bituminous base course. To maximize the assay from the recycled material, the environmental assessment was restricted to the 50% oily sludge mixture. Leachates associated with this particular mixture were assayed for total organic residue and certain hazardous metal contaminants. The results revealed that the organics were negligible, and the concentrations of the metals were not significant. Thus, no adverse environmental impact should be anticipated from the use of the recycled product. Our research showed that the disposal of oily sludge in asphalt paving mixtures could possibly yield considerable savings per tonne of asphalt concrete, and concurrently minimize any direct impact on the environment.

  1. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  2. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  3. Antimony recycling in the United States in 2000

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  4. Electrochemical recycling of metals from slags and flyash; Elektrokemisk metallaatervinning ur slagg och flygaska

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerefors, Fredrik; Ulrich, Christian (Linkoepings Univ., Linkoeping (Sweden))

    2009-11-15

    The main objective with this project was to explore the possibility to employ electrochemical methods to reduce the metal content in waste products (slag and fly ash) from waste incineration facilities. The basic idea was to first dissolve the waste products in acid, and then to reduce and deposit as much as possible of the metal ions onto an electrode surface. Experiments were further performed to determine to which extent the deposited metals could be reoxidized into a separate and clean acidic solution (with metal recycling in mind). Parameters like the pH, deposition potential and time, and electrode area were investigated. The results clearly indicated that it to a large extent was possible to decrease the metal concentration in the slag and flyash, more than 90% of the copper ions could for example be extracted from the initial acidic slurry. However, a very strong acid was necessary to dissolve the waste products, and it was further necessary to increase the pH in this solution prior to the electrochemical reduction. In the report, some suggestions for future activities at a larger scale will also be addressed

  5. Secondary resources and recycling in developing economies

    International Nuclear Information System (INIS)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-01-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH and S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for “green economy”

  6. An Analysis of Regulatory Strategies for Recycling and Re-Use of Metals in Australia

    Directory of Open Access Journals (Sweden)

    Wayne Gumley

    2014-04-01

    Full Text Available This article considers regulatory strategies that promote more efficient use of material inputs within the Australian economy, with particular focus on recycling and recovery of metals, drawing upon the concept of a “circular economy”. It briefly reviews the nature of regulation and trends in regulatory strategies within changing policy contexts, and then examines the regulatory framework applicable to the various phases in the life cycle of metals, ranging from extraction of minerals to processing and assimilation of metals into finished products, through to eventual disposal of products as waste. Discussion focuses upon the regulatory strategies applied in each phase and the changing roles of government and business operators within global distribution networks. It is concluded that the prevailing political agenda favoring deregulation and reduced taxation may be a major barrier to development of new styles of regulation and more effective use of taxation powers that is needed to support a more circular economy in metals. The implication for future research is the need to substantiate the outcomes of reflexive regulatory strategies with well-designed empirical studies.

  7. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  8. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......-zero pattern was used to describe historical changes in the definition and components of waste fractions. Variation array was applied to determine the relationship between waste treatment and disposal options. As a result, compositional data analysis technique enables to analyze waste data regardless...

  9. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  10. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    Science.gov (United States)

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A study on the application of standards for clearance of metal waste generated during the decommissioning of NPP by using the RESRAD-RECYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Kim, Dong Min; Lee, Sang Heon [Chosun University, Gwangju (Korea, Republic of)

    2016-12-15

    The metal waste generated during nuclear power plant decommissioning constitutes a large proportion of the total radioactive waste. This study investigates the current status of domestic and international regulatory requirements for clearance and the clearance experience of domestic institutions. The RESRAD-RECYCLE code was used for analyzing the clearance of the metal wastes generated during actual nuclear power plant decommissioning, and assessment of the exposure dose of twenty-six scenarios was carried out. The evaluation results will be useful in preliminary analysis of clearance and recycling during nuclear power plant decommissioning. As a next step, the effects of reducing disposal costs by clearance can be studied.

  12. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  13. [Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    A critical requirement in DOE's efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP's ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities

  14. On the glass transition of the one-component metallic melts

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.

    2017-01-01

    Roč. 475, October (2017), s. 362-367 ISSN 0022-0248 Institutional support: RVO:61388998 Keywords : equilibrium and non-equilibrium solidification * criterion of the phase transition scenario * one-component metal melts Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.751, year: 2016 http://ac.els-cdn.com/S0022024817304281/1-s2.0-S0022024817304281-main.pdf?_tid=a12ba97e-873b-11e7-b6be-00000aacb35e&acdnat=1503407763_5cdbcdb15d504baf5f8dfb94886b3100

  15. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  16. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building

    Directory of Open Access Journals (Sweden)

    Murat Kucukvar

    2016-01-01

    Full Text Available The current waste management literature lacks a comprehensive LCA of the recycling of construction materials that considers both process and supply chain-related impacts as a whole. Furthermore, an optimization-based decision support framework has not been also addressed in any work, which provides a quantifiable understanding about the potential savings and implications associated with recycling of construction materials from a life cycle perspective. The aim of this research is to present a multi-criteria optimization model, which is developed to propose economically-sound and environmentally-benign construction waste management strategies for a LEED-certified university building. First, an economic input-output-based hybrid life cycle assessment model is built to quantify the total environmental impacts of various waste management options: recycling, conventional landfilling and incineration. After quantifying the net environmental pressures associated with these waste treatment alternatives, a compromise programming model is utilized to determine the optimal recycling strategy considering environmental and economic impacts, simultaneously. The analysis results show that recycling of ferrous and non-ferrous metals significantly contributed to reductions in the total carbon footprint of waste management. On the other hand, recycling of asphalt and concrete increased the overall carbon footprint due to high fuel consumption and emissions during the crushing process. Based on the multi-criteria optimization results, 100% recycling of ferrous and non-ferrous metals, cardboard, plastic and glass is suggested to maximize the environmental and economic savings, simultaneously. We believe that the results of this research will facilitate better decision making in treating construction and debris waste for LEED-certified green buildings by combining the results of environmental LCA with multi-objective optimization modeling.

  17. Acid extraction of molybdenum, nickel and cobalt from mineral sludge generated by rainfall water at a metal recycling plant.

    Science.gov (United States)

    Vemic, M; Bordas, F; Guibaud, G; Comte, S; Joussein, E; Lens, P N L; Van Hullebusch, E D

    2016-01-01

    This study investigated the leaching yields of Mo, Ni and Co from a mineral sludge of a metal recycling plant generated by rainfalls. The investigated mineral sludge had a complex heterogeneous composition, consisting of particles of settled soil combined with metal-bearing particles (produced by catalysts, metallic oxides and battery recycling). The leaching potential of different leaching reagents (stand-alone strong acids (HNO3 (68%), H2SO4 (98%) and HCl (36%)) and acid mixtures (aqua regia (nitric + hydrochloric (1:3)), nitric + sulphuric (1:1) and nitric + sulphuric + hydrochloric (2:1:1)) was investigated at changing operational parameters (solid-liquid (S/L) ratio, leaching time and temperature), in order to select the leaching reagent which achieves the highest metal leaching yields. Sulphuric acid (98% H2SO4) was found to be the leachant with the highest metal leaching potential. The optimal leaching conditions were a three-stage successive leaching at 80 °C with a leaching time of 2 h and S/L ratio of 0.25 g L(-1). Under these conditions, the achieved mineral sludge sample leaching yields were 85.5%, 40.5% and 93.8% for Mo, Ni and Co, respectively. The higher metal leaching potential of H2SO4 in comparison with the other strong acids/acid mixtures is attributed to the fact that H2SO4 is a diacidic compound, thus it has more H(+) ions, resulting in its stronger oxidizing power and corrosiveness.

  18. Sustainability and the Recycling of Words

    Science.gov (United States)

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  19. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A Practical Recycling Project . . .

    Science.gov (United States)

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  1. 21 CFR 888.3320 - Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with a... Devices § 888.3320 Hip joint metal/metal semi-constrained, with a cemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with a cemented acetabular...

  2. 21 CFR 888.3330 - Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/metal semi-constrained, with an... Devices § 888.3330 Hip joint metal/metal semi-constrained, with an uncemented acetabular component, prosthesis. (a) Identification. A hip joint metal/metal semi-constrained, with an uncemented acetabular...

  3. Bulk forming of industrial micro components in conventional metals and bulk metallic glasses

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Paldan, Nikolas Aulin; Eriksen, Rasmus Solmer

    2007-01-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic...

  4. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    Science.gov (United States)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  5. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  6. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  7. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed.

  8. Radiation dose assessments to support evaluations of radiological control levels for recycling or reuse of materials and equipment

    International Nuclear Information System (INIS)

    Hill, R.L.; Aaberg, R.L.; Baker, D.A.; Kennedy, W.E. Jr.

    1995-07-01

    Pacific Northwest Laboratory is providing Environmental Protection Support and Assistance to the USDOE, Office of Environmental Guidance. Air, Water, and Radiation Division. As part of this effort, PNL is collecting data and conducting technical evaluations to support DOE analyses of the feasibility of developing radiological control levels for recycling or reuse of metals, concrete, or equipment containing residual radioactive contamination from DOE operations. The radiological control levels will be risk-based, as developed through a radiation exposure scenario and pathway analysis. The analysis will include evaluation of relevant radionuclides, potential mechanisms of exposure, and both health and non-health-related impacts. The main objective of this report is to develop a methodology for establishing radiological control levels for recycle or reuse. This report provides the results of the radiation exposure scenario and pathway analyses for 42 key radionuclides generated during DOE operations that may be contained in metals or equipment considered for either recycling or reuse. The scenarios and information developed by the IAEA. Application of Exemption Principles to the Recycle and Reuse of Materials from Nuclear Facilities, are used as the initial basis for this study. The analyses were performed for both selected worker populations at metal smelters and for the public downwind of a smelter facility. Doses to the public downwind were estimated using the US (EPA) CAP88-PC computer code with generic data on atmospheric dispersion and population density. Potential non-health-related effects of residual activity on electronics and on film were also analyzed

  9. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  10. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  11. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries

    International Nuclear Information System (INIS)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de

    2014-01-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO 4 ) 2 .H 2 O) and lanthanum sulfate (La 2 (SO 4 ) 3 .H 2 O) as the major recovered components. Iron was recovered as Fe(OH) 3 and FeO. Manganese was obtained as Mn 3 O 4 .The recovered Ni(OH) 2 and Co(OH) 2 were subsequently used to synthesize LiCoO 2 , LiNiO 2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  12. Recovery concept of value metals from automotive lithium-ion batteries

    International Nuclear Information System (INIS)

    Traeger, Thomas; Friedrich, Bernd

    2015-01-01

    A recycling process for automotive lithium-ion batteries was developed. The process combines a mechanical pretreatment with pyrometallurgical recycling process step to recover all battery components, and realize cost-neutral and sustainable recycling. The focus of the research work is the development of a pyrometallurgical process step to recover especially Li out of electrode mass powder which is the fine fraction extracted mechanically from spent Li-ion batteries. Two metallurgical treatment technologies were investigated: direct vacuum evaporation of Li and recovery of metallic Li by distillation, and a selective entraining gas evaporation of Li and recovery of lithium oxide.

  13. Platinum recycling in the United States in 1998

    Science.gov (United States)

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  14. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  15. Polybrominated diphenyl ethers (PBDEs) and heavy metals in road dusts from a plastic waste recycling area in north China: implications for human health.

    Science.gov (United States)

    Tang, Zhenwu; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2016-01-01

    Road dusts were collected from an area where intense mechanical recycling of plastic wastes occurs in Wen'an, north China. These dusts were investigated for polybrominated diphenyl ethers (PBDEs) and heavy metals contamination to assess the health risk related to these components. Decabromodiphenyl ether (BDE-209) and Σ21PBDE concentrations in these dusts ranged from 2.67 to 10,424 ng g(-1) and from 3.23 to 10,640 ng g(-1), respectively. These PBDE concentrations were comparable to those observed in road dust from e-waste recycling areas but were 1-2 orders of magnitude higher than concentrations in outdoor or road dusts from other areas. This indicates that road dusts in the study area have high levels of PBDE pollution. BDE-209 was the predominant congener, accounting for 86.3% of the total PBDE content in dusts. Thus, commercial deca-BDE products were the dominant source. The average concentrations of As, Cd, Cr, Cu, Hg, Pb, Sb, and Zn in these same dust samples were 10.1, 0.495, 112, 54.7, 0.150, 71.8, 10.6, and 186 mg kg(-1), respectively. The geoaccumulation index suggests that road dusts in this area are moderately to heavily polluted with Cd, Hg, and Sb. This study shows that plastic waste processing is a major source of toxic pollutants in road dusts in this area. Although the health risk from exposure to dust PBDEs was low, levels of some heavy metals in this dust exceeded acceptable risk levels for children and are of great concern.

  16. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    Energy Technology Data Exchange (ETDEWEB)

    Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu [Department of Chemical and Environmental Engineering, University of Mauritius, Réduit (Mauritius); Mohee, Romeela [Professor of Chemical and Environmental Engineering, National Research Chair in Solid Waste Management, Mauritius Research Council (Mauritius); Kowlesser, Prakash [Solid Waste/Beach Management Unit, Ministry of Local Government and Outer Islands (Mauritius)

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described and an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.

  17. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    Science.gov (United States)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  18. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    International Nuclear Information System (INIS)

    De Almeida, Valmor F.

    2011-01-01

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  19. Progress on Plant-Level Components for Nuclear Fuel Recycling: Commonality

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-15

    Progress made in developing a common mathematical modeling framework for plant-level components of a simulation toolkit for nuclear fuel recycling is summarized. This ongoing work is performed under the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which has an element focusing on safeguards and separations (SafeSeps). One goal of this element is to develop a modeling and simulation toolkit for used nuclear fuel recycling. The primary function of the SafeSeps simulation toolkit is to enable the time-dependent coupling of separation modules and safeguards tools (either native or third-party supplied) that simulate and/or monitor the individual separation processes in a separations plant. The toolkit integration environment will offer an interface for the modules to register in the toolkit domain based on the commonality of diverse unit operations. This report discusses the source of this commonality from a combined mathematical modeling and software design perspectives, and it defines the initial basic concepts needed for development of application modules and their integrated form, that is, an application software. A unifying mathematical theory of chemical thermomechanical network transport for physicochemical systems is proposed and outlined as the basis for developing advanced modules. A program for developing this theory from the underlying first-principles continuum thermomechanics will be needed in future developments; accomplishment of this task will enable the development of a modern modeling approach for plant-level models. Rigorous, advanced modeling approaches at the plant-level can only proceed from the development of reduced (or low-order) models based on a solid continuum field theory foundation. Such development will pave the way for future programmatic activities on software verification, simulation validation, and model uncertainty quantification on a scientific basis; currently, no satisfactory foundation exists for

  20. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW

    Directory of Open Access Journals (Sweden)

    N. Kolesnyk

    2014-09-01

    Full Text Available Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of Ukrainian rivers belong to polluted and very polluted. Of special interest are the studies of the distribution of heavy metals in phytoplankton, zooplankton, and zoobenthos because these components occupy a certain position in fish food chain. The presence of heavy metals in the natural food base showed that, on one hand, it could accumulate heavy metals in large amounts in such a way cleaning the water; and on the other hand, the heavy metals could migrate in the food web and contaminate fish. Ones of objects, which should be given attention when assessing toxicologic pollution, are aquatic plants, in particular phytoplankton. Studies showed that the accumulation of heavy metals in plants occurred first of all by their adsorption on the cellular wall. It explains the maximum adsorption of heavy metals by plants immediately after introduction of heavy metals into their culture. Fish as a rule occupy in the food web of water bodies one of the last places. They actively move in the aquatic environment and accumulating heavy metals at the same time they provide the most integrated and precise estimate of environmental pollution. By analyzing the distribution of heavy metals in fish organs and tissues, depending on their ability to accumulate them, it can be noted that the accumulation is the most intensive in such organs as gills, liver, and kidneys. Usually, their lowest content is observed in muscles that is important for human life because they are the main

  1. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  2. Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates.

    Science.gov (United States)

    Bestgen, Janile O; Cetin, Bora; Tanyu, Burak F

    2016-07-01

    Leaching of metals (calcium (Ca), chromium (Cr), copper, (Cu), iron (Fe), and zinc (Zn)) of recycled concrete aggregates (RCAs) were investigated with four different leachate extraction methods (batch water leach tests (WLTs), toxicity leaching procedure test (TCLP), synthetic precipitation leaching procedure test (SPLP), and pH-dependent leach tests). WLTs were also used to perform a parametric study to evaluate factors including (i) effects of reaction time, (ii) atmosphere, (iii) liquid-to-solid (L/S) ratio, and (iv) particle size of RCA. The results from WLTs showed that reaction time and exposure to atmosphere had impact on leaching behavior of metals. An increase in L/S ratio decreased the effluent pH and all metal concentrations. Particle size of the RCA had impact on some metals but not all. Comparison of the leached concentrations of metals from select RCA samples with WLT method to leached concentrations from TCLP and SPLP methods revealed significant differences. For the same RCA samples, the highest metal concentrations were obtained with TCLP method, followed by WLT and SPLP methods. However, in all tests, the concentrations of all four (Cr, Cu, Fe, and Zn) metals were below the regulatory limits determined by EPA MCLs in all tests with few exceptions. pH-dependent batch water leach tests revealed that leaching pattern for Ca is more cationic whereas for other metals showed more amphoteric. The results obtained from the pH-dependent tests were evaluated with geochemical modeling (MINTEQA2) to estimate the governing leaching mechanisms for different metals. The results indicated that the releases of the elements were solubility-controlled except Cr.

