WorldWideScience

Sample records for non-mental-state causal inferences

  1. Causal inference in econometrics

    CERN Document Server

    Kreinovich, Vladik; Sriboonchitta, Songsak

    2016-01-01

    This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.

  2. Causal inference based on counterfactuals

    Directory of Open Access Journals (Sweden)

    Höfler M

    2005-09-01

    Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.

  3. Causal inference in public health.

    Science.gov (United States)

    Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M

    2013-01-01

    Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.

  4. Causal inference in economics and marketing.

    Science.gov (United States)

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  5. Optimal causal inference: estimating stored information and approximating causal architecture.

    Science.gov (United States)

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  6. Principal stratification in causal inference.

    Science.gov (United States)

    Frangakis, Constantine E; Rubin, Donald B

    2002-03-01

    Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.

  7. Campbell's and Rubin's Perspectives on Causal Inference

    Science.gov (United States)

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  8. Quasi-Experimental Designs for Causal Inference

    Science.gov (United States)

    Kim, Yongnam; Steiner, Peter

    2016-01-01

    When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…

  9. Introductive remarks on causal inference

    Directory of Open Access Journals (Sweden)

    Silvana A. Romio

    2013-05-01

    Full Text Available One of the more challenging issues in epidemiological research is being able to provide an unbiased estimate of the causal exposure-disease effect, to assess the possible etiological mechanisms and the implication for public health. A major source of bias is confounding, which can spuriously create or mask the causal relationship. In the last ten years, methodological research has been developed to better de_ne the concept of causation in epidemiology and some important achievements have resulted in new statistical models. In this review, we aim to show how a technique the well known by statisticians, i.e. standardization, can be seen as a method to estimate causal e_ects, equivalent under certain conditions to the inverse probability treatment weight procedure.

  10. Inferring causality from noisy time series data

    DEFF Research Database (Denmark)

    Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...

  11. Causal inference, probability theory, and graphical insights.

    Science.gov (United States)

    Baker, Stuart G

    2013-11-10

    Causal inference from observational studies is a fundamental topic in biostatistics. The causal graph literature typically views probability theory as insufficient to express causal concepts in observational studies. In contrast, the view here is that probability theory is a desirable and sufficient basis for many topics in causal inference for the following two reasons. First, probability theory is generally more flexible than causal graphs: Besides explaining such causal graph topics as M-bias (adjusting for a collider) and bias amplification and attenuation (when adjusting for instrumental variable), probability theory is also the foundation of the paired availability design for historical controls, which does not fit into a causal graph framework. Second, probability theory is the basis for insightful graphical displays including the BK-Plot for understanding Simpson's paradox with a binary confounder, the BK2-Plot for understanding bias amplification and attenuation in the presence of an unobserved binary confounder, and the PAD-Plot for understanding the principal stratification component of the paired availability design. Published 2013. This article is a US Government work and is in the public domain in the USA.

  12. Elements of Causal Inference: Foundations and Learning Algorithms

    DEFF Research Database (Denmark)

    Peters, Jonas Martin; Janzing, Dominik; Schölkopf, Bernhard

    A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning......A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning...

  13. Causal inference of asynchronous audiovisual speech

    Directory of Open Access Journals (Sweden)

    John F Magnotti

    2013-11-01

    Full Text Available During speech perception, humans integrate auditory information from the voice with visual information from the face. This multisensory integration increases perceptual precision, but only if the two cues come from the same talker; this requirement has been largely ignored by current models of speech perception. We describe a generative model of multisensory speech perception that includes this critical step of determining the likelihood that the voice and face information have a common cause. A key feature of the model is that it is based on a principled analysis of how an observer should solve this causal inference problem using the asynchrony between two cues and the reliability of the cues. This allows the model to make predictions abut the behavior of subjects performing a synchrony judgment task, predictive power that does not exist in other approaches, such as post hoc fitting of Gaussian curves to behavioral data. We tested the model predictions against the performance of 37 subjects performing a synchrony judgment task viewing audiovisual speech under a variety of manipulations, including varying asynchronies, intelligibility, and visual cue reliability. The causal inference model outperformed the Gaussian model across two experiments, providing a better fit to the behavioral data with fewer parameters. Because the causal inference model is derived from a principled understanding of the task, model parameters are directly interpretable in terms of stimulus and subject properties.

  14. Causal Inference in the Perception of Verticality.

    Science.gov (United States)

    de Winkel, Ksander N; Katliar, Mikhail; Diers, Daniel; Bülthoff, Heinrich H

    2018-04-03

    The perceptual upright is thought to be constructed by the central nervous system (CNS) as a vector sum; by combining estimates on the upright provided by the visual system and the body's inertial sensors with prior knowledge that upright is usually above the head. Recent findings furthermore show that the weighting of the respective sensory signals is proportional to their reliability, consistent with a Bayesian interpretation of a vector sum (Forced Fusion, FF). However, violations of FF have also been reported, suggesting that the CNS may rely on a single sensory system (Cue Capture, CC), or choose to process sensory signals based on inferred signal causality (Causal Inference, CI). We developed a novel alternative-reality system to manipulate visual and physical tilt independently. We tasked participants (n = 36) to indicate the perceived upright for various (in-)congruent combinations of visual-inertial stimuli, and compared models based on their agreement with the data. The results favor the CI model over FF, although this effect became unambiguous only for large discrepancies (±60°). We conclude that the notion of a vector sum does not provide a comprehensive explanation of the perception of the upright, and that CI offers a better alternative.

  15. Causal Effect Inference with Deep Latent-Variable Models

    NARCIS (Netherlands)

    Louizos, C; Shalit, U.; Mooij, J.; Sontag, D.; Zemel, R.; Welling, M.

    2017-01-01

    Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of

  16. Causal inference in survival analysis using pseudo-observations

    DEFF Research Database (Denmark)

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-01-01

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs ...

  17. Statistical causal inferences and their applications in public health research

    CERN Document Server

    Wu, Pan; Chen, Ding-Geng

    2016-01-01

    This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in Statistics, Biostatistics and Computational Biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.

  18. Causal inference in biology networks with integrated belief propagation.

    Science.gov (United States)

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  19. Cortical hierarchies perform Bayesian causal inference in multisensory perception.

    Directory of Open Access Journals (Sweden)

    Tim Rohe

    2015-02-01

    Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.

  20. Inference of Boundaries in Causal Sets

    OpenAIRE

    Cunningham, William

    2017-01-01

    We investigate the extrinsic geometry of causal sets in $(1+1)$-dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons-Hawking-York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space...

  1. Analogy in causal inference: rethinking Austin Bradford Hill's neglected consideration.

    Science.gov (United States)

    Weed, Douglas L

    2018-05-01

    The purpose of this article was to rethink and resurrect Austin Bradford Hill's "criterion" of analogy as an important consideration in causal inference. In epidemiology today, analogy is either completely ignored (e.g., in many textbooks), or equated with biologic plausibility or coherence, or aligned with the scientist's imagination. None of these examples, however, captures Hill's description of analogy. His words suggest that there may be something gained by contrasting two bodies of evidence, one from an established causal relationship, the other not. Coupled with developments in the methods of systematic assessments of evidence-including but not limited to meta-analysis-analogy can be restructured as a key component in causal inference. This new approach will require that a collection-a library-of known cases of causal inference (i.e., bodies of evidence involving established causal relationships) be developed. This library would likely include causal assessments by organizations such as the International Agency for Research on Cancer, the National Toxicology Program, and the United States Environmental Protection Agency. In addition, a process for describing key features of a causal relationship would need to be developed along with what will be considered paradigm cases of causation. Finally, it will be important to develop ways to objectively compare a "new" body of evidence with the relevant paradigm case of causation. Analogy, along with all other existing methods and causal considerations, may improve our ability to identify causal relationships. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Inference of boundaries in causal sets

    Science.gov (United States)

    Cunningham, William J.

    2018-05-01

    We investigate the extrinsic geometry of causal sets in (1+1) -dimensional Minkowski spacetime. The properties of boundaries in an embedding space can be used not only to measure observables, but also to supplement the discrete action in the partition function via discretized Gibbons–Hawking–York boundary terms. We define several ways to represent a causal set using overlapping subsets, which then allows us to distinguish between null and non-null bounding hypersurfaces in an embedding space. We discuss algorithms to differentiate between different types of regions, consider when these distinctions are possible, and then apply the algorithms to several spacetime regions. Numerical results indicate the volumes of timelike boundaries can be measured to within 0.5% accuracy for flat boundaries and within 10% accuracy for highly curved boundaries for medium-sized causal sets with N  =  214 spacetime elements.

  3. Causal inference in survival analysis using pseudo-observations.

    Science.gov (United States)

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Explanation in causal inference methods for mediation and interaction

    CERN Document Server

    VanderWeele, Tyler

    2015-01-01

    A comprehensive examination of methods for mediation and interaction, VanderWeele's book is the first to approach this topic from the perspective of causal inference. Numerous software tools are provided, and the text is both accessible and easy to read, with examples drawn from diverse fields. The result is an essential reference for anyone conducting empirical research in the biomedical or social sciences.

  5. Meaningful mediation analysis : Plausible causal inference and informative communication

    NARCIS (Netherlands)

    Pieters, Rik

    2017-01-01

    Statistical mediation analysis has become the technique of choice in consumer research to make causal inferences about the influence of a treatment on an outcome via one or more mediators. This tutorial aims to strengthen two weak links that impede statistical mediation analysis from reaching its

  6. Learning What Works in Sensory Disabilities: Establishing Causal Inference

    Science.gov (United States)

    Cooney, John B.; Young, John, III; Luckner, John L.; Ferrell, Kay Alicyn

    2015-01-01

    This article is intended to assist teachers and researchers in designing studies that examine the efficacy of a particular intervention or strategy with students with sensory disabilities. Ten research designs that can establish causal inference (the ability to attribute any effects to the intervention) with and without randomization are discussed.

  7. Inferring the conservative causal core of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2010-09-01

    Full Text Available Abstract Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  8. Inferring the conservative causal core of gene regulatory networks.

    Science.gov (United States)

    Altay, Gökmen; Emmert-Streib, Frank

    2010-09-28

    Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  9. A Bayesian nonparametric approach to causal inference on quantiles.

    Science.gov (United States)

    Xu, Dandan; Daniels, Michael J; Winterstein, Almut G

    2018-02-25

    We propose a Bayesian nonparametric approach (BNP) for causal inference on quantiles in the presence of many confounders. In particular, we define relevant causal quantities and specify BNP models to avoid bias from restrictive parametric assumptions. We first use Bayesian additive regression trees (BART) to model the propensity score and then construct the distribution of potential outcomes given the propensity score using a Dirichlet process mixture (DPM) of normals model. We thoroughly evaluate the operating characteristics of our approach and compare it to Bayesian and frequentist competitors. We use our approach to answer an important clinical question involving acute kidney injury using electronic health records. © 2018, The International Biometric Society.

  10. Research designs and making causal inferences from health care studies.

    Science.gov (United States)

    Flannelly, Kevin J; Jankowski, Katherine R B

    2014-01-01

    This article summarizes the major types of research designs used in healthcare research, including experimental, quasi-experimental, and observational studies. Observational studies are divided into survey studies (descriptive and correlational studies), case-studies and analytic studies, the last of which are commonly used in epidemiology: case-control, retrospective cohort, and prospective cohort studies. Similarities and differences among the research designs are described and the relative strength of evidence they provide is discussed. Emphasis is placed on five criteria for drawing causal inferences that are derived from the writings of the philosopher John Stuart Mill, especially his methods or canons. The application of the criteria to experimentation is explained. Particular attention is given to the degree to which different designs meet the five criteria for making causal inferences. Examples of specific studies that have used various designs in chaplaincy research are provided.

  11. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information

    Science.gov (United States)

    Li, Songting; Xiao, Yanyang; Zhou, Douglas; Cai, David

    2018-05-01

    The Granger causality (GC) analysis has been extensively applied to infer causal interactions in dynamical systems arising from economy and finance, physics, bioinformatics, neuroscience, social science, and many other fields. In the presence of potential nonlinearity in these systems, the validity of the GC analysis in general is questionable. To illustrate this, here we first construct minimal nonlinear systems and show that the GC analysis fails to infer causal relations in these systems—it gives rise to all types of incorrect causal directions. In contrast, we show that the time-delayed mutual information (TDMI) analysis is able to successfully identify the direction of interactions underlying these nonlinear systems. We then apply both methods to neuroscience data collected from experiments and demonstrate that the TDMI analysis but not the GC analysis can identify the direction of interactions among neuronal signals. Our work exemplifies inference hazards in the GC analysis in nonlinear systems and suggests that the TDMI analysis can be an appropriate tool in such a case.

  12. Causal Inference and Explaining Away in a Spiking Network

    Science.gov (United States)

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  13. Causal learning and inference as a rational process: the new synthesis.

    Science.gov (United States)

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  14. Causal Inference and Model Selection in Complex Settings

    Science.gov (United States)

    Zhao, Shandong

    Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly

  15. Perceptual learning shapes multisensory causal inference via two distinct mechanisms.

    Science.gov (United States)

    McGovern, David P; Roudaia, Eugenie; Newell, Fiona N; Roach, Neil W

    2016-04-19

    To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source.

  16. How multiple causes combine: independence constraints on causal inference.

    Science.gov (United States)

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  17. Non-Bayesian Inference: Causal Structure Trumps Correlation

    Science.gov (United States)

    Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric

    2012-01-01

    The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…

  18. Inferring causal molecular networks: empirical assessment through a community-based effort.

    Science.gov (United States)

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  19. Children's Causal Inferences from Conflicting Testimony and Observations

    Science.gov (United States)

    Bridgers, Sophie; Buchsbaum, Daphna; Seiver, Elizabeth; Griffiths, Thomas L.; Gopnik, Alison

    2016-01-01

    Preschoolers use both direct observation of statistical data and informant testimony to learn causal relationships. Can children integrate information from these sources, especially when source reliability is uncertain? We investigate how children handle a conflict between what they hear and what they see. In Experiment 1, 4-year-olds were…

  20. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

    Science.gov (United States)

    Imbens, Guido W.; Rubin, Donald B.

    2015-01-01

    Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…

  1. CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.

    Science.gov (United States)

    Shpitser, Ilya; Tchetgen, Eric Tchetgen

    2016-12-01

    Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.

  2. Drawing causal inferences using propensity scores: a practical guide for community psychologists.

    Science.gov (United States)

    Lanza, Stephanie T; Moore, Julia E; Butera, Nicole M

    2013-12-01

    Confounding present in observational data impede community psychologists' ability to draw causal inferences. This paper describes propensity score methods as a conceptually straightforward approach to drawing causal inferences from observational data. A step-by-step demonstration of three propensity score methods-weighting, matching, and subclassification-is presented in the context of an empirical examination of the causal effect of preschool experiences (Head Start vs. parental care) on reading development in kindergarten. Although the unadjusted population estimate indicated that children with parental care had substantially higher reading scores than children who attended Head Start, all propensity score adjustments reduce the size of this overall causal effect by more than half. The causal effect was also defined and estimated among children who attended Head Start. Results provide no evidence for improved reading if those children had instead received parental care. We carefully define different causal effects and discuss their respective policy implications, summarize advantages and limitations of each propensity score method, and provide SAS and R syntax so that community psychologists may conduct causal inference in their own research.

  3. Rational Variability in Children's Causal Inferences: The Sampling Hypothesis

    Science.gov (United States)

    Denison, Stephanie; Bonawitz, Elizabeth; Gopnik, Alison; Griffiths, Thomas L.

    2013-01-01

    We present a proposal--"The Sampling Hypothesis"--suggesting that the variability in young children's responses may be part of a rational strategy for inductive inference. In particular, we argue that young learners may be randomly sampling from the set of possible hypotheses that explain the observed data, producing different hypotheses with…

  4. The causal inference of cortical neural networks during music improvisations.

    Science.gov (United States)

    Wan, Xiaogeng; Crüts, Björn; Jensen, Henrik Jeldtoft

    2014-01-01

    We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and "let-go" mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and "let-go" mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.

  5. The Causal Inference of Cortical Neural Networks during Music Improvisations

    Science.gov (United States)

    Wan, Xiaogeng; Crüts, Björn; Jensen, Henrik Jeldtoft

    2014-01-01

    We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music) or in improvisation. Each piece of music was performed in two different modes: strict mode and “let-go” mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME), to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and “let-go” mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions. PMID:25489852

  6. The causal inference of cortical neural networks during music improvisations.

    Directory of Open Access Journals (Sweden)

    Xiaogeng Wan

    Full Text Available We present an EEG study of two music improvisation experiments. Professional musicians with high level of improvisation skills were asked to perform music either according to notes (composed music or in improvisation. Each piece of music was performed in two different modes: strict mode and "let-go" mode. Synchronized EEG data was measured from both musicians and listeners. We used one of the most reliable causality measures: conditional Mutual Information from Mixed Embedding (MIME, to analyze directed correlations between different EEG channels, which was combined with network theory to construct both intra-brain and cross-brain networks. Differences were identified in intra-brain neural networks between composed music and improvisation and between strict mode and "let-go" mode. Particular brain regions such as frontal, parietal and temporal regions were found to play a key role in differentiating the brain activities between different playing conditions. By comparing the level of degree centralities in intra-brain neural networks, we found a difference between the response of musicians and the listeners when comparing the different playing conditions.

  7. Reward Behavior by Male and Female Leaders: A Causal Inference Analysis.

    Science.gov (United States)

    Szilagyi, Andrew D.

    1980-01-01

    Investigated causal inferences between leader reward behavior and subordinate goal attainment, absenteeism, and work satisfaction. Results revealed that no significant differences were attributed to sex and that the leader reward behavior and subordinate attitudes and behavior were independent of the effects of sex of supervisor or subordinate.…

  8. Causal inference with missing exposure information: Methods and applications to an obstetric study.

    Science.gov (United States)

    Zhang, Zhiwei; Liu, Wei; Zhang, Bo; Tang, Li; Zhang, Jun

    2016-10-01

    Causal inference in observational studies is frequently challenged by the occurrence of missing data, in addition to confounding. Motivated by the Consortium on Safe Labor, a large observational study of obstetric labor practice and birth outcomes, this article focuses on the problem of missing exposure information in a causal analysis of observational data. This problem can be approached from different angles (i.e. missing covariates and causal inference), and useful methods can be obtained by drawing upon the available techniques and insights in both areas. In this article, we describe and compare a collection of methods based on different modeling assumptions, under standard assumptions for missing data (i.e. missing-at-random and positivity) and for causal inference with complete data (i.e. no unmeasured confounding and another positivity assumption). These methods involve three models: one for treatment assignment, one for the dependence of outcome on treatment and covariates, and one for the missing data mechanism. In general, consistent estimation of causal quantities requires correct specification of at least two of the three models, although there may be some flexibility as to which two models need to be correct. Such flexibility is afforded by doubly robust estimators adapted from the missing covariates literature and the literature on causal inference with complete data, and by a newly developed triply robust estimator that is consistent if any two of the three models are correct. The methods are applied to the Consortium on Safe Labor data and compared in a simulation study mimicking the Consortium on Safe Labor. © The Author(s) 2013.

  9. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    Science.gov (United States)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  10. Inference of Causal Relationships between Biomarkers and Outcomes in High Dimensions

    Directory of Open Access Journals (Sweden)

    Felix Agakov

    2011-12-01

    Full Text Available We describe a unified computational framework for learning causal dependencies between genotypes, biomarkers, and phenotypic outcomes from large-scale data. In contrast to previous studies, our framework allows for noisy measurements, hidden confounders, missing data, and pleiotropic effects of genotypes on outcomes. The method exploits the use of genotypes as “instrumental variables” to infer causal associations between phenotypic biomarkers and outcomes, without requiring the assumption that genotypic effects are mediated only through the observed biomarkers. The framework builds on sparse linear methods developed in statistics and machine learning and modified here for inferring structures of richer networks with latent variables. Where the biomarkers are gene transcripts, the method can be used for fine mapping of quantitative trait loci (QTLs detected in genetic linkage studies. To demonstrate our method, we examined effects of gene transcript levels in the liver on plasma HDL cholesterol levels in a sample of 260 mice from a heterogeneous stock.

  11. The influence of cognitive ability and instructional set on causal conditional inference.

    Science.gov (United States)

    Evans, Jonathan St B T; Handley, Simon J; Neilens, Helen; Over, David

    2010-05-01

    We report a large study in which participants are invited to draw inferences from causal conditional sentences with varying degrees of believability. General intelligence was measured, and participants were split into groups of high and low ability. Under strict deductive-reasoning instructions, it was observed that higher ability participants were significantly less influenced by prior belief than were those of lower ability. This effect disappeared, however, when pragmatic reasoning instructions were employed in a separate group. These findings are in accord with dual-process theories of reasoning. We also took detailed measures of beliefs in the conditional sentences used for the reasoning tasks. Statistical modelling showed that it is not belief in the conditional statement per se that is the causal factor, but rather correlates of it. Two different models of belief-based reasoning were found to fit the data according to the kind of instructions and the type of inference under consideration.

  12. Inferring hidden causal relations between pathway members using reduced Google matrix of directed biological networks

    Science.gov (United States)

    2018-01-01

    Signaling pathways represent parts of the global biological molecular network which connects them into a seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during development or in pathological conditions. We suggest a novel methodology, called Googlomics, for the structural analysis of directed biological networks using spectral analysis of their Google matrices, using parallels with quantum scattering theory, developed for nuclear and mesoscopic physics and quantum chaos. We introduce analytical “reduced Google matrix” method for the analysis of biological network structure. The method allows inferring hidden causal relations between the members of a signaling pathway or a functionally related group of genes. We investigate how the structure of hidden causal relations can be reprogrammed as a result of changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach rigorously characterizes complex systemic changes in the wiring of large causal biological networks in a computationally efficient way. PMID:29370181

  13. Causal inference and longitudinal data: a case study of religion and mental health.

    Science.gov (United States)

    VanderWeele, Tyler J; Jackson, John W; Li, Shanshan

    2016-11-01

    We provide an introduction to causal inference with longitudinal data and discuss the complexities of analysis and interpretation when exposures can vary over time. We consider what types of causal questions can be addressed with the standard regression-based analyses and what types of covariate control and control for the prior values of outcome and exposure must be made to reason about causal effects. We also consider newer classes of causal models, including marginal structural models, that can assess questions of the joint effects of time-varying exposures and can take into account feedback between the exposure and outcome over time. Such feedback renders cross-sectional data ineffective for drawing inferences about causation. The challenges are illustrated by analyses concerning potential effects of religious service attendance on depression, in which there may in fact be effects in both directions with service attendance preventing the subsequent depression, but depression itself leading to lower levels of the subsequent religious service attendance. Longitudinal designs, with careful control for prior exposures, outcomes, and confounders, and suitable methodology, will strengthen research on mental health, religion and health, and in the biomedical and social sciences generally.

  14. Bayesian nonparametric generative models for causal inference with missing at random covariates.

    Science.gov (United States)

    Roy, Jason; Lum, Kirsten J; Zeldow, Bret; Dworkin, Jordan D; Re, Vincent Lo; Daniels, Michael J

    2018-03-26

    We propose a general Bayesian nonparametric (BNP) approach to causal inference in the point treatment setting. The joint distribution of the observed data (outcome, treatment, and confounders) is modeled using an enriched Dirichlet process. The combination of the observed data model and causal assumptions allows us to identify any type of causal effect-differences, ratios, or quantile effects, either marginally or for subpopulations of interest. The proposed BNP model is well-suited for causal inference problems, as it does not require parametric assumptions about the distribution of confounders and naturally leads to a computationally efficient Gibbs sampling algorithm. By flexibly modeling the joint distribution, we are also able to impute (via data augmentation) values for missing covariates within the algorithm under an assumption of ignorable missingness, obviating the need to create separate imputed data sets. This approach for imputing the missing covariates has the additional advantage of guaranteeing congeniality between the imputation model and the analysis model, and because we use a BNP approach, parametric models are avoided for imputation. The performance of the method is assessed using simulation studies. The method is applied to data from a cohort study of human immunodeficiency virus/hepatitis C virus co-infected patients. © 2018, The International Biometric Society.

  15. Causal inference as an emerging statistical approach in neurology: an example for epilepsy in the elderly

    Directory of Open Access Journals (Sweden)

    Moura LMVR

    2016-12-01

    Full Text Available Lidia MVR Moura,1,2 M Brandon Westover,1,2 David Kwasnik,1 Andrew J Cole,1,2 John Hsu3–5 1Massachusetts General Hospital, Department of Neurology, Epilepsy Service, Boston, MA, USA; 2Harvard Medical School, Boston, MA, USA; 3Massachusetts General Hospital, Mongan Institute, Boston, MA, USA; 4Harvard Medical School, Department of Medicine, Boston, MA, USA; 5Harvard Medical School, Department of Health Care Policy, Boston, MA, USA Abstract: The elderly population faces an increasing number of cases of chronic neurological conditions, such as epilepsy and Alzheimer’s disease. Because the elderly with epilepsy are commonly excluded from randomized controlled clinical trials, there are few rigorous studies to guide clinical practice. When the elderly are eligible for trials, they either rarely participate or frequently have poor adherence to therapy, thus limiting both generalizability and validity. In contrast, large observational data sets are increasingly available, but are susceptible to bias when using common analytic approaches. Recent developments in causal inference-analytic approaches also introduce the possibility of emulating randomized controlled trials to yield valid estimates. We provide a practical example of the application of the principles of causal inference to a large observational data set of patients with epilepsy. This review also provides a framework for comparative-effectiveness research in chronic neurological conditions. Keywords: epilepsy, epidemiology, neurostatistics, causal inference

  16. Property transmission: an explanatory account of the role of similarity information in causal inference.

    Science.gov (United States)

    White, Peter A

    2009-09-01

    Many kinds of common and easily observed causal relations exhibit property transmission, which is a tendency for the causal object to impose its own properties on the effect object. It is proposed that property transmission becomes a general and readily available hypothesis used to make interpretations and judgments about causal questions under conditions of uncertainty, in which property transmission functions as a heuristic. The property transmission hypothesis explains why and when similarity information is used in causal inference. It can account for magical contagion beliefs, some cases of illusory correlation, the correspondence bias, overestimation of cross-situational consistency in behavior, nonregressive tendencies in prediction, the belief that acts of will are causes of behavior, and a range of other phenomena. People learn that property transmission is often moderated by other factors, but under conditions of uncertainty in which the operation of relevant other factors is unknown, it tends to exhibit a pervasive influence on thinking about causality. (c) 2009 APA, all rights reserved.

  17. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region

    International Nuclear Information System (INIS)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-01-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. - Causation between the

  18. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    Science.gov (United States)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  19. CauseMap: fast inference of causality from complex time series

    Directory of Open Access Journals (Sweden)

    M. Cyrus Maher

    2015-03-01

    Full Text Available Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data.Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM, a method for establishing causality from long time series data (≳25 observations. Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens’ Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement

  20. CauseMap: fast inference of causality from complex time series.

    Science.gov (United States)

    Maher, M Cyrus; Hernandez, Ryan D

    2015-01-01

    Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data. Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM), a method for establishing causality from long time series data (≳25 observations). Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens' Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement CCM in Julia, a

  1. Causal language and strength of inference in academic and media articles shared in social media (CLAIMS): A systematic review.

    Science.gov (United States)

    Haber, Noah; Smith, Emily R; Moscoe, Ellen; Andrews, Kathryn; Audy, Robin; Bell, Winnie; Brennan, Alana T; Breskin, Alexander; Kane, Jeremy C; Karra, Mahesh; McClure, Elizabeth S; Suarez, Elizabeth A

    2018-01-01

    The pathway from evidence generation to consumption contains many steps which can lead to overstatement or misinformation. The proliferation of internet-based health news may encourage selection of media and academic research articles that overstate strength of causal inference. We investigated the state of causal inference in health research as it appears at the end of the pathway, at the point of social media consumption. We screened the NewsWhip Insights database for the most shared media articles on Facebook and Twitter reporting about peer-reviewed academic studies associating an exposure with a health outcome in 2015, extracting the 50 most-shared academic articles and media articles covering them. We designed and utilized a review tool to systematically assess and summarize studies' strength of causal inference, including generalizability, potential confounders, and methods used. These were then compared with the strength of causal language used to describe results in both academic and media articles. Two randomly assigned independent reviewers and one arbitrating reviewer from a pool of 21 reviewers assessed each article. We accepted the most shared 64 media articles pertaining to 50 academic articles for review, representing 68% of Facebook and 45% of Twitter shares in 2015. Thirty-four percent of academic studies and 48% of media articles used language that reviewers considered too strong for their strength of causal inference. Seventy percent of academic studies were considered low or very low strength of inference, with only 6% considered high or very high strength of causal inference. The most severe issues with academic studies' causal inference were reported to be omitted confounding variables and generalizability. Fifty-eight percent of media articles were found to have inaccurately reported the question, results, intervention, or population of the academic study. We find a large disparity between the strength of language as presented to the

  2. Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice.

    Science.gov (United States)

    Koenen, K C; Sumner, J A; Gilsanz, P; Glymour, M M; Ratanatharathorn, A; Rimm, E B; Roberts, A L; Winning, A; Kubzansky, L D

    2017-01-01

    Post-traumatic stress disorder (PTSD) has been declared 'a life sentence' based on evidence that the disorder leads to a host of physical health problems. Some of the strongest empirical research - in terms of methodology and findings - has shown that PTSD predicts higher risk of cardiometabolic diseases, specifically cardiovascular disease (CVD) and type 2 diabetes (T2D). Despite mounting evidence, PTSD is not currently acknowledged as a risk factor by cardiovascular or endocrinological medicine. This view is unlikely to change absent compelling evidence that PTSD causally contributes to cardiometabolic disease. This review suggests that with developments in methods for epidemiological research and the rapidly expanding knowledge of the behavioral and biological effects of PTSD the field is poised to provide more definitive answers to questions of causality. First, we discuss methods to improve causal inference using the observational data most often used in studies of PTSD and health, with particular reference to issues of temporality and confounding. Second, we consider recent work linking PTSD with specific behaviors and biological processes, and evaluate whether these may plausibly serve as mechanisms by which PTSD leads to cardiometabolic disease. Third, we evaluate how looking more comprehensively into the PTSD phenotype provides insight into whether specific aspects of PTSD phenomenology are particularly relevant to cardiometabolic disease. Finally, we discuss new areas of research that are feasible and could enhance understanding of the PTSD-cardiometabolic relationship, such as testing whether treatment of PTSD can halt or even reverse the cardiometabolic risk factors causally related to CVD and T2D.

  3. R Package multiPIM: A Causal Inference Approach to Variable Importance Analysis

    Directory of Open Access Journals (Sweden)

    Stephan J Ritter

    2014-04-01

    Full Text Available We describe the R package multiPIM, including statistical background, functionality and user options. The package is for variable importance analysis, and is meant primarily for analyzing data from exploratory epidemiological studies, though it could certainly be applied in other areas as well. The approach taken to variable importance comes from the causal inference field, and is different from approaches taken in other R packages. By default, multiPIM uses a double robust targeted maximum likelihood estimator (TMLE of a parameter akin to the attributable risk. Several regression methods/machine learning algorithms are available for estimating the nuisance parameters of the models, including super learner, a meta-learner which combines several different algorithms into one. We describe a simulation in which the double robust TMLE is compared to the graphical computation estimator. We also provide example analyses using two data sets which are included with the package.

  4. Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights

    Science.gov (United States)

    Van Gordon, M.; Groenke, A.; Larsen, L.

    2017-12-01

    While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.