  3. Properties of concrete blocks prepared with low grade recycled aggregates.

    Science.gov (United States)

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  4. DEVELOPMENT OF A SUSTAINABLE CONCRETE WASTE RECYCLING SYSTEM

    OpenAIRE

    Truptimala Patanaik*; Niharika Patel; Shilpika Panda; Subhasmita Prusty

    2016-01-01

    Construction solid waste has caused serious environmental problems. Reuse, recycling and reduction of construction materials have been advocated for many years, and various methods have been investigated. There may be six type of building materials: plastic, paper, timber, metal, glass and concrete which can be reused and recycled. This paper examines the rate of reusable & recyclable concrete waste. On the other hand, the reuse of construction waste is highly essential ...

  5. Overview of recycling technologies for decommissioned materials. Lessons learned during the dismantling of a small PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Emond, O.; Ponnet, M.

    2001-01-01

    Full text: SCK CEN is dismantling its 11 MWe PWR reactor. The reactor was shutdown in 1987 after 25 years of operation and the dismantling started in 1990. For the management of the low radioactive materials, we apply a strategy promoting the minimisation of the production of radioactive waste and hence the maximisation of the production of recycled materials while keeping the costs as low as possible. The recycled materials are either reused in the non- nuclear industry as raw materials (metal scrap industry or building industry for the concrete) or recycled in the nuclear industry for specific applications (reuse of metals for fabrication of shielding, potential reuse of concrete for production of 'radioactive mortar'). The clearance of radioactive materials and their reuse require the strict respect of procedures and specifications. In our case, the Health Physics department under supervision of the Competent Authority establishes the procedures. This procedure is still a case by case practice but the legislation in Belgium is progressively put in place. For the recycling in the nuclear industry, we must respect the specifications of the end-user. Up to now, we have recycled low radioactive metals for the fabrication of shielding in the USA, so we had to respect the specifications of the melting facility and to obtain the authorisations for the transport abroad and for the transfer of property. Besides the radioactive waste route, we are using several evacuation routes for the dismantled materials: Evacuation of the cleared metals (iron, stainless steel, copper, electric motors...) to a local scrap dealer; Evacuation of metals to the Studsvik melting facility situated in Sweden: after clearance by the Swedish Authority, the non radioactive materials are sent to a local scrap dealer and the secondary radioactive waste is sent back to Belgium and conditioned by Belgoprocess. This technology further decontaminates the metals and allows performing an accurate

  6. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    Energy Technology Data Exchange (ETDEWEB)

    Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing

  7. A Study on the Future Issues Regarding the Small Home Appliance Recycling Law -Based on Comparison with the Other Recycling-Related Laws-

    OpenAIRE

    小林, 寛

    2014-01-01

    The Small Home Appliance Recycling Law was enacted in August 2012 and took effect in April 2013 for the purpose of collecting and recycling valuable metals included in used small home appliances such as mobile phones. This Law serves as a promotion scheme, which encourages parties concerned to join the system on a voluntary basis and implements recycling based on the current situation in each region under the cooperation among parties, unlike the Home Appliance Recycling Law enacted in 1998 t...

  8. Energy and environmental impacts of electric vehicle battery production and recycling

    International Nuclear Information System (INIS)

    Gaines, L.; Singh, M.

    1995-01-01

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle

  9. Aging of metal components in US nuclear reactors

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Strosnider, J.R.

    1998-01-01

    This paper presents an overview of the aging of metal components in U.S. Light Water Reactors. The types of degradation being experienced in components such as the pressure vessel, piping, reactor internals, and steam generators, and the programs being implemented to manage the degradation are discussed. (author)

  10. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future

    International Nuclear Information System (INIS)

    Man, Ming; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. - Highlights: ► We recommended to ban uses of deca-BDE in addition to penta- and octa-BDEs. ► We suggested to replace PVC in electronic products with non-chlorinated polymers. ► Spend less time on debating responsibilities and definition of e-waste and recycling. ► Proposed to work more on eliminating sources and potentials of toxic substances

  11. A novel approach to estimating potential maximum heavy metal exposure to ship recycling yard workers in Alang, India

    International Nuclear Information System (INIS)

    Deshpande, Paritosh C.; Tilwankar, Atit K.; Asolekar, Shyam R.

    2012-01-01

    The 180 ship recycling yards located on Alang–Sosiya beach in the State of Gujarat on the west coast of India is the world's largest cluster engaged in dismantling. Yearly 350 ships have been dismantled (avg. 10,000 ton steel/ship) with the involvement of about 60,000 workers. Cutting and scrapping of plates or scraping of painted metal surfaces happens to be the commonly performed operation during ship breaking. The pollutants released from a typical plate-cutting operation can potentially either affect workers directly by contaminating the breathing zone (air pollution) or can potentially add pollution load into the intertidal zone and contaminate sediments when pollutants get emitted in the secondary working zone and gets subjected to tidal forces. There was a two-pronged purpose behind the mathematical modeling exercise performed in this study. First, to estimate the zone of influence up to which the effect of plume would extend. Second, to estimate the cumulative maximum concentration of heavy metals that can potentially occur in ambient atmosphere of a given yard. The cumulative maximum heavy metal concentration was predicted by the model to be between 113 μg/Nm 3 and 428 μg/Nm 3 (at 4 m/s and 1 m/s near-ground wind speeds, respectively). For example, centerline concentrations of lead (Pb) in the yard could be placed between 8 and 30 μg/Nm 3 . These estimates are much higher than the Indian National Ambient Air Quality Standards (NAAQS) for Pb (0.5 μg/Nm 3 ). This research has already become the critical science and technology inputs for formulation of policies for eco-friendly dismantling of ships, formulation of ideal procedure and corresponding health, safety, and environment provisions. The insights obtained from this research are also being used in developing appropriate technologies for minimizing exposure to workers and minimizing possibilities of causing heavy metal pollution in the intertidal zone of ship recycling yards in India. -- Highlights

  12. Recovering recyclable materials from shredder residue

    Science.gov (United States)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.

    1994-02-01

    Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.

  13. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  14. Contribution of nuclear analysis methods to the certification of BCR reference materials for non-metals in non-ferrous metals

    International Nuclear Information System (INIS)

    Pauwels, J.

    1979-01-01

    A number of reference materials for oxygen in different non-ferrous metals have been certified by BCR in the frame of a multidisciplinary Community project. The contribution of nuclear analysis methods is illustrated by several examples concerning the optimization of sample preparation techniques, the analysis of low and high oxygen non-ferrous metals and the extension of the program to other non-metals, especially nitrogen and carbon. (author)

  15. A Fundamental Metric for Metal Recycling Applied to Coated Magnesium

    NARCIS (Netherlands)

    Meskers, C.E.M.; Reuter, M.A.; Boin, U.; Kvithyld, A.

    2008-01-01

    A fundamental metric for the assessment of the recyclability and, hence, the sustainability of coated magnesium scrap is presented; this metric combines kinetics and thermodynamics. The recycling process, consisting of thermal decoating and remelting, was studied by thermogravimetry and differential

  16. Metal losses in pyrometallurgical operations - A review.

    Science.gov (United States)

    Bellemans, Inge; De Wilde, Evelien; Moelans, Nele; Verbeken, Kim

    2018-05-01

    Nowadays, a higher demand on a lot of metals exists, but the quantity and purity of the ores decreases. The amount of scrap, on the other hand, increases and thus, recycling becomes more important. Besides recycling, it is also necessary to improve and optimize existing processes in extractive and recycling metallurgy. One of the main difficulties of the overall-plant recovery are metal losses in slags, in both primary and secondary metal production. In general, an increased understanding of the fundamental mechanisms governing these losses could help further improve production efficiencies. This review aims to summarize and evaluate the current scientific knowledge concerning metal losses and pinpoints the knowledge gaps. First, the industrial importance and impact of metal losses in slags will be illustrated by several examples from both ferrous and non-ferrous industries. Throughout the remainder of this review, the main focus will be put on the particular issues in copper industry. In a second section, the different types of metal losses in slags will be discussed. Generally, metal losses in slags can be subdivided into two types: chemical losses and physical losses. The fundamental insights concerning the responsible mechanisms will be discussed for each type. Subsequently, an overview of the most frequently used techniques for research investigations of the losses will be given. In a fourth section, a more detailed overview will be given on the post-processing treatment of metal-containing slags, i.e. performing slag cleaning operations. The most frequently applied methods will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  18. Physics of plutonium recycling: volume V. Plutonium recycling in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    As part of a programme proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed. In this report, the multi-recycle performance of the metal-fuelled benchmark is evaluated. Benchmark results assess the reactor performance and toxicity behaviour in a closed nuclear fuel cycle for a parametric variation of the conversion ratio between 0.5 and 1.0. Results indicate that a fast burner reactor closed fuel cycle can be utilised to significantly reduce the radiotoxicity originating in the LWR cycle which would otherwise be destined for burial. (Author). tabs., figs., refs

  19. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    Science.gov (United States)

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. FY 1999 project on the development of new industry support type international standards. Standardization of a method to calculate recycling rates of automobile products; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Jidosha seihin no recycle ritsu no santei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose not only of solving the environmental problem but also of making effective use of resources and contributing to the appropriate treatment in the stage of the used resource, study was conducted of the standardization of a method to calculate recycle rates of automobile products. The FY 1999 results were summarized. In this fiscal year, to give definition of the recycle potentiality and thermal recycle, the following were proceeded with: trial evaluation of recycle potentiality, survey of the actual state of recycling of rubber/plastic parts, study of the requirements to realize the recycle potentiality, study of the requirements to realize the thermal recycle, and approaches to the international standardization. As to the trial evaluation of the recycle potentiality, tests to dismantle automobiles were made to assess the dismantlement, separation and recognition. The requirements to realize the recycle potentiality were studied. It was found out that few non-metallic materials are not recycled in the present situation. The paper studied what the requirements to realize the recycle potentiality and thermal recycle should be like basically since there is no recognition internationally unified. (NEDO)

  1. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW)

    OpenAIRE

    N. Kolesnyk

    2014-01-01

    Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of...

  2. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    Science.gov (United States)

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. E-waste: development of recycling process and chemical characterization of circuit printed - motherboard

    International Nuclear Information System (INIS)

    Junior, O.L.F.; Vargas, R.A.; Andreoli, M.; Martinelli, J.R.; Seo, E.S.M.

    2011-01-01

    The electro-electronic industry has been regulated by the National Politic of Solid Residues Act (PNRS) and Bill no. 7.404, concerning the actions, procedures, and method to collect, recycle and promotion of environmentally acceptable final destination of residues. The present work contributes to develop recycling process of printed circuit used in microcomputers and in its chemical characterization. The experimental procedure consisted of grinding, classification, magnetic and electrostatic separation, and separation based on density difference, followed by chemical characterization of the metallic and non metallic materials in the motherboard. It was determined that the amounts of Ag, Al, Ba, Cl, Cr, Cu, Fe, Mn, Pb, and Zn in the residue are above the toxicity allowable levels, and they are in the samples of the decanted material. Among the samples of the floating material, Al, Ba, Br, Ca, Cu, Fe, Pb (in less quantity), Si (in more quantity), and Sn, Ti and Zn were detected. Those materials can be useful in the preparation of red ceramics. (author)

  4. Closing the Loop: Key Role of Iron in Metal-Bearing Waste Recycling

    Directory of Open Access Journals (Sweden)

    Sedlakova-Kadukova J.

    2017-09-01

    Full Text Available The role of iron in metal-bearing waste bioleaching was studied. Four various types of waste (printed circuit boards (PCBs, Ni-Cd batteries, alkaline batteries and Li-ion batteries were treated by bioleaching using the acidophilic bacteria A. ferrooxidans and A. thiooxidans (separately or in mixture. Role of main leaching agents (Fe3+ ions or sulphuric acid was simulated in abiotic experiments. Results showed that oxidation abilities of Fe3+ ions were crucial for recovery of Cu and Zn from PCBs, with the efficiencies of 88% and 100%, respectively. To recover 68% of Ni from PCBs, and 55% and 100% of Ni and Cd, respectively, from Ni-Cd batteries both oxidation action and hydrolysis of Fe3+ were required. The importance of Fe2+ ions as a reducing agent was showed in bioleaching of Co from Li-ion batteries and Mn from alkaline batteries. The efficiency of the processes has increased by 70% and 40% in Co and Mn bioleaching, respectively, in the presence of Fe2+ ions. Based on the results we suggest the integrated biometallurgical model of metal-bearing waste recycling in the effort to develop zero-waste and less energy-dependent technologies.

  5. A study of liberation and separation process of metals from printed circuit boards (PCBs) scrap

    International Nuclear Information System (INIS)

    Noorliyana, H.A.; Zaheruddin, K.; Mohd Fazlul Bari; M. Sri Asliza; Nurhidayah, A.Z.; Kamarudin, H.

    2009-01-01

    Since the metallic elements are covered with or encapsulated by various plastic or ceramic materials on printed circuit boards, a mechanical pre-treatment process allowing their liberation and separation is first needed in order to facilitate their efficient extraction with hydrometallurgy route. Even though many studies have been performed on the mechanical pre-treatment processing for the liberation and separation of the metallic components of printed circuit boards scrap, further studies are required to pave the way for efficient recycling of waste printed circuit boards through a combination of mechanical pre-treatment and hydrometallurgical technology. In this work, a fundamental study has been carried out on the mechanical pre-treatment that is necessary to recover metallic concentrates from printed circuit boards scraps. The most important problem is to separate or release particles from the associated gangue minerals at the possible liberation particle size. The distribution of metallic elements has been also investigated in relation to the particle size of the milled printed circuit boards. The samples of printed circuit boards were separated into the magnetic and non-magnetic fractions by Rare-earth Roll Magnetic separator. Thereafter, the magnetic and non-magnetic fractions were separated to heavy fraction (metallic elements) and light fraction (plastic) by Mozley Laboratory Table Separator. The recovery ratios and the evaluation of the metallic concentrates recovered by each separation process were also investigated. This study is expected to provide useful data for the efficient mechanical separation of metallic components from printed circuit boards scraps. (author)

  6. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Pearce, J; Descourvieres, C; Linge, K L; Busetti, F; Spadek, T

    2010-03-01

    Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  7. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition); Control de fuentes huérfanas y otros materiales radiactivos en las industrias de reciclado y producción de metales. Guía de seguridad específica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  8. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  9. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, C.; Ortiz Ramis, T.; Pinilla Matos, J.L.; Fuentes Fuentes, L.; Gonzalez, C.O.

    2006-01-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  10. Specific training in Radiation Protection for workers in the scrap metal recycling industry in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Correa Sainz, C.; Ortiz Ramis, T. [ENRESA. Madrid (Spain); Pinilla Matos, J.L.; Fuentes Fuentes, L. [ENRESA. Centro de Almacenamiento El Cabril, Cordoba (Spain); Gonzalez, C.O. [AdQ, Madrid (Spain)

    2006-07-01

    Enresa, as signatory of the Spanish Protocol on radiological surveillance of metal materials, collaborates in the training programme for workers in the metal recycling sector. Since 1998 a total of 16 training courses have been held with a total of 332 workers from smelting and recovery companies. Furthermore information and publicity campaigns have been held for employees in the metal industry. Two types of courses are held: a Basic Course directed at first responders and an specialized Advanced Course concentrating on radiological characterisation of detected material. The evaluation of the courses by the participants has always been very positive, with the Basic Course being more popular. The practical classes are very much appreciated by the participants. In the future the Basic Course will be held once or twice per year, according to demand, and the Advanced Course will be held every two years as a minimum and always providing there is a minimum number of participants. Refresher courses for workers who are already carrying out the tasks of localisation, segregation and characterisation of radioactive material are also planned. (authors)

  11. Status of SFR Metal Fuel Development

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byoung Oon; Kim, Ki Hwan; Kim, Sung Ho

    2013-01-01

    Conclusion: • Metal fuel recycling in SFR: - Enhanced utilization of uranium resource; - Efficient transmutation of minor actinides; - Inherent passive reactor safety; - Proliferation resistance with pyro-electrochemical fuel recycling. • Demonstration of technical feasibility of recycling TRU metal fuel by 2020: - Remote fuel fabrication; - Irradiation performance up to high burnup

  12. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  13. Waste collection systems for recyclables

    DEFF Research Database (Denmark)

    Larsen, Anna Warberg; Merrild, Hanna Kristina; Møller, Jacob

    2010-01-01

    and technical limitations are respected, and what will the environmental and economic consequences be? This was investigated in a case study of a municipal waste management system. Five scenarios with alternative collection systems for recyclables (paper, glass, metal and plastic packaging) were assessed...... and treatment of waste were reduced with increasing recycling, mainly because the high cost for incineration was avoided. However, solutions for mitigation of air pollution caused by increased collection and transport should be sought. (C) 2009 Elsevier Ltd. All rights reserved....

  14. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future

    Energy Technology Data Exchange (ETDEWEB)

    Man, Ming [Croucher Institute for Environmental Sciences, Hong Kong Baptist University (Hong Kong); Naidu, Ravi [Cooperative Research Centre for Contamination Assessment and Remediation of Environments (CRC CARE), University of South Australia (Australia); Wong, Ming H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Hong Kong Baptist University (Hong Kong)

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. - Highlights: ► We recommended to ban uses of deca-BDE in addition to penta- and octa-BDEs. ► We suggested to replace PVC in electronic products with non-chlorinated polymers. ► Spend less time on debating responsibilities and definition of e-waste and recycling. ► Proposed to work more on eliminating sources and potentials of toxic substances.

  15. Incorporation de fines issues de granulats recyclés dans la fabrication de nouveaux liants hydrauliques

    OpenAIRE

    Nelfia , Lisa Oksri

    2015-01-01

    This thesis work focuses on the valorization of recycled aggregates as main component for hydraulic binders. This is included in a current issue of waste management, protection of natural resources and environment, reduction of greenhouse gases emissions in cement production. In France, on 260 millions tons of inert wastes produced per year, 90 millions tons are still stored in non-hazardous landfill. This waste deposit has to be reduced to increase the production of recycled aggregates curre...

  16. An assessment of the potential radiation exposure from residual radioactivity in scrap metal for recycling

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Lee, Kun Jai

    1997-01-01

    With current waste monitoring technology it is reasonable to assume that much of the material designated as low level waste (LLW), generated within nuclear facilities, is in fact uncontaminated. This may include operational wastes, metal and rubble, office waste and discrete items from decommissioning or decontamination operations. Materials that contain only trivial quantities of radionuclides could realistically be exempted or released from regulatory control for recycle or reuse. A criterion for uncontrolled disposal of low-level radioactive contaminated waste is that the radiation exposure of the public and of each individual caused by this disposal is so low that radiation protection measures need not be taken. The International Atomic Energy Agency (IAEA) suggests an annual effective doses of 10 μ Sv as a limit for the individual radiation dose. In 1990, new recommendation on radiation protection standards was developed by International Commission on Radiological Protection (ICRP) to take into account new biological information related to the detriment associated with radiation exposure. Adoption of these recommendations necessitated a revision of the Commission's secondary limits contained in Publication 30, Parts 1 ∼ 4. This study summarized the potential radiation exposure from valuable scrap metal considered to uncontrolled recycle by new ICRP recommendations. Potential exposure pathways to people following were analyzed and relevant models developed. Finally, concentrations leading to an individual dose of 10 μ Sv/yr were calculated for 14 key radionuclides. These potential radiation exposures are compared with the results of an IAEA study. 12 refs., 6 tabs., figs

  17. A novel approach to estimating potential maximum heavy metal exposure to ship recycling yard workers in Alang, India

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Paritosh C.; Tilwankar, Atit K.; Asolekar, Shyam R., E-mail: asolekar@iitb.ac.in

    2012-11-01

    The 180 ship recycling yards located on Alang-Sosiya beach in the State of Gujarat on the west coast of India is the world's largest cluster engaged in dismantling. Yearly 350 ships have been dismantled (avg. 10,000 ton steel/ship) with the involvement of about 60,000 workers. Cutting and scrapping of plates or scraping of painted metal surfaces happens to be the commonly performed operation during ship breaking. The pollutants released from a typical plate-cutting operation can potentially either affect workers directly by contaminating the breathing zone (air pollution) or can potentially add pollution load into the intertidal zone and contaminate sediments when pollutants get emitted in the secondary working zone and gets subjected to tidal forces. There was a two-pronged purpose behind the mathematical modeling exercise performed in this study. First, to estimate the zone of influence up to which the effect of plume would extend. Second, to estimate the cumulative maximum concentration of heavy metals that can potentially occur in ambient atmosphere of a given yard. The cumulative maximum heavy metal concentration was predicted by the model to be between 113 {mu}g/Nm{sup 3} and 428 {mu}g/Nm{sup 3} (at 4 m/s and 1 m/s near-ground wind speeds, respectively). For example, centerline concentrations of lead (Pb) in the yard could be placed between 8 and 30 {mu}g/Nm{sup 3}. These estimates are much higher than the Indian National Ambient Air Quality Standards (NAAQS) for Pb (0.5 {mu}g/Nm{sup 3}). This research has already become the critical science and technology inputs for formulation of policies for eco-friendly dismantling of ships, formulation of ideal procedure and corresponding health, safety, and environment provisions. The insights obtained from this research are also being used in developing appropriate technologies for minimizing exposure to workers and minimizing possibilities of causing heavy metal pollution in the intertidal zone of ship recycling

  18. High levels of antimony in dust from e-waste recycling in southeastern China

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-01-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: → Antimony and arsenic concentrations in dust from e-waste recycling were investigated. → E-waste recycling is an important emerging source of Sb pollution. → Sb/As ratios may help identify the e-waste contamination.

  19. High levels of antimony in dust from e-waste recycling in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xiangyang, E-mail: bixy@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Li, Zhonggen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Zhuang, Xiaochun [Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Han, Zhixuan [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China); Yang, Wenlin [Faculty of Earth Science, China University of Geosciences, Wuhan 430074 (China)

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. - Highlights: {yields} Antimony and arsenic concentrations in dust from e-waste recycling were investigated. {yields} E-waste recycling is an important emerging source of Sb pollution. {yields} Sb/As ratios may help identify the e-waste contamination.

  20. A new non-metallic anchorage system for post-tensioning applications using CFRP tendons

    Science.gov (United States)

    Taha, Mahmoud Reda

    The objective of the work described in this thesis is to design, develop and test a new non-metallic anchorage system for post-tensioning applications using CFRP tendons. The use of a non-metallic anchorage system should eliminate corrosion and deterioration concerns in the anchorage zone. The development of a reliable non-metallic anchorage would provide an important contribution to this field of knowledge. The idea of the new anchorage is to hold the tendon through mechanical gripping. The anchorage consists of a barrel with a conical housing and four wedges. The anchorage components are made of ultra high performance concrete (UHPC) specially developed for the anchorage. Sixteen concrete mixtures with different casting and curing regimes were examined to develop four UHPC mixtures with compressive strengths in excess of 200 MPa. The UHPC mixtures showed very dense microstructures with some unique characteristics. To enhance the fracture toughness of the newly developed UHPC, analytical and experimental analyses were performed. Using 3 mm chopped carbon fibres, a significant increase in the fracture toughness of UHPC was achieved. The non-metallic anchorage was developed with the UHPC with enhanced fracture toughness. The barrel required careful wrapping with CFRP sheets to provide the confinement required to utilize the strength and toughness of the UHPC. Thirty-three anchorages were tested under both static and dynamic loading conditions. The non-metallic anchorage showed excellent mechanical performance and fulfilled the different requirements of a post-tensioning anchorage system. The development of the new non-metallic anchorage will widen the inclusion of CFRP tendons in post-tensioned concrete/masonry structures. The new system will offer the opportunity to exploit CFRP tendons effectively creating an innovative generation of corrosion-free, smart structures.

  1. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  2. Resource Recovery. Redefining the 3 Rs. Reduce...Reuse...Recycle. Resources in Technology.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    Discusses the problems of waste disposal, recycling, and resource recovery. Includes information on the social and cultural impact, the three classes of resource recovery (reuse, direct recycling, and indirect recycling), and specific products (paper, glass, plastics, metals, and so on). Includes a student quiz and possible outcomes. (JOW)

  3. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  4. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°

  5. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  6. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  7. Socio-Spatial Factors Affecting Household Recycling in Townhouses in Pretoria, South Africa

    Directory of Open Access Journals (Sweden)

    Jacques du Toit

    2017-11-01

    Full Text Available Although social factors affecting recycling have been widely researched, the effect of spatial and physical factors posed by medium-density housing, such as townhouses, is less understood. Using the Theory of Planned Behaviour, the relative effect of three sets of factors on household recycling in townhouses are examined, including ‘attitude’ (about recycling, ‘subjective norm’ (social pressure, and ‘perceived behaviour control’ (ability to recycle. A questionnaire survey of 300 households was conducted in Equestria, an enclosed middle-income residential estate consisting of several townhouse complexes. Confirmatory factor analysis verified the three factor measurement model for recycling participation. Both recyclers and non-recyclers showed positive attitudes toward recycling and felt social pressure to recycle. Non-recyclers, however, felt significantly less able to recycle. Most recyclers as well as non-recyclers indicated that certain proposals for increasing recycling may cause them to recycle more, in particular a system through which the management agency arranges access for a recycling company to collect recyclables from strategically located collection points inside the complex. Urban planning and design recommendations for facilitating recycling in townhouses are discussed.

  8. Application of Regulation for recycling metals arising from Decommissioning of an Italian Nuclear Facility - Application of national regulations for metallic materials' recycling from the decommissioning of an Italian nuclear facility

    International Nuclear Information System (INIS)

    Varasano, Giovanni; Baldassarre, Leonardo; Petagna, Edoardo

    2014-01-01

    The start of the decommissioning of nuclear Italian sites requires proper management of clearance for large volumes of metallic materials. This paper describes the current legal framework relating to the Italian regulatory system of reference for the verification of the conditions of unconditional release of materials from nuclear installations, with particular reference to the recycling of metals. The definition of clearance levels, whether general or specific, ensures the clearance of materials arising from nuclear sites without further examinations. The Italian legislation on radiation protection requires that the removal of materials from authorized practices be subject to special requirements included in the authorization provisions. These requirements provide clearance levels that take account of the recommendations and technical guidelines supplied by the European Commission. The regulatory framework requires compliance with current technical and managerial requirements, issued by the National Regulatory Authority and annexed to the Ministerial Authorization, in which are shown the levels of surface activity and specific activity established for the unconditional release of metals from nuclear sites. The real challenge for the nuclear operator is the management of large amounts of waste materials arising from decommissioning activities. For the Italian operator SOGIN SpA is of extreme importance the correct application of national regulatory framework, in order to allow the most effective reduction of the amount of radioactive waste during decommissioning activities. (authors)

  9. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    Science.gov (United States)

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  10. Poly(Ionic Liquid: A New Phase in a Thermoregulated Phase Separated Catalysis and Catalyst Recycling System of Transition Metal-Mediated ATRP

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-03-01

    Full Text Available Poly(ionic liquids (PILs have become the frontier domains in separation science because of the special properties of ionic liquids as well as their corresponding polymers. Considering their function in separation, we designed and synthesized a thermoregulated PIL. That is, this kind of PIL could separate with an organic phase which dissolves the monomers at ambient temperature. When heated to the reaction temperature, they become a homogeneous phase, and they separate again when the temperature falls to the ambient temperature after polymerization. Based on this, a thermoregulated phase separated catalysis (TPSC system for Cu-based atom transfer radical polymerization (ATRP was constructed. The copper catalyst (CuBr2 used here is easily separated and recycled in situ just by changing the temperature in this system. Moreover, even when the catalyst had been recycled five times, the controllability over resultant polymers is still satisfying. Finally, only 1~2 ppm metal catalyst was left in the polymer solution phase, which indicates the really high recycling efficiency.

  11. Used Battery Collection and Recycling

    International Nuclear Information System (INIS)

    Pistoia, G.; Wiaux, J.P.; Wolsky, S.P.

    2001-01-01

    This book covers all aspects of spent battery collection and recycling. First of all, the legislative and regulatory updates are addressed and the main institutions and programs worldwide are mentioned. An overview of the existing battery systems, of the chemicals used in them and their hazardous properties is made, followed by a survey of the major industrial recycling processes. The safety and efficiency of such processes are stressed. Particular consideration is given to the released emissions, i.e. to the impact on human health and the environment. Methods for the evaluation of this impact are described. Several chapters deal with specific battery chemistries: lead-acid, nickel-cadmium and nickel-metal hydride, zinc (carbon and alkaline), lithium and lithium-ion. For each type of battery, details are provided on the collection/recycling process from the technical, economic and environmental viewpoint. The chemicals recoverable from each process and remarketable are mentioned. A chapter deals with recovering of the large batteries powering electric vehicles, e.g. lead-acid, nickel-metal hydride and lithium-ion. The final chapter is devoted to the important topic of collecting batteries from used electrical and electronic equipment. The uncontrolled disposal of these devices still containing their batteries contributes to environmental pollution

  12. Review of processes for the release of DOE real and non-real property for reuse and recycle

    International Nuclear Information System (INIS)

    Ranek, N.L.; Kamboj, S.; Hensley, J.; Chen, S.Y.; Blunt, D.

    1997-11-01

    This report summarizes the underlying historical and regulatory framework supporting the concept of authorizing release for restricted or unrestricted reuse or recycle of real and non-real U.S. Department of Energy (DOE) properties containing residual radioactive material. Basic radiation protection principles as recommended by the International Commission on Radiological Protection are reviewed, and international initiatives to investigate radiological clearance criteria are reported. Applicable requirements of the U.S. Nuclear Regulatory Commission, the Environmental Protection Agency, DOE, and the State of Washington are discussed. Several processes that have been developed for establishing cleanup and release criteria for real and non-real DOE property containing residual radioactive material are presented. Examples of DOE real property for which radiological cleanup criteria were established to support unrestricted release are provided. Properties discussed include Formerly Utilized Sites Remedial Action Project sites, Uranium Mill Tailings Remedial Action Project sites, the Shippingport decommissioning project, the south-middle and south-east vaults in the 317 area at Argonne National Laboratory, the Heavy Water Components Test Reactor at DOE's Savannah River Site, the Experimental Boiling Water Reactor at Argonne National Laboratory, and the Weldon Spring site. Some examples of non-real property for which DOE sites have established criteria to support unrestricted release are also furnished. 10 figs., 4 tabs

  13. Recycling of post-consumer waste in South Africa: Prospects for growth

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-10-01

    Full Text Available and recycling, in response to the increasing complexity of products and related wastes. Figure 4: Comparison of recycling rates between countries. (Adapted from: EUROPEN (2014); USEPA (2010), APC (2011); BMI (2013); Chagas and Neto (2011)) Note: Metal figures...

  14. Factors relevant to the recycling or reuse of components arising from the decommissioning and refurbishment of nuclear facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. To assist in the development of the required decommissioning expertise, the IAEA is developing reports and recommendations which will eventually form an integrated information base covering in a systematic way the wide range of topics associated with decommissioning. This information is required so that Member States can decommission their nuclear facilities in a safe, timely and cost effective manner and the IAEA can effectively respond to requests for assistance. One area which warrants more detailed analyses is an assessment of the factors important to the recycling or reuse of components arising from the refurbishment or decommissioning of nuclear plants, the topic of the present report. The document provides an up to date review of the engineering, social, scientific and administrative factors relevant to the safe recycling or reuse of components arising from decommissioning or refurbishment of nuclear facilities. This report should be of interest to owners, operators, policy makers and regulators involved with nuclear facilities, especially those in developing countries. Refs, figs and tabs

  15. Process for environmentally safe disposal of used fluorescent lamp potted ballast assemblies with component part reclamation and/or recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nardella, A.; Norian, B.

    1993-07-27

    A process is described for the environmentally safe and economical disposal of used fluorescent lamp potted ballast housing assemblies comprising removing from the housing the potted assembly with its embedded electrical component assemblies including a component capacitor containing environmentally hazardous material PCB's; after or before such removing, immersing the potted assembly in a cryogenic bath and freezing the same to reader the potting sufficiently brittle to fragment into small pieces upon being impacted; impacting the potting thoroughly to crush and fragment the same into small pieces and to cleanly remove substantially all traces of the potting from all the electrical components and parts embedded therein and without imparting damage to the components and parts; disconnecting the component containing the environmentally hazardous material; and incinerating only the component containing the environmentally hazardous material, leaving all other components and parts including the housing and potting fragments for salvage, re-use and/or recycling.

  16. Implementing a campus wide recycling program

    International Nuclear Information System (INIS)

    Alvarez, L.