  5. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Challenges to inferring causality from viral information dispersion in dynamic social networks

    Science.gov (United States)

    Ternovski, John

    2014-06-01

    Understanding the mechanism behind large-scale information dispersion through complex networks has important implications for a variety of industries ranging from cyber-security to public health. With the unprecedented availability of public data from online social networks (OSNs) and the low cost nature of most OSN outreach, randomized controlled experiments, the "gold standard" of causal inference methodologies, have been used with increasing regularity to study viral information dispersion. And while these studies have dramatically furthered our understanding of how information disseminates through social networks by isolating causal mechanisms, there are still major methodological concerns that need to be addressed in future research. This paper delineates why modern OSNs are markedly different from traditional sociological social networks and why these differences present unique challenges to experimentalists and data scientists. The dynamic nature of OSNs is particularly troublesome for researchers implementing experimental designs, so this paper identifies major sources of bias arising from network mutability and suggests strategies to circumvent and adjust for these biases. This paper also discusses the practical considerations of data quality and collection, which may adversely impact the efficiency of the estimator. The major experimental methodologies used in the current literature on virality are assessed at length, and their strengths and limits identified. Other, as-yetunsolved threats to the efficiency and unbiasedness of causal estimators--such as missing data--are also discussed. This paper integrates methodologies and learnings from a variety of fields under an experimental and data science framework in order to systematically consolidate and identify current methodological limitations of randomized controlled experiments conducted in OSNs.

  7. Do people reason rationally about causally related events? Markov violations, weak inferences, and failures of explaining away.

    Science.gov (United States)

    Rottman, Benjamin M; Hastie, Reid

    2016-06-01

    Making judgments by relying on beliefs about the causal relationships between events is a fundamental capacity of everyday cognition. In the last decade, Causal Bayesian Networks have been proposed as a framework for modeling causal reasoning. Two experiments were conducted to provide comprehensive data sets with which to evaluate a variety of different types of judgments in comparison to the standard Bayesian networks calculations. Participants were introduced to a fictional system of three events and observed a set of learning trials that instantiated the multivariate distribution relating the three variables. We tested inferences on chains X1→Y→X2, common cause structures X1←Y→X2, and common effect structures X1→Y←X2, on binary and numerical variables, and with high and intermediate causal strengths. We tested transitive inferences, inferences when one variable is irrelevant because it is blocked by an intervening variable (Markov Assumption), inferences from two variables to a middle variable, and inferences about the presence of one cause when the alternative cause was known to have occurred (the normative "explaining away" pattern). Compared to the normative account, in general, when the judgments should change, they change in the normative direction. However, we also discuss a few persistent violations of the standard normative model. In addition, we evaluate the relative success of 12 theoretical explanations for these deviations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Causality

    Science.gov (United States)

    Pearl, Judea

    2000-03-01

    Written by one of the pre-eminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, philosophy, cognitive science, and the health and social sciences. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artifical intelligence, business, epidemiology, social science and economics. Students in these areas will find natural models, simple identification procedures, and precise mathematical definitions of causal concepts that traditional texts have tended to evade or make unduly complicated. This book will be of interest to professionals and students in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

  9. Inferring causal genomic alterations in breast cancer using gene expression data

    Science.gov (United States)

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  10. Causal Inference for Cross-Modal Action Selection: A Computational Study in a Decision Making Framework.

    Science.gov (United States)

    Daemi, Mehdi; Harris, Laurence R; Crawford, J Douglas

    2016-01-01

    Animals try to make sense of sensory information from multiple modalities by categorizing them into perceptions of individual or multiple external objects or internal concepts. For example, the brain constructs sensory, spatial representations of the locations of visual and auditory stimuli in the visual and auditory cortices based on retinal and cochlear stimulations. Currently, it is not known how the brain compares the temporal and spatial features of these sensory representations to decide whether they originate from the same or separate sources in space. Here, we propose a computational model of how the brain might solve such a task. We reduce the visual and auditory information to time-varying, finite-dimensional signals. We introduce controlled, leaky integrators as working memory that retains the sensory information for the limited time-course of task implementation. We propose our model within an evidence-based, decision-making framework, where the alternative plan units are saliency maps of space. A spatiotemporal similarity measure, computed directly from the unimodal signals, is suggested as the criterion to infer common or separate causes. We provide simulations that (1) validate our model against behavioral, experimental results in tasks where the participants were asked to report common or separate causes for cross-modal stimuli presented with arbitrary spatial and temporal disparities. (2) Predict the behavior in novel experiments where stimuli have different combinations of spatial, temporal, and reliability features. (3) Illustrate the dynamics of the proposed internal system. These results confirm our spatiotemporal similarity measure as a viable criterion for causal inference, and our decision-making framework as a viable mechanism for target selection, which may be used by the brain in cross-modal situations. Further, we suggest that a similar approach can be extended to other cognitive problems where working memory is a limiting factor, such

  11. Generalizability of causal inference in observational studies under retrospective convenience sampling.

    Science.gov (United States)

    Hu, Zonghui; Qin, Jing

    2018-05-20

    Many observational studies adopt what we call retrospective convenience sampling (RCS). With the sample size in each arm prespecified, RCS randomly selects subjects from the treatment-inclined subpopulation into the treatment arm and those from the control-inclined into the control arm. Samples in each arm are representative of the respective subpopulation, but the proportion of the 2 subpopulations is usually not preserved in the sample data. We show in this work that, under RCS, existing causal effect estimators actually estimate the treatment effect over the sample population instead of the underlying study population. We investigate how to correct existing methods for consistent estimation of the treatment effect over the underlying population. Although RCS is adopted in medical studies for ethical and cost-effective purposes, it also has a big advantage for statistical inference: When the tendency to receive treatment is low in a study population, treatment effect estimators under RCS, with proper correction, are more efficient than their parallels under random sampling. These properties are investigated both theoretically and through numerical demonstration. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  12. An alternative empirical likelihood method in missing response problems and causal inference.

    Science.gov (United States)

    Ren, Kaili; Drummond, Christopher A; Brewster, Pamela S; Haller, Steven T; Tian, Jiang; Cooper, Christopher J; Zhang, Biao

    2016-11-30

    Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Hume, Mill, Hill, and the sui generis epidemiologic approach to causal inference.

    Science.gov (United States)

    Morabia, Alfredo

    2013-11-15

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified.

  14. An Empirical Test of Causal Inference Between Role Perceptions, Satisfaction with Work, Performance and Organizational Level

    Science.gov (United States)

    Szilagyi, Andrew D.

    1977-01-01

    Attempts to empirically verify the causal source and direction of causal influence between role ambiguity, role conflict and job satisfaction and performance for three organizational levels in a hospital environment. (Author/RK)

  15. Inference of directed climate networks: role of instability of causality estimation methods

    Science.gov (United States)

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-04-01

    Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge

  16. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics.

    Science.gov (United States)

    Gross, Kevin; Rosenheim, Jay A

    2011-10-01

    Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted target pest species triggers subsequent outbreaks of other pest species. Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is made difficult by the challenges of performing randomized experiments at suitable scales. Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do so by analyzing pest-control management practices for 969 cotton fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to draw formal causal inferences from nonexperimental data that have become popular in public health and economics, but that are not yet widely known in ecology or agriculture. We find that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% +/- 4.4% (mean +/- SE) of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars, this equates to an additional $6.00 +/- $1.30 (mean +/- SE) per acre in management costs. To the extent that secondary pest outbreaks may be driven by eliminating pests' natural enemies, these figures place a lower bound on the monetary value of ecosystem services provided by native communities of arthropod predators and parasitoids in this agricultural system.

  17. A Causal Inference Model Explains Perception of the McGurk Effect and Other Incongruent Audiovisual Speech.

    Directory of Open Access Journals (Sweden)

    John F Magnotti

    2017-02-01

    Full Text Available Audiovisual speech integration combines information from auditory speech (talker's voice and visual speech (talker's mouth movements to improve perceptual accuracy. However, if the auditory and visual speech emanate from different talkers, integration decreases accuracy. Therefore, a key step in audiovisual speech perception is deciding whether auditory and visual speech have the same source, a process known as causal inference. A well-known illusion, the McGurk Effect, consists of incongruent audiovisual syllables, such as auditory "ba" + visual "ga" (AbaVga, that are integrated to produce a fused percept ("da". This illusion raises two fundamental questions: first, given the incongruence between the auditory and visual syllables in the McGurk stimulus, why are they integrated; and second, why does the McGurk effect not occur for other, very similar syllables (e.g., AgaVba. We describe a simplified model of causal inference in multisensory speech perception (CIMS that predicts the perception of arbitrary combinations of auditory and visual speech. We applied this model to behavioral data collected from 60 subjects perceiving both McGurk and non-McGurk incongruent speech stimuli. The CIMS model successfully predicted both the audiovisual integration observed for McGurk stimuli and the lack of integration observed for non-McGurk stimuli. An identical model without causal inference failed to accurately predict perception for either form of incongruent speech. The CIMS model uses causal inference to provide a computational framework for studying how the brain performs one of its most important tasks, integrating auditory and visual speech cues to allow us to communicate with others.

  18. The Russo-Williamson Theses in the social sciences: causal inference drawing on two types of evidence.

    Science.gov (United States)

    Claveau, François

    2012-12-01

    This article examines two theses formulated by Russo and Williamson (2007) in their study of causal inference in the health sciences. The two theses are assessed against evidence from a specific case in the social sciences, i.e., research on the institutional determinants of the aggregate unemployment rate. The first Russo-Williamson Thesis is that a causal claim can only be established when it is jointly supported by difference-making and mechanistic evidence. This thesis is shown not to hold. While researchers in my case study draw extensively on both types of evidence, one causal claim out of the three analyzed is established even though it is exclusively supported by mechanistic evidence. The second Russo-Williamson Thesis is that standard accounts of causality fail to handle the dualist epistemology highlighted in the first Thesis. I argue that a counterfactual-manipulationist account of causality--which is endorsed by many philosophers as well as many social scientists--can perfectly make sense of the typical strategy in my case study to draw on both difference-making and mechanistic evidence; it is just an instance of the common strategy of increasing evidential variety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Case Studies Nested in Fuzzy-Set QCA on Sufficiency: Formalizing Case Selection and Causal Inference

    Science.gov (United States)

    Schneider, Carsten Q.; Rohlfing, Ingo

    2016-01-01

    Qualitative Comparative Analysis (QCA) is a method for cross-case analyses that works best when complemented with follow-up case studies focusing on the causal quality of the solution and its constitutive terms, the underlying causal mechanisms, and potentially omitted conditions. The anchorage of QCA in set theory demands criteria for follow-up…

  20. The Effects of Simple Necessity and Sufficiency Relationships on Children's Causal Inferences

    Science.gov (United States)

    Siegler, Robert S.

    1976-01-01

    Attempted to determine (1) whether developmental differences existed in children's comprehension of simple necessity and simple sufficiency relationships, and (2) the source of developmental differences in children's causal reasoning. (SB)

  1. Adolescent Victimization and Early-Adult Psychopathology: Approaching Causal Inference Using a Longitudinal Twin Study to Rule Out Noncausal Explanations

    Science.gov (United States)

    Schaefer, Jonathan D.; Moffitt, Terrie E.; Arseneault, Louise; Danese, Andrea; Fisher, Helen L.; Houts, Renate; Sheridan, Margaret A.; Wertz, Jasmin; Caspi, Avshalom

    2017-01-01

    Adolescence is the peak age for both victimization and mental disorder onset. Previous research has reported associations between victimization exposure and many psychiatric conditions. However, causality remains controversial. Within the Environmental Risk Longitudinal Twin Study, we tested whether seven types of adolescent victimization increased risk of multiple psychiatric conditions and approached causal inference by systematically ruling out noncausal explanations. Longitudinal within-individual analyses showed that victimization was followed by increased mental health problems over a childhood baseline of emotional/behavioral problems. Discordant-twin analyses showed that victimization increased risk of mental health problems independent of family background and genetic risk. Both childhood and adolescent victimization made unique contributions to risk. Victimization predicted heightened generalized liability (the “p factor”) to multiple psychiatric spectra, including internalizing, externalizing, and thought disorders. Results recommend violence reduction and identification and treatment of adolescent victims to reduce psychiatric burden. PMID:29805917

  2. Children's False Memory for Emotional Events: A Developmental Perspective on Emotion s Impact on Backwards Causal-Inference Errors.

    OpenAIRE

    Vennerød, Frida Felicia

    2014-01-01

    The present study examines how emotion affects false memory formation using the Backwards Causal-Inference Paradigm, with a developmental perspective. One-hundred-and-thirty-two children participated in the study, with 56 children aged 6-8 years, 43 children aged 9-10 years and 33 children aged 11-12 years. The children were presented with one of six different PowerPoints, which all displayed the same scripts in photographs, but differed in emotional (positive vs. negative vs. neutral) outcom...

  3. Inference of directed climate networks: role of instability of causality estimation methods

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-01-01

    Roč. 15, - (2013), s. 12987 ISSN 1607-7962. [European Geosciences Union General Assembly 2013. 07.04.2013-12.04.2013, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : causality analysis * climate networks Subject RIV: BB - Applied Statistics, Operational Research

  4. Impaired self-agency inferences in schizophrenia: The role of cognitive capacity and causal reasoning style.

    Science.gov (United States)

    Prikken, M; van der Weiden, A; Kahn, R S; Aarts, H; van Haren, N E M

    2018-01-01

    The sense of self-agency, i.e., experiencing oneself as the cause of one's own actions, is impaired in patients with schizophrenia. Normally, inferences of self-agency are enhanced when actual outcomes match with pre-activated outcome information, where this pre-activation can result from explicitly set goals (i.e., goal-based route) or implicitly primed outcome information (i.e., prime-based route). Previous research suggests that patients show specific impairments in the prime-based route, implicating that they do not rely on matches between implicitly available outcome information and actual action-outcomes when inferring self-agency. The question remains: Why? Here, we examine whether neurocognitive functioning and self-serving bias (SSB) may explain abnormalities in patients' agency inferences. Thirty-six patients and 36 healthy controls performed a commonly used agency inference task to measure goal- and prime-based self-agency inferences. Neurocognitive functioning was assessed with the Brief Assessment of Cognition in Schizophrenia (BACS) and the SSB was assessed with the Internal Personal and Situational Attributions Questionnaire. Results showed a substantial smaller effect of primed outcome information on agency experiences in patients compared with healthy controls. Whereas patients and controls differed on BACS and marginally on SSB scores, these differences were not related to patients' impairments in prime-based agency inferences. Patients showed impairments in prime-based agency inferences, thereby replicating previous studies. This finding could not be explained by cognitive dysfunction or SSB. Results are discussed in the context of the recent surge to understand and examine deficits in agency experiences in schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Evaluating the impact of implementation factors on family-based prevention programming: methods for strengthening causal inference.

    Science.gov (United States)

    Crowley, D Max; Coffman, Donna L; Feinberg, Mark E; Greenberg, Mark T; Spoth, Richard L

    2014-04-01

    Despite growing recognition of the important role implementation plays in successful prevention efforts, relatively little work has sought to demonstrate a causal relationship between implementation factors and participant outcomes. In turn, failure to explore the implementation-to-outcome link limits our understanding of the mechanisms essential to successful programming. This gap is partially due to the inability of current methodological procedures within prevention science to account for the multitude of confounders responsible for variation in implementation factors (i.e., selection bias). The current paper illustrates how propensity and marginal structural models can be used to improve causal inferences involving implementation factors not easily randomized (e.g., participant attendance). We first present analytic steps for simultaneously evaluating the impact of multiple implementation factors on prevention program outcome. Then, we demonstrate this approach for evaluating the impact of enrollment and attendance in a family program, over and above the impact of a school-based program, within PROSPER, a large-scale real-world prevention trial. Findings illustrate the capacity of this approach to successfully account for confounders that influence enrollment and attendance, thereby more accurately representing true causal relations. For instance, after accounting for selection bias, we observed a 5% reduction in the prevalence of 11th grade underage drinking for those who chose to receive a family program and school program compared to those who received only the school program. Further, we detected a 7% reduction in underage drinking for those with high attendance in the family program.

  6. Sex differences in the inference and perception of causal relations within a video game

    Directory of Open Access Journals (Sweden)

    Michael E. Young

    2014-08-01

    Full Text Available The learning of immediate causation within a dynamic environment was examined. Participants encountered seven decision points in which they needed to choose which of three possible candidates was the cause of explosions in the environment. Each candidate was firing a weapon at random every few seconds, but only one of them produced an immediate effect. Some participants showed little learning, but most demonstrated increases in accuracy across time. On average, men showed higher accuracy and shorter latencies that were not explained by differences in self-reported prior video game experience. This result suggests that prior reports of sex differences in causal choice in the game are not specific to situations involving delayed or probabilistic causal relations.

  7. Sex differences in the inference and perception of causal relations within a video game.

    Science.gov (United States)

    Young, Michael E

    2014-01-01

    The learning of immediate causation within a dynamic environment was examined. Participants encountered seven decision points in which they needed to choose, which of three possible candidates was the cause of explosions in the environment. Each candidate was firing a weapon at random every few seconds, but only one of them produced an immediate effect. Some participants showed little learning, but most demonstrated increases in accuracy across time. On average, men showed higher accuracy and shorter latencies that were not explained by differences in self-reported prior video game experience. This result suggests that prior reports of sex differences in causal choice in the game are not specific to situations involving delayed or probabilistic causal relations.

  8. A framework for Bayesian nonparametric inference for causal effects of mediation.

    Science.gov (United States)

    Kim, Chanmin; Daniels, Michael J; Marcus, Bess H; Roy, Jason A

    2017-06-01

    We propose a Bayesian non-parametric (BNP) framework for estimating causal effects of mediation, the natural direct, and indirect, effects. The strategy is to do this in two parts. Part 1 is a flexible model (using BNP) for the observed data distribution. Part 2 is a set of uncheckable assumptions with sensitivity parameters that in conjunction with Part 1 allows identification and estimation of the causal parameters and allows for uncertainty about these assumptions via priors on the sensitivity parameters. For Part 1, we specify a Dirichlet process mixture of multivariate normals as a prior on the joint distribution of the outcome, mediator, and covariates. This approach allows us to obtain a (simple) closed form of each marginal distribution. For Part 2, we consider two sets of assumptions: (a) the standard sequential ignorability (Imai et al., 2010) and (b) weakened set of the conditional independence type assumptions introduced in Daniels et al. (2012) and propose sensitivity analyses for both. We use this approach to assess mediation in a physical activity promotion trial. © 2016, The International Biometric Society.

  9. An Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences: A State-Space Approach

    Directory of Open Access Journals (Sweden)

    Ibrahim Delibalta

    2017-01-01

    Full Text Available We provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then use this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can be an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user preference can be anything from inclination towards a product to a political party affiliation. Our framework uses a state-space model to represent user preferences as latent system parameters which can only be observed indirectly via online user actions such as a purchase activity or social media status updates, shares, blogs, or tweets. Based on these observations, machine learning algorithms produce digital interventions such as targeted advertisements or tweets. We model the effects of these interventions through a causal feedback loop, which alters the corresponding preferences of the user. We then introduce algorithms in order to estimate and later tune the user preferences to a particular desired form. We demonstrate the effectiveness of our algorithms through experiments in different scenarios.

  10. Causal inference regarding infectious aetiology of chronic conditions: a systematic review.

    Directory of Open Access Journals (Sweden)

    Sofia Orrskog

    Full Text Available BACKGROUND: The global burden of disease has shifted from communicable diseases in children to chronic diseases in adults. This epidemiologic shift varies greatly by region, but in Europe, chronic conditions account for 86% of all deaths, 77% of the disease burden, and up to 80% of health care expenditures. A number of risk factors have been implicated in chronic diseases, such as exposure to infectious agents. A number of associations have been well established while others remain uncertain. METHODS AND FINDINGS: We assessed the body of evidence regarding the infectious aetiology of chronic diseases in the peer-reviewed literature over the last decade. Causality was assessed with three different criteria: First, the total number of associations documented in the literature between each infectious agent and chronic condition; second, the epidemiologic study design (quality of the study; third, evidence for the number of Hill's criteria and Koch's postulates that linked the pathogen with the chronic condition. We identified 3136 publications, of which 148 were included in the analysis. There were a total of 75 different infectious agents and 122 chronic conditions. The evidence was strong for five pathogens, based on study type, strength and number of associations; they accounted for 60% of the associations documented in the literature. They were human immunodeficiency virus, hepatitis C virus, Helicobacter pylori, hepatitis B virus, and Chlamydia pneumoniae and were collectively implicated in the aetiology of 37 different chronic conditions. Other pathogens examined were only associated with very few chronic conditions (≤ 3 and when applying the three different criteria of evidence the strength of the causality was weak. CONCLUSIONS: Prevention and treatment of these five pathogens lend themselves as effective public health intervention entry points. By concentrating research efforts on these promising areas, the human, economic, and societal

  11. Did She Jump Because She Was the Big Sister or Because the Trampoline Was Safe? Causal Inference and the Development of Social Attribution

    Science.gov (United States)

    Seiver, Elizabeth; Gopnik, Alison; Goodman, Noah D.

    2013-01-01

    Children rely on both evidence and prior knowledge to make physical causal inferences; this study explores whether they make attributions about others' behavior in the same manner. A total of one hundred and fifty-nine 4- and 6-year-olds saw 2 dolls interacting with 2 activities, and explained the dolls' actions. In the person condition, each doll…

  12. Targeted learning in data science causal inference for complex longitudinal studies

    CERN Document Server

    van der Laan, Mark J

    2018-01-01

    This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generatio...

  13. α-Decomposition for estimating parameters in common cause failure modeling based on causal inference

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Yamaguchi, Akira; Takata, Takashi

    2013-01-01

    The traditional α-factor model has focused on the occurrence frequencies of common cause failure (CCF) events. Global α-factors in the α-factor model are defined as fractions of failure probability for particular groups of components. However, there are unknown uncertainties in the CCF parameters estimation for the scarcity of available failure data. Joint distributions of CCF parameters are actually determined by a set of possible causes, which are characterized by CCF-triggering abilities and occurrence frequencies. In the present paper, the process of α-decomposition (Kelly-CCF method) is developed to learn about sources of uncertainty in CCF parameter estimation. Moreover, it aims to evaluate CCF risk significances of different causes, which are named as decomposed α-factors. Firstly, a Hybrid Bayesian Network is adopted to reveal the relationship between potential causes and failures. Secondly, because all potential causes have different occurrence frequencies and abilities to trigger dependent failures or independent failures, a regression model is provided and proved by conditional probability. Global α-factors are expressed by explanatory variables (causes’ occurrence frequencies) and parameters (decomposed α-factors). At last, an example is provided to illustrate the process of hierarchical Bayesian inference for the α-decomposition process. This study shows that the α-decomposition method can integrate failure information from cause, component and system level. It can parameterize the CCF risk significance of possible causes and can update probability distributions of global α-factors. Besides, it can provide a reliable way to evaluate uncertainty sources and reduce the uncertainty in probabilistic risk assessment. It is recommended to build databases including CCF parameters and corresponding causes’ occurrence frequency of each targeted system

  14. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    Science.gov (United States)

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  15. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    2010-01-01

    Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...... (MCMC) techniques. Due to space limitations the focus is on spatial point processes....

  16. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.1 with the ......(This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.......1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...

  17. Toxicology and Epidemiology: Improving the Science with a Framework for Combining Toxicological and Epidemiological Evidence to Establish Causal Inference

    Science.gov (United States)

    Adami, Hans-Olov; Berry, Sir Colin L.; Breckenridge, Charles B.; Smith, Lewis L.; Swenberg, James A.; Trichopoulos, Dimitrios; Weiss, Noel S.; Pastoor, Timothy P.

    2011-01-01

    Historically, toxicology has played a significant role in verifying conclusions drawn on the basis of epidemiological findings. Agents that were suggested to have a role in human diseases have been tested in animals to firmly establish a causative link. Bacterial pathogens are perhaps the oldest examples, and tobacco smoke and lung cancer and asbestos and mesothelioma provide two more recent examples. With the advent of toxicity testing guidelines and protocols, toxicology took on a role that was intended to anticipate or predict potential adverse effects in humans, and epidemiology, in many cases, served a role in verifying or negating these toxicological predictions. The coupled role of epidemiology and toxicology in discerning human health effects by environmental agents is obvious, but there is currently no systematic and transparent way to bring the data and analysis of the two disciplines together in a way that provides a unified view on an adverse causal relationship between an agent and a disease. In working to advance the interaction between the fields of toxicology and epidemiology, we propose here a five-step “Epid-Tox” process that would focus on: (1) collection of all relevant studies, (2) assessment of their quality, (3) evaluation of the weight of evidence, (4) assignment of a scalable conclusion, and (5) placement on a causal relationship grid. The causal relationship grid provides a clear view of how epidemiological and toxicological data intersect, permits straightforward conclusions with regard to a causal relationship between agent and effect, and can show how additional data can influence conclusions of causality. PMID:21561883

  18. Causal and causally separable processes

    Science.gov (United States)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-09-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  19. Causal and causally separable processes

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Giarmatzi, Christina

    2016-01-01

    The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B , either A is in the causal past of B , B is in the causal past of A , or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B , an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A ’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and

  20. Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference

    OpenAIRE

    Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der

    2014-01-01

    Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure ...

  1. Epidemiological causality.

    Science.gov (United States)

    Morabia, Alfredo

    2005-01-01

    Epidemiological methods, which combine population thinking and group comparisons, can primarily identify causes of disease in populations. There is therefore a tension between our intuitive notion of a cause, which we want to be deterministic and invariant at the individual level, and the epidemiological notion of causes, which are invariant only at the population level. Epidemiologists have given heretofore a pragmatic solution to this tension. Causal inference in epidemiology consists in checking the logical coherence of a causality statement and determining whether what has been found grossly contradicts what we think we already know: how strong is the association? Is there a dose-response relationship? Does the cause precede the effect? Is the effect biologically plausible? Etc. This approach to causal inference can be traced back to the English philosophers David Hume and John Stuart Mill. On the other hand, the mode of establishing causality, devised by Jakob Henle and Robert Koch, which has been fruitful in bacteriology, requires that in every instance the effect invariably follows the cause (e.g., inoculation of Koch bacillus and tuberculosis). This is incompatible with epidemiological causality which has to deal with probabilistic effects (e.g., smoking and lung cancer), and is therefore invariant only for the population.

  2. Inferring causation from cross-sectional data: Examination of the causal relationship between hyperactivity-impulsivity and novelty seeking

    Directory of Open Access Journals (Sweden)

    Alexis Caroline Wood

    2011-03-01

    Full Text Available Previous research suggests an association between hyperactivity-impulsivity – one of the two behavioural dimensions that form attention deficit hyperactivity disorder – and the temperament characteristic of novelty seeking. We aimed to examine etiological links underlying the co-occurrence between these behaviours using a general population sample of 668 twin pairs, ages 7-10, for whom we obtained parent ratings in middle childhood; and pilot longitudinal data on 76 children. Structural equation modelling confirmed a shared genetic etiology (genetic correlation, rD=.81; 95% confidence intervals [CI]= .34-1.00 and showed that much (64% of the covariation can be accounted for by shared genetic effects. In addition, causal paths were modelled between the two behaviours; 12% of the variance in novelty seeking at age 7 was accounted for by hyperactive-impulsive behaviors at the same age. The causal effects model fits with the current characterization of hyperactive-impulsive behaviors reflecting a heightened need for stimulation. This has important implications for the management of hyperactive-impulsive behaviors in clinical settings.

  3. Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference

    Directory of Open Access Journals (Sweden)

    Hsiao-Yu Yang

    2014-01-01

    Full Text Available Herbal remedies containing aristolochic acid (AA have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies.

  4. Chinese herbs containing aristolochic acid associated with renal failure and urothelial carcinoma: a review from epidemiologic observations to causal inference.

    Science.gov (United States)

    Yang, Hsiao-Yu; Chen, Pau-Chung; Wang, Jung-Der

    2014-01-01

    Herbal remedies containing aristolochic acid (AA) have been designated to be a strong carcinogen. This review summarizes major epidemiologic evidence to argue for the causal association between AA exposure and urothelial carcinoma as well as nephropathy. The exposure scenarios include the following: Belgian women taking slimming pills containing single material Guang Fang Ji, consumptions of mixtures of Chinese herbal products in the general population and patients with chronic renal failure in Taiwan, occupational exposure in Chinese herbalists, and food contamination in farming villages in valleys of the Danube River. Such an association is corroborated by detecting specific DNA adducts in the tumor tissue removed from affected patients. Preventive actions of banning such use and education to the healthcare professionals and public are necessary for the safety of herbal remedies.

  5. Neural Correlates of Causal Power Judgments

    Directory of Open Access Journals (Sweden)

    Denise Dellarosa Cummins

    2014-12-01

    Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.

  6. Making Inferences: Comprehension of Physical Causality, Intentionality, and Emotions in Discourse by High-Functioning Older Children, Adolescents, and Adults with Autism

    Science.gov (United States)

    Bodner, Kimberly E.; Engelhardt, Christopher R.; Minshew, Nancy J.; Williams, Diane L.

    2015-01-01

    Studies investigating inferential reasoning in autism spectrum disorder (ASD) have focused on the ability to make socially-related inferences or inferences more generally. Important variables for intervention planning such as whether inferences depend on physical experiences or the nature of social information have received less consideration. A…

  7. Causal events enter awareness faster than non-causal events

    Directory of Open Access Journals (Sweden)

    Pieter Moors

    2017-01-01

    Full Text Available Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967. Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946. Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world.

  8. Causal imprinting in causal structure learning.

    Science.gov (United States)

    Taylor, Eric G; Ahn, Woo-Kyoung

    2012-11-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Exploring the relationship between child physical abuse and adult dating violence using a causal inference approach in an emerging adult population in South Korea.

    Science.gov (United States)

    Jennings, Wesley G; Park, MiRang; Richards, Tara N; Tomsich, Elizabeth; Gover, Angela; Powers, Ráchael A

    2014-12-01

    Child maltreatment is one of the most commonly examined risk factors for violence in dating relationships. Often referred to as the intergenerational transmission of violence or cycle of violence, a fair amount of research suggests that experiencing abuse during childhood significantly increases the likelihood of involvement in violent relationships later, but these conclusions are primarily based on correlational research designs. Furthermore, the majority of research linking childhood maltreatment and dating violence has focused on samples of young people from the United States. Considering these limitations, the current study uses a rigorous, propensity score matching approach to estimate the causal effect of experiencing child physical abuse on adult dating violence among a large sample of South Korean emerging adults. Results indicate that the link between child physical abuse and adult dating violence is spurious rather than causal. Study limitations and implications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Causal Diagrams for Empirical Research

    OpenAIRE

    Pearl, Judea

    1994-01-01

    The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifiying causal effects from non-experimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in ter...

  11. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  12. Causality and headache triggers

    Science.gov (United States)

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  13. Making stronger causal inferences: Accounting for selection bias in associations between high performance work systems, leadership, and employee and customer satisfaction.

    Science.gov (United States)

    Schmidt, Joseph A; Pohler, Dionne M

    2018-05-17

    We develop competing hypotheses about the relationship between high performance work systems (HPWS) with employee and customer satisfaction. Drawing on 8 years of employee and customer survey data from a financial services firm, we used a recently developed empirical technique-covariate balanced propensity score (CBPS) weighting-to examine if the proposed relationships between HPWS and satisfaction outcomes can be explained by reverse causality, selection effects, or commonly omitted variables such as leadership behavior. The results provide support for leader behaviors as a primary driver of customer satisfaction, rather than HPWS, and also suggest that the problem of reverse causality requires additional attention in future human resource (HR) systems research. Model comparisons suggest that the estimates and conclusions vary across CBPS, meta-analytic, cross-sectional, and time-lagged models (with and without a lagged dependent variable as a control). We highlight the theoretical and methodological implications of the findings for HR systems research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. A theory of causal learning in children: Causal maps and Bayes nets

    OpenAIRE

    Gopnik, A; Glymour, C; Sobel, D M; Schulz, L E; Kushnir, T; Danks, D

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computatio...