    2002-01-01

    'Full text:' The University of Windsor is currently expanding its recycling program to include all buildings on campus, but faces two challenges: 1) uncertainty about the current waste composition and distribution on campus; and 2) uncertainty about the effectiveness of increased recycling. This project assesses the current waste composition and the attitudes of the students towards recycling, and evaluates the effectiveness of proposed recycling activities. At present, paper is the only material that is collected throughout the entire campus. Except for two buildings, all other potentially recyclable materials within buildings, such as metal, glass, and plastic beverage containers, are discarded. The main focus of this research is on beverage containers as they represent clearly identifiable materials, but other materials were examined as well. To quantify the waste, different buildings on campus were classified according to their function: academic,operational and administrative. The waste composition study indicated that approximately 33% of the campus waste which is landfilled is composed of potentially recyclable material. A survey was then conducted to gauge the campus population's views on recycling issues that could affect the design of a recycling program. Interestingly, 97% of the respondents indicated a high willingness to recycle, but were uncertain as to how and where to recycle on campus. The project is currently assessing potential diversion rates using new, clearly identifiable recycling receptacles placed within selected classrooms for all major materials. There is a significant tradeoff however because the cost for new receptacles is considerable: multiple materials containers are often placed in high pedestrian traffic locations (e.g., hallways) and not always in classrooms,of which there are often many. This project will evaluate the basic benefits and costs of implementing a more comprehensive recycling program, and recommend how other

  17. Treatment of transverse patellar fractures: a comparison between metallic and non-metallic implants.

    Science.gov (United States)

    Heusinkveld, Maarten H G; den Hamer, Anniek; Traa, Willeke A; Oomen, Pim J A; Maffulli, Nicola

    2013-01-01

    Several methods of transverse patellar fixation have been described. This study compares the clinical outcome and the occurrence of complications of various fixation methods. The databases PubMed, Web of Science, Science Direct, Google Scholar and Google were searched. A direct comparison between fixation techniques using mixed or non-metallic implants and metallic K-wire and tension band fixation shows no significant difference in clinical outcome between both groups. Additionally, studies reporting novel operation techniques show good clinical results. Studies describing the treatment of patients using non-metallic or mixed implants are fewer compared with those using metallic fixation. A large variety of clinical scoring systems were used for assessing the results of treatment, which makes direct comparison difficult. More data of fracture treatment using non-metallic or mixed implants is needed to achieve a more balanced comparison.

  18. Model institutional infrastructures for recycling of photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  19. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    Science.gov (United States)

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  20. Example of establishing the recycling of scrap metal as a waste management option within German regulations

    International Nuclear Information System (INIS)

    Bodenstein, Matthias; Delfs, Johannes; Karschnick, Oliver

    2014-01-01

    The German Atomic Energy Act (Atomgesetz, AtG) specifies the German nuclear licensing and supervising regulations. On that basis the German federal states are responsible for licensing and supervising of nuclear power plants (NPPs) located in that state. The Ministry of Energy, Agriculture, the Environment and Rural Areas (MELUR) is the authority responsible for the state Schleswig-Holstein, in which the NPPs Brokdorf, Brunsbuettel, Kruemmel and the research reactor HZG are located. In the licensing and supervisory procedures the authority may consult authorized experts. In addition to the AtG, the German Radiation Protection Ordinance (Strahlenschutzverordnung, StrlSchV) specifies regulations for clearance according to the 10 μSv-concept. The clearance of metal by recycling / melting is one option within the regulations of the StrlSchV. For a clearance an additional license given by the MELUR is necessary. In that license and the application documents as well as in the supervisory procedures very specific regulations are implemented. This includes regulations for clearance at third parties in foreign countries. In this talk a short introduction to the German regulations focussed on clearance according to the 10 μSv-concept will be given. The specific regulations in the license of clearance will be presented and also the application documents for NPPs in Schleswig-Holstein will be discussed. Furthermore it will be illustrated on what terms the MELUR decided to agree upon the recycling of scrap metal with the aim of clearance according to Radiation Protection 89 in foreign countries along with the German regulatory framework. (authors)

  1. 21 CFR 888.3030 - Single/multiple component metallic bone fixation appliances and accessories.

    Science.gov (United States)

    2010-04-01

    ... appliances and accessories. 888.3030 Section 888.3030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....3030 Single/multiple component metallic bone fixation appliances and accessories. (a) Identification. Single/multiple component metallic bone fixation appliances and accessories are devices intended to be...

  2. Drivers and Constraints of Critical Materials Recycling: The Case of Indium

    Directory of Open Access Journals (Sweden)

    Jenni Ylä-Mella

    2016-11-01

    Full Text Available Raw material criticality studies are receiving increasing attention because an increasing number of elements of great economic importance, performing essential functions face high supply risks. Scarcity of key materials is a potential barrier to large-scale deployment of sustainable energy and clean-tech technologies as resorting to several critical materials. As physical scarcity and geopolitical issues may present a barrier to the supply of critical metals, recycling is regarded as a possible solution to substitute primary resources for securing the long-term supply of critical metals. In this paper, the main drivers and constraints for critical materials recycling are analyzed from literature, considering indium as a case study of critical materials. This literature review shows that waste electrical and electronic equipment (WEEE could be a future source of critical metals; however, the reduction of dissipation of critical materials should have much higher priority. It is put forward that more attention should be paid to sustainable management of critical materials, especially improved practices at the waste management stage. This calls for not only more efficient WEEE recycling technologies, but also revising priorities in recycling strategies.

  3. Forging of metallic nano-objects for the fabrication of submicron-size components

    International Nuclear Information System (INIS)

    Roesler, J; Mukherji, D; Schock, K; Kleindiek, S

    2007-01-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1)

  4. Comparative bioleaching of metals from pulverized and non-pulverized PCBs of cell phone charger: advantages of non-pulverized PCBs.

    Science.gov (United States)

    Joshi, Vyenkatesh; Shah, Neha; Wakte, Prashant; Dhakephalkar, Prashant; Dhakephalkar, Anita; Khobragade, Rahul; Naphade, Bhushan; Shaikh, Sajid; Deshmukh, Arvind; Adhapure, Nitin

    2017-12-01

    Sample inhomogeneity is a severe issue in printed circuit boards especially when we are comparing the bioleaching efficiency. To avoid the ambiguous results obtained due to inhomogeneity in PCBs, 12 similar cell phone chargers (of renowned company) having same make and batch number were collected from scrap market. PCBs obtained from them were used in present studies. Out of these 12, three PCBs were used separately for chemical analysis of PCBs with prior acid digestion in aqua regia. It was found that, 10.8, 68.0, and 710.9 mg/l of Zn, Pb, and Cu were present in it, respectively. Six PCBs were used for bioleaching experiment with two variations, pulverized and non-pulverized. Though the pulverized sample have shown better leaching than non-pulverized one, former has some disadvantages if overall recycling of e-waste (metallic and nonmetallic fraction) is to be addressed. At the end of leaching experiments, copper was recovered using a simple setup of electrodeposition and 92.85% recovery was attained. The acidophiles involved in bioleaching were identified by culture dependent and culture independent techniques such as DGGE and species specific primers in PCR.

  5. Uncovering the Recycling Potential of "New" WEEE in China.

    Science.gov (United States)

    Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui

    2016-02-02

    Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development.

  6. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  7. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  8. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  9. Reprocessing-recycling, or the application of the selective sorting and recycling policy to nuclear activities

    International Nuclear Information System (INIS)

    1998-12-01

    In France, the reprocessing of spent fuels is the solution that has been retained for the management of the end-of-cycle. The sorting of the different components of spent fuels allows the recycling of uranium and plutonium for the further production of enriched uranium and mixed oxide fuels. This paper presents Cogema's advances in this domain (facilities and plants), the transfer of Cogema's reprocessing and recycling technologies in other countries (Japan, USA, Russia), the economical and environmental advantages of the recycling of spent fuels, the economical resources provided by this activity, and the cooperation with foreign countries for the reprocessing of their spent fuels at Cogema-La Hague. (J.S.)

  10. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery.

    Science.gov (United States)

    Adhapure, N N; Dhakephalkar, P K; Dhakephalkar, A P; Tembhurkar, V R; Rajgure, A V; Deshmukh, A M

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple.

  11. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  12. Plasma methods for metals recovery from metal-containing waste.

    Science.gov (United States)

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Recycling and treatment of plastic waste

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1998-01-01

    Radiation technology, using gamma or electron beams, develops its benefits at highest yield if macromolecular systems are treated. This is valid equally if build-up processes (polymerization, crosslinking) or degradative processes (chain scission, depolymerization) are initiated by radiation. Radiation-induced degradation is applied to convert polytetrafluoroethylene (Teflon) scrap into powder and low-molecular-weight products used in the production of other perfluoro compounds. The Teflon powder is blended with other materials for use as lubricant, and the perfluorocarboxylic derivatives are employed as surfactants. Radiation treatment of polymers could play a build-up role in the recycling of polymer wastes. The non-selective energy transfer from gamma or electron sources to polymer systems produces many kinds of reactive centers such as free radicals, oxydized and peroxydized active groups, on which further reactions may occur. In presence of monomer-like or oligomer-like reactive additives graft-copolymerization may take place, compatibilizing in this way the originally incompatible polymer components. Such a compatibilization is the key solution to recycling commingled plastic waste or producing composite materials of fibrous natural polymers and synthetic thermoplastics

  14. State of the art of fusion material recycling and remaining issues

    International Nuclear Information System (INIS)

    Massaut, V.; Broden, K.; Pace, L. Di; Ooms, L.; Pampin, R.

    2006-01-01

    Fusion as a power production system presents several advantages in terms of safety and environmental impact, one of these being the limited amount of radioactive waste production which is burden for future generations. Nevertheless, even if fusion does not produce long term radioactive waste, e.g. by adequate material selection for plasma facing components, there are two important aspects deserving consideration: the presence of tritium in relatively large quantity, and the very hard neutron spectrum leading to large amounts of active materials. In order to keep radioactive waste levels to a minimum it has been proposed to recycle the materials removed from the reactor, after adequate decay period and proper handling and treatment. Treatment may include detritiation, separation of different material types and sorting of the non reusable materials, among others. Moreover if recycle or reuse (within the nuclear industry in general or, for some particular materials, within the fusion industry) are foreseen, the material has to be melted or reduced to reusable raw material, machined or the pieces fabricated again, assembled and checked (for geometrical correctness, or leak tightness for instance). And all this has to be made on industrial scale, as fusion will produce large amounts of material presenting various degrees of radioactivity and tritium content. Even if some experience of recycling exists in the nuclear fission industry, which can be used for fusion materials, the different steps mentioned above are challenging operations when dealing with tritiated materials or highly radioactive components. The paper presents a review of the current situation and state-of-the-art recycling methods for typical fusion materials (e.g. Beryllium, Tungsten, Copper and Copper alloys, steel, Carbon) and components of future fusion plants based on current conceptual design studies. It also focuses attention on R-and-D issues to be addressed in order to be able to recycle as much

  15. Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia.

    Science.gov (United States)

    Al-Rifai, Jawad H; Gabelish, Candace L; Schäfer, Andrea I

    2007-10-01

    The discovery that natural and synthetic chemicals, in the form of excreted hormones and pharmaceuticals, as well as a vast array of compounds with domestic and industrial applications, can enter the environment via wastewater treatment plants and cause a wide variety of environmental and health problems even at very low concentrations, suggests the need for improvement of water recycling. Three Australian wastewater recycling schemes, two of which employ reverse osmosis (RO) technology, the other applying ozonation and biological activated carbon filtration, have been studied for their ability to remove trace organic contaminants including 11 pharmaceutically active compounds and two non-steroidal estrogenic compounds. Contaminant concentrations were determined using a sensitive analytical method comprising solid phase extraction, derivatization and GC with MS using selected ion monitoring. In raw wastewater, concentrations of analgesics and non-steroidal anti-inflammatory medications were comparable to those found in wastewaters around the world. Remarkably, removal efficiencies for the three schemes were superior to literature values and RO was responsible for the greatest proportion of contaminant removal. The ability of RO membranes to concentrate many of the compounds was demonstrated and highlights the need for continued research into monitoring wastewater treatment, concentrate disposal, improved water recycling schemes and ultimately, safer water and a cleaner environment.

  16. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants.

    Science.gov (United States)

    Caballero, B M; de Marco, I; Adrados, A; López-Urionabarrenechea, A; Solar, J; Gastelu, N

    2016-11-01

    The possibilities and limits of pyrolysis as a means of recycling plastic rich fractions derived from discarded phones have been studied. Two plastic rich samples (⩾80wt% plastics) derived from landline and mobile phones provided by a Spanish recycling company, have been pyrolysed under N 2 in a 3.5dm 3 reactor at 500°C for 30min. The landline and mobile phones yielded 58 and 54.5wt% liquids, 16.7 and 12.6wt% gases and 28.3 and 32.4wt% solids respectively. The liquids were a complex mixture of organic products containing valuable chemicals (toluene, styrene, ethyl-benzene, etc.) and with high HHVs (34-38MJkg -1 ). The solids were composed of metals (mainly Cu, Zn, and Al) and char (≈50wt%). The gases consisted mainly of hydrocarbons and some CO, CO 2 and H 2 . The halogens (Cl, Br) of the original samples were mainly distributed between the gases and solids. The metals and char can be easily separated and the formers may be recycled, but the uses of the char will be restricted due to its Cl/Br content. The gases may provide the energy requirements of the processing plant, but HBr and HCl must be firstly eliminated. The liquids could have a potential use as energy or chemicals source, but the practical implementation of these applications will be no exempt of great problems that may become insurmountable (difficulty of economically recovering pure chemicals, contamination by volatile metals, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fiscal 2000 report on result of R and D of nonmetallic material recycling promotion technology (demonstration test and research, total system technology); 2000 nendo hitetsu kinzokukei sozai recycle sokushin gijutsu kenkyu kaihatsu seika hokokusho. Jissho shiken kenkyu, total system gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted on advanced recycling technology for aluminum and base metal/rare metal based materials, with fiscal 2000 results compiled. In the research of aluminum recycling technology, on a continuous fractional crystallization process and a purification by zinc removal process, the existing facilities for each demonstrated that they could simulate an aluminum scrap melting process capacity of 1,000 t/month, with a series of initial conditions determined. In the research of total system technology, combined test facilities were completed in which a purification process and a melt cleaning process were integrated. In the research of the recycling technology for base metal/rare metal based materials, a test was carried out by demonstrative facilities, with the aim of establishing copper regeneration technology in which high grade copper is produced using metal/resin based scraps such as shredder dust of automobiles as the materials. In structuring the total system technology, a preliminary survey and environmental load measures were carried out toward the practicability of a comprehensive copper metal collection recycling system. (NEDO)

  18. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    Science.gov (United States)

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  19. Recycle and reuse of components arising from decommissioning nuclear installations: an overview

    International Nuclear Information System (INIS)

    Stearn, S.M.

    1987-01-01

    Recycling offers savings in both acquiring new materials and disposing of old. But this must be set against the associated economic, social and administrative costs. There is considerable experience of the problems involved and research is in hand to expand the authors understanding of these. Materials may be recycled within the nuclear industry only if there is a ready use for it. Release for unrestricted use depends on the existence of suitable criteria and a means to assure compliance with them. The interaction between these two factors could be a deciding factor. Work is in hand to prepare workable release criteria based on a dose to the public of not more than 10 microsieverts, and a figure of 1 Bq/gm is proposed. Quality assurance will be important in any recycling program. Public acceptance is crucial and unrestricted release must not operate so as to jeopardize this

  20. Application of microCT to the non-destructive testing of an additive manufactured titanium component

    Directory of Open Access Journals (Sweden)

    Anton du Plessis

    2015-11-01

    Full Text Available In this paper the application of X-ray microCT to the non-destructive testing of an additive manufactured titanium alloy component of complex geometry is demonstrated. Additive manufacturing of metal components is fast growing and shows great promise, yet these parts may contain defects which affect mechanical properties of the components. In this work a layered form of defect is found by microCT, which would have been very difficult or impossible to detect by other non-destructive testing methods due to the object complexity, defect size and shape and because the pores are entirely contained inside the object and not connected to the surface. Additionally, this test part was subjected to hot isostatic pressing (HIPPING and subsequently scanned. Comparing before and after scans by alignment of the volumes allows visualization and quantification of the pore size changes. The application of X-ray microCT to additive manufacturing is thus demonstrated in this example to be an ideal combination, especially for process improvements and for high value components.

  1. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  2. Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery

    Science.gov (United States)

    Adhapure, N.N.; Dhakephalkar, P.K.; Dhakephalkar, A.P.; Tembhurkar, V.R.; Rajgure, A.V.; Deshmukh, A.M.

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple. PMID:26150951

  3. Understanding Non-Equilibrium Charge Transport and Rectification at Chromophore/Metal Interfaces

    Science.gov (United States)

    Darancet, Pierre

    Understanding non-equilibrium charge and energy transport across nanoscale interfaces is central to developing an intuitive picture of fundamental processes in solar energy conversion applications. In this talk, I will discuss our theoretical studies of finite-bias transport at organic/metal interfaces. First, I will show how the finite-bias electronic structure of such systems can be quantitatively described using density functional theory in conjunction with simple models of non-local correlations and bias-induced Stark effects.. Using these methods, I will discuss the conditions of emergence of highly non-linear current-voltage characteristics in bilayers made of prototypical organic materials, and their implications in the context of hole- and electron-blocking layers in organic photovoltaic. In particular, I will show how the use of strongly-hybridized, fullerene-coated metallic surfaces as electrodes is a viable route to maximizing the diodic behavior and electrical functionality of molecular components. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

  4. Mobile Phones-An asset or a liability: A study based on characterization and assessment of metals in waste mobile phone components using leaching tests.

    Science.gov (United States)

    Hira, Meenakshi; Yadav, Sudesh; Morthekai, P; Linda, Anurag; Kumar, Sushil; Sharma, Anupam

    2018-01-15

    The prolonged use of old fashioned gadgets, especially mobile phones, is declining readily with the advancement in technology which ultimately lead to generation of e-waste. The present study investigates the concentrations of nine metals (Ba, Cd, Cr, Cu, Fe, Ni, Pb, Sn, and Zn) in various components of the mobile phones using Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET) and Synthetic Precipitation Leaching Procedure (SPLP). The results were compared with the threshold limits for hazardous waste defined by the California Department of Toxic Substances Control (CDTSC) and United States Environmental Protection Agency (USEPA). The average concentrations of metals were found high in PWBs. WET was found relatively aggressive as compared to TCLP and SPLP. Redundancy analysis (RDA) suggests that part of mobile, extraction test, manufacturer, mobile model and year of manufacturing explain 34.66% of the variance. According to the present study, waste mobile phones must be considered as hazardous due to the potential adverse impact of toxic metals on human health and environment. However, mobile phones can be an asset as systematic extraction and recycling could reduce the demand of primary metals mining and conserve the natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. STUDSVIK's methods for treatment/free release of components and buildings structures from decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Krause, G.

    2005-01-01

    This paper will describe methods for treatment of retired, large, contaminated components from NPPs. The treatment includes transports, decontamination, segmentation, melting as well recycling of the metal in Sweden. Decontamination and free release of building strictures is also one of services which Studsvik provides for the nuclear industry. For this services different techniques are used for 'shaving' and subsequent measurements of the concrete surfaces. Since the mid of 1980-ies different procedures for decontamination and segmentation as well as pre- and post treatment have been developed and successively applied at Studsvik's melting facility in Sweden. The experience on this sector are permanent used for improvement and development of methods for treatment of both domestic and foreign large components like: heat exchangers, reactors vessel heads, turbine parts, steam generators and boilers. The high metal recycling rate is due to optimized production and results in extremely low percentage of secondary waste. The driving force is to maximize recycling rate of metal to the steel industry and to minimize the volume of the secondary waste and by that owner's costs for final storage in the national repositories. For decontamination of building structures several options are available using shaving or hammering tools to remove the contaminated concrete layers. This treatment is carried out in the closed circuit where removed dust is directly evacuated into the waste collection drums. During and after the decontamination process the treated and surrounding areas are free from dust and risk of cross contamination has been eliminated. The equipment capacity is up to 30 m2/h with simultaneous concrete removal of 3 mm at very high accuracy. It is not necessary of in-housing (tent, containment) of working area. The presentation will focus on methods, equipment used and experience in treatment of components and methods for decontamination of building structures

  6. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  7. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    Science.gov (United States)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  8. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  9. Making components with controlled metal deposition

    OpenAIRE

    Ribeiro, António Fernando

    1997-01-01

    Rapid Prototyping is a recent CAD/CAM/CIM based manufacturing technique which produces prototypes of components in a fraction of the time. This technique works by first drawing the part as a 3 Dimensional solid model using a CAD program and then ‘printing’ it in 3 Dimensions. The raw material can be a photopolymer or thermoplastic which solidifies when in contact with light. Other materials are available although 100% metal is not a very usual one. This paper presents a new approach for a ...

  10. Performance simulation of serpentine type metallic and non-metallic solar collector

    International Nuclear Information System (INIS)

    Al-Sageer, A. A. M.; Alowa, M. I.; Saad, M.

    2006-01-01

    This paper presents a theoretical investigation of metallic and non-metalic solar water collector models for evaluating its performane parameters. The determined parameters include heat removal factor , overall heat loss coefficients, heat gain, daily and hourly efficiencies. The present study reports that, under forced circulation lest, the non-metallic collector has an inferior performance parameters when compared to that of the metallic one. It was also revealed that the overall heat loss coefficients of both collectors show weak dependence on the flow rate variations. It was also noticed that the heat removal factor forboth models is more sensitive to the flow rate variations. Also noticed that the heat removal factor for both models is more sensitive to the flow rate variations. Also, a comparision of performance parameters of the theoretical and experimental studies showed good agreements for most hours of the day, except the results obtained at the early morning and late after noon hours.(Author)

  11. Energetical fly ashes – separation and utilization of metallic valuable components

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2000-12-01

    Full Text Available In the contribution, methods of separating metals – Fe, Al, Ge from energetic wastes – fly ashes are presented along with further possibilities of utilization of particular valuable components for industrial purposes.In the contribution, properties of energetic wastes are presented influencing the contents, separability, and utilizability of metal-bearing valuable components. From among physical properties these are grain size distribution and surface area. Chemical properties are characterized by elements contained in combusted coal whose content after combustion is increased 2 to 4 times, depending on the content of ash and combustible matters in original coal. Mineralogical properties of energetic wastes are determined by the combustion process conditions in the course of which mineral novelties are produced in concentrations suitable for separation.In the contribution, methods of separation and utilization of metals such as Fe, Al, Ge are described. From literature information on the processing of Fe component, as well as from results of experiments made at the Department of Mineral Processing and Environmental Protection, Technical University of Kosice follows that the highest concentration and mass yield of the component can be obtained from black coal fly ashes produced in smelting boilers. The content of Al in Slovak energetic wastes is lower than the 30 % Al2O3 limit that conditions an economic technological processing. Only in the case of black coal fly ash from TEKO Kosice and EVO Vojany was the Al2O3 content of 32.93 %. Therefore, in an indirect way – by separating the residues of uncombusted coal and magnetite Fe – the content of Al in fly ash was increased.For Ge, a principle of selective sizing has been utilized.A complex utilization of energetic wastes, that is the separation of metallic components, elimination of particular metals and the subsequent treatment of nonmetallic residue, should be an effective solution in various

  12. Physics of Plutonium Recycling in Thermal Reactors

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1967-01-01

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of 240 Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  13. Physics of Plutonium Recycling in Thermal Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kinchin, G. H. [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1967-09-15

    A substantial programme of experimental reactor physics work with plutonium fuels has been carried out in the UK; the purpose of this paper is to review the experimental and theoretical work, with emphasis on plutonium recycling in thermal reactors. Although the main incentive for some of the work may have been to study plutonium build-up in uranium-fuelled reactors, it is nevertheless relevant to plutonium recycling and no distinction is drawn between build-up and enrichment studies. A variety of techniques have been for determining reactivity, neutron spectrum and reaction rates in simple assemblies of plutonium-aluminium fuel with water, graphite and beryllia moderators. These experiments give confidence in the basic data and methods of calculation for near-homogeneous mixtures of plutonium and moderator. In the practical case of plutonium recycling it is necessary to confirm that satisfactory predictions can be made for heterogeneous lattices enriched with plutonium. In this field, experiments have been carried out with plutonium-uranium metal and oxide-cluster fuels in graphite-moderated lattices and in SGHW lattices, and the effects of {sup 240}Pu have been studied by perturbation measurements with single fuel elements. The exponential and critical experiments have used tonne quantities of fuel with plutonium contents ranging from 0.25 to 1.2% and the perturbation experiments have extended both the range of plutonium contents and the range of isotopic compositions of plutonium. In addition to reactivity and reactivity coefficients, such as the temperature coefficients, attention has been concentrated on relative reaction rate distributions which provide evidence for variations of neutron spectrum. .Theoretical comparisons, together with similar comparisons for non-uniform lattices, establish the validity of methods of calculation which have been used to study the feasibility of plutonium recycling in thermal reactors. (author)

  14. Development of a Plastic Recycling Machine

    OpenAIRE

    I. A. Daniyan,

    2017-01-01

    Plastics are not degradable materials, therefore improper disposal after use constitute environmental problem. The developed plastic recycler was fabricated using 1.5 mm mild metal sheet punched and rolled into cylindrical form. The outer peeling drum was punched inward and fixed to the machine frame while the inner peeling drum was punched outward. The inner drum was constructed using 1.5 mm galvanized metal sheet while the die was constructed using carbon steel. It has an outer diameter of ...

  15. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region.

    Science.gov (United States)

    Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao

    2017-12-01

    Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 77 FR 73996 - Notice of Availability for the Draft Programmatic Environmental Assessment for the Recycling of...

    Science.gov (United States)

    2012-12-12

    ... for the purpose of recycling. The suspension was imposed in response to public concerns about the... for the Recycling of Scrap Metals Originating From Radiological Areas AGENCY: Department of Energy... public review and comment of the Draft Programmatic Environmental Assessment (PEA) for the Recycling of...

  17. G.I.S. Surveillance of Chronic Non-occupational Exposure to Heavy Metals as Oncogenic Risk

    Directory of Open Access Journals (Sweden)

    Mariana Vlad

    2016-02-01

    Full Text Available Introduction: The potential oncogenic effect of some heavy metals in people occupationally and non-occupationally exposed to such heavy metals is already well demonstrated. This study seeks to clarify the potential role of these heavy metals in the living environment, in this case in non-occupational multifactorial aetiology of malignancies in the inhabitants of areas with increased prevalent environmental levels of heavy metals. Methods: Using a multidisciplinary approach throughout a complex epidemiological study, we investigated the potential oncogenic role of non-occupational environmental exposure to some heavy metals [chrome (Cr, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd, lead (Pb and arsenic (As—in soil, drinking water, and food, as significant components of the environment] in populations living in areas with different environmental levels (high vs. low of the above-mentioned heavy metals. The exposures were evaluated by identifying the exposed populations, the critical elements of the ecosystems, and as according to the means of identifying the types of exposure. The results were interpreted both epidemiologically (causal inference, statistical significance, mathematical modelling and by using a GIS approach, which enabled indirect surveillance of oncogenic risks in each population. Results: The exposure to the investigated heavy metals provides significant risk factors of cancer in exposed populations, in both urban and rural areas [χ² test (p < 0.05]. The GIS approach enables indirect surveillance of oncogenic risk in populations. Conclusions: The role of non-occupational environmental exposure to some heavy metals in daily life is among the more significant oncogenic risk factors in exposed populations. The statistically significant associations between environmental exposure to such heavy metals and frequency of neoplasia in exposed populations become obvious when demonstrated on maps using the GIS system. Environmental

  18. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  19. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2017-09-19

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  20. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Science.gov (United States)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  1. A study of the metal content of municipal solid waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Churney, K.L.; Domalski, E.S.

    1998-01-01

    Knowledge of the content of toxic components, so called pollutant precursors, in the municipal solid waste (MSW) stream is essential to development of the strategies for source reduction and reuse, recycling, composting and disposal. Data are scarce; trends in composition for any locality even more so. In a previous study the total and water soluble chlorine content of the components of municipal solid waste were determined from sampling studies at two sites, Baltimore County, MD, and Brooklyn, NY, each for a five day period. The total sulfur content of the combined combustible components was also determined. Because of the scarcity of data and synergistic effects, it seemed appropriate to determine the heavy metal content of the preceding material prior to its disposal. The metals chosen were the so-called priority pollutant metals (PPM): antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc.

  2. Environmental decision making for recycling options

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    1997-01-01

    A general method for finding new recycling alternatives in the metals producing industry is presented and tested on two printed wire board scrap cases. The underlying idea for the method is that complex scrap should be introduced in the matrix of man-made material flows at recipient points where ...

  3. Neutron activation analysis of recycled paper and board in contact with food

    International Nuclear Information System (INIS)

    Parry, S.J.

    2001-01-01

    Recycling of wastepaper has been shown to increase the concentration of metals in the product. Although it is generally assumed that there is no risk of migration of chemical contaminants from recycled paper and board into food, the UK Food Standards Agency has identified limited evidence of such migration. Therefore, it is important to carry out research to establish the concentration of metals in recycled paper and board in contact with food. A previous study at Imperial College had resulted in the development of a neutron activation analysis method to determine trace metals in plastic packaging. An initial study is described to establish whether the same methodology could be applied to paper and board and to carry out a preliminary investigation into a small range of recycled paper and board products. The study was made on 22 elements in 17 products including pizza boxes, fries boxes, kitchen towel, table napkins, greaseproof paper, tea bags and cake cases. Elevated levels of some elements including barium (69 mg/kg in pizza bases) and chromium (5 mg/kg in napkins, 50 mg/kg in greaseproof paper, 2 mg/kg in cake cases, 90 mg/kg in baking parchment, 5 mg/kg in fries boxes and 5 mg/kg in pizza bases) have been shown. (author)

  4. Recycled water sources influence the bioavailability of copper to earthworms.

    Science.gov (United States)

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Environmental pollution of electronic waste recycling in India: A critical review

    International Nuclear Information System (INIS)

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-01-01

    The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites. - Highlights: • It systematically reviewed Environmental deterioration through e-waste recycling in India. • We found heavy metals (Cu, Pb, Cd and Cr) potentially serious concern at recycling site. • The heavy metals can entered human body through the direct and indirect exposure. • Regular monitoring required to examine the possibility of risk through e-waste mismanagement. • Further phytoremedial approach can be use as one of the possible solution for contaminated soil and improve the land quality. - The e-waste recycling sites are highly contaminated with heavy metals as well as other pollutants (e.g. PBDEs, PCBs) in excessive levels.

  6. A survey of monitoring and assay systems for release of metals from radiation controlled areas at LANL.

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, K. M. (Kathleen M.); MacArthur, D. W. (Duncan W.)

    2002-01-01

    At Los Alamos National Laboratory (LANL), a recent effort in waste minimization has focused on scrap metal from radiological controlled areas (RCAs). In particular, scrap metal from RCAs needs to be dispositioned in a reasonable and cost effective manner. Recycling of DOE scrap metals from RCAs is currently under a self-imposed moratorium. Since recycling is not available and reuse is difficult, often metal waste from RCAs, which could otherwise be recycled, is disposed of as low-level waste. Estimates at LANL put the cost of low-level waste disposal at $550 to $4000 per cubic meter, depending on the type of waste and the disposal site. If the waste is mixed, the cost for treatment and disposal can be as high as $50,000 per cubic meter. Disposal of scrap metal as low-level waste uses up valuable space in the low-level waste disposal areas and requires transportation to the disposal site under Department of Transportation (DOT) regulations for low-level waste. In contrast, disposal as non-radioactive waste costs as little as $2 per cubic meter. While recycling is unavailable, disposing of the metal at an industrial waste site could be the best solution for this waste stream. A Green Is Clean (GIC) type verification program needs to be in place to provide the greatest assurance that the waste does not contain DOE added radioactivity. This paper is a review of available and emerging radiation monitoring and assay systems that could be used for scrap metal as part of the LANL GIC program.

  7. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  8. Rare earth metals. Production, use and recycling; Seltene Erdmetalle. Gewinnung, Verwendung und Recycling

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Bernhard; Mueller, Ralf

    2014-07-01

    In 1964, the nitrogen chemical plant in Piesteritz near Wittenberg opened to produce rare earth elements (REE), however only five of them were used in industry and technology. The predominant rest was placed in storage. Today, 50 years later, the five REE are starting to become a scarce commodity while the others are in stable demand. The reason for the sudden REE boom is a result of their unique optical and magnetic properties, which derive from their electron configuration of the 4f-orbitals. New applications for REE evolved in areas which nobody considered (or ''would have considered/thought about'') 50 years ago. Some examples include power generation in wind energy plants, high density information transfer in fibre optics or medical diagnoses by magnetic resonance tomography. Furthermore, common mobile electrical drive engineering would not be reasonable without REE. The electric vehicles of the future rely on REE for their La and Nd containing NiMH accumulators. The book at hand focuses on all common and emerging applications, the physical and chemical principles are also shown and discussed. The detailed knowledge of these principles is essential in order to create new approaches which allow for the substitution of REE and, where this is not possible, to establish concepts for economical consumption or recycling. With escalating scarcity of the REE this will be of increasing importance on the agenda of science and technology. Thus, recycling methods and concepts are the second focus of this book. The central goal is the incorporation of all existing chemical procedures into the recycling of 'end of life' products. This involves methods from the primary production of the materials up to the conservation of residual materials at the point of manufacturing. Several case examples are described to emphasize that the feasibility of this idea requires organized collecting systems and disassembly of the scrap electronic devices. A

  9. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    International Nuclear Information System (INIS)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-01-01

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face the plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI

  10. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  11. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.