  15. Causal universe

    CERN Document Server

    Ellis, George FR; Pabjan, Tadeusz

    2013-01-01

    Written by philosophers, cosmologists, and physicists, this collection of essays deals with causality, which is a core issue for both science and philosophy. Readers will learn about different types of causality in complex systems and about new perspectives on this issue based on physical and cosmological considerations. In addition, the book includes essays pertaining to the problem of causality in ancient Greek philosophy, and to the problem of God's relation to the causal structures of nature viewed in the light of contemporary physics and cosmology.

  16. A theory of causal learning in children: causal maps and Bayes nets.

    Science.gov (United States)

    Gopnik, Alison; Glymour, Clark; Sobel, David M; Schulz, Laura E; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or Bayes nets. Children's causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children construct new causal maps and that their learning is consistent with the Bayes net formalism.

  17. Ecoinformatics Can Infer Causal Effects of Crop Variety on Insect Attack by Capitalizing on 'Pseudoexperiments' Created When Different Crop Varieties Are Interspersed: A Case Study in Almonds.

    Science.gov (United States)

    Rosenheim, Jay A; Higbee, Bradley S; Ackerman, Jonathan D; Meisner, Matthew H

    2017-12-05

    Capturing the complementary strengths of observational and experimental research methods usually requires the researcher to gather separate experimental and observational data sets. In some cases, however, commercial agricultural practices produce the spatial and temporal mixing of 'treatments' independently of other possibly covarying factors that is normally achieved only with formal experimentation. The resulting 'pseudoexperiments' can provide strong evidence for causal relationships. Here, we analyze a large observational data set that creates a series of such pseudoexperiments to assess the effect of different commercial varieties of almond, Prunus dulcis (Mill.) on the impact of two key lepidopteran pests, the navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae), and the peach twig borer Anarsia lineatella Zeller (Lepidoptera: Gelechiidae). Almonds are universally planted as polycultures of different varieties to obtain efficient cross-pollination. We find substantial differences across almond varieties in the rates of infestation of almond hulls and nutmeats by the two pests. We find no support for the hypothesis that earlier-maturing varieties sustain higher attack; for A. transitella, later-maturing varieties instead had more frequent infestation. On many almond varieties, A. lineatella reaches high infestation levels by feeding almost exclusively on the hulls, rather than nutmeats. Given the importance of these pests in directly destroying almond nuts and in promoting aflatoxin-producing Aspergillus sp. fungal infections of almonds, further work exploring the impact of these pests is warranted. Because many crops requiring cross-pollination are planted as mixtures of different varieties, commercial agricultural production data hold great potential for studying within-crop variation in susceptibility to insect attack. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights

  18. Granger Causality and Unit Roots

    DEFF Research Database (Denmark)

    Rodríguez-Caballero, Carlos Vladimir; Ventosa-Santaulària, Daniel

    2014-01-01

    The asymptotic behavior of the Granger-causality test under stochastic nonstationarity is studied. Our results confirm that the inference drawn from the test is not reliable when the series are integrated to the first order. In the presence of deterministic components, the test statistic diverges......, eventually rejecting the null hypothesis, even when the series are independent of each other. Moreover, controlling for these deterministic elements (in the auxiliary regressions of the test) does not preclude the possibility of drawing erroneous inferences. Granger-causality tests should not be used under...

  19. Determining Directional Dependency in Causal Associations

    Science.gov (United States)

    Pornprasertmanit, Sunthud; Little, Todd D.

    2012-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…

  20. Conditions for Confirmatory Analysis and Causal Inference.

    Science.gov (United States)

    1982-05-03

    such behavior evolved because it had survival value. Other philosophers have not been so kind in dealing with Hume’s skepticism. Wittgenstein regarded...also in many other ways." _ Ludwig Wittgenstein (1980) We begin this section by restating the third principle for the logical foundation of...study in Wittgenstein . Oxford: Basil Blackwell, 1973. Dubin, R. Theory building in applied areas. In M. D. Dunnette (Ed.), Handbook of industrial and

  1. Ordem temporal e inferência causal

    Directory of Open Access Journals (Sweden)

    Warren E. Miller

    2001-11-01

    Full Text Available Medidas de mudança em pares de variáveis atitudinais podem proporcionar insights Importantes sobre a estrutura dos sistemas de crenças políticas dos públicos de massa. Dados de painéis revelam evidências da grande centralidade de alguns elementos de idéias em vez de outros no contexto de constrangimento dinâmico de curto prazo. A especificação dos atributos teoricamente relevantes dos eleitores torna possível testar diferenças estruturais esperadas que conectam predisposições relacionadas a políticas e preferências por políticas; a especificação também torna possível testar proposições que envolvem os efeitos recíprocos de atitudes e preferências emergentes de voto. Algumas das especificações mais úteis revelam até que ponto a heterogeneidade da população produz uma imagem embaçada de relações quando a análise se baseia no eleitorado total, em vez de se limitar a eleitores ou subconjuntos de eleitores especificados por critérios teóricos.Measures of change in pairs of attitudinal variables can provide important insights into the structure of the political belief systems of mass publics. Panel data reveal evidence of the greater centrality of some idea elements rather than others in the context of short-term dynamic constraint. Specification of the theoretically relevant voter attributes makes it possible to test for expected structural differences connecting policy related pre-dispositions and policy preferences; specification also makes it possible to test propositions involving the reciprocal effects of attitudes and emerging vote preferences. Some of the more helpful specifications disclose the extent to which population heterogeneity produces a blurred image of relationships when analysis is based on the total electorate rather than limited to voters or subsets of voters specified by theoretical criteria.

  2. Causal strength induction from time series data.

    Science.gov (United States)

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Thinking Fast and Slow about Causality: Response to Palinkas

    Science.gov (United States)

    Marsh, Jeanne C.

    2014-01-01

    Larry Palinkas advances the developing science of social work by providing an explanation of how social science research methods, both qualitative and quantitative, can improve our capacity to draw casual inferences. Understanding causal relations and making causal inferences--with the promise of being able to predict and control outcomes--is…

  4. Bayesian networks improve causal environmental ...

    Science.gov (United States)

    Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value

  5. Repair of Partly Misspecified Causal Diagrams.

    Science.gov (United States)

    Oates, Chris J; Kasza, Jessica; Simpson, Julie A; Forbes, Andrew B

    2017-07-01

    Errors in causal diagrams elicited from experts can lead to the omission of important confounding variables from adjustment sets and render causal inferences invalid. In this report, a novel method is presented that repairs a misspecified causal diagram through the addition of edges. These edges are determined using a data-driven approach designed to provide improved statistical efficiency relative to de novo structure learning methods. Our main assumption is that the expert is "directionally informed," meaning that "false" edges provided by the expert would not create cycles if added to the "true" causal diagram. The overall procedure is cast as a preprocessing technique that is agnostic to subsequent causal inferences. Results based on simulated data and data derived from an observational cohort illustrate the potential for data-assisted elicitation in epidemiologic applications. See video abstract at, http://links.lww.com/EDE/B208.

  6. Causal reasoning with mental models

    Science.gov (United States)

    Khemlani, Sangeet S.; Barbey, Aron K.; Johnson-Laird, Philip N.

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex. PMID:25389398

  7. Causal reasoning with mental models.

    Science.gov (United States)

    Khemlani, Sangeet S; Barbey, Aron K; Johnson-Laird, Philip N

    2014-01-01

    This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  8. Causal reasoning with mental models

    Directory of Open Access Journals (Sweden)

    Sangeet eKhemlani

    2014-10-01

    Full Text Available This paper outlines the model-based theory of causal reasoning. It postulates that the core meanings of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is possible for B to occur. The paper shows how mental models represent such assertions, and how these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews evidence both to corroborate the theory and to account for phenomena sometimes taken to be incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for causal inference are implemented within lateral prefrontal cortex.

  9. Finding the Cause: Verbal Framing Helps Children Extract Causal Evidence Embedded in a Complex Scene

    Science.gov (United States)

    Butler, Lucas P.; Markman, Ellen M.

    2012-01-01

    In making causal inferences, children must both identify a causal problem and selectively attend to meaningful evidence. Four experiments demonstrate that verbally framing an event ("Which animals make Lion laugh?") helps 4-year-olds extract evidence from a complex scene to make accurate causal inferences. Whereas framing was unnecessary when…

  10. Space and time in perceptual causality

    Directory of Open Access Journals (Sweden)

    Benjamin Straube

    2010-04-01

    Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not find consistent brain activation differences between trials judged as caused and those judged as non-caused, making it unlikely that humans have universal instantiation of perceptual causality in the brain. However, participants were slower to respond to and showed greater neural activity for violations of causality, suggesting that humans are biased to expect causal relationships when moving objects appear to interact. Our participants demonstrated considerable individual differences in their sensitivity to spatial and temporal characteristics in perceiving causality. These qualitative differences in sensitivity to time or space in perceiving causality were instantiated in individual differences in activation of the left basal ganglia or right parietal lobe, respectively. Thus, the perception that the movement of one object causes the movement of another is triggered by elemental spatial and temporal sensitivities, which themselves are instantiated in specific distinct neural networks.

  11. Russell and Humean Inferences

    Directory of Open Access Journals (Sweden)

    João Paulo Monteiro

    2001-12-01

    Full Text Available Russell's The Problems of Philosophy tries to establish a new theory of induction, at the same time that Hume is there accused of an irrational/ scepticism about induction". But a careful analysis of the theory of knowledge explicitly acknowledged by Hume reveals that, contrary to the standard interpretation in the XXth century, possibly influenced by Russell, Hume deals exclusively with causal inference (which he never classifies as "causal induction", although now we are entitled to do so, never with inductive inference in general, mainly generalizations about sensible qualities of objects ( whether, e.g., "all crows are black" or not is not among Hume's concerns. Russell's theories are thus only false alternatives to Hume's, in (1912 or in his (1948.

  12. Inductive reasoning about causally transmitted properties.

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  13. Can chance cause cancer? A causal consideration.

    Science.gov (United States)

    Stensrud, Mats Julius; Strohmaier, Susanne; Valberg, Morten; Aalen, Odd Olai

    2017-04-01

    The role of randomness, environment and genetics in cancer development is debated. We approach the discussion by using the potential outcomes framework for causal inference. By briefly considering the underlying assumptions, we suggest that the antagonising views arise due to estimation of substantially different causal effects. These effects may be hard to interpret, and the results cannot be immediately compared. Indeed, it is not clear whether it is possible to define a causal effect of chance at all. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Causally nonseparable processes admitting a causal model

    International Nuclear Information System (INIS)

    Feix, Adrien; Araújo, Mateus; Brukner, Caslav

    2016-01-01

    A recent framework of quantum theory with no global causal order predicts the existence of ‘causally nonseparable’ processes. Some of these processes produce correlations incompatible with any causal order (they violate so-called ‘causal inequalities’ analogous to Bell inequalities ) while others do not (they admit a ‘causal model’ analogous to a local model ). Here we show for the first time that bipartite causally nonseparable processes with a causal model exist, and give evidence that they have no clear physical interpretation. We also provide an algorithm to generate processes of this kind and show that they have nonzero measure in the set of all processes. We demonstrate the existence of processes which stop violating causal inequalities but are still causally nonseparable when mixed with a certain amount of ‘white noise’. This is reminiscent of the behavior of Werner states in the context of entanglement and nonlocality. Finally, we provide numerical evidence for the existence of causally nonseparable processes which have a causal model even when extended with an entangled state shared among the parties. (paper)

  15. A quantum probability model of causal reasoning

    Directory of Open Access Journals (Sweden)

    Jennifer S Trueblood

    2012-05-01

    Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.

  16. Inductive Reasoning about Causally Transmitted Properties

    Science.gov (United States)

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D.; Tenenbaum, Joshua B.

    2008-01-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates'…

  17. Causal reasoning in physics

    CERN Document Server

    Frisch, Mathias

    2014-01-01

    Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.

  18. Theories of Causality

    Science.gov (United States)

    Jones, Robert

    2010-03-01

    There are a wide range of views on causality. To some (e.g. Karl Popper) causality is superfluous. Bertrand Russell said ``In advanced science the word cause never occurs. Causality is a relic of a bygone age.'' At the other extreme Rafael Sorkin and L. Bombelli suggest that space and time do not exist but are only an approximation to a reality that is simply a discrete ordered set, a ``causal set.'' For them causality IS reality. Others, like Judea Pearl and Nancy Cartwright are seaking to build a complex fundamental theory of causality (Causality, Cambridge Univ. Press, 2000) Or perhaps a theory of causality is simply the theory of functions. This is more or less my take on causality.

  19. Temporal and Statistical Information in Causal Structure Learning

    Science.gov (United States)

    McCormack, Teresa; Frosch, Caren; Patrick, Fiona; Lagnado, David

    2015-01-01

    Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical…

  20. Weighting-Based Sensitivity Analysis in Causal Mediation Studies

    Science.gov (United States)

    Hong, Guanglei; Qin, Xu; Yang, Fan

    2018-01-01

    Through a sensitivity analysis, the analyst attempts to determine whether a conclusion of causal inference could be easily reversed by a plausible violation of an identification assumption. Analytic conclusions that are harder to alter by such a violation are expected to add a higher value to scientific knowledge about causality. This article…

  1. Causality in Science

    Directory of Open Access Journals (Sweden)

    Cristina Puente Águeda

    2011-10-01

    Full Text Available Causality is a fundamental notion in every field of science. Since the times of Aristotle, causal relationships have been a matter of study as a way to generate knowledge and provide for explanations. In this paper I review the notion of causality through different scientific areas such as physics, biology, engineering, etc. In the scientific area, causality is usually seen as a precise relation: the same cause provokes always the same effect. But in the everyday world, the links between cause and effect are frequently imprecise or imperfect in nature. Fuzzy logic offers an adequate framework for dealing with imperfect causality, so a few notions of fuzzy causality are introduced.

  2. Selecting appropriate cases when tracing causal mechanisms

    DEFF Research Database (Denmark)

    Beach, Derek; Pedersen, Rasmus Brun

    2016-01-01

    The last decade has witnessed resurgence in the interest in studying the causal mechanisms linking causes and outcomes in the social sciences. This article explores the overlooked implications for case selection when tracing mechanisms using in-depth case studies. Our argument is that existing case...... selection guidelines are appropriate for research aimed at making cross-case claims about causal relationships, where case selection is primarily used to control for other causes. However, existing guidelines are not in alignment with case-based research that aims to trace mechanisms, where the goal...... is to unpack the causal mechanism between X and Y, enabling causal inferences to be made because empirical evidence is provided for how the mechanism actually operated in a particular case. The in-depth, within-case tracing of how mechanisms operate in particular cases produces what can be termed mechanistic...

  3. Reasoning with Causal Cycles

    Science.gov (United States)

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  4. The causal structure of utility conditionals.

    Science.gov (United States)

    Bonnefon, Jean-François; Sloman, Steven A

    2013-01-01

    The psychology of reasoning is increasingly considering agents' values and preferences, achieving greater integration with judgment and decision making, social cognition, and moral reasoning. Some of this research investigates utility conditionals, ''if p then q'' statements where the realization of p or q or both is valued by some agents. Various approaches to utility conditionals share the assumption that reasoners make inferences from utility conditionals based on the comparison between the utility of p and the expected utility of q. This article introduces a new parameter in this analysis, the underlying causal structure of the conditional. Four experiments showed that causal structure moderated utility-informed conditional reasoning. These inferences were strongly invited when the underlying structure of the conditional was causal, and significantly less so when the underlying structure of the conditional was diagnostic. This asymmetry was only observed for conditionals in which the utility of q was clear, and disappeared when the utility of q was unclear. Thus, an adequate account of utility-informed inferences conditional reasoning requires three components: utility, probability, and causal structure. Copyright © 2012 Cognitive Science Society, Inc.

  5. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables

    Science.gov (United States)

    Barnett, Lionel; Barrett, Adam B.; Seth, Anil K.

    2009-12-01

    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.

  6. Repeated causal decision making.

    Science.gov (United States)

    Hagmayer, York; Meder, Björn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in such situations and how they use their knowledge to adapt to changes in the decision context. Our studies show that decision makers' behavior is strongly contingent on their causal beliefs and that people exploit their causal knowledge to assess the consequences of changes in the decision problem. A high consistency between hypotheses about causal structure, causally expected values, and actual choices was observed. The experiments show that (a) existing causal hypotheses guide the interpretation of decision feedback, (b) consequences of decisions are used to revise existing causal beliefs, and (c) decision makers use the experienced feedback to induce a causal model of the choice situation even when they have no initial causal hypotheses, which (d) enables them to adapt their choices to changes of the decision problem. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  7. Entropic Inference

    Science.gov (United States)

    Caticha, Ariel

    2011-03-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.

  8. Kant on causal laws and powers.

    Science.gov (United States)

    Henschen, Tobias

    2014-12-01

    The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.

  9. Distributional Inference

    NARCIS (Netherlands)

    Kroese, A.H.; van der Meulen, E.A.; Poortema, Klaas; Schaafsma, W.

    1995-01-01

    The making of statistical inferences in distributional form is conceptionally complicated because the epistemic 'probabilities' assigned are mixtures of fact and fiction. In this respect they are essentially different from 'physical' or 'frequency-theoretic' probabilities. The distributional form is

  10. Entropic Inference

    OpenAIRE

    Caticha, Ariel

    2010-01-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEn...

  11. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    Science.gov (United States)

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge. Copyright © 2015

  12. Statistical inference a short course

    CERN Document Server

    Panik, Michael J

    2012-01-01

    A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causal

  13. Repeated Causal Decision Making

    Science.gov (United States)

    Hagmayer, York; Meder, Bjorn

    2013-01-01

    Many of our decisions refer to actions that have a causal impact on the external environment. Such actions may not only allow for the mere learning of expected values or utilities but also for acquiring knowledge about the causal structure of our world. We used a repeated decision-making paradigm to examine what kind of knowledge people acquire in…

  14. Viscous causal cosmologies

    International Nuclear Information System (INIS)

    Novello, M.; Salim, J.M.; Torres, J.; Oliveira, H.P. de

    1989-01-01

    A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author) [pt

  15. Causal Analysis After Haavelmo

    Science.gov (United States)

    Heckman, James; Pinto, Rodrigo

    2014-01-01

    Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123

  16. Causality in Classical Electrodynamics

    Science.gov (United States)

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  17. Perceptual inference.

    Science.gov (United States)

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Causality in Europeanization Research

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2012-01-01

    to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality......Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the study...

  19. Agency, time and causality

    Directory of Open Access Journals (Sweden)

    Thomas eWidlok

    2014-11-01

    Full Text Available Cognitive Scientists interested in causal cognition increasingly search for evidence from non-WEIRD people but find only very few cross-cultural studies that specifically target causal cognition. This article suggests how information about causality can be retrieved from ethnographic monographs, specifically from ethnographies that discuss agency and concepts of time. Many apparent cultural differences with regard to causal cognition dissolve when cultural extensions of agency and personhood to non-humans are taken into account. At the same time considerable variability remains when we include notions of time, linearity and sequence. The article focuses on ethnographic case studies from Africa but provides a more general perspective on the role of ethnography in research on the diversity and universality of causal cognition.

  20. Non-Causal Computation

    Directory of Open Access Journals (Sweden)

    Ämin Baumeler

    2017-07-01

    Full Text Available Computation models such as circuits describe sequences of computation steps that are carried out one after the other. In other words, algorithm design is traditionally subject to the restriction imposed by a fixed causal order. We address a novel computing paradigm beyond quantum computing, replacing this assumption by mere logical consistency: We study non-causal circuits, where a fixed time structure within a gate is locally assumed whilst the global causal structure between the gates is dropped. We present examples of logically consistent non-causal circuits outperforming all causal ones; they imply that suppressing loops entirely is more restrictive than just avoiding the contradictions they can give rise to. That fact is already known for correlations as well as for communication, and we here extend it to computation.

  1. Causal diagrams in systems epidemiology

    Directory of Open Access Journals (Sweden)

    Joffe Michael

    2012-03-01

    Full Text Available Abstract Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s. Transmitted causes ("causes of causes" tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.

  2. Causal diagrams in systems epidemiology.

    Science.gov (United States)

    Joffe, Michael; Gambhir, Manoj; Chadeau-Hyam, Marc; Vineis, Paolo

    2012-03-19

    Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed.The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties.The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets.Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback.

  3. Efficient design and inference in distributed Bayesian networks: an overview

    NARCIS (Netherlands)

    de Oude, P.; Groen, F.C.A.; Pavlin, G.; Bezhanishvili, N.; Löbner, S.; Schwabe, K.; Spada, L.

    2011-01-01

    This paper discusses an approach to distributed Bayesian modeling and inference, which is relevant for an important class of contemporary real world situation assessment applications. By explicitly considering the locality of causal relations, the presented approach (i) supports coherent distributed

  4. Retraction of "The influence of mood on attribution," "Affects of the unexpected: When inconsistency feels good (or bad)," "Why people stereotype affects how they stereotype: The differential influence of comprehension goals and self-enhancement goals on stereotyping," "Silence and table manners: When environments activate norms," and "Event accessibility and context effects in causal inference: Judgment of a different order".

    Science.gov (United States)

    2012-10-01

    The following five articles have been retracted from Personality and Social Psychology Bulletin by the Society for Personality and Social Psychology, and the Editor and the publisher of the journal: Avramova, Y.R., Stapel, D.A. & Lerouge, D. (2010). The influence of mood on attribution. Personality and Social Psychology Bulletin, 36, 1360-1371. (Original DOI: 10.1177/0146167210381083) Noordewier, M.K., & Stapel, D.A. (2010). Affects of the unexpected: When inconsistency feels good (or bad). Personality and Social Psychology Bulletin, 36, 642-654. (Original DOI: 10.1177/0146167209357746 ) Van den Bos, A., & Stapel, D.A. (2009). Why people stereotype affects how they stereotype: The differential influence of comprehension goals and self-enhancement goals on stereotyping. Personality and Social Psychology Bulletin, 35(1), 101-113 (Original DOI: 10.1177/0146167208325773) Joly, J.F., Stapel, D.A., & Lindenberg, S.M. (2008). Silence and table manners: When environments activate norms. Personality and Social Psychology Bulletin, 34(8), 1047-1056 (Original DOI: 10.1177/0146167208318401) Stapel, D. A., & Spears, R. (1996). Event accessibility and context effects in causal inference: Judgment of a different order. Personality and Social Psychology Bulletin, 22, 979-992. (Original DOI: 10.1177/01461672962210001).

  5. Causality re-established.

    Science.gov (United States)

    D'Ariano, Giacomo Mauro

    2018-07-13

    Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  6. Causal Imprinting in Causal Structure Learning

    Science.gov (United States)

    Taylor, Eric G.; Ahn, Woo-kyoung

    2012-01-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C…

  7. Tachyons and causal paradoxes

    International Nuclear Information System (INIS)

    Maund, J.B.

    1979-01-01

    Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity

  8. Dynamics and causality constraints

    International Nuclear Information System (INIS)

    Sousa, Manoelito M. de

    2001-04-01

    The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)

  9. A general, multivariate definition of causal effects in epidemiology.

    Science.gov (United States)

    Flanders, W Dana; Klein, Mitchel

    2015-07-01

    Population causal effects are often defined as contrasts of average individual-level counterfactual outcomes, comparing different exposure levels. Common examples include causal risk difference and risk ratios. These and most other examples emphasize effects on disease onset, a reflection of the usual epidemiological interest in disease occurrence. Exposure effects on other health characteristics, such as prevalence or conditional risk of a particular disability, can be important as well, but contrasts involving these other measures may often be dismissed as non-causal. For example, an observed prevalence ratio might often viewed as an estimator of a causal incidence ratio and hence subject to bias. In this manuscript, we provide and evaluate a definition of causal effects that generalizes those previously available. A key part of the generalization is that contrasts used in the definition can involve multivariate, counterfactual outcomes, rather than only univariate outcomes. An important consequence of our generalization is that, using it, one can properly define causal effects based on a wide variety of additional measures. Examples include causal prevalence ratios and differences and causal conditional risk ratios and differences. We illustrate how these additional measures can be useful, natural, easily estimated, and of public health importance. Furthermore, we discuss conditions for valid estimation of each type of causal effect, and how improper interpretation or inferences for the wrong target population can be sources of bias.

  10. Beyond Markov: Accounting for independence violations in causal reasoning.

    Science.gov (United States)

    Rehder, Bob

    2018-06-01

    Although many theories of causal cognition are based on causal graphical models, a key property of such models-the independence relations stipulated by the Markov condition-is routinely violated by human reasoners. This article presents three new accounts of those independence violations, accounts that share the assumption that people's understanding of the correlational structure of data generated from a causal graph differs from that stipulated by causal graphical model framework. To distinguish these models, experiments assessed how people reason with causal graphs that are larger than those tested in previous studies. A traditional common cause network (Y 1 ←X→Y 2 ) was extended so that the effects themselves had effects (Z 1 ←Y 1 ←X→Y 2 →Z 2 ). A traditional common effect network (Y 1 →X←Y 2 ) was extended so that the causes themselves had causes (Z 1 →Y 1 →X←Y 2 ←Z 2 ). Subjects' inferences were most consistent with the beta-Q model in which consistent states of the world-those in which variables are either mostly all present or mostly all absent-are viewed as more probable than stipulated by the causal graphical model framework. Substantial variability in subjects' inferences was also observed, with the result that substantial minorities of subjects were best fit by one of the other models (the dual prototype or a leaky gate models). The discrepancy between normative and human causal cognition stipulated by these models is foundational in the sense that they locate the error not in people's causal reasoning but rather in their causal representations. As a result, they are applicable to any cognitive theory grounded in causal graphical models, including theories of analogy, learning, explanation, categorization, decision-making, and counterfactual reasoning. Preliminary evidence that independence violations indeed generalize to other judgment types is presented. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Structure induction in diagnostic causal reasoning.

    Science.gov (United States)

    Meder, Björn; Mayrhofer, Ralf; Waldmann, Michael R

    2014-07-01

    Our research examines the normative and descriptive adequacy of alternative computational models of diagnostic reasoning from single effects to single causes. Many theories of diagnostic reasoning are based on the normative assumption that inferences from an effect to its cause should reflect solely the empirically observed conditional probability of cause given effect. We argue against this assumption, as it neglects alternative causal structures that may have generated the sample data. Our structure induction model of diagnostic reasoning takes into account the uncertainty regarding the underlying causal structure. A key prediction of the model is that diagnostic judgments should not only reflect the empirical probability of cause given effect but should also depend on the reasoner's beliefs about the existence and strength of the link between cause and effect. We confirmed this prediction in 2 studies and showed that our theory better accounts for human judgments than alternative theories of diagnostic reasoning. Overall, our findings support the view that in diagnostic reasoning people go "beyond the information given" and use the available data to make inferences on the (unobserved) causal rather than on the (observed) data level. (c) 2014 APA, all rights reserved.

  12. Causality discovery technology

    Science.gov (United States)

    Chen, M.; Ertl, T.; Jirotka, M.; Trefethen, A.; Schmidt, A.; Coecke, B.; Bañares-Alcántara, R.

    2012-11-01

    Causality is the fabric of our dynamic world. We all make frequent attempts to reason causation relationships of everyday events (e.g., what was the cause of my headache, or what has upset Alice?). We attempt to manage causality all the time through planning and scheduling. The greatest scientific discoveries are usually about causality (e.g., Newton found the cause for an apple to fall, and Darwin discovered natural selection). Meanwhile, we continue to seek a comprehensive understanding about the causes of numerous complex phenomena, such as social divisions, economic crisis, global warming, home-grown terrorism, etc. Humans analyse and reason causality based on observation, experimentation and acquired a priori knowledge. Today's technologies enable us to make observations and carry out experiments in an unprecedented scale that has created data mountains everywhere. Whereas there are exciting opportunities to discover new causation relationships, there are also unparalleled challenges to benefit from such data mountains. In this article, we present a case for developing a new piece of ICT, called Causality Discovery Technology. We reason about the necessity, feasibility and potential impact of such a technology.

  13. Emoticons vs. Emojis on Twitter: A Causal Inference Approach

    OpenAIRE

    Pavalanathan, Umashanthi; Eisenstein, Jacob

    2015-01-01

    Online writing lacks the non-verbal cues present in face-to-face communication, which provide additional contextual information about the utterance, such as the speaker's intention or affective state. To fill this void, a number of orthographic features, such as emoticons, expressive lengthening, and non-standard punctuation, have become popular in social media services including Twitter and Instagram. Recently, emojis have been introduced to social media, and are increasingly popular. This r...

  14. A quantum causal discovery algorithm

    Science.gov (United States)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  15. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K

    2003-01-01

    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  16. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  17. Maximally causal quantum mechanics

    International Nuclear Information System (INIS)

    Roy, S.M.

    1998-01-01

    We present a new causal quantum mechanics in one and two dimensions developed recently at TIFR by this author and V. Singh. In this theory both position and momentum for a system point have Hamiltonian evolution in such a way that the ensemble of system points leads to position and momentum probability densities agreeing exactly with ordinary quantum mechanics. (author)

  18. Causality in demand

    DEFF Research Database (Denmark)

    Nielsen, Max; Jensen, Frank; Setälä, Jari

    2011-01-01

    to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological...

  19. Causality and Free Will

    Czech Academy of Sciences Publication Activity Database

    Hvorecký, Juraj

    2012-01-01

    Roč. 19, Supp.2 (2012), s. 64-69 ISSN 1335-0668 R&D Projects: GA ČR(CZ) GAP401/12/0833 Institutional support: RVO:67985955 Keywords : conciousness * free will * determinism * causality Subject RIV: AA - Philosophy ; Religion

  20. Explaining through causal mechanisms

    NARCIS (Netherlands)

    Biesbroek, Robbert; Dupuis, Johann; Wellstead, Adam

    2017-01-01

    This paper synthesizes and builds on recent critiques of the resilience literature; namely that the field has largely been unsuccessful in capturing the complexity of governance processes, in particular cause–effects relationships. We demonstrate that absence of a causal model is reflected in the

  1. Diagnostic causal reasoning with verbal information.

    Science.gov (United States)

    Meder, Björn; Mayrhofer, Ralf

    2017-08-01

    In diagnostic causal reasoning, the goal is to infer the probability of causes from one or multiple observed effects. Typically, studies investigating such tasks provide subjects with precise quantitative information regarding the strength of the relations between causes and effects or sample data from which the relevant quantities can be learned. By contrast, we sought to examine people's inferences when causal information is communicated through qualitative, rather vague verbal expressions (e.g., "X occasionally causes A"). We conducted three experiments using a sequential diagnostic inference task, where multiple pieces of evidence were obtained one after the other. Quantitative predictions of different probabilistic models were derived using the numerical equivalents of the verbal terms, taken from an unrelated study with different subjects. We present a novel Bayesian model that allows for incorporating the temporal weighting of information in sequential diagnostic reasoning, which can be used to model both primacy and recency effects. On the basis of 19,848 judgments from 292 subjects, we found a remarkably close correspondence between the diagnostic inferences made by subjects who received only verbal information and those of a matched control group to whom information was presented numerically. Whether information was conveyed through verbal terms or numerical estimates, diagnostic judgments closely resembled the posterior probabilities entailed by the causes' prior probabilities and the effects' likelihoods. We observed interindividual differences regarding the temporal weighting of evidence in sequential diagnostic reasoning. Our work provides pathways for investigating judgment and decision making with verbal information within a computational modeling framework. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Detectability of Granger causality for subsampled continuous-time neurophysiological processes.