    Science.gov (United States)

    Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen

    2017-12-15

    Multiple techniques for soil decontamination were combined to enhance the phytoremediation efficiency of Eucalyptus globulese and alleviate the corresponding environmental risks. The approach constituted of chelating agent using, electrokinetic remediation, plant hormone foliar application and phytoremediation was designed to remediate multi-metal contaminated soils from a notorious e-waste recycling town. The decontamination ability of E. globulese increased from 1.35, 58.47 and 119.18 mg per plant for Cd, Pb and Cu in planting controls to 7.57, 198.68 and 174.34 mg per plant in individual EDTA treatments, respectively, but simultaneously, 0.9-11.5 times more metals leached from chelator treatments relative to controls. Low (2 V) and moderate (4 V) voltage electric fields provoked the growth of the species while high voltage (10 V) had an opposite effect and metal concentrations of the plants elevated with the increment of voltage. Volumes of the leachate decreased from 1224 to 134 mL with voltage increasing from 0 to 10 V due to electroosmosis and electrolysis. Comparing with individual phytoremediation, foliar cytokinin treatments produced 56% more biomass and intercepted 2.5 times more leachate attributed to the enhanced transpiration rate. The synergistic combination of the individuals resulted in the most biomass production and metal accumulation of the species under the stress condition relative to other methods. Time required for the multi-technique approach to decontaminate Cd, Pb and Cu from soil was 2.1-10.4 times less than individual chelator addition, electric field application or plant hormone utilization. It's especially important that nearly no leachate (60 mL in total) was collected from the multi-technique system. This approach is a suitable method to remediate metal polluted site considering its decontamination efficiency and associated environmental negligible risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Recycling and particle control in DIII-D

    International Nuclear Information System (INIS)

    Jackson, G.L.

    1991-11-01

    Particle control of both hydrogen and impurity atoms is important in obtaining reproducible discharges with a low fraction of radiated power in the DIII-D tokamak. The main DIII-D plasma facing components are graphite tiles and Inconel. Hydrogenic species desorbed from graphite during a tokamak discharge can be a major fueling source, especially in unconditioned graphite where these species can saturate the surface regions. In this case the recycling coefficient can exceed unity, leading to an uncontrolled density rise. In addition to removing volatile hydrocarbons and oxygen, DIII-D vessel conditioning efforts have been directed at the reduction of particle fueling from the graphite tiles. Conditioning techniques include: baking to ≤ 400 degrees C, low power pulsed discharge cleaning, and glow discharges in deuterium, helium, neon, or argon. Helium glow wall conditioning, is now routinely performed before every tokamak discharge. The effects of these techniques on hydrogen recycling and impurity influxes will be presented. The Inconel walls, while not generally exposed to high heat fluxes, nevertheless represent a source of metal impurities which can lead to impurity accumulation in the discharge and a high fraction of radiated power, particularly in H-mode discharges at higher plasma currents, I p > 1.5 MA. To reduce metal influx a thin (∼100 nm) low Z film has been applied on all plasma facing surfaces in DIII-D. The application of the boron film, referred to as boronization has the additional benefit over a carbon film of further reducing the oxygen influx. Following the first boronization in DIII-D a regime of very high confinement (VH-mode) was observed, characterized by low ohmic target density, low Z eff , and low radiated power

  13. German experience in recycling of contaminated scrap by melting

    International Nuclear Information System (INIS)

    Quade, U.

    2003-01-01

    Recycling of radioactively contaminated scrap to products for further application in the nuclear cycle is Germany as an economic alternative. It has been shown that recycling within the nuclear industry reduces the collective dose as well as the number of individuals who receive doses. In the future when decommissioning of NPP will increase, a high amount of slightly radioactive steel scrap has to be managed safely. Recycling will play an important role to keep as much of these materials within the nuclear cycle as economically possible. Siempelkamp supplies a broad range of products made of recycled material from the nuclear industry. Containers made of nodular cast iron for transport and storage of radwaste as well as containers made of concrete with iron granules additive to increase the density up to 4 g/cm 3 , are offered. Interim and final disposal volume, having consequences on costs, can be reduced when recycling is applied for slightly contaminated metallic scrap

  14. Regulatory Aspects of Clearance and Recycling of Metallic Material forming Part of Buildings of Nuclear Facilities in Germany

    International Nuclear Information System (INIS)

    Thierfeldt, Stefan; Woerlen, Stefan; Harding, Philip

    2014-01-01

    Metallic materials as part of buildings of nuclear installations, like reinforcement in concrete, anchor slabs, pipework buried in concrete, but also steel liners of water basins or anchor rails that are welded to the reinforcement steel etc. require special considerations during decommissioning. It is the aim to release as much of this material as possible for recycling (either by melting in conventional foundries or by melting in a controlled recycling plant for reuse in the nuclear field). This poses problems as on the one hand these metallic materials cannot be removed from the buildings prior to their demolition, while on the other hand they would in principle require a specific clearance procedure for which they should be available separately. Besides aspects of radiological characterisation and measurements, this is also a regulatory issue, as the competent authority has to grant clearance of materials that may not be fully characterised by measurements, but for which a significant part of the information required for clearance is inferred from the operational history, from conclusions by analogy and from other sources. This issue has been resolved in different ways in various NPPs in Germany. Examples of materials that pose problems of the kind listed above (including relevant contamination pathways) are given, together with examples for solving these problems by specific considerations in the clearance procedure. The clearance regulations for metal scrap in Germany require adherence to both mass specific and surface related clearance levels in Bq/g and Bq/cm 2 , respectively, which are similar to those as laid down in the EU recommendations RP 89/101. Therefore, approaches had to be developed for inferring sufficiently comprehensive and conservative estimates of the mass and surface related activities for metallic materials forming an integral part of buildings from measurements that do not cover 100% of the material. The ways are outlined in which the

  15. Fission reactor recycling pump handling device

    International Nuclear Information System (INIS)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru.

    1991-01-01

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.)

  16. Fission reactor recycling pump handling device

    Energy Technology Data Exchange (ETDEWEB)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru

    1991-06-24

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.).

  17. Biosorption of Metals from Multi-Component Bacterial Solutions

    CERN Document Server

    Tsertsvadze, L A; Petriashvili, Sh G; Chutkerashvili, D G; Kirkesali, E I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-01-01

    The method of extraction of metals from industrial solutions by means of economical and easy to apply biosorbents in subtropics such as products of tea manufacturing, moss, microorganisms is described. The multi-component solutions obtained in the process of leaching of ores, rocks and industrial wastes by peat suspension were used in the experiments. The element composition of sorbent biomass and solutions was investigated by epithermal neutron activation analysis and by atomic absorption spectrometry. The results obtained evidence that the used biosorbents are applicable for extraction of the whole set of heavy metals and actinides (U, Th, Cu, Mn, Fe, Pb, Li, Rb, Sr, Cd, As, Co and others) from industrial solutions.

  18. Recycling and Disposal of Lithium Battery: Economic and Environmental Approach

    Directory of Open Access Journals (Sweden)

    Ataur Rahman

    2017-12-01

    Full Text Available The adoption of Lithium-ion battery technology for Electric Vehicle/Hybrid electric vehicle has received attention worldwide recently. The price of cobalt (Co and lithium (Li has increased due to the production of EV/HEV.  The used lithium battery is the valuable source of active metals (Co, Li, and Al and the optimal way of extract these metals from this waste is still studied. The focus of this paper is to recovering active metals by using a hydro-metallurgical method in laboratory scale with 48.8 Wh battery to reveal the economic and environment benefits. Calcination on extracted active metals as pre-thermal treatment has been conducted at 700°C to remove the organic compounds from the surface of active metals. The experiment has been conducted and the result shows that the recovery of active metals (cathode is 41% of cell cathode and an anode is 8.5% of the cell anode materials, which are 48.8% and 23.4% of the cathode and anode cell material price, respectively. By recycling the battery active metals about 47.34%, the emission can be reduced by 47.61% for battery metal production and 60.7% for transportation of used battery disposal. The total emission can be controlled about 52.85% by recycling the active metals on battery production.

  19. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  20. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non-metal

  1. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  2. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  4. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  5. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  6. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  7. Radiation damage in non-metals

    International Nuclear Information System (INIS)

    Stoneham, A.M.

    1980-01-01

    Work on the problem of radiation damage in non-metals over the past 25 years is reviewed with especial emphasis on the contribution made at AERE, Harwell and in particular by members of the Theoretical Physics Division. In the years between 1954 and the end of the 1960's the main thrust in the radiation damage of non-metals was model-building including devising defect models and mechanisms that were qualitatively acceptable, and compiling systematic data. The early 1970's made greater quantitative demands as computer techniques made theory more powerful. In many cases it was possible to predict defect properties accurately, so that one could distinguish between different defect models which were hard to tell apart by experiment alone. In the late 1970's the most important aspect has moved towards mechanisms of defect processes, especially in cases where experiment by itself is limited by timescale, by complexity, by the unintentional impurities inevitable in real crystals, or by the extreme conditions required. (UK)

  8. Guangxi non-ferrous metal industry speeding up its restructuring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Non-ferrous metal industry in Guangxi takes an important position in China.However,the waste of resources is severe due to its simple industrial structure,small size of enterprises, sloppy technology,scattered layout,obstructed market and indiscriminate mining.Starting from last year,Guangxi began the project of building a world-influential non-ferrous metal

  9. The mineral base and productive capacities of metals and non-metals of Kosovo

    Science.gov (United States)

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E. Z.; Kongoli, F.

    2008-08-01

    All historical periods of Kosovo—Ilirik, Roman, Medieval, Turkish, and former Yugoslavian—are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  10. LIFE CYCLE ANALYSIS OF HAZARDOUS WASTE AND RECYCLABLE ORIGIN OF HOUSEHOLD

    Directory of Open Access Journals (Sweden)

    Patrícia Raquel da Silva Sottoriva

    2011-09-01

    Full Text Available As the sustainable development that the society aims is based on economic, social and environmental factors, it can be said that the environmental crisis has as the component factors: natural resources, population and pollution. To reduce the pressure that human activities have on the environment, it is necessary to know the production process, inputs and outputs, to reduce potential problems such as waste and facilitate opportunities for system optimization. In this context it was investigated the life cycle of waste and household hazardous recyclable items to identify possibilities for reducing impact on supply chains. As a result it was found that the raw material most used by the paper industry is pine and eucalyptus plantations and some industries also use sugar cane. From the growing process until the paper is industrialized, there is a large demand of time. The cutting of eucalyptus should be done between 5 and 7 years, since the pine requires 10 to 12 years. After used, the papers can and should be recycled. When recycling 1 ton of paper 29.2 m3 of water can be saved, 3.51 MWh of electricity 76 and 22 trees when compared to traditional production processes. The cultivation of trees also contributes to carbon capture and sequestration. The eucalyptus ages 2, 4, 6, 8 years fixing concentrations of 11.12, 18.55, 80.91 and 97.86 t / ha, respectively. The paper can also be designed to compost due to biodegradability. The metal, glass and plastics are not biodegradable and inorganic nature needing to be recycled or reused. Recycling 1 ton of plastic is no economy of 5.3 MWh and 500 kg of oil. Even with the gains of environmental, social and economic impacts of recycling compared to traditional processes, in Brazil, the percentage of recycling paper and glass and PET bottles are less than 60%. The recycling of aluminum cans and steel exceeds 90%. Lamps and batteries are materials that are inadequately provide for contamination to the

  11. Beneficial Re-Use of Metal from Decommissioning of Power Reactors

    International Nuclear Information System (INIS)

    Eshleman, Troy; Raw, Graham; Moloney, Barry

    2014-01-01

    Utilities and contractors decommissioning nuclear power reactors can recycle a high proportion of the scrap metal generated during dismantling either by free release for general re-use directly from the point of generation, or by recycling off-site at facilities specifically licensed for radioactive material. The worldwide commercial vendors operate different commercial models of volumetric decontamination of ferrous metals by thermal treatment. Some aim to achieve free release of output metals for general use, while others accept higher activity metals as feedstock for the manufacture of steel products which contain residual radioactivity, which we term 'Beneficial Re-use'. It is estimated that 10-30% of metals from light water reactor decommissioning have been exposed to neutron radiation (activated) and/or are contaminated to such an extent that free release is not achievable. This paper outlines a cost-effective alternative to managed storage or disposal for lightly activated or contaminated metal, utilising a 'Beneficial Re-Use' programme which has been in routine operation in the United States for over 20 years. 'Beneficial Re-Use' describes the manufacture of products such as radiation shielding from radioactive scrap metal. Unlike recycling practised in Europe, such products remain under control in licensed facilities and the metal does not find its way into general circulation or consumer products. Since 1992, EnergySolutions and its predecessor Duratek has been melting scrap at their Bear Creek, Tennessee facility to produce shield blocks for use in high energy research facilities. Over 62,300 t of scrap steel have been re-used, and the demand for shielding products continues long into the future. 3,000 t of this feedstock originated outside the US. This paper proposes the potential for activated steel that will not be acceptable at European recycling facilities to enter the Beneficial Re-use programme. Acceptance criteria

  12. optimization of the development of a plastic recycling machine

    African Journals Online (AJOL)

    Introduction. A recycling .... recycling plant included the determination of the volume of the ... steel, this is because it is the easiest to be joined among all other ... tility, high productivity, low cost, ability to produce irregular ... tion and maintenance of components, design ..... 2.3073W Hence, the total heat lost from the cylinder ...

  13. Realizing the world economic, environmental and non-proliferation benefits of the ALMR actinide recycle system

    International Nuclear Information System (INIS)

    Quinn, J.E.

    1995-01-01

    The Advanced Liquid Metal Reactor (ALMR) Actinide Recycle System has enormous potential to: positively impact the global environment; extend currently known energy resources; and assist developing/undeveloped countries' energy resource access. A global vision of the benefits of developing and deploying this system, including the role of highly developed countries is presented. In this vision, the ALMR System is heavily used, in conjunction with light water reactors (LWRs), in highly developed countries thus displacing fossil fuel demand in those economies, and making them more available for developing/undeveloped countries. In addition, LWRs in developing countries can further reduce global fossil fuel demand. This vision provides quality of life and standard of living improvements in these developing/undeveloped economies, which should lead to more political stability. (author)

  14. Non-destructive testing of electronic component packages

    International Nuclear Information System (INIS)

    Anderle, C.

    1975-01-01

    A non-destructive method of investigating packaged parts of semiconductor components by X radiation is described and the relevant theoretical relations limiting this technique are derived. The application of the technique is demonstrated in testing several components. The described method is iNsimple and quick. (author)

  15. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  16. Trajectory Analysis of Copper and Glass Particles in Electrostatic Separation for the Recycling of ASR

    Directory of Open Access Journals (Sweden)

    Beom-uk Kim

    2017-10-01

    Full Text Available Automobile-shredder-residue (ASR recycling techniques have been widely applied for improving the total recycling rate of end-of-life vehicles. In this study, to obtain useful information for predicting or improving ASR-separation efficiency, trajectory analyses of conductors (copper and non-conductors (glass were performed using a lab-scale induction electrostatic separator. The copper-wire trajectories obtained showed a good agreement depending significantly on the electric field strength and particle size. The observed copper-wire trajectories showed consistent congruity with the coarse-particles simulation (0.5 and 0.25 mm. The observed fine-particles (0.06 mm trajectory was deflected toward the (− attractive electrode, owing to the charge density effects due to the particle characteristics and relative humidity. This results in superior separation performance because more copper enters the conductor products bin. The actual dielectric-glass trajectory was deflected toward the (− attractive electrode, thus showing characteristics similar to conductive-particle characteristics. Through analyses conducted using a stereoscopic microscope, scanning electron microscope, and energy dispersive spectroscope, we found heterogeneous materials (fine ferrous particles and conductive organics on the glass surface. This demonstrates the separation-efficiency decrease for non-ferrous metals during electrostatic separation in the recycling of ASR. Future work should include a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

  17. Challenges to achievement of metal sustainability in our high-tech society.

    Science.gov (United States)

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  18. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  19. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  20. Radiation exposure estimates on production and utilization of recycled items using dismantling waste

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Nakashima, Mikio

    2002-03-01

    Radiation exposure was estimated on production and utilization of recycled items using dismantling wastes by assuming that their usage are restricted to nuclear facilities. The radiation exposure attributed to production of a steel-plate cast iron waste container, a receptacle for slag, and a drum reinforcement was calculated to be in the range of several μSv to several tens of μSv even in recycling contaminated metal waste of which radioactivity concentration of Co-60 is higher than the clearance level by a factor of two figures. It is also elucidated that casting of a multiple casting waste package meets the standards of dose equivalent rate for the transport of a radioactive package and the weight of the package will be able to kept around 20 tons for the convenience of the handling, in case of disposal of metal waste less than 37 MBq/g with the steel-plate cast iron waste container. As the results, from the radiological exposure's point of view, it should be possible to use slightly contaminated metal for recycled items in waste management. (author)

  1. The economics of plutonium recycle

    International Nuclear Information System (INIS)

    James, R.A.

    1977-11-01

    The individual cost components and the total fuel cycle costs for natural uranium and uranium-plutonium mixed oxide fuel cycles for CANDU-PHW reactors are discussed. A calculation is performed to establish the economic conditions under which plutonium recycle would be economically attractive. (auth)

  2. Application of spouted bed elutriation in the recycling of lithium ion batteries

    Science.gov (United States)

    Bertuol, Daniel A.; Toniasso, Camila; Jiménez, Bernardo M.; Meili, Lucas; Dotto, Guilherme L.; Tanabe, Eduardo H.; Aguiar, Mônica L.