    Science.gov (United States)

    Barnett, Lionel; Seth, Anil K

    2017-01-01

    Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity

  3. Operator ordering and causality

    OpenAIRE

    Plimak, L. I.; Stenholm, S. T.

    2011-01-01

    It is shown that causality violations [M. de Haan, Physica 132A, 375, 397 (1985)], emerging when the conventional definition of the time-normal operator ordering [P.L.Kelley and W.H.Kleiner, Phys.Rev. 136, A316 (1964)] is taken outside the rotating wave approximation, disappear when the amended definition [L.P. and S.S., Annals of Physics, 323, 1989 (2008)] of this ordering is used.

  4. Space, time and causality

    International Nuclear Information System (INIS)

    Lucas, J.R.

    1984-01-01

    Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)

  5. Non-Gaussian Methods for Causal Structure Learning.

    Science.gov (United States)

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  6. Causality and symmetry

    International Nuclear Information System (INIS)

    Suppes, P.; Zanotti, M.

    1984-01-01

    This paper is concerned with inferences from phenomenological variables to hidden causes or hidden variables. A number of theorems of a general sort are stated. The paper concludes with a treatment of Bell's inequalities and their generalization to more than four observables. (Auth.)

  7. An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

    Science.gov (United States)

    Ma, Sisi; Kemmeren, Patrick; Aliferis, Constantin F.; Statnikov, Alexander

    2016-01-01

    Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning methods that can leverage passively observed high-throughput data to draft causal pathways and then refine the inferred relations with a limited number of experiments. The current study provides a comprehensive evaluation of the performance of active learning methods for local causal pathway discovery in real biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The results of this study show that some methods provide significant performance benefits over others and therefore should be routinely used for local causal pathway discovery tasks. This study also demonstrates the feasibility of local causal pathway reconstruction in real biological systems with significant quality and low experimental cost. PMID:26939894

  8. Could Plasmodium vivax malaria trigger malnutrition? Revisiting the Bradford Hill criteria to assess a causal relationship between two neglected problems

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    2016-06-01

    Full Text Available Abstract: The benign characteristics formerly attributed to Plasmodium vivax infections have recently changed owing to the increasing number of reports of severe vivax malaria resulting in a broad spectrum of clinical complications, probably including undernutrition. Causal inference is a complex process, and arriving at a tentative inference of the causal or non-causal nature of an association is a subjective process limited by the existing evidence. Applying classical epidemiology principles, such as the Bradford Hill criteria, may help foster an understanding of causality and lead to appropriate interventions being proposed that may improve quality of life and decrease morbidity in neglected populations. Here, we examined these criteria in the context of the available data suggesting that vivax malaria may substantially contribute to childhood malnutrition. We found the data supported a role for P. vivax in the etiology of undernutrition in endemic areas. Thus, the application of modern causal inference tools, in future studies, may be useful in determining causation.

  9. Causality Statistical Perspectives and Applications

    CERN Document Server

    Berzuini, Carlo; Bernardinell, Luisa

    2012-01-01

    A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book:Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addr

  10. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  11. Structural Equations and Causal Explanations: Some Challenges for Causal SEM

    Science.gov (United States)

    Markus, Keith A.

    2010-01-01

    One common application of structural equation modeling (SEM) involves expressing and empirically investigating causal explanations. Nonetheless, several aspects of causal explanation that have an impact on behavioral science methodology remain poorly understood. It remains unclear whether applications of SEM should attempt to provide complete…

  12. Confounding effects of phase delays on causality estimation.

    Directory of Open Access Journals (Sweden)

    Vasily A Vakorin

    Full Text Available Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the same time, phase synchronization between coupled neural ensembles is considered a mechanism implemented in the brain to integrate relevant neuronal ensembles to perform a cognitive or perceptual task. Phase synchronization can be studied by analyzing the effects of phase-locking between the brain signals. However, we should expect that there is no one-to-one mapping between the observed phase lag and the time precedence as specified by physically interacting systems. Specifically, phase lag observed between two signals may interfere with inferring causal relations. This could be of critical importance for the coupled non-linear oscillating systems, with possible time delays in coupling, when classical linear cross-spectrum strategies for solving phase ambiguity are not efficient. To demonstrate this, we used a prototypical model of coupled non-linear systems, and compared three typical pipelines of inferring Granger causality, as established in the literature. Specifically, we compared the performance of the spectral and information-theoretic Granger pipelines as well as standard Granger causality in their relations to the observed phase differences for frequencies at which the signals become synchronized to each other. We found that an information-theoretic approach, which takes into account different time lags between the past of one signal and the future of another signal, was the most robust to phase effects.

  13. Relating the thermodynamic arrow of time to the causal arrow

    International Nuclear Information System (INIS)

    Allahverdyan, Armen E; Janzing, Dominik

    2008-01-01

    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born–Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonical distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning

  14. Causal Analysis for Performance Modeling of Computer Programs

    Directory of Open Access Journals (Sweden)

    Jan Lemeire

    2007-01-01

    Full Text Available Causal modeling and the accompanying learning algorithms provide useful extensions for in-depth statistical investigation and automation of performance modeling. We enlarged the scope of existing causal structure learning algorithms by using the form-free information-theoretic concept of mutual information and by introducing the complexity criterion for selecting direct relations among equivalent relations. The underlying probability distribution of experimental data is estimated by kernel density estimation. We then reported on the benefits of a dependency analysis and the decompositional capacities of causal models. Useful qualitative models, providing insight into the role of every performance factor, were inferred from experimental data. This paper reports on the results for a LU decomposition algorithm and on the study of the parameter sensitivity of the Kakadu implementation of the JPEG-2000 standard. Next, the analysis was used to search for generic performance characteristics of the applications.

  15. Expert Causal Reasoning and Explanation.

    Science.gov (United States)

    Kuipers, Benjamin

    The relationship between cognitive psychologists and researchers in artificial intelligence carries substantial benefits for both. An ongoing investigation in causal reasoning in medical problem solving systems illustrates this interaction. This paper traces a dialectic of sorts in which three different types of causal resaoning for medical…

  16. Re-thinking local causality

    NARCIS (Netherlands)

    Friederich, Simon

    There is widespread belief in a tension between quantum theory and special relativity, motivated by the idea that quantum theory violates J. S. Bell's criterion of local causality, which is meant to implement the causal structure of relativistic space-time. This paper argues that if one takes the

  17. Covariation in Natural Causal Induction.

    Science.gov (United States)

    Cheng, Patricia W.; Novick, Laura R.

    1991-01-01

    Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)

  18. Paradoxical Behavior of Granger Causality

    Science.gov (United States)

    Witt, Annette; Battaglia, Demian; Gail, Alexander

    2013-03-01

    Granger causality is a standard tool for the description of directed interaction of network components and is popular in many scientific fields including econometrics, neuroscience and climate science. For time series that can be modeled as bivariate auto-regressive processes we analytically derive an expression for spectrally decomposed Granger Causality (SDGC) and show that this quantity depends only on two out of four groups of model parameters. Then we present examples of such processes whose SDGC expose paradoxical behavior in the sense that causality is high for frequency ranges with low spectral power. For avoiding misinterpretations of Granger causality analysis we propose to complement it by partial spectral analysis. Our findings are illustrated by an example from brain electrophysiology. Finally, we draw implications for the conventional definition of Granger causality. Bernstein Center for Computational Neuroscience Goettingen

  19. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  20. Clear message for causality

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Aephraim M. [Institute for Experimental Physics, University of Vienna, Vienna (Austria)

    2003-12-01

    Experiment confirms that information cannot be transmitted faster than the speed of light. Ever since Einstein stated that nothing can travel faster than light, physicists have delighted in finding exceptions. One after another, observations of such 'superluminal' propagation have been made. However, while some image or pattern- such as the motion of a spotlight projected on a distant wall - might have appeared to travel faster than light, it seemed that there was no way to use the superluminal effect to transmit energy or information. In recent years, the superluminal propagation of light pulses through certain media has led to renewed controversy. In 1995, for example, Guenther Nimtz of the University of Cologne encoded Mozart's 40th Symphony on a microwave beam, which he claimed to have transmitted at a speed faster than light. Others maintain that such a violation of Einstein's speed limit would wreak havoc on our most fundamental ideas about causality, allowing an effect to precede its cause. Relativity teaches us that sending a signal faster than light would be equivalent to sending it backwards in time. (U.K.)

  1. Causal Rasch models

    Directory of Open Access Journals (Sweden)

    A. Jackson Stenner

    2013-08-01

    Full Text Available Rasch’s unidimensional models for measurement show how to connect object measures (e.g., reader abilities, measurement mechanisms (e.g., machine-generated cloze reading items, and observational outcomes (e.g., counts correct on reading instruments. Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct. We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.

  2. Causal Rasch models.

    Science.gov (United States)

    Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.

  3. Causal Rasch models

    Science.gov (United States)

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  4. Causal aspects of diffraction

    International Nuclear Information System (INIS)

    Crawford, G.N.

    1981-01-01

    The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm

  5. ["Karoshi" and causal relationships].

    Science.gov (United States)

    Hamajima, N

    1992-08-01

    This paper aims to introduce a measure for use by physicians for stating the degree of probable causal relationship for "Karoshi", ie, a sudden death from cerebrovascular diseases or ischemic heart diseases under occupational stresses, as well as to give a brief description for legal procedures associated with worker's compensation and civil trial in Japan. It is a well-used measure in epidemiology, "attributable risk percent (AR%)", which can be applied to describe the extent of contribution to "Karoshi" of the excess occupational burdens the deceased worker was forced to bear. Although several standards such as average occupational burdens for the worker, average occupational burdens for an ordinary worker, burdens in a nonoccupational life, and a complete rest, might be considered for the AR% estimation, the average occupational burdens for an ordinary worker should normally be utilized as a standard for worker's compensation. The adoption of AR% could be helpful for courts to make a consistent judgement whether "Karoshi" cases are compensatable or not.

  6. Structure and Strength in Causal Induction

    Science.gov (United States)

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2005-01-01

    We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…

  7. On the notion of causality in medicine: addressing Austin Bradford Hill and John L. Mackie

    Directory of Open Access Journals (Sweden)

    Luís Fernando S. C. de Araújo

    2014-03-01

    Full Text Available Almost 50 years ago appeared the seminal article by Austin Bradford Hill where he presented parameters for inferring causes from statistical associations, which became known as Hill’s causal criteria. This was a milestone for the renewal of the idea of cause in medicine. Our article revisits his contribution in light of the ideas from the Australian philosopher John L. Mackie, whose important works on causality reached an audience distinct from Hill’s. We suggest that both the British epidemiologist and the Australian philosopher share the purpose of articulating probabilistic determinism and multi-causality, the first with a predominantly probabilistic model and the second with an analytical approach. This article explores the possible consequences of addressing these authors jointly in regard to causal inferences in medicine, especially in respect to mental disorders.

  8. Dynamics of Quantum Causal Structures

    Science.gov (United States)

    Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2018-01-01

    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  9. Dynamics of Quantum Causal Structures

    Directory of Open Access Journals (Sweden)

    Esteban Castro-Ruiz

    2018-03-01

    Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  10. Discrete causal theory emergent spacetime and the causal metric hypothesis

    CERN Document Server

    Dribus, Benjamin F

    2017-01-01

    This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.

  11. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  12. Causal boundary for strongly causal spacetimes: Pt. 1

    International Nuclear Information System (INIS)

    Szabados, L.B.

    1989-01-01

    In a previous paper an analysis of the general structure of the causal boundary constructions and a new explicit identification rule, built up from elementary TIP-TIF gluings, were presented. In the present paper we complete our identification by incorporating TIP-TIP and TIF-TIF gluings as well. An asymptotic causality condition is found which, for physically important cases, ensures the uniqueness of the endpoints of the non-spacelike curves in the completed spacetime. (author)

  13. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  14. Design Issues and Inference in Experimental L2 Research

    Science.gov (United States)

    Hudson, Thom; Llosa, Lorena

    2015-01-01

    Explicit attention to research design issues is essential in experimental second language (L2) research. Too often, however, such careful attention is not paid. This article examines some of the issues surrounding experimental L2 research and its relationships to causal inferences. It discusses the place of research questions and hypotheses,…

  15. A framework for estimating causal effects in latent class analysis: is there a causal link between early sex and subsequent profiles of delinquency?

    Science.gov (United States)

    Butera, Nicole M; Lanza, Stephanie T; Coffman, Donna L

    2014-06-01

    Prevention scientists use latent class analysis (LCA) with increasing frequency to characterize complex behavior patterns and profiles of risk. Often, the most important research questions in these studies involve establishing characteristics that predict membership in the latent classes, thus describing the composition of the subgroups and suggesting possible points of intervention. More recently, prevention scientists have begun to adopt modern methods for drawing causal inference from observational data because of the bias that can be introduced by confounders. This same issue of confounding exists in any analysis of observational data, including prediction of latent class membership. This study demonstrates a straightforward approach to causal inference in LCA that builds on propensity score methods. We demonstrate this approach by examining the causal effect of early sex on subsequent delinquency latent classes using data from 1,890 adolescents in 11th and 12th grade from wave I of the National Longitudinal Study of Adolescent Health. Prior to the statistical adjustment for potential confounders, early sex was significantly associated with delinquency latent class membership for both genders (p = 0.02). However, the propensity score adjusted analysis indicated no evidence for a causal effect of early sex on delinquency class membership (p = 0.76) for either gender. Sample R and SAS code is included in an Appendix in the ESM so that prevention scientists may adopt this approach to causal inference in LCA in their own work.

  16. Causal Modelling in Evaluation Research.

    Science.gov (United States)

    Winteler, Adolf

    1983-01-01

    A study applied path analysis methods, using new techniques of causal analysis, to the problem of predicting the achievement, dropout rate, and satisfaction of university students. Besides providing explanations, the technique indicates possible remedial measures. (MSE)

  17. Consciousness and the "Causal Paradox"

    OpenAIRE

    Velmans, Max

    1996-01-01

    Viewed from a first-person perspective consciousness appears to be necessary for complex, novel human activity - but viewed from a third-person perspective consciousness appears to play no role in the activity of brains, producing a "causal paradox". To resolve this paradox one needs to distinguish consciousness of processing from consciousness accompanying processing or causing processing. Accounts of consciousness/brain causal interactions switch between first- and third-person perspectives...

  18. The power of possibility: causal learning, counterfactual reasoning, and pretend play.

    Science.gov (United States)

    Buchsbaum, Daphna; Bridgers, Sophie; Skolnick Weisberg, Deena; Gopnik, Alison

    2012-08-05

    We argue for a theoretical link between the development of an extended period of immaturity in human evolution and the emergence of powerful and wide-ranging causal learning mechanisms, specifically the use of causal models and Bayesian learning. We suggest that exploratory childhood learning, childhood play in particular, and causal cognition are closely connected. We report an empirical study demonstrating one such connection--a link between pretend play and counterfactual causal reasoning. Preschool children given new information about a causal system made very similar inferences both when they considered counterfactuals about the system and when they engaged in pretend play about it. Counterfactual cognition and causally coherent pretence were also significantly correlated even when age, general cognitive development and executive function were controlled for. These findings link a distinctive human form of childhood play and an equally distinctive human form of causal inference. We speculate that, during human evolution, computations that were initially reserved for solving particularly important ecological problems came to be used much more widely and extensively during the long period of protected immaturity.

  19. An Investigation of Human Inductive Biases in Causality and Probability Judgments

    OpenAIRE

    Yeung, Sai Wing

    2011-01-01

    People often makes inductive inferences that go beyond the data that are given. In order to generate these inferences, people must rely on inductive biases - constraints on learning that guide conclusion from limited data. This thesis presents a survey of three topics concerning people's inductive biases.The first part of this thesis examines people's expectations about the strengths of causes in elemental causal induction - learning about the relationship between a single cause and effect. T...

  20. Regression to Causality : Regression-style presentation influences causal attribution

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

  1. Putting a cap on causality violations in causal dynamical triangulations

    International Nuclear Information System (INIS)

    Ambjoern, Jan; Loll, Renate; Westra, Willem; Zohren, Stefan

    2007-01-01

    The formalism of causal dynamical triangulations (CDT) provides us with a non-perturbatively defined model of quantum gravity, where the sum over histories includes only causal space-time histories. Path integrals of CDT and their continuum limits have been studied in two, three and four dimensions. Here we investigate a generalization of the two-dimensional CDT model, where the causality constraint is partially lifted by introducing branching points with a weight g s , and demonstrate that the system can be solved analytically in the genus-zero sector. The solution is analytic in a neighborhood around weight g s = 0 and cannot be analytically continued to g s = ∞, where the branching is entirely geometric and where one would formally recover standard Euclidean two-dimensional quantum gravity defined via dynamical triangulations or Liouville theory

  2. An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems

    KAUST Repository

    Zenil, Hector

    2017-09-08

    We introduce a conceptual framework and an interventional calculus to steer and manipulate systems based on their intrinsic algorithmic probability using the universal principles of the theory of computability and algorithmic information. By applying sequences of controlled interventions to systems and networks, we estimate how changes in their algorithmic information content are reflected in positive/negative shifts towards and away from randomness. The strong connection between approximations to algorithmic complexity (the size of the shortest generating mechanism) and causality induces a sequence of perturbations ranking the network elements by the steering capabilities that each of them is capable of. This new dimension unmasks a separation between causal and non-causal components providing a suite of powerful parameter-free algorithms of wide applicability ranging from optimal dimension reduction, maximal randomness analysis and system control. We introduce methods for reprogramming systems that do not require the full knowledge or access to the system\\'s actual kinetic equations or any probability distributions. A causal interventional analysis of synthetic and regulatory biological networks reveals how the algorithmic reprogramming qualitatively reshapes the system\\'s dynamic landscape. For example, during cellular differentiation we find a decrease in the number of elements corresponding to a transition away from randomness and a combination of the system\\'s intrinsic properties and its intrinsic capabilities to be algorithmically reprogrammed can reconstruct an epigenetic landscape. The interventional calculus is broadly applicable to predictive causal inference of systems such as networks and of relevance to a variety of machine and causal learning techniques driving model-based approaches to better understanding and manipulate complex systems.

  3. Causality and analyticity in optics

    International Nuclear Information System (INIS)

    Nussenzveig, H.M.

    In order to provide an overall picture of the broad range of optical phenomena that are directly linked with the concepts of causality and analyticity, the following topics are briefly reviewed, emphasizing recent developments: 1) Derivation of dispersion relations for the optical constants of general linear media from causality. Application to the theory of natural optical activity. 2) Derivation of sum rules for the optical constants from causality and from the short-time response function (asymptotic high-frequency behavior). Average spectral behavior of optical media. Applications. 3) Role of spectral conditions. Analytic properties of coherence functions in quantum optics. Reconstruction theorem.4) Phase retrieval problems. 5) Inverse scattering problems. 6) Solution of nonlinear evolution equations in optics by inverse scattering methods. Application to self-induced transparency. Causality in nonlinear wave propagation. 7) Analytic continuation in frequency and angular momentum. Complex singularities. Resonances and natural-mode expansions. Regge poles. 8) Wigner's causal inequality. Time delay. Spatial displacements in total reflection. 9) Analyticity in diffraction theory. Complex angular momentum theory of Mie scattering. Diffraction as a barrier tunnelling effect. Complex trajectories in optics. (Author) [pt

  4. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  5. SEMANTIC PATCH INFERENCE

    DEFF Research Database (Denmark)

    Andersen, Jesper

    2009-01-01

    Collateral evolution the problem of updating several library-using programs in response to API changes in the used library. In this dissertation we address the issue of understanding collateral evolutions by automatically inferring a high-level specification of the changes evident in a given set ...... specifications inferred by spdiff in Linux are shown. We find that the inferred specifications concisely capture the actual collateral evolution performed in the examples....

  6. Entropy for theories with indefinite causal structure

    International Nuclear Information System (INIS)

    Markes, Sonia; Hardy, Lucien

    2011-01-01

    Any theory with definite causal structure has a defined past and future, be it defined by light cones or an absolute time scale. Entropy is a concept that has traditionally been reliant on a definite notion of causality. However, without a definite notion of causality, the concept of entropy is not all lost. Indefinite causal structure results from combining probabilistic predictions and dynamical space-time. The causaloid framework lays the mathematical groundwork to be able to treat indefinite causal structure. In this paper, we build on the causaloid mathematics and define a causally-unbiased entropy for an indefinite causal structure. In defining a causally-unbiased entropy, there comes about an emergent idea of causality in the form of a measure of causal connectedness, termed the Q factor.

  7. The balanced survivor average causal effect.

    Science.gov (United States)

    Greene, Tom; Joffe, Marshall; Hu, Bo; Li, Liang; Boucher, Ken

    2013-05-07

    Statistical analysis of longitudinal outcomes is often complicated by the absence of observable values in patients who die prior to their scheduled measurement. In such cases, the longitudinal data are said to be "truncated by death" to emphasize that the longitudinal measurements are not simply missing, but are undefined after death. Recently, the truncation by death problem has been investigated using the framework of principal stratification to define the target estimand as the survivor average causal effect (SACE), which in the context of a two-group randomized clinical trial is the mean difference in the longitudinal outcome between the treatment and control groups for the principal stratum of always-survivors. The SACE is not identified without untestable assumptions. These assumptions have often been formulated in terms of a monotonicity constraint requiring that the treatment does not reduce survival in any patient, in conjunction with assumed values for mean differences in the longitudinal outcome between certain principal strata. In this paper, we introduce an alternative estimand, the balanced-SACE, which is defined as the average causal effect on the longitudinal outcome in a particular subset of the always-survivors that is balanced with respect to the potential survival times under the treatment and control. We propose a simple estimator of the balanced-SACE that compares the longitudinal outcomes between equivalent fractions of the longest surviving patients between the treatment and control groups and does not require a monotonicity assumption. We provide expressions for the large sample bias of the estimator, along with sensitivity analyses and strategies to minimize this bias. We consider statistical inference under a bootstrap resampling procedure.

  8. mediation: R package for causal mediation analysis

    OpenAIRE

    Tingley, Dustin; Yamamoto, Teppei; Hirose, Kentaro; Keele, Luke; Imai, Kosuke

    2012-01-01

    In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting su...

  9. A Causal Theory of Modality

    Directory of Open Access Journals (Sweden)

    José Tomás Alvarado

    2009-08-01

    Full Text Available This work presents a causal conception of metaphysical modality in which a state of affairs is metaphysically possible if and only if it can be caused (in the past, the present or the future by current entities. The conception is contrasted with what is called the “combinatorial” conception of modality, in which everything can co-exist with anything else. This work explains how the notion of ‘causality’ should be construed in the causal theory, what difference exists between modalities thus defined from nomological modality, how accessibility relations between possible worlds should be interpreted, and what is the relation between the causal conception and the necessity of origin.

  10. Quantum theory and local causality

    CERN Document Server

    Hofer-Szabó, Gábor

    2018-01-01

    This book summarizes the results of research the authors have pursued in the past years on the problem of implementing Bell's notion of local causality in local physical theories and relating it to other important concepts and principles in the foundations of physics such as the Common Cause Principle, Bell's inequalities, the EPR (Einstein-Podolsky-Rosen) scenario, and various other locality and causality concepts. The book is intended for philosophers of science with an interest in the formal background of sciences, philosophers of physics and physicists working in foundation of physics.

  11. [Causal analysis approaches in epidemiology].

    Science.gov (United States)

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the

  12. Inference in `poor` languages

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  13. Bayesian statistical inference

    Directory of Open Access Journals (Sweden)

    Bruno De Finetti

    2017-04-01

    Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.

  14. Geometric statistical inference

    International Nuclear Information System (INIS)

    Periwal, Vipul

    1999-01-01

    A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined

  15. Practical Bayesian Inference

    Science.gov (United States)

    Bailer-Jones, Coryn A. L.

    2017-04-01

    Preface; 1. Probability basics; 2. Estimation and uncertainty; 3. Statistical models and inference; 4. Linear models, least squares, and maximum likelihood; 5. Parameter estimation: single parameter; 6. Parameter estimation: multiple parameters; 7. Approximating distributions; 8. Monte Carlo methods for inference; 9. Parameter estimation: Markov chain Monte Carlo; 10. Frequentist hypothesis testing; 11. Model comparison; 12. Dealing with more complicated problems; References; Index.

  16. The causal nexus between oil prices and equity market in the U.S.: A regime switching model

    International Nuclear Information System (INIS)

    Balcilar, Mehmet; Ozdemir, Zeynel Abidin

    2013-01-01

    The aim of this paper is to analyse the causal link between monthly oil futures price changes and a sub-grouping of S and P 500 stock index changes. The causal linkage between oil and stock markets is modelled using a vector autoregressive model with time-varying parameters so as to reflect changes in Granger causality over time. A Markov switching vector autoregressive (MS-VAR) model, in which causal link between the series is stochastic and governed by an unobservable Markov chain, is used for inferring time-varying causality. Although we do not find any lead–lag type Granger causality, the results based on the MS-VAR model clearly show that oil futures price has strong regime prediction power for a sub-grouping of S and P 500 stock index during various sub-periods in the sample, while there is a weak evidence for the regime prediction power of a sub-grouping of S and P 500 stock indexes. The regime-prediction non-causality tests on the MS-VAR model show that both variables are useful for making inference about the regime process and that the evidence on regime-prediction causality is primarily found in the equation describing a sub-grouping of S and P 500 stock market returns. The evidence from the conditional non-causality tests shows that past information on the other series fails to improve the one step ahead prediction for both oil futures and stock returns. - Highlights: • We analyse the causal links between oil futures price and a sub-grouping of S and P 500 index. • The causal links are modelled using a regime switching model. • We do not find any lead–lag type Granger causality between the series. • The results show that oil futures price has regime prediction power for a sub-grouping of S and P 500 stock index

  17. Causal Reasoning with Mental Models

    Science.gov (United States)

    2014-08-08

    The initial rubric is equivalent to an exclusive disjunction between the two causal assertions. It 488 yields the following two mental models: 489...are 575 important, whereas the functions of artifacts are important (Ahn, 1998). A genetic code is 576 accordingly more critical to being a goat than

  18. Identity, causality, and pronoun ambiguity.

    Science.gov (United States)

    Sagi, Eyal; Rips, Lance J

    2014-10-01

    This article looks at the way people determine the antecedent of a pronoun in sentence pairs, such as: Albert invited Ron to dinner. He spent hours cleaning the house. The experiment reported here is motivated by the idea that such judgments depend on reasoning about identity (e.g., the identity of the he who cleaned the house). Because the identity of an individual over time depends on the causal-historical path connecting the stages of the individual, the correct antecedent will also depend on causal connections. The experiment varied how likely it is that the event of the first sentence (e.g., the invitation) would cause the event of the second (the house cleaning) for each of the two individuals (the likelihood that if Albert invited Ron to dinner, this would cause Albert to clean the house, versus cause Ron to clean the house). Decisions about the antecedent followed causal likelihood. A mathematical model of causal identity accounted for most of the key aspects of the data from the individual sentence pairs. Copyright © 2014 Cognitive Science Society, Inc.

  19. Charged singularities: the causality violation

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, F; Nobili, L [Padua Univ. (Italy). Ist. di Fisica; Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1980-12-01

    A search is made for examples of particle trajectories which, approaching a naked singularity from infinity, make up for lost time before going back to infinity. In the Kerr-Newman metric a whole family of such trajectories is found showing that the causality violation is indeed a non-avoidable pathology.

  20. Entanglement, holography and causal diamonds

    Science.gov (United States)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  1. Entanglement, holography and causal diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Haehl, Felix M. [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Heller, Michal P.; Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-08-29

    We argue that the degrees of freedom in a d-dimensional CFT can be re-organized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglement entropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  2. The argumentative impact of causal relations

    DEFF Research Database (Denmark)

    Nielsen, Anne Ellerup

    1996-01-01

    such as causality, explanation and justification. In certain types of discourse, causal relations also imply an intentional element. This paper describes the way in which the semantic and pragmatic functions of causal markers can be accounted for in terms of linguistic and rhetorical theories of argumentation.......The semantic relations between and within utterances are marked by the use of connectors and adverbials. One type of semantic relations is causal relations expressed by causal markers such as because, therefore, so, for, etc. Some of these markers cover different types of causal relations...

  3. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  4. Quantum Steering Beyond Instrumental Causal Networks

    Science.gov (United States)

    Nery, R. V.; Taddei, M. M.; Chaves, R.; Aolita, L.

    2018-04-01

    We theoretically predict, and experimentally verify with entangled photons, that outcome communication is not enough for hidden-state models to reproduce quantum steering. Hidden-state models with outcome communication correspond, in turn, to the well-known instrumental processes of causal inference but in the one-sided device-independent scenario of one black-box measurement device and one well-characterized quantum apparatus. We introduce one-sided device-independent instrumental inequalities to test against these models, with the appealing feature of detecting entanglement even when communication of the black box's measurement outcome is allowed. We find that, remarkably, these inequalities can also be violated solely with steering, i.e., without outcome communication. In fact, an efficiently computable formal quantifier—the robustness of noninstrumentality—naturally arises, and we prove that steering alone is enough to maximize it. Our findings imply that quantum theory admits a stronger form of steering than known until now, with fundamental as well as practical potential implications.

  5. Reinforcement learning or active inference?

    Science.gov (United States)

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  6. Reinforcement learning or active inference?

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2009-07-01

    Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  7. Knowledge and inference

    CERN Document Server

    Nagao, Makoto

    1990-01-01

    Knowledge and Inference discusses an important problem for software systems: How do we treat knowledge and ideas on a computer and how do we use inference to solve problems on a computer? The book talks about the problems of knowledge and inference for the purpose of merging artificial intelligence and library science. The book begins by clarifying the concept of """"knowledge"""" from many points of view, followed by a chapter on the current state of library science and the place of artificial intelligence in library science. Subsequent chapters cover central topics in the artificial intellig

  8. Logical inference and evaluation

    International Nuclear Information System (INIS)

    Perey, F.G.

    1981-01-01

    Most methodologies of evaluation currently used are based upon the theory of statistical inference. It is generally perceived that this theory is not capable of dealing satisfactorily with what are called systematic errors. Theories of logical inference should be capable of treating all of the information available, including that not involving frequency data. A theory of logical inference is presented as an extension of deductive logic via the concept of plausibility and the application of group theory. Some conclusions, based upon the application of this theory to evaluation of data, are also given

  9. Spectral dimension in causal set quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Mizera, Sebastian

    2014-01-01

    We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)

  10. Probability and Statistical Inference

    OpenAIRE

    Prosper, Harrison B.

    2006-01-01

    These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.

  11. On quantum statistical inference

    NARCIS (Netherlands)

    Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have

  12. INFERENCE BUILDING BLOCKS

    Science.gov (United States)

    2018-02-15

    expressed a variety of inference techniques on discrete and continuous distributions: exact inference, importance sampling, Metropolis-Hastings (MH...without redoing any math or rewriting any code. And although our main goal is composable reuse, our performance is also good because we can use...control paths. • The Hakaru language can express mixtures of discrete and continuous distributions, but the current disintegration transformation

  13. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  14. On causal nonrelativistic classical electrodynamics

    International Nuclear Information System (INIS)

    Goedecke, G.H.

    1984-01-01

    The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy

  15. Quantum mechanics, relativity and causality

    International Nuclear Information System (INIS)

    Tati, Takao.

    1975-07-01

    In quantum mechanics, the state is prepared by a measurement on a space-like surface sigma. What is that determines the surface sigma on which the measurement prepares the state It is considered either a mechanism proper to the measuring process (apparatus) or a universal property of space-time. In the former case, problems arise, concerning causality or conservation of probability due to that the velocity of reduction of wave-packet is considered to exceed the light velocity. The theory of finite degree of freedom proposed previously belongs to the latter case. In this theory, the surface sigma is restricted to the hyper-plane perpendicular to a universal time-like vector governing causal relations. We propose an experiment to discriminate between the above-mentioned two cases and to test the existence of the universal time-like vector. (auth.)

  16. Causal Set Generator and Action Computer

    OpenAIRE

    Cunningham, William; Krioukov, Dmitri

    2017-01-01

    The causal set approach to quantum gravity has gained traction over the past three decades, but numerical experiments involving causal sets have been limited to relatively small scales. The software suite presented here provides a new framework for the generation and study of causal sets. Its efficiency surpasses previous implementations by several orders of magnitude. We highlight several important features of the code, including the compact data structures, the $O(N^2)$ causal set generatio...

  17. Domain-specific perceptual causality in children depends on the spatio-temporal configuration, not motion onset

    Directory of Open Access Journals (Sweden)

    Anne eSchlottmann

    2013-07-01

    Full Text Available Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: It is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information.

  18. Modeling of causality with metamaterials

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2013-01-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space–time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space–time. While this model may be used to build interesting space–time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space–time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler–Feynman absorber theory of causality. (paper)

  19. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    Science.gov (United States)

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  20. Causal structure of analogue spacetimes

    International Nuclear Information System (INIS)

    Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt

    2004-01-01

    The so-called 'analogue models of general relativity' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of perturbations in these condensed matter systems is described by 'effective metrics' that carry with them notions of 'causal structure' as determined by an exchange of quasi-particles. These quasi-particle-induced causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying analogue model is governed by its own specific physics, not necessarily by the Einstein equations.) In this paper we take a careful look at what can be said about the causal structure of analogue spacetimes, focusing on those containing quasi-particle horizons, both with a view to seeing what is different from standard general relativity, and what the similarities might be. For definiteness, and because the physics is particularly simple to understand, we will phrase much of the discussion in terms of acoustic disturbances in moving fluids, where the underlying physics is ordinary fluid mechanics, governed by the equations of traditional hydrodynamics, and the relevant quasi-particles are the phonons. It must however be emphasized that this choice of example is only for the sake of pedagogical simplicity and that our considerations apply generically to wide classes of analogue spacetimes

  1. Obesity and infection: reciprocal causality.

    Science.gov (United States)

    Hainer, V; Zamrazilová, H; Kunešová, M; Bendlová, B; Aldhoon-Hainerová, I

    2015-01-01

    Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.

  2. Behavioural Pattern of Causality Parameter of Autoregressive ...

    African Journals Online (AJOL)

    In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...

  3. Exploring Individual Differences in Preschoolers' Causal Stance

    Science.gov (United States)

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  4. Representing Personal Determinants in Causal Structures.

    Science.gov (United States)

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  5. Causal knowledge and reasoning in decision making

    NARCIS (Netherlands)

    Hagmayer, Y.; Witteman, C.L.M.

    2017-01-01

    Normative causal decision theories argue that people should use their causal knowledge in decision making. Based on these ideas, we argue that causal knowledge and reasoning may support and thereby potentially improve decision making based on expected outcomes, narratives, and even cues. We will

  6. Normative and descriptive accounts of the influence of power and contingency on causal judgement.

    Science.gov (United States)

    Perales, José C; Shanks, David R

    2003-08-01

    The power PC theory (Cheng, 1997) is a normative account of causal inference, which predicts that causal judgements are based on the power p of a potential cause, where p is the cause-effect contingency normalized by the base rate of the effect. In three experiments we demonstrate that both cause-effect contingency and effect base-rate independently affect estimates in causal learning tasks. In Experiment 1, causal strength judgements were directly related to power p in a task in which the effect base-rate was manipulated across two positive and two negative contingency conditions. In Experiments 2 and 3 contingency manipulations affected causal estimates in several situations in which power p was held constant, contrary to the power PC theory's predictions. This latter effect cannot be explained by participants' conflation of reliability and causal strength, as Experiment 3 demonstrated independence of causal judgements and confidence. From a descriptive point of view, the data are compatible with Pearce's (1987) model, as well as with several other judgement rules, but not with the Rescorla-Wagner (Rescorla & Wagner, 1972) or power PC models.

  7. Causal reports: Context-dependent contributions of intuitive physics and visual impressions of launching.

    Science.gov (United States)

    Vicovaro, Michele

    2018-05-01

    Everyday causal reports appear to be based on a blend of perceptual and cognitive processes. Causality can sometimes be perceived automatically through low-level visual processing of stimuli, but it can also be inferred on the basis of an intuitive understanding of the physical mechanism that underlies an observable event. We investigated how visual impressions of launching and the intuitive physics of collisions contribute to the formation of explicit causal responses. In Experiment 1, participants observed collisions between realistic objects differing in apparent material and hence implied mass, whereas in Experiment 2, participants observed collisions between abstract, non-material objects. The results of Experiment 1 showed that ratings of causality were mainly driven by the intuitive physics of collisions, whereas the results of Experiment 2 provide some support to the hypothesis that ratings of causality were mainly driven by visual impressions of launching. These results suggest that stimulus factors and experimental design factors - such as the realism of the stimuli and the variation in the implied mass of the colliding objects - may determine the relative contributions of perceptual and post-perceptual cognitive processes to explicit causal responses. A revised version of the impetus transmission heuristic provides a satisfactory explanation for these results, whereas the hypothesis that causal responses and intuitive physics are based on the internalization of physical laws does not. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Qualitative reasoning for biological network inference from systematic perturbation experiments.

    Science.gov (United States)

    Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco

    2012-01-01

    The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.

  9. STATISTICAL RELATIONAL LEARNING AND SCRIPT INDUCTION FOR TEXTUAL INFERENCE

    Science.gov (United States)

    2017-12-01

    compensate for parser errors. We replace deterministic conjunction by an average combiner, which encodes causal independence. Our framework was the...sentence similarity (STS) and sentence paraphrasing, but not Textual Entailment, where deeper inferences are required. As the formula for conjunction ...When combined, our algorithm learns to rely on systems that not just agree on an output but also the provenance of this output in conjunction with the

  10. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*

    Science.gov (United States)

    Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan

    2017-01-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111

  11. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.

    Science.gov (United States)

    Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan

    2017-05-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.

  12. Norms and customs: causally important or causally impotent?

    Science.gov (United States)

    Jones, Todd

    2010-01-01

    In this article, I argue that norms and customs, despite frequently being described as being causes of behavior in the social sciences and ordinary conversation, cannot really cause behavior. Terms like "norms" and the like seem to refer to philosophically disreputable disjunctive properties. More problematically, even if they do not, or even if there can be disjunctive properties after all, I argue that norms and customs still cannot cause behavior. The social sciences would be better off without referring to properties like norms and customs as if they could be causal.

  13. Causal mediation analysis with multiple causally non-ordered mediators.

    Science.gov (United States)

    Taguri, Masataka; Featherstone, John; Cheng, Jing

    2018-01-01

    In many health studies, researchers are interested in estimating the treatment effects on the outcome around and through an intermediate variable. Such causal mediation analyses aim to understand the mechanisms that explain the treatment effect. Although multiple mediators are often involved in real studies, most of the literature considered mediation analyses with one mediator at a time. In this article, we consider mediation analyses when there are causally non-ordered multiple mediators. Even if the mediators do not affect each other, the sum of two indirect effects through the two mediators considered separately may diverge from the joint natural indirect effect when there are additive interactions between the effects of the two mediators on the outcome. Therefore, we derive an equation for the joint natural indirect effect based on the individual mediation effects and their interactive effect, which helps us understand how the mediation effect works through the two mediators and relative contributions of the mediators and their interaction. We also discuss an extension for three mediators. The proposed method is illustrated using data from a randomized trial on the prevention of dental caries.

  14. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    Science.gov (United States)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  15. Assessment of network inference methods: how to cope with an underdetermined problem.

    Directory of Open Access Journals (Sweden)

    Caroline Siegenthaler

    Full Text Available The inference of biological networks is an active research area in the field of systems biology. The number of network inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and comparison among these methods. Current assessments of the performance of an inference method typically involve the application of the algorithm to benchmark datasets and the comparison of the network predictions against the gold standard or reference networks. While the network inference problem is often deemed underdetermined, implying that the inference problem does not have a (unique solution, the consequences of such an attribute have not been rigorously taken into consideration. Here, we propose a new procedure for assessing the performance of gene regulatory network (GRN inference methods. The procedure takes into account the underdetermined nature of the inference problem, in which gene regulatory interactions that are inferable or non-inferable are determined based on causal inference. The assessment relies on a new definition of the confusion matrix, which excludes errors associated with non-inferable gene regulations. For demonstration purposes, the proposed assessment procedure is applied to the DREAM 4 In Silico Network Challenge. The results show a marked change in the ranking of participating methods when taking network inferability into account.

  16. Type Inference with Inequalities

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1991-01-01

    of (monotonic) inequalities on the types of variables and expressions. A general result about systems of inequalities over semilattices yields a solvable form. We distinguish between deciding typability (the existence of solutions) and type inference (the computation of a minimal solution). In our case, both......Type inference can be phrased as constraint-solving over types. We consider an implicitly typed language equipped with recursive types, multiple inheritance, 1st order parametric polymorphism, and assignments. Type correctness is expressed as satisfiability of a possibly infinite collection...

  17. BioCause: Annotating and analysing causality in the biomedical domain.

    Science.gov (United States)

    Mihăilă, Claudiu; Ohta, Tomoko; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-16

    Biomedical corpora annotated with event-level information represent an important resource for domain-specific information extraction (IE) systems. However, bio-event annotation alone cannot cater for all the needs of biologists. Unlike work on relation and event extraction, most of which focusses on specific events and named entities, we aim to build a comprehensive resource, covering all statements of causal association present in discourse. Causality lies at the heart of biomedical knowledge, such as diagnosis, pathology or systems biology, and, thus, automatic causality recognition can greatly reduce the human workload by suggesting possible causal connections and aiding in the curation of pathway models. A biomedical text corpus annotated with such relations is, hence, crucial for developing and evaluating biomedical text mining. We have defined an annotation scheme for enriching biomedical domain corpora with causality relations. This schema has subsequently been used to annotate 851 causal relations to form BioCause, a collection of 19 open-access full-text biomedical journal articles belonging to the subdomain of infectious diseases. These documents have been pre-annotated with named entity and event information in the context of previous shared tasks. We report an inter-annotator agreement rate of over 60% for triggers and of over 80% for arguments using an exact match constraint. These increase significantly using a relaxed match setting. Moreover, we analyse and describe the causality relations in BioCause from various points of view. This information can then be leveraged for the training of automatic causality detection systems. Augmenting named entity and event annotations with information about causal discourse relations could benefit the development of more sophisticated IE systems. These will further influence the development of multiple tasks, such as enabling textual inference to detect entailments, discovering new facts and providing new

  18. Causal mediation analysis with multiple mediators.

    Science.gov (United States)

    Daniel, R M; De Stavola, B L; Cousens, S N; Vansteelandt, S

    2015-03-01

    In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed. © 2014 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  19. The Functions of Danish Causal Conjunctions

    Directory of Open Access Journals (Sweden)

    Rita Therkelsen

    2004-01-01

    Full Text Available In the article I propose an analysis of the Danish causal conjunctions fordi, siden and for based on the framework of Danish Functional Grammar. As conjunctions they relate two clauses, and their semantics have in common that it indicates a causal relationship between the clauses. The causal conjunctions are different as far as their distribution is concerned; siden conjoins a subordinate clause and a main clause, for conjoins two main clauses, and fordi is able to do both. Methodologically I have based my analysis on these distributional properties comparing siden and fordi conjoining a subordinate and a main clause, and comparing for and fordi conjoining two main clauses, following the thesis that they would establish a causal relationship between different kinds of content. My main findings are that fordi establishes a causal relationship between the events referred to by the two clauses, and the whole utterance functions as a statement of this causal relationship. Siden presupposes such a general causal relationship between the two events and puts forward the causing event as a reason for assuming or wishing or ordering the caused event, siden thus establishes a causal relationship between an event and a speech act. For equally presupposes a general causal relationship between two events and it establishes a causal relationship between speech acts, and fordi conjoining two main clauses is able to do this too, but in this position it also maintains its event-relating ability, the interpretation depending on contextual factors.

  20. Probabilistic causality and radiogenic cancers

    International Nuclear Information System (INIS)

    Groeer, P.G.

    1986-01-01

    A review and scrutiny of the literature on probability and probabilistic causality shows that it is possible under certain assumptions to estimate the probability that a certain type of cancer diagnosed in an individual exposed to radiation prior to diagnosis was caused by this exposure. Diagnosis of this causal relationship like diagnosis of any disease - malignant or not - requires always some subjective judgments by the diagnostician. It is, therefore, illusory to believe that tables based on actuarial data can provide objective estimates of the chance that a cancer diagnosed in an individual is radiogenic. It is argued that such tables can only provide a base from which the diagnostician(s) deviate in one direction or the other according to his (their) individual (consensual) judgment. Acceptance of a physician's diagnostic judgment by patients is commonplace. Similar widespread acceptance of expert judgment by claimants in radiation compensation cases does presently not exist. Judicious use of the present radioepidemiological tables prepared by the Working Group of the National Institutes of Health or of updated future versions of similar tables may improve the situation. 20 references

  1. Inference as Prediction

    Science.gov (United States)

    Watson, Jane

    2007-01-01

    Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…

  2. Hybrid Optical Inference Machines

    Science.gov (United States)

    1991-09-27

    with labels. Now, events. a set of facts cal be generated in the dyadic form "u, R 1,2" Eichmann and Caulfield (19] consider the same type of and can...these enceding-schemes. These architectures are-based pri- 19. G. Eichmann and H. J. Caulfield, "Optical Learning (Inference)marily on optical inner

  3. How do practising clinicians and students apply newly learned causal information about mental disorders?

    Science.gov (United States)

    de Kwaadsteniet, Leontien; Kim, Nancy S; Yopchick, Jennelle E

    2013-02-01

    New causal theories explaining the aetiology of psychiatric disorders continuously appear in the literature. How might such new information directly impact clinical practice, to the degree that clinicians are aware of it and accept it? We investigated whether expert clinical psychologists and students use new causal information about psychiatric disorders according to rationalist norms in their diagnostic reasoning. Specifically, philosophical and Bayesian analyses suggest that it is rational to draw stronger inferences about the presence of a disorder when a client's presenting symptoms are from disparate locations in a causal theory of the disorder than when they are from proximal locations. In a controlled experiment, we presented experienced clinical psychologists and students with recently published causal theories for different disorders; specifically, these theories proposed how the symptoms of each disorder stem from a root cause. Participants viewed hypothetical clients with presenting proximal or diverse symptoms, and indicated either the likelihood that the client has the disorder, or what additional information they would seek out to help inform a diagnostic decision. Clinicians and students alike showed a strong preference for diverse evidence, over proximal evidence, in making diagnostic judgments and in seeking additional information. They did not show this preference in the control condition, in which they gave their own opinions prior to learning the causal information. These findings suggest that experienced clinical psychologists and students are likely to use newly learned causal knowledge in a normative, rational way in diagnostic reasoning. © 2011 Blackwell Publishing Ltd.

  4. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  5. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  6. Causal relationship: a new tool for the causal characterization of Lorentzian manifolds

    International Nuclear Information System (INIS)

    Garcia-Parrado, Alfonso; Senovilla, Jose M M

    2003-01-01

    We define and study a new kind of relation between two diffeomorphic Lorentzian manifolds called a causal relation, which is any diffeomorphism characterized by mapping every causal vector of the first manifold onto a causal vector of the second. We perform a thorough study of the mathematical properties of causal relations and prove in particular that two given Lorentzian manifolds (say V and W) may be causally related only in one direction (say from V to W, but not from W to V). This leads us to the concept of causally equivalent (or isocausal in short) Lorentzian manifolds as those mutually causally related and to a definition of causal structure over a differentiable manifold as the equivalence class formed by isocausal Lorentzian metrics upon it. Isocausality is a more general concept than the conformal relationship, because we prove the remarkable result that a conformal relation φ is characterized by the fact of being a causal relation of the particular kind in which both φ and φ -1 are causal relations. Isocausal Lorentzian manifolds are mutually causally compatible, they share some important causal properties, and there are one-to-one correspondences, which are sometimes non-trivial, between several classes of their respective future (and past) objects. A more important feature is that they satisfy the same standard causality constraints. We also introduce a partial order for the equivalence classes of isocausal Lorentzian manifolds providing a classification of all the causal structures that a given fixed manifold can have. By introducing the concept of causal extension we put forward a new definition of causal boundary for Lorentzian manifolds based on the concept of isocausality, and thereby we generalize the traditional Penrose constructions of conformal infinity, diagrams and embeddings. In particular, the concept of causal diagram is given. Many explicit clarifying examples are presented throughout the paper

  7. Space-time as a causal set

    International Nuclear Information System (INIS)

    Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.

    1987-01-01

    We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit

  8. Amodal causal capture in the tunnel effect.

    Science.gov (United States)

    Bae, Gi Yeul; Flombaum, Jonathan I

    2011-01-01

    In addition to identifying individual objects in the world, the visual system must also characterize the relationships between objects, for instance when objects occlude one another or cause one another to move. Here we explored the relationship between perceived causality and occlusion. Can one perceive causality in an occluded location? In several experiments, observers judged whether a centrally presented event involved a single object passing behind an occluder, or one object causally launching another (out of view and behind the occluder). With no additional context, the centrally presented event was typically judged as a non-causal pass, even when the occluding and disoccluding objects were different colors--an illusion known as the 'tunnel effect' that results from spatiotemporal continuity. However, when a synchronized context event involved an unambiguous causal launch, participants perceived a causal launch behind the occluder. This percept of an occluded causal interaction could also be driven by grouping and synchrony cues in the absence of any explicitly causal interaction. These results reinforce the hypothesis that causality is an aspect of perception. It is among the interpretations of the world that are independently available to vision when resolving ambiguity, and that the visual system can 'fill in' amodally.

  9. Electromagnetic pulses, localized and causal

    Science.gov (United States)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  10. Quantum retrodiction and causality principle

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs

  11. Causality analysis detects the regulatory role of maternal effect genes in the early Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Zara Ghodsi

    2017-03-01

    Full Text Available In developmental studies, inferring regulatory interactions of segmentation genetic network play a vital role in unveiling the mechanism of pattern formation. As such, there exists an opportune demand for theoretical developments and new mathematical models which can result in a more accurate illustration of this genetic network. Accordingly, this paper seeks to extract the meaningful regulatory role of the maternal effect genes using a variety of causality detection techniques and to explore whether these methods can suggest a new analytical view to the gene regulatory networks. We evaluate the use of three different powerful and widely-used models representing time and frequency domain Granger causality and convergent cross mapping technique with the results being thoroughly evaluated for statistical significance. Our findings show that the regulatory role of maternal effect genes is detectable in different time classes and thereby the method is applicable to infer the possible regulatory interactions present among the other genes of this network.

  12. Statistical Power for Causally Defined Indirect Effects in Group-Randomized Trials with Individual-Level Mediators

    Science.gov (United States)

    Kelcey, Benjamin; Dong, Nianbo; Spybrook, Jessaca; Cox, Kyle

    2017-01-01

    Designs that facilitate inferences concerning both the total and indirect effects of a treatment potentially offer a more holistic description of interventions because they can complement "what works" questions with the comprehensive study of the causal connections implied by substantive theories. Mapping the sensitivity of designs to…

  13. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    International Nuclear Information System (INIS)

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  14. Causal ubiquity in quantum physics. A superluminal and local-causal physical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neelamkavil, Raphael

    2014-07-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly [non-causal] processes, something exists processually in extension-motion, between the causal and the [non-causal]. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That is, the QM world is sub-luminally, luminally and superluminally local-causal throughout, and the Law of Causality is ubiquitous in the micro-world. Thus, ''probabilistic causality'' is a merely epistemic term.

  15. Estimating causal effects with a non-paranormal method for the design of efficient intervention experiments.

    Science.gov (United States)

    Teramoto, Reiji; Saito, Chiaki; Funahashi, Shin-ichi

    2014-06-30

    Knockdown or overexpression of genes is widely used to identify genes that play important roles in many aspects of cellular functions and phenotypes. Because next-generation sequencing generates high-throughput data that allow us to detect genes, it is important to identify genes that drive functional and phenotypic changes of cells. However, conventional methods rely heavily on the assumption of normality and they often give incorrect results when the assumption is not true. To relax the Gaussian assumption in causal inference, we introduce the non-paranormal method to test conditional independence in the PC-algorithm. Then, we present the non-paranormal intervention-calculus when the directed acyclic graph (DAG) is absent (NPN-IDA), which incorporates the cumulative nature of effects through a cascaded pathway via causal inference for ranking causal genes against a phenotype with the non-paranormal method for estimating DAGs. We demonstrate that causal inference with the non-paranormal method significantly improves the performance in estimating DAGs on synthetic data in comparison with the original PC-algorithm. Moreover, we show that NPN-IDA outperforms the conventional methods in exploring regulators of the flowering time in Arabidopsis thaliana and regulators that control the browning of white adipocytes in mice. Our results show that performance improvement in estimating DAGs contributes to an accurate estimation of causal effects. Although the simplest alternative procedure was used, our proposed method enables us to design efficient intervention experiments and can be applied to a wide range of research purposes, including drug discovery, because of its generality.

  16. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  17. Making Type Inference Practical

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Oxhøj, Nicholas; Palsberg, Jens

    1992-01-01

    We present the implementation of a type inference algorithm for untyped object-oriented programs with inheritance, assignments, and late binding. The algorithm significantly improves our previous one, presented at OOPSLA'91, since it can handle collection classes, such as List, in a useful way. Abo......, the complexity has been dramatically improved, from exponential time to low polynomial time. The implementation uses the techniques of incremental graph construction and constraint template instantiation to avoid representing intermediate results, doing superfluous work, and recomputing type information....... Experiments indicate that the implementation type checks as much as 100 lines pr. second. This results in a mature product, on which a number of tools can be based, for example a safety tool, an image compression tool, a code optimization tool, and an annotation tool. This may make type inference for object...

  18. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?

    Science.gov (United States)

    Kirkbride, James B; Susser, Ezra; Kundakovic, Marija; Kresovich, Jacob K; Davey Smith, George; Relton, Caroline L

    2012-06-01

    We posit that maternal prenatal nutrition can influence offspring schizophrenia risk via epigenetic effects. In this article, we consider evidence that prenatal nutrition is linked to epigenetic outcomes in offspring and schizophrenia in offspring, and that schizophrenia is associated with epigenetic changes. We focus upon one-carbon metabolism as a mediator of the pathway between perturbed prenatal nutrition and the subsequent risk of schizophrenia. Although post-mortem human studies demonstrate DNA methylation changes in brains of people with schizophrenia, such studies cannot establish causality. We suggest a testable hypothesis that utilizes a novel two-step Mendelian randomization approach, to test the component parts of the proposed causal pathway leading from prenatal nutritional exposure to schizophrenia. Applied here to a specific example, such an approach is applicable for wider use to strengthen causal inference of the mediating role of epigenetic factors linking exposures to health outcomes in population-based studies.

  19. Active inference and learning.

    Science.gov (United States)

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Learning Convex Inference of Marginals

    OpenAIRE

    Domke, Justin

    2012-01-01

    Graphical models trained using maximum likelihood are a common tool for probabilistic inference of marginal distributions. However, this approach suffers difficulties when either the inference process or the model is approximate. In this paper, the inference process is first defined to be the minimization of a convex function, inspired by free energy approximations. Learning is then done directly in terms of the performance of the inference process at univariate marginal prediction. The main ...

  1. A Theory of Causal Learning in Children: Causal Maps and Bayes Nets

    Science.gov (United States)

    Gopnik, Alison; Glymour, Clark; Sobel, David M.; Schulz, Laura E.; Kushnir, Tamar; Danks, David

    2004-01-01

    The authors outline a cognitive and computational account of causal learning in children. They propose that children use specialized cognitive systems that allow them to recover an accurate "causal map" of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously…

  2. Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples

    International Nuclear Information System (INIS)

    Garcia-Parrado, Alfonso; Sanchez, Miguel

    2005-01-01

    Recently (Garcia-Parrado and Senovilla 2003 Class. Quantum Grav. 20 625-64) the concept of causal mapping between spacetimes, essentially equivalent in this context to the chronological map defined in abstract chronological spaces, and the related notion of causal structure, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as (i) causal mappings-and, thus, abstract chronological ones-do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R 2 (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries

  3. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    Science.gov (United States)

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.

    Science.gov (United States)

    Liu, Siwei; Molenaar, Peter

    2016-01-01

    This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.

  5. Probabilistic inductive inference: a survey

    OpenAIRE

    Ambainis, Andris

    2001-01-01

    Inductive inference is a recursion-theoretic theory of learning, first developed by E. M. Gold (1967). This paper surveys developments in probabilistic inductive inference. We mainly focus on finite inference of recursive functions, since this simple paradigm has produced the most interesting (and most complex) results.

  6. Multimodel inference and adaptive management

    Science.gov (United States)

    Rehme, S.E.; Powell, L.A.; Allen, Craig R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  7. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  8. mediation: R Package for Causal Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Dustin Tingley

    2014-09-01

    Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.

  9. Causal Mediation Analysis: Warning! Assumptions Ahead

    Science.gov (United States)

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  10. A General Approach to Causal Mediation Analysis

    Science.gov (United States)

    Imai, Kosuke; Keele, Luke; Tingley, Dustin

    2010-01-01

    Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…

  11. A Causal Model of Faculty Research Productivity.

    Science.gov (United States)

    Bean, John P.

    A causal model of faculty research productivity was developed through a survey of the literature. Models of organizational behavior, organizational effectiveness, and motivation were synthesized into a causal model of productivity. Two general types of variables were assumed to affect individual research productivity: institutional variables and…

  12. Counterfactual overdetermination vs. the causal exclusion problem.

    Science.gov (United States)

    Sparber, Georg

    2005-01-01

    This paper aims to show that a counterfactual approach to causation is not sufficient to provide a solution to the causal exclusion problem in the form of systematic overdetermination. Taking into account the truthmakers of causal counterfactuals provides a strong argument in favour of the identity of causes in situations of translevel, causation.

  13. Causal Indicators Can Help to Interpret Factors

    Science.gov (United States)

    Bentler, Peter M.

    2016-01-01

    The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…

  14. Quantum Enhanced Inference in Markov Logic Networks.

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  15. Quantum Enhanced Inference in Markov Logic Networks

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  16. Testing the causality of Hawkes processes with time reversal

    Science.gov (United States)

    Cordi, Marcus; Challet, Damien; Muni Toke, Ioane

    2018-03-01

    We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.

  17. Variational Bayesian Causal Connectivity Analysis for fMRI

    Directory of Open Access Journals (Sweden)

    Martin eLuessi

    2014-05-01

    Full Text Available The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.

  18. Event Completion: Event Based Inferences Distort Memory in a Matter of Seconds

    Science.gov (United States)

    Strickland, Brent; Keil, Frank

    2011-01-01

    We present novel evidence that implicit causal inferences distort memory for events only seconds after viewing. Adults watched videos of someone launching (or throwing) an object. However, the videos omitted the moment of contact (or release). Subjects falsely reported seeing the moment of contact when it was implied by subsequent footage but did…

  19. Heterogeneous Causal Effects and Sample Selection Bias

    DEFF Research Database (Denmark)

    Breen, Richard; Choi, Seongsoo; Holm, Anders

    2015-01-01

    The role of education in the process of socioeconomic attainment is a topic of long standing interest to sociologists and economists. Recently there has been growing interest not only in estimating the average causal effect of education on outcomes such as earnings, but also in estimating how...... causal effects might vary over individuals or groups. In this paper we point out one of the under-appreciated hazards of seeking to estimate heterogeneous causal effects: conventional selection bias (that is, selection on baseline differences) can easily be mistaken for heterogeneity of causal effects....... This might lead us to find heterogeneous effects when the true effect is homogenous, or to wrongly estimate not only the magnitude but also the sign of heterogeneous effects. We apply a test for the robustness of heterogeneous causal effects in the face of varying degrees and patterns of selection bias...

  20. Causality, spin, and equal-time commutators

    International Nuclear Information System (INIS)

    Abdel-Rahman, A.M.

    1975-01-01

    We study the causality constraints on the structure of the Lorentz-antisymmetric component of the commutator of two conserved isovector currents between fermion states of equal momenta. We discuss the sum rules that follow from causality and scaling, using the recently introduced refined infinite-momentum technique. The complete set of sum rules is found to include the spin-dependent fixed-mass sum rules obtained from light-cone commutators. The causality and scaling restrictions on the structure of the electromagnetic equal-time commutators are discussed, and it is found, in particular, that causality requires the spin-dependent part of the matrix element for the time-space electromagnetic equal-time commutator to vanish identically. It is also shown, in comparison with the electromagnetic case, that the corresponding matrix element for the time-space isovector current equal-time commutator is required, by causality, to have isospin-antisymmetric tensor and scalar operator Schwinger terms

  1. Causal ubiquity in quantum physics a superluminal and local-causal physical ontology

    CERN Document Server

    Neelamkavil, Raphael

    2014-01-01

    A fixed highest criterial velocity (of light) in STR (special theory of relativity) is a convention for a layer of physical inquiry. QM (Quantum Mechanics) avoids action-at-a-distance using this concept, but accepts non-causality and action-at-a-distance in EPR (Einstein-Podolsky-Rosen-Paradox) entanglement experiments. Even in such allegedly non-causal processes, something exists processually in extension-motion, between the causal and the non-causal. If STR theoretically allows real-valued superluminal communication between EPR entangled particles, quantum processes become fully causal. That

  2. Causality violations in Lovelock theories

    Science.gov (United States)

    Brustein, Ram; Sherf, Yotam

    2018-04-01

    Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.

  3. Biological causal links on physiological and evolutionary time scales.

    Science.gov (United States)

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  4. Supporting inquiry learning by promoting normative understanding of multivariable causality

    Science.gov (United States)

    Keselman, Alla

    2003-11-01

    Early adolescents may lack the cognitive and metacognitive skills necessary for effective inquiry learning. In particular, they are likely to have a nonnormative mental model of multivariable causality in which effects of individual variables are neither additive nor consistent. Described here is a software-based intervention designed to facilitate students' metalevel and performance-level inquiry skills by enhancing their understanding of multivariable causality. Relative to an exploration-only group, sixth graders who practiced predicting an outcome (earthquake risk) based on multiple factors demonstrated increased attention to evidence, improved metalevel appreciation of effective strategies, and a trend toward consistent use of a controlled comparison strategy. Sixth graders who also received explicit instruction in making predictions based on multiple factors showed additional improvement in their ability to compare multiple instances as a basis for inferences and constructed the most accurate knowledge of the system. Gains were maintained in transfer tasks. The cognitive skills and metalevel understanding examined here are essential to inquiry learning.

  5. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    Science.gov (United States)

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  6. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2010-01-01

    Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente

  7. Emotional inferences by pragmatics

    OpenAIRE

    Iza-Miqueleiz, Mauricio

    2017-01-01

    It has for long been taken for granted that, along the course of reading a text, world knowledge is often required in order to establish coherent links between sentences (McKoon & Ratcliff 1992, Iza & Ezquerro 2000). The content grasped from a text turns out to be strongly dependent upon the reader’s additional knowledge that allows a coherent interpretation of the text as a whole. The world knowledge directing the inference may be of distinctive nature. Gygax et al. (2007) showed that m...