    2015-02-01

    The growing environmental concern, associated with the continuous increase in electronic equipment production, has induced the development of new technologies to recycle the large number of spent batteries generated in recent years. The amount of spent lithium-ion batteries (LIBs) tends to grow over the next years. These batteries are composed by valuable metals, such as Li, Co, Cu and Al, which can be recovered. Thus, the present work is carried out in two main steps: In the first step, a characterization of the LIBs is performed. Batteries from different brands and models are dismantled and their components characterized regarding to the chemical composition and main phases. In the second step, a sample of LIBs is shredded and the different materials present are separated by spouted bed elutriation. The results show that spouted bed elutriation is a simple and inexpensive way to obtain the separation of the different materials (polymers, metals, active electrode materials) present in spent LIBs.

  3. Study on recycling of waste rubbers as medium components for hydroponic culture of rose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Kuk; Lee, Hyung-Gyu; Jeong, Byoung-Ryong; Hwang, Seung-Jae [Gyeongsang National Univ., Kumi(Korea)

    2000-06-30

    Recently, the efficient disposal of the waste rubber is necessary due to increasing amount of the waste rubbers. In this paper, method of recycling waste rubbers as components of medium for hydroponic rose culture was suggested. We investigated growth of rose, and macro- and micro-elements, pH and EC of the media amended with waste rubber. In the beginning of culture, stress symptoms such as thin brittle stem and incipient wilting were observed, but they disappeared in a few weeks. Concentration of Zn{sup 2+} in media at flowering increased in proportion to contents of waste tire in the media. pH of media at flowering were in the range of 5.70 to 6.35. Rose growth in all media, except in waste rock wool mixed with EPDM powder at 9:3 ratio, was normal and equivalent to the control in terms of stem length, number of stems harvested and fresh weight. (author). 10 refs., 5 tabs., 4 figs.

  4. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.

    Science.gov (United States)

    Rademaker, Jelle H; Kleijn, René; Yang, Yongxiang

    2013-09-17

    End-of-life recycling is promoted by OECD countries as a promising strategy in the current global supply crisis surrounding rare earth elements (REEs) so that dependence on China, the dominant supplier, can be decreased. So far the feasibility and potential yield of REE recycling has not been systematically evaluated. This paper estimates the annual waste flows of neodymium and dysprosium from permanent magnets, the main deployment of these critical REEs, during the 2011-2030 period. The estimates focus on three key permanent magnet waste flows: wind turbines, hybrid and electric vehicles, and hard disk drives (HDDs) in personal computers (PCs). This is a good indication of the end-of-life recycling of neodymium and dysprosium maximum potential yield. Results show that for some time to come, waste flows from permanent magnets will remain small relative to the rapidly growing global REE demand. Policymakers therefore need to be aware that during the next decade recycling is unlikely to substantially contribute to global REE supply security. In the long term, waste flows will increase sharply and will meet a substantial part of the total demand for these metals. Future REE recycling efforts should, therefore, focus on the development of recycling technology and infrastructure.

  5. Fernald's dilemma: Do we recycle the radioactively contaminated metals, or do we bury them?

    International Nuclear Information System (INIS)

    Yuracko, K.L.; Hadley, S.W.; Perlack, R.D.

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low level waste containers, technology has been applied to this fabrication process in a safe and stakeholder supported manner. The potential health and safety risks to both workers and the public have been addressed. The question remains; can products be fabricated from RSM in a cost efficient and market competitive manner? This paper presents a methodology for use within DOE to evaluate the costs and benefits of recycling and reusing some RSM, rather than disposing of this RSM in an approved burial site. This life cycle decision methodology, developed by both the Oak Ridge National Laboratory (ORNL) and DOE Fernald is the focus of the following analysis

  6. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  7. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  8. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  10. Current and future priorities for mass and material in silicon PV module recycling

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Geerligs, L.J.; Goris, M.J.A.A.; Bennett, I.J. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Clyncke, J. [PV CYCLE, Rue Montoyer 23, 1000 Brussels (Belgium)

    2013-10-15

    A full description of the state-of-the-art PV recycling methods and their rationale is presented, which discusses the quality of the recycled materials and the fate of the substances which end up in the landfill. The aim is to flag the PV module components currently not recycled, which may have a priority in terms of their embedded energy, chemical nature or scarcity, for the next evolution of recycling. The sustainability of different recycling options, emerging in the literature on electronic waste recycling, and the possible improvement of the environmental footprint of silicon PV modules, will be discussed.

  11. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    Science.gov (United States)

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  12. Planning of Eka Hospital Pekanbaru wastewater recycling facility

    Science.gov (United States)

    Jecky, A.; Andrio, D.; Sasmita, A.

    2018-04-01

    The Ministry of Public Works No. 06 2011 required the large scale of water to conserve the water resource, Eka Hospital Pekanbaru have to improve the sewage treatment plant through the wastewater recycling. The effluent from the plant can be used to landscape gardening and non-potable activities. The wastewater recycling design was done by analyzing the existing condition of thesewage treatment plant, determine the effluent quality standards for wastewater recycling, selected of alternative technology and processing, design the treatment unit and analyze the economic aspects. The design of recycling facility by using of combination cartridge filters processing, ultrafiltration membranes, and desinfection by chlorination. The wastewater recycling capacity approximately of 75 m3/day or 75% of the STP effluent. The estimated costs for installation of wastewater recycling and operation and maintenance per month are Rp 111,708,000 and Rp 2,498,000 respectively.

  13. Characterizing the environmental impact of metals in construction and demolition waste.

    Science.gov (United States)

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben

    2018-05-01

    Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.

  14. Chapter 7: Refrigerator Recycling Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keeling, Josh [Cadmus Portland, OR (United States); Bruchs, Doug [Cadeo, Portland, OR (United States)

    2017-10-04

    Refrigerator recycling programs are designed to save energy by removing operable, albeit less efficient, refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of less efficient refrigerators, these programs are designed to encourage consumers to: - Limit the use of secondary refrigerators -Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the existing refrigerator as a secondary unit) -Prevent the continued use of less efficient refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market). Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam, and enables recycling of the plastic, metal, and wiring components.

  15. A Canadian recycling newsletter. Final phase

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A study was performed to publish a Canadian recycling newsletter, to be distributed gradually throughout the country. This report reviews the format, data collection procedures, printing, mailing, advertising, marketing, promotion, and finances of the publication. In the final phase of the study, publication and distribution was to extend to various segments of the secondary materials industry. This would include publishing articles and industry briefs related to the ferrous and non-ferrous metals industry. The publication would be increased to 12 pages and would attempt to become financially self-sufficient. In this phase, the newsletter became firmly established as the voice of Canada's secondary materials market, especially waste paper, where the price guide published by the newsletter became a sort of recognized standard. It was found that financially independent operation was achieved within one year. The newsletter was published on schedule and reader response was positive. Examples of the newsletter, called Recoup, are included in the appendix.

  16. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards

    International Nuclear Information System (INIS)

    Long Laishou; Sun Shuiyu; Zhong Sheng; Dai Wencan; Liu Jingyong; Song Weifeng

    2010-01-01

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 deg. C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB.

  17. Development of DOE complexwide authorized release protocols for radioactive scrap metals

    International Nuclear Information System (INIS)

    Chen, S. Y.

    1998-01-01

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D and D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D and D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities

  18. Advanced methods for incineration of solid, burnable LLW and melting for recycling of scrap metals

    International Nuclear Information System (INIS)

    Krause, G.; Lorenzen, J.; Lindberg, M.; Olsson, L.; Wirendal, B.

    2003-01-01

    Radioactive contaminated waste is a great cost factor for nuclear power plants and other nuclear industry. On the deregulated electricity market the price on produced kWh is an important competition tool. Therefore the waste minimisation and volume reduction has given highest priority by many power producers in the process to achieve savings and hence low production cost. Studsvik RadWaste AB in Nykoeping, Sweden, is a company specialised in volume reduction of LLW, as solid combustible waste and as scrap metal for melting and recycling. The treatment facility in Sweden offers this kind of services - together with segmentation and decontamination when necessary - for several customers from Europe, Japan and USA. In addition to these treatment services a whole spectrum of services like transportation, measurement and safeguard, site assistance, industrial cleaning and decontamination in connection with demolition at site is offered from the Studsvik company. (orig.)

  19. Size effects in manufacturing of metallic components

    DEFF Research Database (Denmark)

    Vollertsen, F; Biermann, D; Hansen, Hans Nørgaard

    2009-01-01

    In manufacturing of metallic components, the size of the part plays an important role for the process behaviour. This is due to so called size effects, which lead to changes in the process behaviour even if the relationship between the main geometrical features is kept constant. The aim...... of this paper is to give a systematic review on Such effects and their potential use or remedy. First, the typology of size effects will be explained, followed by a description of size effects on strength and tribology. The last three sections describe size effects on formability, forming processes and cutting...... processes. (C) 2009 CIRP....

  20. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  1. Vanadium recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  2. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility

    2016-05-01

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact of the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  3. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  4. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  5. Recycling potential of neodymium: the case of computer hard disk drives.

    Science.gov (United States)

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  6. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  7. Recycling of contaminated scrap by melting 10 years of experience in Germany

    International Nuclear Information System (INIS)

    Hamm, M.; Kreh, R.; Quade, U.

    2000-01-01

    Recycling of slightly radioactively contaminated steel scrap from nuclear installations has been developed in Germany since the early 80's. 14,000 t of steel scrap were melted in the single purpose melting plant CARLA at Siempelkamp, Krefeld, up to now. As much material as possible is used for recycling to cast iron containers, shieldings or to replace iron ore in heavy concrete shieldings by iron granules. By this well developed recycling technique within the nuclear cycle radiation exposure of the general public could be avoided. Due to the max. achievable volume reduction, 80 % of final disposal volume have been saved so far. To manage the upcoming metallic waste from decommissioning of nuclear power plants, this recycling path will play an important role in the future. (authors)

  8. Opportunities and Barriers to Resource Recovery and Recycling from Shredder Residue in the United States

    Science.gov (United States)

    Nayak, Naren; Apelian, Diran

    2014-11-01

    Shredder residue is the by-product remaining after ferrous and nonferrous metals have been recovered from the processing of vehicles, white goods, and peddler scrap. Shredder residue consists of glass, plastics, rubber, dirt, and small amounts of metal. It is estimated that 5-7 million tons of this shredder residue are landfilled each year in the United States. Technical advancements, coupled with European Union directives and the economic climate, have transformed the recycling of shredder residue in Europe. In the United States, however, regulatory controls and the cheap cost of landfill have worked against the advancement of recycling and recovery of this resource. The Argonne National Laboratory, which is funded by the U.S. Department of Energy, has investigated the effectiveness of recycling shredder residue into polymers. Other research has examined the use of shredder residue in waste-to-energy applications. To improve our ability to process and recycle shredder residue, an investigation of the regulatory, economic, and technological challenges was undertaken. The objective was to conduct a comprehensive review of work done to date, to document the composition of typical shredder output and to identify potential recoverable items (residual metals, plastics, rubber, foam, etc.). Along with uncovering potential new markets, the research would identify the technical, regulatory, and economic barriers to developing those markets.

  9. Non-structural Components influencing Hospital Disaster Preparedness in Malaysia

    Science.gov (United States)

    Samsuddin, N. M.; Takim, R.; Nawawi, A. H.; Rosman, M. R.; SyedAlwee, S. N. A.

    2018-04-01

    Hospital disaster preparedness refers to measures taken by the hospital’s stakeholders to prepare, reduce the effects of disaster and ensure effective coordination during incident response. Among the measures, non-structural components (i.e., medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are critical towards hospital disaster preparedness. Nevertheless, over the past few years these components are badly affected due to various types of disasters. Hence, the objective of this paper is to investigate the non-structural components influencing hospital’s disaster preparedness. Cross-sectional survey was conducted among thirty-one (31) Malaysian hospital’s employees. A total of 6 main constructs with 107 non-structural components were analysed and ranked by using SPSS and Relative Importance Index (RII). The results revealed that 6 main constructs (i.e. medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are rated as ‘very critical’ by the respondents. Among others, availability of medical laboratory equipment and supplies for diagnostic and equipment was ranked first. The results could serve as indicators for the public hospitals to improve its disaster preparedness in terms of planning, organising, knowledge training, equipment, exercising, evaluating and corrective actions through non-structural components.

  10. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  11. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  12. Metal Cutting for Large Component Removal

    International Nuclear Information System (INIS)

    Hulick, Robert M.

    2008-01-01

    Decommissioning of commercial nuclear power plants presents technological challenges. One major challenge is the removal of large components mainly consisting of the reactor vessel, steam generators and pressurizer. In order to remove and package these large components nozzles must be cut from the reactor vessel to precise tolerances. In some cases steam generators must be segmented for size and weight reduction. One innovative technology that has been used successfully at several commercial nuclear plant decommissioning is diamond wire sawing. Diamond wire sawing is performed by rotating a cable with diamond segments attached using a flywheel approximately 24 inches in diameter driven remotely by a hydraulic pump. Tension is provided using a gear rack drive which also takes up the slack in the wire. The wire is guided through the use of pulleys keeps the wire in a precise location. The diamond wire consists of 1/4 inch aircraft cable with diamond beads strung over the cable separated by springs and brass crimps. Standard wire contains 40 diamond beads per meter and can be made to any length. Cooling the wire and controlling the spread of contamination presents significant challenges. Under normal circumstances the wire is cooled and the cutting kerf cleaned by using water. In some cases of reactor nozzle cuts the use of water is prohibited because it cannot be controlled. This challenge was solved by using liquid Carbon Dioxide as the cooling agent. The liquid CO 2 is passed through a special nozzle which atomizes the liquid into snowflakes which is introduced under pressure to the wire. The snowflakes attach to the wire keeping it cool and to the metal shavings. As the CO 2 and metal shavings are released from the wire due to its fast rotation, the snowflakes evaporate leaving only the fine metal shavings as waste. Secondary waste produced is simply the small volume of fine metal shavings removed from the cut surface. Diamond wire sawing using CO 2 cooling has

  13. Investigation of impurities present in recycling and reusing of scrap lead for accumulator industry

    International Nuclear Information System (INIS)

    Farooq, A.; Irfan, N.; Chaudhry, M.M.; Nawab, S.

    2012-01-01

    Recycling and reusing are the basic strategies of reducing solid waste generated from industries. Millions of batteries containing toxic metals and poisonous wastes are discarded every year in Pakistan. Battery waste deposited in landfills increases the concentration of toxic metals in leachates obtained from landfill base. For this reason, recycling of locally available scrap lead has been focused. During reduction and refining stages, samples were obtained at various stages from a five ton lead smelting pot of an accumulator industry. Various impurities present were determined and removed in order to reuse in accumulators. X-ray fluorescence (XRF) and atomic absorption spectroscopy (AAS) techniques were used to analyze the samples obtained at various stages of recycling. This work has been carried out to reduce these impurities and the refining process has thus been optimized. The lead thus obtained is 99.98 % pure. (author)

  14. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended to...

  15. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  16. Metals, scraps and opportunities; Metales, chatarras y oportunidades

    Energy Technology Data Exchange (ETDEWEB)

    Roman Ortega, F.

    2003-07-01

    This article attempts to focus on the vision that recuperation and recycling of metals is an activity which must attract attention of Mine Engineers, as much for its increasing importance as the fact that the techniques involved are not anything else but adaptation, in certain conditions of the ones used in the treatment and benefit of the metallic ores. (Author)

  17. Life cycle perspective on recycling of ashes; Livscykelperspektiv paa aatervinning av askor

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Susanna

    2007-07-01

    The purpose of this project was to, from a life cycle perspective, discuss the consequences of recycling or disposing combustion ashes. The aim was to regard regional as well as global environmental impacts and point at potential conflicts between different environmental objectives, in order to produce basic information for decision-making on criteria and regulations for ash handling.Three different ashes were studied: bottom ash from waste incineration, fly ash from combustion of peat and from forest fuels. For all ashes three different scenarios were studied, two where the ash is recycled, and one where it is disposed. Focus was put on the difference between the three scenarios during 100 years. The use of bottom ash from waste incineration for roads saved crushed rock and energy, but produced more leaching of metals than the disposal alternative. Using this ash in drainage strata saves sand but causes higher metal leaching too. The same conclusions can be drawn for fly ash from peat, here leaching of Arsenic is the main factor. Using the peat ash as road contraction material saves more resources than the use for drainage blankets. For forest fuel ash, both the use as road construction material and recycling to the forest saves resources and energy. Recycling to the forest saves most energy but also the resources of Zinc, Phosphorous and Dolomite. Leaching of metals is most important for the forest recycling, and the nature of this resource recycling can be argued. The results are most sensitive concerning transports and leaching, but also for maintenance of the constructions where the ash is used. For the forest fuel ash, the suppositions about the necessity of compensation for nutrients removed with the fuel, have important effects for the result. Generally it can be said, for all three cases, that the estimates of leaching of metals are very uncertain, and that there is a need to develop the existing models for long term leaching. The three cases demonstrated

  18. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  19. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  20. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.