  8. Generic patch inference

    DEFF Research Database (Denmark)

    Andersen, Jesper; Lawall, Julia

    2010-01-01

    A key issue in maintaining Linux device drivers is the need to keep them up to date with respect to evolutions in Linux internal libraries. Currently, there is little tool support for performing and documenting such changes. In this paper we present a tool, spdiff, that identifies common changes...... developers can use it to extract an abstract representation of the set of changes that others have made. Our experiments on recent changes in Linux show that the inferred generic patches are more concise than the corresponding patches found in commits to the Linux source tree while being safe with respect...

  9. Convergent cross-mapping and pairwise asymmetric inference.

    Science.gov (United States)

    McCracken, James M; Weigel, Robert S

    2014-12-01

    Convergent cross-mapping (CCM) is a technique for computing specific kinds of correlations between sets of times series. It was introduced by Sugihara et al. [Science 338, 496 (2012).] and is reported to be "a necessary condition for causation" capable of distinguishing causality from standard correlation. We show that the relationships between CCM correlations proposed by Sugihara et al. do not, in general, agree with intuitive concepts of "driving" and as such should not be considered indicative of causality. It is shown that the fact that the CCM algorithm implies causality is a function of system parameters for simple linear and nonlinear systems. For example, in a circuit containing a single resistor and inductor, both voltage and current can be identified as the driver depending on the frequency of the source voltage. It is shown that the CCM algorithm, however, can be modified to identify relationships between pairs of time series that are consistent with intuition for the considered example systems for which CCM causality analysis provided nonintuitive driver identifications. This modification of the CCM algorithm is introduced as "pairwise asymmetric inference" (PAI) and examples of its use are presented.

  10. Causal localizations in relativistic quantum mechanics

    Science.gov (United States)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  11. Causal evidence in risk and policy perceptions: Applying the covariation/mechanism framework.

    Science.gov (United States)

    Baucum, Matt; John, Richard

    2018-05-01

    Today's information-rich society demands constant evaluation of cause-effect relationships; behaviors and attitudes ranging from medical choices to voting decisions to policy preferences typically entail some form of causal inference ("Will this policy reduce crime?", "Will this activity improve my health?"). Cause-effect relationships such as these can be thought of as depending on two qualitatively distinct forms of evidence: covariation-based evidence (e.g., "states with this policy have fewer homicides") or mechanism-based (e.g., "this policy will reduce crime by discouraging repeat offenses"). Some psychological work has examined how people process these two forms of causal evidence in instances of "everyday" causality (e.g., assessing why a car will not start), but it is not known how these two forms of evidence contribute to causal judgments in matters of public risk or policy. Three studies (n = 715) investigated whether judgments of risk and policy scenarios would be affected by covariation and mechanism evidence and whether the evidence types interacted with one another (as suggested by past studies). Results showed that causal judgments varied linearly with mechanism strength and logarithmically with covariation strength, and that the evidence types produced only additive effects (but no interaction). We discuss the results' implications for risk communication and policy information dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Two-step estimation in ratio-of-mediator-probability weighted causal mediation analysis.

    Science.gov (United States)

    Bein, Edward; Deutsch, Jonah; Hong, Guanglei; Porter, Kristin E; Qin, Xu; Yang, Cheng

    2018-04-15

    This study investigates appropriate estimation of estimator variability in the context of causal mediation analysis that employs propensity score-based weighting. Such an analysis decomposes the total effect of a treatment on the outcome into an indirect effect transmitted through a focal mediator and a direct effect bypassing the mediator. Ratio-of-mediator-probability weighting estimates these causal effects by adjusting for the confounding impact of a large number of pretreatment covariates through propensity score-based weighting. In step 1, a propensity score model is estimated. In step 2, the causal effects of interest are estimated using weights derived from the prior step's regression coefficient estimates. Statistical inferences obtained from this 2-step estimation procedure are potentially problematic if the estimated standard errors of the causal effect estimates do not reflect the sampling uncertainty in the estimation of the weights. This study extends to ratio-of-mediator-probability weighting analysis a solution to the 2-step estimation problem by stacking the score functions from both steps. We derive the asymptotic variance-covariance matrix for the indirect effect and direct effect 2-step estimators, provide simulation results, and illustrate with an application study. Our simulation results indicate that the sampling uncertainty in the estimated weights should not be ignored. The standard error estimation using the stacking procedure offers a viable alternative to bootstrap standard error estimation. We discuss broad implications of this approach for causal analysis involving propensity score-based weighting. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Dual Causality and the Autonomy of Biology.

    Science.gov (United States)

    Bock, Walter J

    2017-03-01

    Ernst Mayr's concept of dual causality in biology with the two forms of causes (proximate and ultimate) continues to provide an essential foundation for the philosophy of biology. They are equivalent to functional (=proximate) and evolutionary (=ultimate) causes with both required for full biological explanations. The natural sciences can be classified into nomological, historical nomological and historical dual causality, the last including only biology. Because evolutionary causality is unique to biology and must be included for all complete biological explanations, biology is autonomous from the physical sciences.

  14. Mathematical implications of Einstein-Weyl causality

    International Nuclear Information System (INIS)

    Borchers, H.J.; Sen, R.N.

    2006-01-01

    The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics. (orig.)

  15. The mistake of the causal relationship

    Directory of Open Access Journals (Sweden)

    О. Д. Комаров

    2015-03-01

    Full Text Available The article deals with issues of the mistake of the causal relationship. The modern criminal law science approaches to the content of the mistake of the causal relationship and its significance to the qualification of the crime are described. It is proved that in cases of dolus generalis different mental attitude of the guilty person to two separate acts of his conduct exist. Consequently, in mentioned above cases mistake of the causal relationship does not have place. The rules of qualification of the crimes commited with the mistake of causation and in cases of dolus generalis are proposed .

  16. Generation of Emotional Inferences during Text Comprehension: Behavioral Data and Implementation through the Landscape Model (Generación de Inferencias Emocionales durante la Comprensión de Textos: Datos Conductuales e Implementación a través del Modelo Landscape

    Directory of Open Access Journals (Sweden)

    Juan Pablo Barreyro

    2011-04-01

    Full Text Available This study investigated the generation of emotional inferences during the reading and recall of narrative texts. Experiment 1 compared the fit of two simulations of text comprehension to the recall data. One simulation examined causal and referential inferences, while the other examined causal, referential and emotional inferences. We found that the simulation that involved emotional inferences provided a better fit to the human data than the other simulation. Experiment 2 tested whether emotional inferences are generated online by recording lexical decision times at pre-inference and inference locations. Lexical decision times were faster at the inference than the pre-inference locations. These findings suggest that emotional inferences play a role in the understanding of natural texts, and that they require the reader to establish connections between text segments.

  17. Pairwise measures of causal direction in the epidemiology of sleep problems and depression.

    Directory of Open Access Journals (Sweden)

    Tom Rosenström

    Full Text Available Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7 years, range 30-45, and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1 years, range 52-55. These included three depression questionnaires (two in Young Finns data and two sleep problem questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a (practically known causality, and tested for assumption violations using simulated data. Causality algorithms performed well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts due to severe depression being less well presented in the population data than minor depression may intervene the estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging epidemiological and biological evidence.

  18. Assessing students' beliefs, emotions and causal attribution ...

    African Journals Online (AJOL)

    Keywords: academic emotion; belief; causal attribution; statistical validation; students' conceptions of learning ... Sadi & Lee, 2015), through their effect on motivation and learning strategies .... to understand why they may or may not be doing.

  19. Granger Causality Testing with Intensive Longitudinal Data.

    Science.gov (United States)

    Molenaar, Peter C M

    2018-06-01

    The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.

  20. Causality Between Urban Concentration and Environmental Quality

    Directory of Open Access Journals (Sweden)

    Amin Pujiati

    2015-08-01

    Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.

  1. Rate-Agnostic (Causal) Structure Learning.

    Science.gov (United States)

    Plis, Sergey; Danks, David; Freeman, Cynthia; Calhoun, Vince

    2015-12-01

    Causal structure learning from time series data is a major scientific challenge. Extant algorithms assume that measurements occur sufficiently quickly; more precisely, they assume approximately equal system and measurement timescales. In many domains, however, measurements occur at a significantly slower rate than the underlying system changes, but the size of the timescale mismatch is often unknown. This paper develops three causal structure learning algorithms, each of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps given undersampling. That is, these algorithms all learn causal structure in a "rate-agnostic" manner: they do not assume any particular relation between the measurement and system timescales. We apply these algorithms to data from simulations to gain insight into the challenge of undersampling.

  2. K-causality and degenerate spacetimes

    Science.gov (United States)

    Dowker, H. F.; Garcia, R. S.; Surya, S.

    2000-11-01

    The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.

  3. Inferring Action Structure and Causal Relationships in Continuous Sequences of Human Action

    Science.gov (United States)

    2014-01-01

    and MySQL . However, all participants participated from in-lab computers. Results Figure 6 shows the distribution of participants’ raw key presses... Java program to present video of action sequences and collect ratings. The program presented all 12 actions, non-actions, and part-actions

  4. Combining machine learning and matching techniques to improve causal inference in program evaluation.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R

    2016-12-01

    Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and estimating treatment effects, once the matching strategy has been implemented. This framework holds several key advantages over the conventional approach: application to any variable metric and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby extending the methodology to any study design where weights are used for covariate adjustment or more precise (differential) outcome measurement. One-to-one matching on the propensity score was used as the matching strategy. Covariate balance was assessed using standardized difference in means (conventional approach) and measures of classification accuracy (ODA). Treatment effects were estimated using ordinary least squares regression and ODA. Using empirical data, ODA produced results highly consistent with those obtained via the conventional methodology for assessing covariate balance and estimating treatment effects. When ODA is combined with matching techniques within a treatment effects framework, the results are consistent with conventional approaches. However, given that it provides additional dimensions and robustness to the analysis versus what can currently be achieved using conventional approaches, ODA offers an appealing alternative. © 2016 John Wiley & Sons, Ltd.

  5. Causal Inference from Big Data: Theoretical Foundations and the Data-fusion Problem

    Science.gov (United States)

    2015-06-01

    both treatment and response. Some of these factors may be unmeasurable, such as genetic trait or lifestyle, while others are measurable, such as gender...several tasks in Artificial Intelligence [22, 23] and Statistics [24, 25] as well as in the empirical sciences (e.g., Genetics [26, 27], Economics [28...conditions are likely to be different. Special cases of transportability can be found in the literature under different rubrics such as “external validity

  6. A meta-frontier approach for causal inference in productivity analysis

    DEFF Research Database (Denmark)

    Henningsen, Arne; Mpeta, Daniel F.; Adem, Anwar S.

    (2012) and create a meta-frontier in order to estimate the effects of participation on the farms’ meta-technology ratio, their group technical efficiency, and their meta-technology technical efficiency. The empirical analysis uses a cross-sectional data set from sunflower farmers in Tanzania, where some...... by the contractor’s provision of (additional) extension service and seeds of high-yielding varieties to the contract farmers....

  7. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.

    Science.gov (United States)

    Linden, Ariel

    2017-08-01

    When a randomized controlled trial is not feasible, health researchers typically use observational data and rely on statistical methods to adjust for confounding when estimating treatment effects. These methods generally fall into 3 categories: (1) estimators based on a model for the outcome using conventional regression adjustment; (2) weighted estimators based on the propensity score (ie, a model for the treatment assignment); and (3) "doubly robust" (DR) estimators that model both the outcome and propensity score within the same framework. In this paper, we introduce a new DR estimator that utilizes marginal mean weighting through stratification (MMWS) as the basis for weighted adjustment. This estimator may prove more accurate than treatment effect estimators because MMWS has been shown to be more accurate than other models when the propensity score is misspecified. We therefore compare the performance of this new estimator to other commonly used treatment effects estimators. Monte Carlo simulation is used to compare the DR-MMWS estimator to regression adjustment, 2 weighted estimators based on the propensity score and 2 other DR methods. To assess performance under varied conditions, we vary the level of misspecification of the propensity score model as well as misspecify the outcome model. Overall, DR estimators generally outperform methods that model one or the other components (eg, propensity score or outcome). The DR-MMWS estimator outperforms all other estimators when both the propensity score and outcome models are misspecified and performs equally as well as other DR estimators when only the propensity score is misspecified. Health researchers should consider using DR-MMWS as the principal evaluation strategy in observational studies, as this estimator appears to outperform other estimators in its class. © 2017 John Wiley & Sons, Ltd.

  8. Sex differences in the inference and perception of causal relations within a video game

    OpenAIRE

    Young, Michael E.

    2014-01-01

    The learning of immediate causation within a dynamic environment was examined. Participants encountered seven decision points in which they needed to choose which of three possible candidates was the cause of explosions in the environment. Each candidate was firing a weapon at random every few seconds, but only one of them produced an immediate effect. Some participants showed little learning, but most demonstrated increases in accuracy across time. On average, men showed higher accuracy ...

  9. Work Intensity and Non-Completion of University: Longitudinal Approach and Causal Inference

    Science.gov (United States)

    Moulin, Stéphane; Doray, Pierre; Laplante, Benoît; Street, María Constanza

    2013-01-01

    Researchers focused upon the work-dropping out connection tend to show a U-shaped relationship between the likelihood of dropping out and the number of hours worked outside school, with a higher exit rate for both non-working students and for students whose working hours pass a critical threshold. Yet the data typically used by these researchers…

  10. Editorial: Ingenious designs and causal inference in child psychology and psychiatry.

    Science.gov (United States)

    Green, Jonathan

    2016-05-01

    The embryology of behavior--This title of a book by the great developmental psychologist Arnold Gesell (Gesell, 1945) continues nicely to encapsulate for me a core endeavour in child psychology and psychiatry; in the use of scientific method to tease out causes and processes within developmental science and psychopathology. This edition of JCPP includes some tremendous examples of the increasing rigour and sophistication with which such questions are being addressed. Particularly encouraging for me, as primarily an interventionist, is the use of well-designed randomized controlled trials (RCTs) for that end. © 2016 Association for Child and Adolescent Mental Health.

  11. Causal inference and temporal predictions in audiovisual perception of speech and music.

    Science.gov (United States)

    Noppeney, Uta; Lee, Hwee Ling

    2018-03-31

    To form a coherent percept of the environment, the brain must integrate sensory signals emanating from a common source but segregate those from different sources. Temporal regularities are prominent cues for multisensory integration, particularly for speech and music perception. In line with models of predictive coding, we suggest that the brain adapts an internal model to the statistical regularities in its environment. This internal model enables cross-sensory and sensorimotor temporal predictions as a mechanism to arbitrate between integration and segregation of signals from different senses. © 2018 New York Academy of Sciences.

  12. Explaining Racial Disparities in Child Asthma Readmission Using a Causal Inference Approach.

    Science.gov (United States)

    Beck, Andrew F; Huang, Bin; Auger, Katherine A; Ryan, Patrick H; Chen, Chen; Kahn, Robert S

    2016-07-01

    Childhood asthma is characterized by disparities in the experience of morbidity, including the risk for readmission to the hospital after an initial hospitalization. African American children have been shown to have more than 2 times the hazard of readmission when compared with their white counterparts. To explain why African American children are at greater risk for asthma-related readmissions than white children. This study was completed as part of the Greater Cincinnati Asthma Risks Study, a population-based, prospective, observational cohort. From August 2010 to October 2011, it enrolled 695 children, aged 1 to 16 years, admitted for asthma or wheezing who identified as African American (n = 441) or white (n = 254) in an inpatient setting of an urban, tertiary care children's hospital. The main outcome was time to asthma-related readmission and race was the predictor. Biologic, environmental, disease management, access, and socioeconomic hardship variables were measured; their roles in understanding racial readmission disparities were conceptualized using a directed acyclic graphic. Inverse probability of treatment weighting balanced African American and white children with respect to key measured variables. Racial differences in readmission hazard were assessed using weighted Cox proportional hazards regression and Kaplan-Meier curves. The sample was 65% male (n = 450), and the median age was 5.4 years. African American children were 2.26 times more likely to be readmitted than white children (95% CI, 1.56-3.26). African American children significantly differed with respect to nearly every measured biologic, environmental, disease management, access, and socioeconomic hardship variable. Socioeconomic hardship variables explained 53% of the observed disparity (hazard ratio, 1.47; 95% CI, 1.05-2.05). The addition of biologic, environmental, disease management, and access variables resulted in 80% of the readmission disparity being explained. The difference between African American and white children with respect to readmission hazard no longer reached the level of significance (hazard ratio, 1.18; 95% CI, 0.87-1.60; Cox P = .30 and log-rank P = .39). A total of 80% of the observed readmission disparity between African American and white children could be explained after statistically balancing available biologic, environmental, disease management, access to care, and socioeconomic and hardship variables across racial groups. Such a comprehensive, well-framed approach to exposures that are associated with morbidity is critical as we attempt to better understand and lessen persistent child asthma disparities.

  13. A framework for inferring predictive distributions of rhino poaching events through causal modelling

    CSIR Research Space (South Africa)

    Koen, H

    2014-07-01

    Full Text Available and reasoning about the transdisci- plinary system - as Du¨spohl [21] stated: An important goal of transdisciplinary research is social learning of the participants of the joint research process. The related work discussed here puts our contribution into context...://www.environment.gov.za/sites/default/files/docs/rhinopoaching statistics.pdf [Last accessed: 22 May 2014]. [2] A. Modise, “Media release: Rhino poaching update,” South African National Parks, 15 May 2014. Available: http://www.sanparks.co.za/about/news/default.php?id=56069 [Last accessed: 16 May 2014]. [3] R. Duffy, R...

  14. Efficient nonparametric estimation of causal mediation effects

    OpenAIRE

    Chan, K. C. G.; Imai, K.; Yam, S. C. P.; Zhang, Z.

    2016-01-01

    An essential goal of program evaluation and scientific research is the investigation of causal mechanisms. Over the past several decades, causal mediation analysis has been used in medical and social sciences to decompose the treatment effect into the natural direct and indirect effects. However, all of the existing mediation analysis methods rely on parametric modeling assumptions in one way or another, typically requiring researchers to specify multiple regression models involving the treat...

  15. The Continuum Limit of Causal Fermion Systems

    OpenAIRE

    Finster, Felix

    2016-01-01

    This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...

  16. PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.

    Directory of Open Access Journals (Sweden)

    Xudong Dai

    2007-03-01

    Full Text Available Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs against the gene for peroxisome proliferator-activated receptor alpha (Ppara, our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARalpha-induced liver hypertrophy is supported by their ability to predict non-PPARalpha-induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005. Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug

  17. Causality violation, gravitational shockwaves and UV completion

    Energy Technology Data Exchange (ETDEWEB)

    Hollowood, Timothy J.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2016-03-18

    The effective actions describing the low-energy dynamics of QFTs involving gravity generically exhibit causality violations. These may take the form of superluminal propagation or Shapiro time advances and allow the construction of “time machines”, i.e. spacetimes admitting closed non-spacelike curves. Here, we discuss critically whether such causality violations may be used as a criterion to identify unphysical effective actions or whether, and how, causality problems may be resolved by embedding the action in a fundamental, UV complete QFT. We study in detail the case of photon scattering in an Aichelburg-Sexl gravitational shockwave background and calculate the phase shifts in QED for all energies, demonstrating their smooth interpolation from the causality-violating effective action values at low-energy to their manifestly causal high-energy limits. At low energies, these phase shifts may be interpreted as backwards-in-time coordinate jumps as the photon encounters the shock wavefront, and we illustrate how the resulting causality problems emerge and are resolved in a two-shockwave time machine scenario. The implications of our results for ultra-high (Planck) energy scattering, in which graviton exchange is modelled by the shockwave background, are highlighted.

  18. Illness causal beliefs in Turkish immigrants

    Directory of Open Access Journals (Sweden)

    Klimidis Steven

    2007-07-01

    Full Text Available Abstract Background People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Methods Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Results Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Conclusion Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes

  19. Illness causal beliefs in Turkish immigrants.

    Science.gov (United States)

    Minas, Harry; Klimidis, Steven; Tuncer, Can

    2007-07-24

    People hold a wide variety of beliefs concerning the causes of illness. Such beliefs vary across cultures and, among immigrants, may be influenced by many factors, including level of acculturation, gender, level of education, and experience of illness and treatment. This study examines illness causal beliefs in Turkish-immigrants in Australia. Causal beliefs about somatic and mental illness were examined in a sample of 444 members of the Turkish population of Melbourne. The socio-demographic characteristics of the sample were broadly similar to those of the Melbourne Turkish community. Five issues were examined: the structure of causal beliefs; the relative frequency of natural, supernatural and metaphysical beliefs; ascription of somatic, mental, or both somatic and mental conditions to the various causes; the correlations of belief types with socio-demographic, modernizing and acculturation variables; and the relationship between causal beliefs and current illness. Principal components analysis revealed two broad factors, accounting for 58 percent of the variation in scores on illness belief scales, distinctly interpretable as natural and supernatural beliefs. Second, beliefs in natural causes were more frequent than beliefs in supernatural causes. Third, some causal beliefs were commonly linked to both somatic and mental conditions while others were regarded as more specific to either somatic or mental disorders. Last, there was a range of correlations between endorsement of belief types and factors defining heterogeneity within the community, including with demographic factors, indicators of modernizing and acculturative processes, and the current presence of illness. Results supported the classification of causal beliefs proposed by Murdock, Wilson & Frederick, with a division into natural and supernatural causes. While belief in natural causes is more common, belief in supernatural causes persists despite modernizing and acculturative influences. Different

  20. Investigating causal associations between use of nicotine, alcohol, caffeine and cannabis: a two-sample bidirectional Mendelian randomization study.

    Science.gov (United States)

    Verweij, Karin J H; Treur, Jorien L; Vink, Jacqueline M

    2018-07-01

    Epidemiological studies consistently show co-occurrence of use of different addictive substances. Whether these associations are causal or due to overlapping underlying influences remains an important question in addiction research. Methodological advances have made it possible to use published genetic associations to infer causal relationships between phenotypes. In this exploratory study, we used Mendelian randomization (MR) to examine the causality of well-established associations between nicotine, alcohol, caffeine and cannabis use. Two-sample MR was employed to estimate bidirectional causal effects between four addictive substances: nicotine (smoking initiation and cigarettes smoked per day), caffeine (cups of coffee per day), alcohol (units per week) and cannabis (initiation). Based on existing genome-wide association results we selected genetic variants associated with the exposure measure as an instrument to estimate causal effects. Where possible we applied sensitivity analyses (MR-Egger and weighted median) more robust to horizontal pleiotropy. Most MR tests did not reveal causal associations. There was some weak evidence for a causal positive effect of genetically instrumented alcohol use on smoking initiation and of cigarettes per day on caffeine use, but these were not supported by the sensitivity analyses. There was also some suggestive evidence for a positive effect of alcohol use on caffeine use (only with MR-Egger) and smoking initiation on cannabis initiation (only with weighted median). None of the suggestive causal associations survived corrections for multiple testing. Two-sample Mendelian randomization analyses found little evidence for causal relationships between nicotine, alcohol, caffeine and cannabis use. © 2018 Society for the Study of Addiction.

  1. Gang membership and substance use: guilt as a gendered causal pathway.

    Science.gov (United States)

    Coffman, Donna L; Melde, Chris; Esbensen, Finn-Aage

    2015-03-01

    We examine whether anticipated guilt for substance use is a gendered mechanism underlying the noted enhancement effect of gang membership on illegal drug use. We also demonstrate a method for making stronger causal inferences when assessing mediation in the presence of moderation and time-varying confounding. We estimate a series of inverse propensity weighted models to obtain unbiased estimates of mediation in the presence of confounding of the exposure (i.e., gang membership) and mediator (i.e., anticipated guilt) using three waves of data from a multi-site panel study of a law-related education program for youth ( N =1,113). The onset of gang membership significantly decreased anticipated substance use guilt among both male and female respondents. This reduction was significantly associated with increased frequency of substance use only for female respondents, however, suggesting that gender moderates the mechanism through which gang membership influences substance use. Criminologists are often concerned with identifying causal pathways for antisocial and/or delinquent behavior, but confounders of the exposure, mediator, and outcome often interfere with efforts to assess mediation. Many new approaches have been proposed for strengthening causal inference for mediation effects. After controlling for confounding using inverse propensity weighting, our results suggest that interventions aimed at reducing substance use by current and former female gang members should focus on the normative aspects of these behaviors.

  2. Feature Inference Learning and Eyetracking

    Science.gov (United States)

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  3. An Inference Language for Imaging

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Catana, Ciprian; Van Leemput, Koen

    2014-01-01

    We introduce iLang, a language and software framework for probabilistic inference. The iLang framework enables the definition of directed and undirected probabilistic graphical models and the automated synthesis of high performance inference algorithms for imaging applications. The iLang framewor...

  4. Entanglement entropy in causal set theory

    Science.gov (United States)

    Sorkin, Rafael D.; Yazdi, Yasaman K.

    2018-04-01

    Entanglement entropy is now widely accepted as having deep connections with quantum gravity. It is therefore desirable to understand it in the context of causal sets, especially since they provide in a natural manner the UV cutoff needed to render entanglement entropy finite. Formulating a notion of entanglement entropy in a causal set is not straightforward because the type of canonical hypersurface-data on which its definition typically relies is not available. Instead, we appeal to the more global expression given in Sorkin (2012 (arXiv:1205.2953)) which, for a Gaussian scalar field, expresses the entropy of a spacetime region in terms of the field’s correlation function within that region (its ‘Wightman function’ W(x, x') ). Carrying this formula over to the causal set, one obtains an entropy which is both finite and of a Lorentz invariant nature. We evaluate this global entropy-expression numerically for certain regions (primarily order-intervals or ‘causal diamonds’) within causal sets of 1  +  1 dimensions. For the causal-set counterpart of the entanglement entropy, we obtain, in the first instance, a result that follows a (spacetime) volume law instead of the expected (spatial) area law. We find, however, that one obtains an area law if one truncates the commutator function (‘Pauli–Jordan operator’) and the Wightman function by projecting out the eigenmodes of the Pauli–Jordan operator whose eigenvalues are too close to zero according to a geometrical criterion which we describe more fully below. In connection with these results and the questions they raise, we also study the ‘entropy of coarse-graining’ generated by thinning out the causal set, and we compare it with what one obtains by similarly thinning out a chain of harmonic oscillators, finding the same, ‘universal’ behaviour in both cases.

  5. Sensorimotor Network Crucial for Inferring Amusement from Smiles.

    Science.gov (United States)

    Paracampo, Riccardo; Tidoni, Emmanuele; Borgomaneri, Sara; di Pellegrino, Giuseppe; Avenanti, Alessio

    2017-11-01

    Understanding whether another's smile reflects authentic amusement is a key challenge in social life, yet, the neural bases of this ability have been largely unexplored. Here, we combined transcranial magnetic stimulation (TMS) with a novel empathic accuracy (EA) task to test whether sensorimotor and mentalizing networks are critical for understanding another's amusement. Participants were presented with dynamic displays of smiles and explicitly requested to infer whether the smiling individual was feeling authentic amusement or not. TMS over sensorimotor regions representing the face (i.e., in the inferior frontal gyrus (IFG) and ventral primary somatosensory cortex (SI)), disrupted the ability to infer amusement authenticity from observed smiles. The same stimulation did not affect performance on a nonsocial task requiring participants to track the smiling expression but not to infer amusement. Neither TMS over prefrontal and temporo-parietal areas supporting mentalizing, nor peripheral control stimulations, affected performance on either task. Thus, motor and somatosensory circuits for controlling and sensing facial movements are causally essential for inferring amusement from another's smile. These findings highlight the functional relevance of IFG and SI to amusement understanding and suggest that EA abilities may be grounded in sensorimotor networks for moving and feeling the body. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Gauging Variational Inference

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2017-05-25

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.

  7. Social Inference Through Technology

    Science.gov (United States)

    Oulasvirta, Antti

    Awareness cues are computer-mediated, real-time indicators of people’s undertakings, whereabouts, and intentions. Already in the mid-1970 s, UNIX users could use commands such as “finger” and “talk” to find out who was online and to chat. The small icons in instant messaging (IM) applications that indicate coconversants’ presence in the discussion space are the successors of “finger” output. Similar indicators can be found in online communities, media-sharing services, Internet relay chat (IRC), and location-based messaging applications. But presence and availability indicators are only the tip of the iceberg. Technological progress has enabled richer, more accurate, and more intimate indicators. For example, there are mobile services that allow friends to query and follow each other’s locations. Remote monitoring systems developed for health care allow relatives and doctors to assess the wellbeing of homebound patients (see, e.g., Tang and Venables 2000). But users also utilize cues that have not been deliberately designed for this purpose. For example, online gamers pay attention to other characters’ behavior to infer what the other players are like “in real life.” There is a common denominator underlying these examples: shared activities rely on the technology’s representation of the remote person. The other human being is not physically present but present only through a narrow technological channel.

  8. Causation in risk assessment and management: models, inference, biases, and a microbial risk-benefit case study.

    Science.gov (United States)

    Cox, L A; Ricci, P F

    2005-04-01

    Causal inference of exposure-response relations from data is a challenging aspect of risk assessment with important implications for public and private risk management. Such inference, which is fundamentally empirical and based on exposure (or dose)-response models, seldom arises from a single set of data; rather, it requires integrating heterogeneous information from diverse sources and disciplines including epidemiology, toxicology, and cell and molecular biology. The causal aspects we discuss focus on these three aspects: drawing sound inferences about causal relations from one or more observational studies; addressing and resolving biases that can affect a single multivariate empirical exposure-response study; and applying the results from these considerations to the microbiological risk management of human health risks and benefits of a ban on antibiotic use in animals, in the context of banning enrofloxacin or macrolides, antibiotics used against bacterial illnesses in poultry, and the effects of such bans on changing the risk of human food-borne campylobacteriosis infections. The purposes of this paper are to describe novel causal methods for assessing empirical causation and inference; exemplify how to deal with biases that routinely arise in multivariate exposure- or dose-response modeling; and provide a simplified discussion of a case study of causal inference using microbial risk analysis as an example. The case study supports the conclusion that the human health benefits from a ban are unlikely to be greater than the excess human health risks that it could create, even when accounting for uncertainty. We conclude that quantitative causal analysis of risks is a preferable to qualitative assessments because it does not involve unjustified loss of information and is sound under the inferential use of risk results by management.

  9. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors.

    Science.gov (United States)

    Burgess, Stephen; Scott, Robert A; Timpson, Nicholas J; Davey Smith, George; Thompson, Simon G

    2015-07-01

    Finding individual-level data for adequately-powered Mendelian randomization analyses may be problematic. As publicly-available summarized data on genetic associations with disease outcomes from large consortia are becoming more abundant, use of published data is an attractive analysis strategy for obtaining precise estimates of the causal effects of risk factors on outcomes. We detail the necessary steps for conducting Mendelian randomization investigations using published data, and present novel statistical methods for combining data on the associations of multiple (correlated or uncorrelated) genetic variants with the risk factor and outcome into a single causal effect estimate. A two-sample analysis strategy may be employed, in which evidence on the gene-risk factor and gene-outcome associations are taken from different data sources. These approaches allow the efficient identification of risk factors that are suitable targets for clinical intervention from published data, although the ability to assess the assumptions necessary for causal inference is diminished. Methods and guidance are illustrated using the example of the causal effect of serum calcium levels on fasting glucose concentrations. The estimated causal effect of a 1 standard deviation (0.13 mmol/L) increase in calcium levels on fasting glucose (mM) using a single lead variant from the CASR gene region is 0.044 (95 % credible interval -0.002, 0.100). In contrast, using our method to account for the correlation between variants, the corresponding estimate using 17 genetic variants is 0.022 (95 % credible interval 0.009, 0.035), a more clearly positive causal effect.

  10. The Relevance of Causal Social Construction

    Directory of Open Access Journals (Sweden)

    Marques Teresa

    2017-02-01

    Full Text Available Social constructionist claims are surprising and interesting when they entail that presumably natural kinds are in fact socially constructed. The claims are interesting because of their theoretical and political importance. Authors like Díaz-León argue that constitutive social construction is more relevant for achieving social justice than causal social construction. This paper challenges this claim. Assuming there are socially salient groups that are discriminated against, the paper presents a dilemma: if there were no constitutively constructed social kinds, the causes of the discrimination of existing social groups would have to be addressed, and understanding causal social construction would be relevant to achieve social justice. On the other hand, not all possible constitutively socially constructed kinds are actual social kinds. If an existing social group is constitutively constructed as a social kind K, the fact that it actually exists as a K has social causes. Again, causal social construction is relevant. The paper argues that (i for any actual social kind X, if X is constitutively socially constructed as K, then it is also causally socially constructed; and (ii causal social construction is at least as relevant as constitutive social construction for concerns of social justice. For illustration, I draw upon two phenomena that are presumed to contribute towards the discrimination of women: (i the poor performance effects of stereotype threat, and (ii the silencing effects of gendered language use.

  11. Preschoolers prefer to learn causal information

    Directory of Open Access Journals (Sweden)

    Aubry eAlvarez

    2015-02-01

    Full Text Available Young children, in general, appear to have a strong drive to explore the environment in ways that reveal its underlying causal structure. But are they really attuned specifically to casual information in this quest for understanding, or do they show equal interest in other types of non-obvious information about the world? To answer this question, we introduced 20 three-year-old children to two puppets who were anxious to tell the child about a set of novel artifacts and animals. One puppet consistently described causal properties of the items while the other puppet consistently described carefully matched non-causal properties of the same items. After a familiarization period in which children learned which type of information to expect from each informant, children were given the opportunity to choose which they wanted to hear describe each of eight pictured test items. On average, children chose to hear from the informant that provided causal descriptions on 72% of the trials. This preference for causal information has important implications for explaining the role of conceptual information in supporting early learning and may suggest means for maximizing interest and motivation in young children.

  12. Gravity and matter in causal set theory

    International Nuclear Information System (INIS)

    Sverdlov, Roman; Bombelli, Luca

    2009-01-01

    The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x) for a set of fields f is recast into a quasilocal expression L 0 (f;p,q) that depends on pairs of causally related points pprq and is a function of the values of f in the Alexandrov set defined by those points, and whose limit as p and q approach a common point x is L(f;x). We then describe how to discretize L 0 (f;p,q) and use it to define a causal-set-based action.

  13. A frequency domain subspace algorithm for mixed causal, anti-causal LTI systems

    NARCIS (Netherlands)

    Fraanje, Rufus; Verhaegen, Michel; Verdult, Vincent; Pintelon, Rik

    2003-01-01

    The paper extends the subspacc identification method to estimate state-space models from frequency response function (FRF) samples, proposed by McKelvey et al. (1996) for mixed causal/anti-causal systems, and shows that other frequency domain subspace algorithms can be extended similarly. The method

  14. Ab initio Algorithmic Causal Deconvolution of Intertwined Programs and Networks by Generative Mechanism

    KAUST Repository

    Zenil, Hector

    2018-02-18

    To extract and learn representations leading to generative mechanisms from data, especially without making arbitrary decisions and biased assumptions, is a central challenge in most areas of scientific research particularly in connection to current major limitations of influential topics and methods of machine and deep learning as they have often lost sight of the model component. Complex data is usually produced by interacting sources with different mechanisms. Here we introduce a parameter-free model-based approach, based upon the seminal concept of Algorithmic Probability, that decomposes an observation and signal into its most likely algorithmic generative mechanisms. Our methods use a causal calculus to infer model representations. We demonstrate the method ability to distinguish interacting mechanisms and deconvolve them, regardless of whether the objects produce strings, space-time evolution diagrams, images or networks. We numerically test and evaluate our method and find that it can disentangle observations from discrete dynamic systems, random and complex networks. We think that these causal inference techniques can contribute as key pieces of information for estimations of probability distributions complementing other more statistical-oriented techniques that otherwise lack model inference capabilities.

  15. Energy consumption and economic growth: Parametric and non-parametric causality testing for the case of Greece

    International Nuclear Information System (INIS)

    Dergiades, Theologos; Martinopoulos, Georgios; Tsoulfidis, Lefteris

    2013-01-01

    The objective of this paper is to contribute towards the understanding of the linear and non-linear causal linkages between energy consumption and economic activity, making use of annual time series data of Greece for the period 1960–2008. Two are the salient features of our study: first, the total energy consumption has been adjusted for qualitative differences among its constituent components through the thermodynamics of energy conversion. In doing so, we rule out the possibility of a misleading inference with respect to causality due to aggregation bias. Second, the investigation of the causal linkage between economic growth and the adjusted for quality total energy consumption is conducted within a non-linear context. Our empirical results reveal significant unidirectional both linear and non-linear causal linkages running from total useful energy to economic growth. These findings may provide valuable information for the contemplation of more effective energy policies with respect to both the consumption of energy and environmental protection. - Highlights: ► The energy consumption and economic growth nexus is investigated for Greece. ► A quality-adjusted energy series is used in our analysis. ► The causality testing procedure is conducted within a non-linear context. ► A causality running from energy consumption to economic growth is verified

  16. A study on the causal effect of urban population growth and international trade on environmental pollution: evidence from China.

    Science.gov (United States)

    Boamah, Kofi Baah; Du, Jianguo; Boamah, Angela Jacinta; Appiah, Kingsley

    2018-02-01

    This study seeks to contribute to the recent literature by empirically investigating the causal effect of urban population growth and international trade on environmental pollution of China, for the period 1980-2014. The Johansen cointegration confirmed a long-run cointegration association among the utilised variables for the case of China. The direction of causality among the variables was, consequently, investigated using the recent bootstrapped Granger causality test. This bootstrapped Granger causality approach is preferred as it provides robust and accurate critical values for statistical inferences. The findings from the causality analysis revealed the existence of a bi-directional causality between import and urban population. The three most paramount variables that explain the environmental pollution in China, according to the impulse response function, are imports, urbanisation and energy consumption. Our study further established the presence of an N-shaped environmental Kuznets curve relationship between economic growth and environmental pollution of China. Hence, our study recommends that China should adhere to stricter environmental regulations in international trade, as well as enforce policies that promote energy efficiency in the urban residential and commercial sector, in the quest to mitigate environmental pollution issues as the economy advances.

  17. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.

    Science.gov (United States)

    Zou, Cunlu; Ladroue, Christophe; Guo, Shuixia; Feng, Jianfeng

    2010-06-21

    Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality. Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  18. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach

    Directory of Open Access Journals (Sweden)

    Guo Shuixia

    2010-06-01

    Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  19. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    Science.gov (United States)

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  20. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    Science.gov (United States)

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  1. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    Science.gov (United States)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  2. Causal inheritance in plane wave quotients

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2003-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general spacetime to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp-waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave spacetimes. We show that all other quotients preserve stable causality

  3. Normalizing the causality between time series

    Science.gov (United States)

    Liang, X. San

    2015-08-01

    Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.

  4. Spatial hypersurfaces in causal set cosmology

    International Nuclear Information System (INIS)

    Major, Seth A; Rideout, David; Surya, Sumati

    2006-01-01

    Within the causal set approach to quantum gravity, a discrete analogue of a spacelike region is a set of unrelated elements, or an antichain. In the continuum approximation of the theory, a moment-of-time hypersurface is well represented by an inextendible antichain. We construct a richer structure corresponding to a thickening of this antichain containing non-trivial geometric and topological information. We find that covariant observables can be associated with such thickened antichains and transitions between them, in classical sequential growth models of causal sets. This construction highlights the difference between the covariant measure on causal set cosmology and the standard sum-over-histories approach: the measure is assigned to completed histories rather than to histories on a restricted spacetime region. The resulting re-phrasing of the sum-over-histories may be fruitful in other approaches to quantum gravity

  5. Testing the causal theory of reference.

    Science.gov (United States)

    Domaneschi, Filippo; Vignolo, Massimiliano; Di Paola, Simona

    2017-04-01

    Theories of reference are a crucial research topic in analytic philosophy. Since the publication of Kripke's Naming and Necessity, most philosophers have endorsed the causal/historical theory of reference. The goal of this paper is twofold: (i) to discuss a method for testing experimentally the causal theory of reference for proper names by investigating linguistic usage and (ii) to present the results from two experiments conducted with that method. Data collected in our experiments confirm the causal theory of reference for people proper names and for geographical proper names. A secondary but interesting result is that the semantic domain affects reference assignment: while with people proper names speakers tend to assign the semantic reference, with geographical proper names they are prompted to assign the speaker's reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bulk viscous cosmology with causal transport theory

    International Nuclear Information System (INIS)

    Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried

    2011-01-01

    We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8

  7. Causal inheritance in plane wave quotients

    Science.gov (United States)

    Hubeny, Veronika E.; Rangamani, Mukund; Ross, Simon F.

    2004-01-01

    We investigate the appearance of closed timelike curves in quotients of plane waves along spacelike isometries. First we formulate a necessary and sufficient condition for a quotient of a general space-time to preserve stable causality. We explicitly show that the plane waves are stably causal; in passing, we observe that some pp waves are not even distinguishing. We then consider the classification of all quotients of the maximally supersymmetric ten-dimensional plane wave under a spacelike isometry, and show that the quotient will lead to closed timelike curves iff the isometry involves a translation along the u direction. The appearance of these closed timelike curves is thus connected to the special properties of the light cones in plane wave space-times. We show that all other quotients preserve stable causality.

  8. Neural correlates of continuous causal word generation.

    Science.gov (United States)

    Wende, Kim C; Straube, Benjamin; Stratmann, Mirjam; Sommer, Jens; Kircher, Tilo; Nagels, Arne

    2012-09-01

    Causality provides a natural structure for organizing our experience and language. Causal reasoning during speech production is a distinct aspect of verbal communication, whose related brain processes are yet unknown. The aim of the current study was to investigate the neural mechanisms underlying the continuous generation of cause-and-effect coherences during overt word production. During fMRI data acquisition participants performed three verbal fluency tasks on identical cue words: A novel causal verbal fluency task (CVF), requiring the production of multiple reasons to a given cue word (e.g. reasons for heat are fire, sun etc.), a semantic (free association, FA, e.g. associations with heat are sweat, shower etc.) and a phonological control task (phonological verbal fluency, PVF, e.g. rhymes with heat are meat, wheat etc.). We found that, in contrast to PVF, both CVF and FA activated a left lateralized network encompassing inferior frontal, inferior parietal and angular regions, with further bilateral activation in middle and inferior as well as superior temporal gyri and the cerebellum. For CVF contrasted against FA, we found greater bold responses only in the left middle frontal cortex. Large overlaps in the neural activations during free association and causal verbal fluency indicate that the access to causal relationships between verbal concepts is at least partly based on the semantic neural network. The selective activation in the left middle frontal cortex for causal verbal fluency suggests that distinct neural processes related to cause-and-effect-relations are associated with the recruitment of middle frontal brain areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. BOLD Granger causality reflects vascular anatomy.

    Directory of Open Access Journals (Sweden)

    J Taylor Webb

    Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  10. Information-Theoretic Inference of Common Ancestors

    Directory of Open Access Journals (Sweden)

    Bastian Steudel

    2015-04-01

    Full Text Available A directed acyclic graph (DAG partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents a given set of conditional independence relations. We are interested in properties of this class that can be derived from observations of a subsystem only. To this end, we prove an information-theoretic inequality that allows for the inference of common ancestors of observed parts in any DAG representing some unknown larger system. More explicitly, we show that a large amount of dependence in terms of mutual information among the observations implies the existence of a common ancestor that distributes this information. Within the causal interpretation of DAGs, our result can be seen as a quantitative extension of Reichenbach’s principle of common cause to more than two variables. Our conclusions are valid also for non-probabilistic observations, such as binary strings, since we state the proof for an axiomatized notion of “mutual information” that includes the stochastic as well as the algorithmic version.

  11. Optimization methods for logical inference

    CERN Document Server

    Chandru, Vijay

    2011-01-01

    Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in

  12. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  13. Morse theory on timelike and causal curves

    International Nuclear Information System (INIS)

    Everson, J.; Talbot, C.J.

    1976-01-01

    It is shown that the set of timelike curves in a globally hyperbolic space-time manifold can be given the structure of a Hilbert manifold under a suitable definition of 'timelike.' The causal curves are the topological closure of this manifold. The Lorentzian energy (corresponding to Milnor's energy, except that the Lorentzian inner product is used) is shown to be a Morse function for the space of causal curves. A fixed end point index theorem is obtained in which a lower bound for the index of the Hessian of the Lorentzian energy is given in terms of the sum of the orders of the conjugate points between the end points. (author)

  14. Semmelweis's methodology from the modern stand-point: intervention studies and causal ontology.

    Science.gov (United States)

    Persson, Johannes

    2009-09-01

    Semmelweis's work predates the discovery of the power of randomization in medicine by almost a century. Although Semmelweis would not have consciously used a randomized controlled trial (RCT), some features of his material-the allocation of patients to the first and second clinics-did involve what was in fact a randomization, though this was not realised at the time. This article begins by explaining why Semmelweis's methodology, nevertheless, did not amount to the use of a RCT. It then shows why it is descriptively and normatively interesting to compare what he did with the modern approach using RCTs. The argumentation centres on causal inferences and the contrast between Semmelweis's causal concept and that deployed by many advocates of RCTs. It is argued that Semmelweis's approach has implications for matters of explanation and medical practice.

  15. Identification and estimation of survivor average causal effects.

    Science.gov (United States)

    Tchetgen Tchetgen, Eric J

    2014-09-20

    In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations model and by making the monotonicity assumption that the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity analysis framework that relaxes assumptions about independent errors in the nonparametric structural equations model and may be used to assess the extent to which inference may be altered by a violation of key identifying assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  16. How people explain their own and others’ behavior: A theory of lay causal explanations

    Directory of Open Access Journals (Sweden)

    Gisela eBöhm

    2015-02-01

    Full Text Available A theoretical model is proposed that speci¬fies lay causal theo¬ries of behavior; and supporting experimental evidence is presented. The model’s basic assumption is that diffe¬rent types of behavior trigger different hypotheses concerning the types of causes that may have brought about the behavior. Se¬ven categories are distinguished that are assumed to serve as both behavior types and explanation types: goals, disposi¬tions, tem¬po¬rary states such as emotions, intentional actions, outcomes, events, and sti¬mulus attributes. The mo¬del specifies inference rules that lay people use when explai¬ning beha¬vior (actions are caused by goals; goals are caused by higher order goals or temporary states; temporary states are caused by dispositions, stimulus attributes, or events; outcomes are caused by actions, temporary states, dispositions, stimulus attributes, or events; events are caused by dispositions or preceding events. Two experiments are reported. Experi¬ment 1 showed that free-response explanations followed the assumed inference rules. Expe¬ri¬ment 2 demonstrated that ex¬plana¬tions which match the inference rules are generated faster and more frequently than non-matching explanations. Together, the findings support models that incorporate knowledge-based aspects into the process of causal explanation. The results are discussed with respect to their implications for different stages of this process, such as the activation of causal hypotheses and their subsequent selection, as well as with respect to social influences on this process.

  17. On principles of inductive inference

    OpenAIRE

    Kostecki, Ryszard Paweł

    2011-01-01

    We propose an intersubjective epistemic approach to foundations of probability theory and statistical inference, based on relative entropy and category theory, and aimed to bypass the mathematical and conceptual problems of existing foundational approaches.

  18. Statistical inference via fiducial methods

    OpenAIRE

    Salomé, Diemer

    1998-01-01

    In this thesis the attention is restricted to inductive reasoning using a mathematical probability model. A statistical procedure prescribes, for every theoretically possible set of data, the inference about the unknown of interest. ... Zie: Summary

  19. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  20. Theory of mind and preschoolers' understanding of implicit causality in verbs: A comparison between Serbian and Hungarian children

    Directory of Open Access Journals (Sweden)

    Agota Major

    2010-06-01

    Full Text Available This study aims to investigate the effect of theory of mind, age and mother tongue on the implicit causality effect in preschoolers from two different language backgrounds. Serbian and Hungarian native speakers aged 3–7 years participated in the study. After taking part in a Theory of Mind task, children were presented verbs in simple „Subject verb Object” sentences describing interactions between two participants, with the interactions being based on emotional, mental or visual experiences. Children were asked “Why does S verb O?” and their responses were categorized as containing an inference about the sentence-S or the sentence-O. The results show that Theory of Mind is a significant factor in the emergence of implicit causality, with age of participants and mother tongue being also contributing to explaining patterns of implicit causality.

  1. Active inference, communication and hermeneutics.

    Science.gov (United States)

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Causal Meta-Analysis : Methodology and Applications

    NARCIS (Netherlands)

    Bax, L.J.

    2009-01-01

    Meta-analysis is a statistical method to summarize research data from multiple studies in a quantitative manner. This dissertation addresses a number of methodological topics in causal meta-analysis and reports the development and validation of meta-analysis software. In the first (methodological)

  3. Information-causality and extremal tripartite correlations

    International Nuclear Information System (INIS)

    Yang, Tzyh Haur; Cavalcanti, Daniel; Almeida, Mafalda L; Teo, Colin; Scarani, Valerio

    2012-01-01

    We study the principle of information-causality (IC) in the presence of extremal no-signaling correlations on a tripartite scenario. We prove that all, except one, of the non-local correlations lead to violation of IC. The remaining non-quantum correlation is shown to satisfy any bipartite physical principle. (paper)

  4. Comments: Causal Interpretations of Mediation Effects

    Science.gov (United States)

    Jo, Booil; Stuart, Elizabeth A.

    2012-01-01

    The authors thank Dr. Lindsay Page for providing a nice illustration of the use of the principal stratification framework to define causal effects, and a Bayesian model for effect estimation. They hope that her well-written article will help expose education researchers to these concepts and methods, and move the field of mediation analysis in…

  5. Exploring Causal Models of Educational Achievement.

    Science.gov (United States)

    Parkerson, Jo Ann; And Others

    1984-01-01

    This article evaluates five causal model of educational productivity applied to learning science in a sample of 882 fifth through eighth graders. Each model explores the relationship between achievement and a combination of eight constructs: home environment, peer group, media, ability, social environment, time on task, motivation, and…

  6. Sequential causal learning in humans and rats

    NARCIS (Netherlands)

    Lu, H.; Rojas, R.R.; Beckers, T.; Yuille, A.; Love, B.C.; McRae, K.; Sloutsky, V.M.

    2008-01-01

    Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005;Beckers, Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with unrelated cues can dramatically influence the performance of humans in a causal learning paradigm and rats in a standard Pavlovian conditioning paradigm.

  7. The Causal Foundations of Structural Equation Modeling

    Science.gov (United States)

    2012-02-16

    and Baumrind (1993).” This, together with the steady influx of statisticians into the field, has left SEM re- searchers in a quandary about the...considerations. Journal of Personality and Social Psychology 51 1173–1182. Baumrind , D. (1993). Specious causal attributions in social sciences: The

  8. Causal Measurement Models: Can Criticism Stimulate Clarification?

    Science.gov (United States)

    Markus, Keith A.

    2016-01-01

    In their 2016 work, Aguirre-Urreta et al. provided a contribution to the literature on causal measurement models that enhances clarity and stimulates further thinking. Aguirre-Urreta et al. presented a form of statistical identity involving mapping onto the portion of the parameter space involving the nomological net, relationships between the…

  9. A Causal Model of Faculty Turnover Intentions.

    Science.gov (United States)

    Smart, John C.

    1990-01-01

    A causal model assesses the relative influence of individual attributes, institutional characteristics, contextual-work environment variables, and multiple measures of job satisfaction on faculty intentions to leave their current institutions. Factors considered include tenure status, age, institutional status, governance style, organizational…

  10. Catastrophizing and Causal Beliefs in Whiplash

    NARCIS (Netherlands)

    Buitenhuis, J.; de Jong, P. J.; Jaspers, J. P. C.; Groothoff, J. W.

    2008-01-01

    Study Design. Prospective cohort study. Objective. This study investigates the role of pain catastrophizing and causal beliefs with regard to severity and persistence of neck complaints after motor vehicle accidents. Summary of Background Data. In previous research on low back pain, somatoform

  11. Probable autoimmune causal relationship between periodontitis and ...

    African Journals Online (AJOL)

    Periodontitis is a multifactorial disease with microbial dental plaque as the initiator of periodontal disease. However, the manifestation and progression of the disease is influenced by a wide variety of determinants and factors. The strongest type of causal relationship is the association of systemic and periodontal disease.

  12. On minimizers of causal variational principles

    International Nuclear Information System (INIS)

    Schiefeneder, Daniela

    2011-01-01

    Causal variational principles are a class of nonlinear minimization problems which arise in a formulation of relativistic quantum theory referred to as the fermionic projector approach. This thesis is devoted to a numerical and analytic study of the minimizers of a general class of causal variational principles. We begin with a numerical investigation of variational principles for the fermionic projector in discrete space-time. It is shown that for sufficiently many space-time points, the minimizing fermionic projector induces non-trivial causal relations on the space-time points. We then generalize the setting by introducing a class of causal variational principles for measures on a compact manifold. In our main result we prove under general assumptions that the support of a minimizing measure is either completely timelike, or it is singular in the sense that its interior is empty. In the examples of the circle, the sphere and certain flag manifolds, the general results are supplemented by a more detailed analysis of the minimizers. (orig.)

  13. Causality and analyticity in quantum fields theory

    International Nuclear Information System (INIS)

    Iagolnitzer, D.

    1992-01-01

    This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)

  14. Causality and Time in Historical Institutionalism

    DEFF Research Database (Denmark)

    Mahoney, James; Mohamedali, Khairunnisa; Nguyen, Christoph

    2016-01-01

    This chapter explores the dual concern with causality and time in historical institutionalism using a graphical approach. The analysis focuses on three concepts that are central to this field: critical junctures, gradual change, and path dependence. The analysis makes explicit and formal the logi...

  15. Black Hole Complementarity and Violation of Causality

    OpenAIRE

    Rozenblit, Moshe

    2017-01-01

    Analysis of a massive shell collapsing on a solid sphere shows that black hole complementarity (BHC) violates causality in its effort to save information conservation. In particular, this note describes a hypothetical contraption based on BHC that would allow the transfer of information from the future to the present.

  16. Encoding dependence in Bayesian causal networks

    Science.gov (United States)

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  17. Causality in the semantics of Esterel : revisited

    NARCIS (Netherlands)

    Mousavi, M.R.; Klin, B.; Sobocinski, P.

    2010-01-01

    We re-examine the challenges concerning causality in the semantics of Esterel and show that they pertain to the known issues in the semantics of Structured Operational Semantics with negative premises. We show that the solutions offered for the semantics of SOS also provide answers to the semantic

  18. Scalar field Green functions on causal sets

    International Nuclear Information System (INIS)

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  19. Are bruxism and the bite causally related?

    NARCIS (Netherlands)

    Lobbezoo, F.; Ahlberg, J.; Manfredini, D.; Winocur, E.

    2012-01-01

    In the dental profession, the belief that bruxism and dental (mal-)occlusion (‘the bite’) are causally related is widespread. The aim of this review was to critically assess the available literature on this topic. A PubMed search of the English-language literature, using the query ‘Bruxism [Majr

  20. Causality relationship between energy demand and economic ...

    African Journals Online (AJOL)

    This paper attempts to examine the causal relationship between electricity demand and economic growth in Nigeria using data for 1970 – 2003. The study uses the Johansen cointegration VAR approach. The ADF and Phillips – Perron test statistics were used to test for stationarity of the data. It was found that the data were ...

  1. Causal analysis of ordinal treatments and binary outcomes under truncation by death.

    Science.gov (United States)

    Wang, Linbo; Richardson, Thomas S; Zhou, Xiao-Hua

    2017-06-01

    It is common that in multi-arm randomized trials, the outcome of interest is "truncated by death," meaning that it is only observed or well-defined conditioning on an intermediate outcome. In this case, in addition to pairwise contrasts, the joint inference for all treatment arms is also of interest. Under a monotonicity assumption we present methods for both pairwise and joint causal analyses of ordinal treatments and binary outcomes in presence of truncation by death. We illustrate via examples the appropriateness of our assumptions in different scientific contexts.

  2. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    Science.gov (United States)

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  3. Does Causality Matter More Now? Increase in the Proportion of Causal Language in English Texts.

    Science.gov (United States)

    Iliev, Rumen; Axelrod, Robert

    2016-05-01

    The vast majority of the work on culture and cognition has focused on cross-cultural comparisons, largely ignoring the dynamic aspects of culture. In this article, we provide a diachronic analysis of causal cognition over time. We hypothesized that the increased role of education, science, and technology in Western societies should be accompanied by greater attention to causal connections. To test this hypothesis, we compared word frequencies in English texts from different time periods and found an increase in the use of causal language of about 40% over the past two centuries. The observed increase was not attributable to general language effects or to changing semantics of causal words. We also found that there was a consistent difference between the 19th and the 20th centuries, and that the increase happened mainly in the 20th century. © The Author(s) 2016.

  4. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  5. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.

    Directory of Open Access Journals (Sweden)

    Saumya Gupta

    2015-06-01

    of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression.

  6. Causal knowledge and the development of inductive reasoning.

    Science.gov (United States)

    Bright, Aimée K; Feeney, Aidan

    2014-06-01

    We explored the development of sensitivity to causal relations in children's inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey→predator) or diagnostic (predator→prey), and the property that participants reasoned about established either a taxonomic or causal context. There was a causal asymmetry effect across all age groups, with more causal choices when the causal link was predictive than when it was diagnostic. Furthermore, context-sensitive causal reasoning showed a curvilinear development, with causal choices being most frequent for 8-year-olds regardless of context. Causal inductions decreased thereafter because 12-year-olds and adults made more taxonomic choices when reasoning in the taxonomic context. These findings suggest that simple causal relations may often be the default knowledge structure in young children's inductive reasoning, that sensitivity to causal direction is present early on, and that children over-generalize their causal knowledge when reasoning. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The causal link between energy and output growth: Evidence from Markov switching Granger causality

    International Nuclear Information System (INIS)

    Kandemir Kocaaslan, Ozge

    2013-01-01

    In this paper we empirically investigate the causal link between energy consumption and economic growth employing a Markov switching Granger causality analysis. We carry out our investigation using annual U.S. real GDP, total final energy consumption and total primary energy consumption data which cover the period between 1968 and 2010. We find that there are significant changes in the causal relation between energy consumption and economic growth over the sample period under investigation. Our results show that total final energy consumption and total primary energy consumption have significant predictive content for real economic activity in the U.S. economy. Furthermore, the causality running from energy consumption to output growth seems to be strongly apparent particularly during the periods of economic downturn and energy crisis. We also document that output growth has predictive power in explaining total energy consumption. Furthermore, the power of output growth in predicting total energy consumption is found to diminish after the mid of 1980s. - Highlights: • Total energy consumption has predictive content for real economic activity. • The causality from energy to output growth is apparent in the periods of recession. • The causality from energy to output growth is strong in the periods of energy crisis. • Output growth has predictive power in explaining total energy consumption. • The power of output growth in explaining energy diminishes after the mid of 1980s

  8. The causal relationship between Foreign Direct Investment (FDI ...

    African Journals Online (AJOL)

    The causal relationship between Foreign Direct Investment (FDI) and the ... of selected west African countries: Panel ARDL/Granger Causality Analysis. ... among this developing countries and an important revelation for policy implication.

  9. The Hankel transform of causal distributions

    Directory of Open Access Journals (Sweden)

    Manuel A. Aguirre T.

    2012-03-01

    Full Text Available In this note we evaluate the unidimensional distributional Hankel transform of \\dfrac{x^{\\alpha-1}_{+}}{\\Gamma^{\\alpha}},\\dfrac{x^{\\alpha-1}_{-}}{\\Gamma^{\\alpha}},dfrac{|x|^{\\alpha-1}}{\\Gamma^{\\frac{\\alpha}{2}}},dfrac{|x|^{\\alpha-1}sgn(x}{\\Gamma^{\\frac{\\alpha +1}{2}}} and (x± i0^{\\alpha-1} and then we extend the formulae to certain kinds of n-dimensional distributions calles "causal" and "anti-causal" distributions. We evaluate the distributional Handel transform of \\dfrac{(m^2+P^{\\alpha -1}_{-}}{\\Gamma^{(\\alpha} }, \\dfrac{|m^2+P|^{\\alpha -1}_{-}}{\\Gamma^{(\\frac{\\alpha}{2}}}, \\dfrac{|m^2+P|^{\\alpha -1}sgn(m^2+P}{\\Gamma (\\frac{\\alpha +1}{2 }} and (m^2+P±i0^{\\alpha-1}

  10. A new spin on causality constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University, Ithaca, New York (United States)

    2016-10-26

    Causality in a shockwave state is related to the analytic properties of a four-point correlation function. Extending recent results for scalar probes, we show that this constrains the couplings of the stress tensor to light spinning operators in conformal field theory, and interpret these constraints in terms of the interaction with null energy. For spin-1 and spin-2 conserved currents in four dimensions, the resulting inequalities are a subset of the Hofman-Maldacena conditions for positive energy deposition. It is well known that energy conditions in holographic theories are related to causality on the gravity side; our results make a connection on the CFT side, and extend it to non-holographic theories.

  11. Reciprocity, passivity and causality in Willis materials.

    Science.gov (United States)

    Muhlestein, Michael B; Sieck, Caleb F; Alù, Andrea; Haberman, Michael R

    2016-10-01

    Materials that require coupling between the stress-strain and momentum-velocity constitutive relations were first proposed by Willis (Willis 1981 Wave Motion 3 , 1-11. (doi:10.1016/0165-2125(81)90008-1)) and are now known as elastic materials of the Willis type, or simply Willis materials. As coupling between these two constitutive equations is a generalization of standard elastodynamic theory, restrictions on the physically admissible material properties for Willis materials should be similarly generalized. This paper derives restrictions imposed on the material properties of Willis materials when they are assumed to be reciprocal, passive and causal. Considerations of causality and low-order dispersion suggest an alternative formulation of the standard Willis equations. The alternative formulation provides improved insight into the subwavelength physical behaviour leading to Willis material properties and is amenable to time-domain analyses. Finally, the results initially obtained for a generally elastic material are specialized to the acoustic limit.

  12. Interactive Instruction in Bayesian Inference

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Hornbæk, Kasper

    2018-01-01

    An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These pri......An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction....... These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pretraining. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions...... that an instructional approach to improving human performance in Bayesian inference is a promising direction....

  13. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  14. Granger-Causality Maps of Diffusion Processes

    Czech Academy of Sciences Publication Activity Database

    Wahl, B.; Feudel, U.; Hlinka, Jaroslav; Wächter, M.; Peinke, J.; Freund, J.A.

    2016-01-01

    Roč. 93, č. 2 16 February (2016), č. článku 022213. ISSN 2470-0045 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Institutional support: RVO:67985807 Keywords : Granger causality * stochastic process * diffusion process * nonlinear dynamical systems Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.366, year: 2016

  15. Sobre a noção de causalidade na medicina: aproximando Austin Bradford Hill e John L. MackieOn the notion of causality in medicine: addressing Austin Bradford Hill and John L. Mackie

    OpenAIRE

    Araújo, Luís Fernando S. C. de; Dalgalarrondo, Paulo; Banzato, Cláudio E. M.