    Science.gov (United States)

    Li, Baiyan; Dong, Xinglong; Wang, Hao; Ma, Dingxuan; Tan, Kui; Jensen, Stephanie; Deibert, Benjamin J; Butler, Joseph; Cure, Jeremy; Shi, Zhan; Thonhauser, Timo; Chabal, Yves J; Han, Yu; Li, Jing

    2017-09-07

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH 3 I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag 0 @MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  1. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps

    KAUST Repository

    Li, Baiyan

    2017-09-01

    Effective capture of radioactive organic iodides from nuclear waste remains a significant challenge due to the drawbacks of current adsorbents such as low uptake capacity, high cost, and non-recyclability. We report here a general approach to overcome this challenge by creating radioactive organic iodide molecular traps through functionalization of metal-organic framework materials with tertiary amine-binding sites. The molecular trap exhibits a high CH3I saturation uptake capacity of 71 wt% at 150 °C, which is more than 340% higher than the industrial adsorbent Ag0@MOR under identical conditions. These functionalized metal-organic frameworks also serve as good adsorbents at low temperatures. Furthermore, the resulting adsorbent can be recycled multiple times without loss of capacity, making recyclability a reality. In combination with its chemical and thermal stability, high capture efficiency and low cost, the adsorbent demonstrates promise for industrial radioactive organic iodides capture from nuclear waste. The capture mechanism was investigated by experimental and theoretical methods.Capturing radioactive organic iodides from nuclear waste is important for safe nuclear energy usage, but remains a significant challenge. Here, Li and co-workers fabricate a stable metal-organic framework functionalized with tertiary amine groups that exhibits high capacities for radioactive organic iodides uptake.

  2. Considerations on the Benefits of Using Recyclable Materials for Road Construction

    Directory of Open Access Journals (Sweden)

    Popescu Diana

    2017-07-01

    Full Text Available A current worldwide economy problem includes both the responsible management of the planet's non-renewable resources and the waste management. The benefits of using recyclable materials and recycling technologies with asphalt mixtures consist mainly of reducing fuel consumption and greenhouse gas emissions. It is well known that oil (from which bitumen is obtained is a non-renewable resource, hence the its price increase. Therefore, at present, the world is looking for solutions that will lead to a better use of natural resources and to an economic integration of sub-products from various industries. This paper intends to raise awareness of the possibilities for asphalt mixtures recycling and of the recyclable materials that can be used as additives with benefits of each.

  3. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  4. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  5. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    Science.gov (United States)

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  7. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  8. Meeting the EU recycling targets by introducing a 2-compartment bin to households

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Scheutz, Charlotte; Møller, Jacob

    A Danish municipality has introduced a 2-compartment bin in the waste collection scheme, this bin should increase recycling of dry household recyclables. An excessive waste sorting campaign was conducted and the efficiency of the bin assessed. The waste sorting campaign yielded a full waste...... targets can be fulfilled, there is still room for improvement (increase source separation), especially for hard plastic and metals....

  9. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Assembling Components using SysML with Non-Functional Requirements

    OpenAIRE

    Chouali , Samir; Hammad , Ahmed; Mountassir , Hassan

    2013-01-01

    International audience; Non-functional requirements of component based systems are important as their functional requirements, therefore they must be considered in components assembly. These properties are beforehand specified with SysML requirement diagram. We specify component based system architecture with SysML block definition diagram, and component behaviors with sequence diagrams. We propose to specify formally component interfaces with interface automata, obtained from requirement and...

  11. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  12. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  13. Axis vibration detection device for reactor recycling pump

    International Nuclear Information System (INIS)

    Ide, Katsuki.

    1995-01-01

    The present invention provides a device for detecting, in a contactless manner, vibrations of a recycling pump shaft disposed in a reactor pressure vessel of a BWR type reactor. Namely, the vibration detector comprises an eddy current type displacement gauge having a sensing portion at one end of a linear tube type metal holder. It also comprises a rotational member made of an electroconductive material rotating integrally with a rotational pump shaft. The vibration detector is inserted into an attaching hole passing through a pump casing at a position where the sensing portion faces the outer circumference of the rotational member. The attaching hole is closed by a holder of the oscillation detector and a metal cap integrated to one end of the holder. A high pressure hermetic seal connector is disposed at a position outer side of the attaching hole of the vibration detector for electrically connecting the inside and the outside thereof. The device of the present invention can directly detect the vibration of the pump shaft. As a result, an abnormality, if should occur, in the recycling pump can be found in an early stage. Since the vibration detector is covered with a metal and shielded by the high pressure hermetic seal connector, it can sufficiently ensure pressure resistance. (I.S.)

  14. Recycle operations as a methodology for radioactive waste volume reduction

    International Nuclear Information System (INIS)

    Rasmussen, G.A.

    1985-01-01

    The costs for packaging, transportation and burial of low-level radioactive metallic waste have become so expensive that an alternate method of decontamination for volume reduction prior to disposal can now be justified. The operation of a large-scale centralized recycle center for decontamination of selected low level radioactive waste has been proven to be an effective method for waste volume reduction and for retrieving valuable materials for unlimited use. The centralized recycle center concept allows application of state-of-the-art decontamination technology resulting in a reduction in utility disposal costs and a reduction in overall net amount of material being buried. Examples of specific decontamination process activities at the centralized facility will be reviewed along with a discussion of the economic impact of decontamination for recycling and volume reduction. Based on almost two years of operation of a centralized decontamination facility, a demonstrated capability exists. The concept has been cost effective and proves that valuable resources can be recycled

  15. Background study on increasing recycling of end-of-life mercury-containing lamps from residential and commercial sources in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hilkene, C. [Hilkene International Policy, Toronto, ON (Canada); Friesen, K. [Pollution Probe, Toronto, ON (Canada)

    2005-10-31

    The state of recycling of mercury-containing lamps in Canada was studied. Developing an efficient recovery and recycling infrastructure for mercury-containing lamps offers several benefits such as environmental protection from releases of mercury; displacing virgin materials required for production of new lamps; and increasing the sustainability associated with the use of these energy efficient products. This study summarized international experience with respect to recovery and recycling of mercury-containing lamps. It also summarized the material composition of these lamps, and provided an inventory of Canadian fluorescent lamp recycling and recovery initiatives. It provided estimates of quantities of end-of-life bulbs and tubes being disposed of in Canada; quantities of metals and other materials recovered through lamp recycling; the tonnage of metals and other materials being lost to disposal systems and energy savings and associated greenhouse gas emission reductions from substitution of recycled fluorescent lamp materials for virgin materials in manufacturing operations. The report also identified other environmental benefits arising from current or potential recycling and recovery initiatives as well as recovery opportunities and barriers to fluorescent lamp recovery and recycling initiatives. Last, the report presented options for stimulating greater recovery and recycling of mercury-containing lamps and presented critical factors for a meaningful cost benefit analysis on enhanced recovery. 76 refs., 16 tabs., 2 figs., 6 appendices.

  16. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  17. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO 2 emissions and saves the environment. In fact it annually reduces global CO 2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  18. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  19. Innovative technologies for recycling and reusing radioactively contaminated materials from DOE facilities

    International Nuclear Information System (INIS)

    Bossart, S.J.; Hyde, J.

    1993-01-01

    Through award of ten contracts under the solicitation, DOE is continuing efforts to develop innovative technologies for decontamination and recycling or reusing of process equipment, scrap metal, and concrete. These ten technologies are describe briefly in this report. There is great economic incentive for recycling or reusing materials generated during D ampersand D of DOE's facilities. If successfully developed, these superior technologies will enable DOE to clean its facilities by 2019. These technologies will also generate a reusable or recyclable product, while achieving D ampersand D in less time at lower cost with reduced health and safety risks to the workers, the public and the environment

  20. Mining Waste Classification and Quantity of Non-Metal Minesin Slovenia

    Directory of Open Access Journals (Sweden)

    Ana Burger

    2007-06-01

    Full Text Available Mining is an important human activity that creates wealth and supplies materials for maintaining standard of living and further human development. However, mining has also negative impacts on the environment and society. One of them is the production of mining waste throughout the entire mining cycle, in particular in the mine development and operation /production stage.Due to the EU Directive 2006/21/EC on the management of waste from the extractive industries and its implementation in Member state, estimation on quality and quantity of mining waste from active non-metal mines in Slovenia was carried out. In the selected mines mining and processing was closely examined. With material flow analysis quantity and characteristics of mining waste were defined for several mines of different commodities.Data on mining waste were afterwards generalized in order to get an overall country evaluation on mining waste “production” of non-metal mines.Mining waste as a result of mining and beneficiation processes in non-metal mines of Slovenia is either inert or non-hazardous. Most of the mining waste is used for mine reclamation running simultaneously with the production phase. The largest amounts of mining waste per unit produced are created in dimension stone industry. Since the dimensionstone production is small, the waste amount is negligible. Large quantities of mining waste are produced in crushed stone and, sand and gravel operations, because aggregate production is pretty large with regard to other non-metals production in Slovenia. We can therefore conclude that large quantities of mining waste from non-metal mines, which are mostly used in reclamation and for side products, do not represent danger to the environment.

  1. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  2. Independent component analysis in non-hypothesis driven metabolomics

    DEFF Research Database (Denmark)

    Li, Xiang; Hansen, Jakob; Zhao, Xinjie

    2012-01-01

    In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori...... information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach...... based on descriptive statistics was established to optimize ICA model. In the GC-TOF MS data set the number of principal components after whitening and the number of independent components of ICA were optimized and systematically selected by descriptive statistics. The elucidated dominating independent...

  3. Management of radioactive scrap metal at SCK-CEN

    International Nuclear Information System (INIS)

    Noynaert, L.; Klein, M.; Cornelissen, R.; Ponnet, M.

    2000-01-01

    The environmental concern and public perception as well as the steadily increase of the conditioning and disposal costs are pushing the nuclear sector to minimise the amount of radioactive waste. Hence it is a strong incentive to prefer the management option 'recycling and reuse' instead of the option 'disposal and replacement'. The 'recycling and reuse' option requires the availability of decontamination techniques as well as measuring techniques allowing to prove that the release criteria are met. Therefore SCK-CEN has now two decontamination installations for scrap metal on its own site. One installation uses a wet abrasive technique while the other one uses a chemical process based on the Ce 4+ . These two installations, combined with the use of foundries for free release or for radioactive scrap metal recycling are now common practices at SCK-CEN and will allow to reduce the metallic waste to 10% of the metallic scrap production and the costs at least by a factor 2.5. (author)

  4. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  5. Transformation of atmospheric components near a spark discharge at the anode polarization of a metallic electrode hanging over a solution

    Science.gov (United States)

    Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.

    2013-03-01

    The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.

  6. Recycle and biodestruction of hazardous nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.; Kosinski, F.E.

    1987-01-01

    The US Department of Energy (DOE) owns the Oak Ridge Y-12 Plant located in Oak Ridge, Tennessee. The plant is operated for DOE by Martin Marietta Energy Systems, Inc. One of the plant's functions involves the purification and recycling of uranium wastes. The uranium recycle operation uses nitric acid in a solvent extraction purification process, and a waste stream containing nitric acid and other impurities is generated. Before 1976 the wastes were discarded into four unlined percolation ponds. In 1976, processes were developed and installed to recycle 50% of the wastes and to biologically decompose the rest of the nitrates. In 1983 process development studies began for in situ treatment of the four percolation ponds, and the ponds were treated and discharged by May 1986. The treatment processes involved neutralization and precipitation to remove metallic impurities, followed by anaerobic denitrification to reduce the 40,000 ug/g nitrate concentration to less than 50 ug/g. The final steps included flocculation and filtration. Approximately 10 million gallons of water in the ponds were treated and discharged

  7. Assessment studies on plutonium recycle in CANDU reactors

    International Nuclear Information System (INIS)

    1978-11-01

    This paper describes the CANDU reactor system in detail and goes on to explore the potential for using the system with plutonium recycle fuelling to improve fuel utilisation and to meet the long-term challenge of economic supplies of nuclear fuel. The paper includes comments on costs and non-proliferation aspects. It concludes that: recycle fuelling is feasible with little modification to the reactor design and no degradation of safety, and could offer over 50% savings in uranium requirements. However, recycle fuelling costs do not appear competitive with natural uranium in the CANDU system under current economic conditions

  8. Nuclear recycling

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This paper discusses two aspects of the economics of recycling nuclear fuel: the actual costs and savings of the recycling operation in terms of money spent, made, and saved; and the impact of the recycling on the future cost of uranium. The authors review the relevant physical and chemical processes involved in the recycling process. Recovery of uranium and plutonium is discussed. Fuel recycling in LWRs is examined and a table presents the costs of reprocessing and not reprocessing. The subject of plutonium in fast reactors is addressed. Safeguards and weapons proliferation are discussed

  9. Cathode refunctionalization as a lithium ion battery recycling alternative

    Science.gov (United States)

    Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle

    2014-06-01

    An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.

  10. Evaluation of Spent Fuel Recycling Scenario using Pyro-SFR related System

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Sang Ji; Kim, Young Jin

    2014-01-01

    It is needed to validate whether the recycling scenario connecting pyro-processing and sodium-cooled fast reactor(SFR) is promising or not. The latest technologies of pyro-processing are applied to SFR and the recycling scenario is evaluated through the SFR's performance analysis. The analyzed SFR is KALIMER-600 TRU burner which purpose is to transmute transuranics (TRU). National policy of CANDU SF management has not been decided yet. However, the stored quantity of this SF is large enough not to be neglected. So this study includes additionally the recycling scenario of CANDU SF. Adopting the mass ratio of TRU and RE recovered in pyro-processing is 4 to 1 on PWR SF recycling, the sodium void reactivity is higher than design basis of metal fuel. So the current pyro-processing technology is may not be acceptable. If pyro-processing technology of CANDU SF is assumed to be the same as PWR's case, CANDU recycling scenario is acceptable. Transmutation performance is worse than PWR's, while the sodium void reactivity is within design limit

  11. Mass transport in non crystalline metallic alloys

    International Nuclear Information System (INIS)

    Limoge, Y.

    1986-08-01

    In order to improve our understanding of mass transport in non crystalline metallic alloys we have developed indirect studies of diffusion based on electron irradiation and hydrostatic pressure effects upon crystallization. In a first part we present the models of crystallization which are used, then we give the experimental results. The main point is the first experimental measurement of the activation volume for diffusion in a metallic glass: the value of which is roughly one atomic volume. We show also recent quantitative results concerning radiation enhanced diffusion in metallic glasses (FeNi) 8 (PB) 2 and Ni 6 Nb 4 . In a last part we discuss the atomic model needed to explain our results

  12. Volatility Components, Affine Restrictions and Non-Normal Innovations

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Dorian, Christian

    Recent work by Engle and Lee (1999) shows that allowing for long-run and short-run components greatly enhances a GARCH model's ability fit daily equity return dynamics. Using the risk-neutralization in Duan (1995), we assess the option valuation performance of the Engle-Lee model and compare...... models to four conditionally non-normal versions. As in Hsieh and Ritchken (2005), we find that non-affine models dominate affine models both in terms of fitting return and in terms of option valuation. For the affine models we find strong evidence in favor of the component structure for both returns...

  13. Optimization of joint recycling process of drilling sludge and phosphogypsum

    Directory of Open Access Journals (Sweden)

    I. Yu. Ablieieva

    2016-06-01

    Full Text Available Joint recycling of drilling sludge and phosphogypsum with obtaining a building material is environmentally appropriate and cost-effective, as it helps not only to prevent environmental pollution, but also to solve the problem of rational nature management. Drilling sludge is a waste formed during drilling oil wells, and phosphogypsum is a waste of the chemical industry, formed as a result of the production of concentrational phosphoric acid. However, technogenic raw materials contain heavy metals that can be transformed into a finished product and leached out of it. The problem of minimizing the negative impact of pollutants is very important to reduce the risk to human health. The author's idea is to optimize ecological characteristics of drilling waste and phosphogypsum recycling process. The concentration of heavy metals in the extract of gypsum concrete was determined as the function of the target which depends primarily on structural and technological parameters. The purpose of the article is solution to mathematical programming task, i.e., finding optimal solutions for the factors values of drilling sludge and phosphogypsum recycling process. Mathematical programming solution to optimization problem of the gypsum concrete environmental characteristics (to minimize concentration of heavy metals in the extract was performed by the method of simple random search in the Borland C ++ programming environment using C programming language. It is necessary to observe the values of such factors to minimize concentration of heavy metals in the extract of gypsum concrete. The mass ratio of gypsum binder and drilling sludge is 2.93 units, the mass ratio of quick lime and gypsum binder is 0.09 units, the age of gypsum concrete is above 19 days, exposure time is 28 days.

  14. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.

    Science.gov (United States)

    Man, Ming; Naidu, Ravi; Wong, Ming H

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Science.gov (United States)

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  16. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Directory of Open Access Journals (Sweden)

    Toni Gutknecht

    2015-01-01

    Full Text Available Metal oxide varistors (MOVs are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  17. Auto shredder residue recycling: Mechanical separation and pyrolysis

    International Nuclear Information System (INIS)

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier; Morselli, Luciano

    2012-01-01

    Highlights: ► In this work, we exploited mechanical separation and pyrolysis to recycle ASR. ► Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. ► Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a “waste-to-chemicals” perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  18. Nickel recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  19. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  20. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435