    2014-01-01

    Almost 50 years ago appeared the seminal article by Austin Bradford Hill where he presented parameters for inferring causes from statistical associations, which became known as Hill’s causal criteria. This was a milestone for the renewal of the idea of cause in medicine. Our article revisits his contribution in light of the ideas from the Australian philosopher John L. Mackie, whose important works on causality reached an audience distinct from Hill’s. We suggest that both the Bri...

  16. Curvature constraints from the causal entropic principle

    International Nuclear Information System (INIS)

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-01-01

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than ρ k =40ρ m are disfavored by more than 99.99% peak value at ρ Λ =7.9x10 -123 and ρ k =4.3ρ m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  17. Eight challenges in phylodynamic inference

    Directory of Open Access Journals (Sweden)

    Simon D.W. Frost

    2015-03-01

    Full Text Available The field of phylodynamics, which attempts to enhance our understanding of infectious disease dynamics using pathogen phylogenies, has made great strides in the past decade. Basic epidemiological and evolutionary models are now well characterized with inferential frameworks in place. However, significant challenges remain in extending phylodynamic inference to more complex systems. These challenges include accounting for evolutionary complexities such as changing mutation rates, selection, reassortment, and recombination, as well as epidemiological complexities such as stochastic population dynamics, host population structure, and different patterns at the within-host and between-host scales. An additional challenge exists in making efficient inferences from an ever increasing corpus of sequence data.

  18. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A

    1982-01-01

    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.

  19. Mind and Meaning: Piaget and Vygotsky on Causal Explanation.

    Science.gov (United States)

    Beilin, Harry

    1996-01-01

    Piaget's theory has been characterized as descriptive and not explanatory, not qualifying as causal explanation. Piaget was consistent in showing how his theory was both explanatory and causal. Vygotsky also endorsed causal-genetic explanation but, on the basis of knowledge of only Piaget's earliest works, he claimed that Piaget's theory was not…

  20. How to Be Causal: Time, Spacetime and Spectra

    Science.gov (United States)

    Kinsler, Paul

    2011-01-01

    I explain a simple definition of causality in widespread use, and indicate how it links to the Kramers-Kronig relations. The specification of causality in terms of temporal differential equations then shows us the way to write down dynamical models so that their causal nature "in the sense used here" should be obvious to all. To extend existing…

  1. Causal Relations and Feature Similarity in Children's Inductive Reasoning

    Science.gov (United States)

    Hayes, Brett K.; Thompson, Susan P.

    2007-01-01

    Four experiments examined the development of property induction on the basis of causal relations. In the first 2 studies, 5-year-olds, 8-year-olds, and adults were presented with triads in which a target instance was equally similar to 2 inductive bases but shared a causal antecedent feature with 1 of them. All 3 age groups used causal relations…

  2. Causal beliefs about depression in different cultural groups—what do cognitive psychological theories of causal learning and reasoning predict?

    OpenAIRE

    Hagmayer, York; Engelmann, Neele

    2014-01-01

    Cognitive psychological research focuses on causal learning and reasoning while cognitive anthropological and social science research tend to focus on systems of beliefs. Our aim was to explore how these two types of research can inform each other. Cognitive psychological theories (causal model theory and causal Bayes nets) were used to derive predictions for systems of causal beliefs. These predictions were then applied to lay theories of depression as a specific test case. A systematic lite...

  3. Darwin revisited: The vagus nerve is a causal element in controlling recognition of other's emotions.

    Science.gov (United States)

    Colzato, Lorenza S; Sellaro, Roberta; Beste, Christian

    2017-07-01

    Charles Darwin proposed that via the vagus nerve, the tenth cranial nerve, emotional facial expressions are evolved, adaptive and serve a crucial communicative function. In line with this idea, the later-developed polyvagal theory assumes that the vagus nerve is the key phylogenetic substrate that regulates emotional and social behavior. The polyvagal theory assumes that optimal social interaction, which includes the recognition of emotion in faces, is modulated by the vagus nerve. So far, in humans, it has not yet been demonstrated that the vagus plays a causal role in emotion recognition. To investigate this we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that modulates brain activity via bottom-up mechanisms. A sham/placebo-controlled, randomized cross-over within-subjects design was used to infer a causal relation between the stimulated vagus nerve and the related ability to recognize emotions as indexed by the Reading the Mind in the Eyes Test in 38 healthy young volunteers. Active tVNS, compared to sham stimulation, enhanced emotion recognition for easy items, suggesting that it promoted the ability to decode salient social cues. Our results confirm that the vagus nerve is causally involved in emotion recognition, supporting Darwin's argumentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    International Nuclear Information System (INIS)

    Henderson, R.F.

    1995-01-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two

  5. Evaluation report on the causal association between humidifier disinfectants and lung injury

    Directory of Open Access Journals (Sweden)

    Mina Ha

    2016-08-01

    Full Text Available OBJECTIVES As of November 2011, the Korean government recalled and banned humidifier disinfectants (HDs from the market, because four case-control studies and one retrospective epidemiological study proved the association between HDs and lung injury of unknown cause. The report reviewed the causal role of HDs in lung injury based on scientific evidences. METHODS A careful examination on the association between the HDs and lung injury was based on the criteria of causality inference by Hill and the US Surgeon General Expert Committee. RESULTS We found that all the evidences on the causality fulfilled the criteria (strength of association, consistency, specificity, temporality, biologic gradient, plausibility, coherence, experiment, analogy, consideration of alternative explanations, and cessation of exposure, which proved the unknown cause lung injury reported in 2011 was caused by the HDs. In particular, there was no single reported case of lung injury since the ban in selling HDs in November 2011 as well as before the HDs were sold in markets. CONCLUSIONS Although only a few epidemiological studies in Korea have evaluated the association between lung injury and the use of HDs, those studies contributed to proving the strong association between the use of the HDs and lung injury, based on scientific evidence.

  6. Object-Oriented Type Inference

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Palsberg, Jens

    1991-01-01

    We present a new approach to inferring types in untyped object-oriented programs with inheritance, assignments, and late binding. It guarantees that all messages are understood, annotates the program with type information, allows polymorphic methods, and can be used as the basis of an op...

  7. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  8. Mixed normal inference on multicointegration

    NARCIS (Netherlands)

    Boswijk, H.P.

    2009-01-01

    Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006), Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed normal, implying hypothesis test statistics with an asymptotic 2 null distribution. The asymptotic distribution of the

  9. Statistical inference and Aristotle's Rhetoric.

    Science.gov (United States)

    Macdonald, Ranald R

    2004-11-01

    Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.

  10. Information causality from an entropic and a probabilistic perspective

    International Nuclear Information System (INIS)

    Al-Safi, Sabri W.; Short, Anthony J.

    2011-01-01

    The information causality principle is a generalization of the no-signaling principle which implies some of the known restrictions on quantum correlations. But despite its clear physical motivation, information causality is formulated in terms of a rather specialized game and figure of merit. We explore different perspectives on information causality, discussing the probability of success as the figure of merit, a relation between information causality and the nonlocal ''inner-product game,'' and the derivation of a quadratic bound for these games. We then examine an entropic formulation of information causality with which one can obtain the same results, arguably in a simpler fashion.

  11. Separable processes before, during, and after the N400 elicited by previously inferred and new information: evidence from time-frequency decompositions.

    Science.gov (United States)

    Steele, Vaughn R; Bernat, Edward M; van den Broek, Paul; Collins, Paul F; Patrick, Christopher J; Marsolek, Chad J

    2013-01-25

    Successful comprehension during reading often requires inferring information not explicitly presented. This information is readily accessible when subsequently encountered, and a neural correlate of this is an attenuation of the N400 event-related potential (ERP). We used ERPs and time-frequency (TF) analysis to investigate neural correlates of processing inferred information after a causal coherence inference had been generated during text comprehension. Participants read short texts, some of which promoted inference generation. After each text, they performed lexical decisions to target words that were unrelated or inference-related to the preceding text. Consistent with previous findings, inference-related words elicited an attenuated N400 relative to unrelated words. TF analyses revealed unique contributions to the N400 from activity occurring at 1-6 Hz (theta) and 0-2 Hz (delta), supporting the view that multiple, sequential processes underlie the N400. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Interactions of information transfer along separable causal paths

    Science.gov (United States)

    Jiang, Peishi; Kumar, Praveen

    2018-04-01

    Complex systems arise as a result of interdependences between multiple variables, whose causal interactions can be visualized in a time-series graph. Transfer entropy and information partitioning approaches have been used to characterize such dependences. However, these approaches capture net information transfer occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within a subgraph of interest through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [Phys. Rev. E 92, 062829 (2015), 10.1103/PhysRevE.92.062829] to develop a framework for quantifying information partitioning along separable causal paths. Momentary information transfer along causal paths captures the amount of information transfer between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique, and redundant information transfer through separable causal paths. Through a graphical model, we analyze the impact of the separable and nonseparable causal paths and the causality structure embedded in the graph as well as the noise effect on information partitioning by using synthetic data generated from two coupled logistic equation models. Our approach can provide a valuable reference for an autonomous information partitioning along separable causal paths which form a causal subgraph influencing a target.

  13. The selective power of causality on memory errors.

    Science.gov (United States)

    Marsh, Jessecae K; Kulkofsky, Sarah

    2015-01-01

    We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.

  14. Causal asymmetry across cultures: Assigning causal roles in symmetric physical settings

    Directory of Open Access Journals (Sweden)

    Andrea eBender

    2011-09-01

    Full Text Available In the cognitive sciences, causal cognition in the physical domain has featured as a core research topic, but the impact of culture has been rarely ever explored. One case in point for a topic on which this neglect is pronounced is the pervasive tendency of people to consider one of two (equally important entities as more important for bringing about an effect. In order to scrutinize how robust such tendencies are across cultures, we asked German and Tongan participants to assign prime causality in nine symmetric settings. For most settings, strong asymmetries in both cultures were found, but not always in the same direction, depending on the task content. This indicates that causal asymmetries, while indeed being a robust phenomenon across cultures, are also subject to culture-specific concepts. Moreover, the asymmetries were found to be modulated by figure-ground relations, but not by marking agency.

  15. All of statistics a concise course in statistical inference

    CERN Document Server

    Wasserman, Larry

    2004-01-01

    This book is for people who want to learn probability and statistics quickly It brings together many of the main ideas in modern statistics in one place The book is suitable for students and researchers in statistics, computer science, data mining and machine learning This book covers a much wider range of topics than a typical introductory text on mathematical statistics It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses The reader is assumed to know calculus and a little linear algebra No previous knowledge of probability and statistics is required The text can be used at the advanced undergraduate and graduate level Larry Wasserman is Professor of Statistics at Carnegie Mellon University He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bi...

  16. Emergent Geometry from Entropy and Causality

    Science.gov (United States)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum

  17. A Causal Theory of Mnemonic Confabulation

    Directory of Open Access Journals (Sweden)

    Sven Bernecker

    2017-07-01

    Full Text Available This paper attempts to answer the question of what defines mnemonic confabulation vis-à-vis genuine memory. The two extant accounts of mnemonic confabulation as “false memory” and as ill-grounded memory are shown to be problematic, for they cannot account for the possibility of veridical confabulation, ill-grounded memory, and well-grounded confabulation. This paper argues that the defining characteristic of mnemonic confabulation is that it lacks the appropriate causal history. In the confabulation case, there is no proper counterfactual dependence of the state of seeming to remember on the corresponding past representation.

  18. De Broglie's causal interpretations of quantum mechanics

    International Nuclear Information System (INIS)

    Ben-Dov, Y.

    1989-01-01

    In this article we trace the history of de Broglie's two causal interpretations of quantum mechanics, namely the double solution and the pilot wave theories, at the two periods in which he developed them: 1924-27 and 1952 onwards. Examining the reasons for which he always preferred the first theory to the second, reasons that are mainly concerned with the question of the physical nature of the quantum wave function, we try to show the continuity and the coherence of his underlying vision

  19. On asymmetric causal relationships in Petropolitics

    Directory of Open Access Journals (Sweden)

    Balan Feyza

    2016-01-01

    Full Text Available The aim of this paper is to examine whether the First Law of Petropolitics denominated by Friedman in 2006 is valid for OPEC countries. To do this, this paper analyses the relationship between political risk and oil supply by applying the asymmetric panel causality test suggested by Hatemi-J (2011 to these countries for the period 1984-2014. The results show that the First Law of Petropolitics is valid for Angola, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, and the UAE, given that positive oil supply shocks significantly lead to negative political stability shocks, and negative oil supply shocks significantly lead to positive shocks in political stability.

  20. Conditional Granger Causality of Diffusion Processes

    Czech Academy of Sciences Publication Activity Database

    Wahl, B.; Feudel, U.; Hlinka, Jaroslav; Wächter, M.; Peinke, J.; Freund, J.A.

    2017-01-01

    Roč. 90, č. 10 (2017), č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA13-23940S; GA MZd(CZ) NV15-29835A Institutional support: RVO:67985807 Keywords : Granger causality * stochastic process * diffusion process * nonlinear dynamical systems Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 1.461, year: 2016

  1. Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge

    Directory of Open Access Journals (Sweden)

    Huang Chia-Ling

    2012-03-01

    Full Text Available Abstract Background Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. Results We present a simple data-driven method, Correlation Set Analysis (CSA, for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. Conclusions CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression.

  2. Foundational perspectives on causality in large-scale brain networks

    Science.gov (United States)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  3. Statistical learning and selective inference.

    Science.gov (United States)

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  4. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  5. Statistical inference an integrated approach

    CERN Document Server

    Migon, Helio S; Louzada, Francisco

    2014-01-01

    Introduction Information The concept of probability Assessing subjective probabilities An example Linear algebra and probability Notation Outline of the bookElements of Inference Common statistical modelsLikelihood-based functions Bayes theorem Exchangeability Sufficiency and exponential family Parameter elimination Prior Distribution Entirely subjective specification Specification through functional forms Conjugacy with the exponential family Non-informative priors Hierarchical priors Estimation Introduction to decision theoryBayesian point estimation Classical point estimation Empirical Bayes estimation Comparison of estimators Interval estimation Estimation in the Normal model Approximating Methods The general problem of inference Optimization techniquesAsymptotic theory Other analytical approximations Numerical integration methods Simulation methods Hypothesis Testing Introduction Classical hypothesis testingBayesian hypothesis testing Hypothesis testing and confidence intervalsAsymptotic tests Prediction...

  6. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  7. System Support for Forensic Inference

    Science.gov (United States)

    Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan

    Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.

  8. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  9. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  10. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  11. On Quantum Statistical Inference, II

    OpenAIRE

    Barndorff-Nielsen, O. E.; Gill, R. D.; Jupp, P. E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and inte...

  12. Nonparametric predictive inference in reliability

    International Nuclear Information System (INIS)

    Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.

    2002-01-01

    We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere

  13. ¿CONFIEREN PODERES CAUSALES LOS UNIVERSALES TRASCENDENTES?

    Directory of Open Access Journals (Sweden)

    José Tomás Alvarado Marambio

    2013-11-01

    Full Text Available This work discusses the so-called ‘Eleatic’ argument against the existence of transcendent universals, i. e. universals which does not require instantiation for its existence. The Eleatic Principle states that everything produces a difference in the causal powers of something. As transcendent universals seem not to produce such a difference, transcendent universals seem not to exist. The argument depends crucially on the justification and the interpretation of the Eleatic Principle. It is argued, first, that it is not very clear that the principle is justified, and, second, that there are several alternatives for its interpretation, in relation with the different theories one can endorse about modality or causality. Anti-realist theories of modality or causality are not very appropriate for the understanding of what should be a ‘causal power’. Neither does a realist theory of causality conjoined with a combinatorial theory of possible worlds. A ‘causal power’ seems to be better understood in connection with a realist –non-reductionist– theory of causality and a causal theory of modality. Taken in this way the Eleatic Principle, nonetheless, it is argued that transcendent universals do ‘produce’ a difference in causal powers, for every causal connection requires such universals for its existence.

  14. Are bruxism and the bite causally related?

    Science.gov (United States)

    Lobbezoo, F; Ahlberg, J; Manfredini, D; Winocur, E

    2012-07-01

    In the dental profession, the belief that bruxism and dental (mal-)occlusion ('the bite') are causally related is widespread. The aim of this review was to critically assess the available literature on this topic. A PubMed search of the English-language literature, using the query 'Bruxism [Majr] AND (Dental Occlusion [Majr] OR Malocclusion [Majr])', yielded 93 articles, of which 46 papers were finally included in the present review*. Part of the included publications dealt with the possible associations between bruxism and aspects of occlusion, from which it was concluded that neither for occlusal interferences nor for factors related to the anatomy of the oro-facial skeleton, there is any evidence available that they are involved in the aetiology of bruxism. Instead, there is a growing awareness of other factors (viz. psychosocial and behavioural ones) being important in the aetiology of bruxism. Another part of the included papers assessed the possible mediating role of occlusion between bruxism and its purported consequences (e.g. tooth wear, loss of periodontal tissues, and temporomandibular pain and dysfunction). Even though most dentists agree that bruxism may have several adverse effects on the masticatory system, for none of these purported adverse effects, evidence for a mediating role of occlusion and articulation has been found to date. Hence, based on this review, it should be concluded that to date, there is no evidence whatsoever for a causal relationship between bruxism and the bite. © 2012 Blackwell Publishing Ltd.

  15. [Antibibiotic resistance by nosocomial infections' causal agents].

    Science.gov (United States)

    Salazar-Holguín, Héctor Daniel; Cisneros-Robledo, María Elena

    2016-01-01

    The antibibiotic resistance by nosocomial infections (NI) causal agents constitutes a seriously global problematic that involves the Mexican Institute of Social Security's Regional General Hospital 1 in Chihuahua, Mexico; although with special features that required to be specified and evaluated, in order to concrete an effective therapy. Observational, descriptive and prospective study; by means of active vigilance all along 2014 in order to detect the nosocomial infections, for epidemiologic study, culture and antibiogram to identify its causal agents and antibiotics resistance and sensitivity. Among 13527 hospital discharges, 1079 displayed NI (8 %), standed out: the related on vascular lines, of surgical site, pneumonia and urinal track; they added up two thirds of the total. We carried out culture and antibiogram about 300 of them (27.8 %); identifying 31 bacterian species, mainly seven of those (77.9 %): Escherichia coli, Staphylococcus aureus and epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Enterobacter cloacae; showing multiresistance to 34 tested antibiotics, except in seven with low or without resistance at all: vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, piperacilin-tazobactam, amikacin and carbapenems. When we contrasted those results with the recommendations in the clinical practice guides, it aroused several contradictions; so they must be taken with reserves and has to be tested in each hospital, by means of cultures and antibiograms in practically every case of nosocomial infection.

  16. Diagnostic reasoning using qualitative causal models

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1992-01-01

    The application of expert systems to reasoning problems involving real-time data from plant measurements has been a topic of much research, but few practical systems have been deployed. One obstacle to wider use of expert systems in applications involving real-time data is the lack of adequate knowledge representation methodologies for dynamic processes. Knowledge bases composed mainly of rules have disadvantages when applied to dynamic processes and real-time data. This paper describes a methodology for the development of qualitative causal models that can be used as knowledge bases for reasoning about process dynamic behavior. These models provide a systematic method for knowledge base construction, considerably reducing the engineering effort required. They also offer much better opportunities for verification and validation of the knowledge base, thus increasing the possibility of the application of expert systems to reasoning about mission critical systems. Starting with the Signed Directed Graph (SDG) method that has been successfully applied to describe the behavior of diverse dynamic processes, the paper shows how certain non-physical behaviors that result from abstraction may be eliminated by applying causal constraint to the models. The resulting Extended Signed Directed Graph (ESDG) may then be compiled to produce a model for use in process fault diagnosis. This model based reasoning methodology is used in the MOBIAS system being developed by Duke Power Company under EPRI sponsorship. 15 refs., 4 figs

  17. Introducing mechanics by tapping core causal knowledge

    International Nuclear Information System (INIS)

    Klaassen, Kees; Westra, Axel; Emmett, Katrina; Eijkelhof, Harrie; Lijnse, Piet

    2008-01-01

    This article concerns an outline of an introductory mechanics course. It is based on the argument that various uses of the concept of force (e.g. from Kepler, Newton and everyday life) share an explanatory strategy based on core causal knowledge. The strategy consists of (a) the idea that a force causes a deviation from how an object would move of its own accord (i.e. its force-free motion), and (b) an incentive to search, where the motion deviates from the assumed force-free motion, for recurring configurations with which such deviations can be correlated (interaction theory). Various assumptions can be made concerning both the force-free motion and the interaction theory, thus giving rise to a variety of specific explanations. Kepler's semi-implicit intuition about the force-free motion is rest, Newton's explicit assumption is uniform rectilinear motion, while in everyday explanations a diversity of pragmatic suggestions can be recognized. The idea is that the explanatory strategy, once made explicit by drawing on students' intuitive causal knowledge, can be made to function for students as an advance organizer, in the sense of a general scheme that they recognize but do not yet know how to detail for scientific purposes

  18. Variational inference & deep learning : A new synthesis

    NARCIS (Netherlands)

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  19. Variational inference & deep learning: A new synthesis

    OpenAIRE

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  20. Continuous Integrated Invariant Inference, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...

  1. Quantum causality conceptual issues in the causal theory of quantum mechanics

    CERN Document Server

    Riggs, Peter J; French, Steven RD

    2009-01-01

    This is a treatise devoted to the foundations of quantum physics and the role that causality plays in the microscopic world governed by the laws of quantum mechanics. The book is controversial and will engender some lively debate on the various issues raised.

  2. Links between causal effects and causal association for surrogacy evaluation in a gaussian setting.

    Science.gov (United States)

    Conlon, Anna; Taylor, Jeremy; Li, Yun; Diaz-Ordaz, Karla; Elliott, Michael

    2017-11-30

    Two paradigms for the evaluation of surrogate markers in randomized clinical trials have been proposed: the causal effects paradigm and the causal association paradigm. Each of these paradigms rely on assumptions that must be made to proceed with estimation and to validate a candidate surrogate marker (S) for the true outcome of interest (T). We consider the setting in which S and T are Gaussian and are generated from structural models that include an unobserved confounder. Under the assumed structural models, we relate the quantities used to evaluate surrogacy within both the causal effects and causal association frameworks. We review some of the common assumptions made to aid in estimating these quantities and show that assumptions made within one framework can imply strong assumptions within the alternative framework. We demonstrate that there is a similarity, but not exact correspondence between the quantities used to evaluate surrogacy within each framework, and show that the conditions for identifiability of the surrogacy parameters are different from the conditions, which lead to a correspondence of these quantities. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Trivariate causality between economic growth, urbanisation and electricity consumption in Angola: Cointegration and causality analysis

    International Nuclear Information System (INIS)

    Solarin, Sakiru Adebola; Shahbaz, Muhammad

    2013-01-01

    This paper investigates the causal relationship between economic growth, urbanisation and electricity consumption in the case of Angola, while utilizing the data over the period of 1971–2009. We have applied Lee and Strazicich (2003. The Review of Economics and Statistics 63, 1082–1089; 2004. Working Paper. Department of Economics, Appalachian State University) unit root tests to examine the stationarity properties of the series. Using the Gregory–Hansen structural break cointegration procedure as a complement, we employ the ARDL bounds test to investigate long run relationships. The VECM Granger causality test is subsequently used to examine the direction of causality between economic growth, urbanisation, and electricity consumption. Our results indicate the existence of long run relationships. We further observe evidence in favour of bidirectional causality between electricity consumption and economic growth. The feedback hypothesis is also found between urbanisation and economic growth. Urbanisation and electricity consumption Granger cause each other. We conclude that Angola is energy-dependent country. Consequently, the relevant authorities should boost electricity production as one of the means of achieving sustainable economic development in the long run. - Highlights: • We consider the link between electricity consumption and economic growth in Angola. • Urbanisation is added to turn the research into a trivariate investigation. • Various time series procedures are used. • Results show that increasing electricity will improve economic growth in Angola. • Results show urbanisations reduced economic growth during civil war

  4. Causality as a Rigorous Notion and Quantitative Causality Analysis with Time Series

    Science.gov (United States)

    Liang, X. S.

    2017-12-01

    Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between them? Here we show that this important and challenging question (one of the major challenges in the science of big data), which is of interest in a wide variety of disciplines, has a positive answer. Particularly, for linear systems, the maximal likelihood estimator of the causality from a series X2 to another series X1, written T2→1, turns out to be concise in form: T2→1 = [C11 C12 C2,d1 — C112 C1,d1] / [C112 C22 — C11C122] where Cij (i,j=1,2) is the sample covariance between Xi and Xj, and Ci,dj the covariance between Xi and ΔXj/Δt, the difference approximation of dXj/dt using the Euler forward scheme. An immediate corollary is that causation implies correlation, but not vice versa, resolving the long-standing debate over causation versus correlation. The above formula has been validated with touchstone series purportedly generated with one-way causality that evades the classical approaches such as Granger causality test and transfer entropy analysis. It has also been applied successfully to the investigation of many real problems. Through a simple analysis with the stock series of IBM and GE, an unusually strong one-way causality is identified from the former to the latter in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a "Giant" for the computer market. Another example presented here regards the cause-effect relation between the two climate modes, El Niño and Indian Ocean Dipole (IOD). In general, these modes are mutually causal, but the causality is asymmetric. To El Niño, the information flowing from IOD manifests itself as a propagation of uncertainty from the Indian Ocean. In the third example, an unambiguous one-way causality is found between CO2 and the global mean temperature anomaly. While it is confirmed that CO2 indeed drives the recent global warming

  5. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  6. Adaptive Inference on General Graphical Models

    OpenAIRE

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  7. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  8. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  9. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  10. Quantitative inference of dynamic regulatory pathways via microarray data

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2005-03-01

    Full Text Available Abstract Background The cellular signaling pathway (network is one of the main topics of organismic investigations. The intracellular interactions between genes in a signaling pathway are considered as the foundation of functional genomics. Thus, what genes and how much they influence each other through transcriptional binding or physical interactions are essential problems. Under the synchronous measures of gene expression via a microarray chip, an amount of dynamic information is embedded and remains to be discovered. Using a systematically dynamic modeling approach, we explore the causal relationship among genes in cellular signaling pathways from the system biology approach. Results In this study, a second-order dynamic model is developed to describe the regulatory mechanism of a target gene from the upstream causality point of view. From the expression profile and dynamic model of a target gene, we can estimate its upstream regulatory function. According to this upstream regulatory function, we would deduce the upstream regulatory genes with their regulatory abilities and activation delays, and then link up a regulatory pathway. Iteratively, these regulatory genes are considered as target genes to trace back their upstream regulatory genes. Then we could construct the regulatory pathway (or network to the genome wide. In short, we can infer the genetic regulatory pathways from gene-expression profiles quantitatively, which can confirm some doubted paths or seek some unknown paths in a regulatory pathway (network. Finally, the proposed approach is validated by randomly reshuffling the time order of microarray data. Conclusion We focus our algorithm on the inference of regulatory abilities of the identified causal genes, and how much delay before they regulate the downstream genes. With this information, a regulatory pathway would be built up using microarray data. In the present study, two signaling pathways, i.e. circadian regulatory

  11. Cultural effects on the association between election outcomes and face-based trait inferences.

    Directory of Open Access Journals (Sweden)

    Chujun Lin

    difficult question of causality underlying the association between facial inferences and election outcomes. We also discuss the implications for political science and cognitive psychology.

  12. Cultural effects on the association between election outcomes and face-based trait inferences.

    Science.gov (United States)

    Lin, Chujun; Adolphs, Ralph; Alvarez, R Michael

    2017-01-01

    causality underlying the association between facial inferences and election outcomes. We also discuss the implications for political science and cognitive psychology.

  13. Cultural effects on the association between election outcomes and face-based trait inferences

    Science.gov (United States)

    Adolphs, Ralph; Alvarez, R. Michael

    2017-01-01

    causality underlying the association between facial inferences and election outcomes. We also discuss the implications for political science and cognitive psychology. PMID:28700647

  14. Inferring topologies of complex networks with hidden variables.

    Science.gov (United States)

    Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing

    2012-10-01

    Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.

  15. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  16. Text comprehension in children: comparing different classes of inferences by using on-line methodology / Compreensão de texto em crianças: comparações entre diferentes classes de inferência a partir de uma metodologia on-line

    Directory of Open Access Journals (Sweden)

    Alina Galvão Spinillo

    2007-01-01

    Full Text Available This study, by means of using an on-line methodology, examined 7 and 9-year-old children's text comprehension in relation to different types of inferences constructed during a story reading task: causal inferences, state inferences and inferences of prediction (what happens next in the story. The on-line methodology consists of making inferential questions to the child during text comprehension immediately after the subject has read a passage. Due to the fact that inferences of prediction involve extratextual information and require to raise hypothesis about the continuity of the narrative, children had difficulties in predicting events that had not occurred yet in the story. It was concluded that the ability to make inferences during text comprehension varies according to the type of inferential question presented and that this ability develops with age. The inovative aspect of the on-line methodology and its relevance to the research on text comprehension are discussed.

  17. Entanglement, non-Markovianity, and causal non-separability

    Science.gov (United States)

    Milz, Simon; Pollock, Felix A.; Le, Thao P.; Chiribella, Giulio; Modi, Kavan

    2018-03-01

    Quantum mechanics, in principle, allows for processes with indefinite causal order. However, most of these causal anomalies have not yet been detected experimentally. We show that every such process can be simulated experimentally by means of non-Markovian dynamics with a measurement on additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a causal processes. Furthermore, we give necessary and sufficient conditions for open system dynamics with measurement to yield processes that respect causality locally, and find that tripartite entanglement and nonlocal unitary transformations are crucial requirements for the simulation of causally indefinite processes. These results show a direct connection between three counter-intuitive concepts: entanglement, non-Markovianity, and causal non-separability.

  18. Causal analysis of self-sustaining processes in the log-layer of wall-bounded turbulence

    Science.gov (United States)

    Lozano-Duran, Adrian; Bae, Hyunji Jane

    2017-11-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, the underlying dynamics remain elusive even in the most simple and canonical configurations. Most standard methods used to investigate turbulence do not provide a clear causal inference between events, which is necessary to determine this dynamics, particularly in self-sustaning processes. In the present work, we examine the causal interactions between streaks and rolls in the logarithmic layer of minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. Streaks are represented by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocities. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear, which controls the dynamics and time-scales. The well-known lift-up effect is shown to be not a key ingredient in the causal network between shear, streaks and rolls. Funded by ERC Coturb Madrid Summer Program.

  19. Causal theory in (2+1)-dimensional Qed

    International Nuclear Information System (INIS)

    Scharf, G.; Wreszinski, W.F.

    1994-01-01

    The program of constructing the S-matrix by means of causality in quantum field theory goes back to Stueckelberg and Bogoliubov. Epstein and Glaser proposed an axiomatic construct where ultraviolet divergences do not appear, leading directly to the renormalized perturbation series. They have shown that in the causal theory the UV problem is a consequence of incorrect distribution splitting. This paper studies the causal theory in (2+1)D Qed

  20. Causal knowledge and the development of inductive reasoning

    OpenAIRE

    Bright, Aimée K.; Feeney, Aidan

    2014-01-01

    We explored the development of sensitivity to causal relations in children’s inductive reasoning. Children (5-, 8-, and 12-year-olds) and adults were given trials in which they decided whether a property known to be possessed by members of one category was also possessed by members of (a) a taxonomically related category or (b) a causally related category. The direction of the causal link was either predictive (prey → predator) or diagnostic (predator → prey), and the property that participan...