WorldWideScience

Sample records for non-markovian stochastic processes

  1. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...

  2. Stochastic wave-function simulation of irreversible emission processes for open quantum systems in a non-Markovian environment

    Science.gov (United States)

    Polyakov, Evgeny A.; Rubtsov, Alexey N.

    2018-02-01

    When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.

  3. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  4. A framework for the direct evaluation of large deviations in non-Markovian processes

    International Nuclear Information System (INIS)

    Cavallaro, Massimo; Harris, Rosemary J

    2016-01-01

    We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means. (letter)

  5. Rate processes with non-Markovian dynamical disorder

    International Nuclear Information System (INIS)

    Goychuk, Igor

    2005-01-01

    Rate processes with dynamical disorder are investigated within a simple framework provided by unidirectional electron transfer (ET) with fluctuating transfer rate. The rate fluctuations are assumed to be described by a non-Markovian stochastic jump process which reflects conformational dynamics of an electron transferring donor-acceptor molecular complex. A tractable analytical expression is obtained for the relaxation of the donor population (in the Laplace-transformed time domain) averaged over the stationary conformational fluctuations. The corresponding mean transfer time is also obtained in an analytical form. The case of two-state fluctuations is studied in detail for a model incorporating substate diffusion within one of the conformations. It is shown that an increase of the conformational diffusion time results in a gradual transition from the regime of fast modulation characterized by the averaged ET rate to the regime of quasistatic disorder. This transition occurs at the conformational mean residence time intervals fixed much less than the inverse of the corresponding ET rates. An explanation of this paradoxical effect is provided. Moreover, its presence is also manifested for the simplest, exactly solvable non-Markovian model with a biexponential distribution of the residence times in one of the conformations. The nontrivial conditions for this phenomenon to occur are found

  6. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    International Nuclear Information System (INIS)

    Koch, Werner

    2010-01-01

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time propagation - until

  7. Non-Markovian dissipative quantum mechanics with stochastic trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Werner

    2010-09-09

    All fields of physics - be it nuclear, atomic and molecular, solid state, or optical - offer examples of systems which are strongly influenced by the environment of the actual system under investigation. The scope of what is called ''the environment'' may vary, i.e., how far from the system of interest an interaction between the two does persist. Typically, however, it is much larger than the open system itself. Hence, a fully quantum mechanical treatment of the combined system without approximations and without limitations of the type of system is currently out of reach. With the single assumption of the environment to consist of an internally thermalized set of infinitely many harmonic oscillators, the seminal work of Stockburger and Grabert [Chem. Phys., 268:249-256, 2001] introduced an open system description that captures the environmental influence by means of a stochastic driving of the reduced system. The resulting stochastic Liouville-von Neumann equation describes the full non-Markovian dynamics without explicit memory but instead accounts for it implicitly through the correlations of the complex-valued noise forces. The present thesis provides a first application of the Stockburger-Grabert stochastic Liouville-von Neumann equation to the computation of the dynamics of anharmonic, continuous open systems. In particular, it is demonstrated that trajectory based propagators allow for the construction of a numerically stable propagation scheme. With this approach it becomes possible to achieve the tremendous increase of the noise sample count necessary to stochastically converge the results when investigating such systems with continuous variables. After a test against available analytic results for the dissipative harmonic oscillator, the approach is subsequently applied to the analysis of two different realistic, physical systems. As a first example, the dynamics of a dissipative molecular oscillator is investigated. Long time

  8. Dynamics of non-Markovian exclusion processes

    International Nuclear Information System (INIS)

    Khoromskaia, Diana; Grosskinsky, Stefan; Harris, Rosemary J

    2014-01-01

    Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems. (paper)

  9. Dynamics of non-Markovian exclusion processes

    Science.gov (United States)

    Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan

    2014-12-01

    Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.

  10. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2003-01-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit

  11. Stochastic representation of a class of non-Markovian completely positive evolutions

    International Nuclear Information System (INIS)

    Budini, Adrian A.

    2004-01-01

    By modeling the interaction of an open quantum system with its environment through a natural generalization of the classical concept of continuous time random walk, we derive and characterize a class of non-Markovian master equations whose solution is a completely positive map. The structure of these master equations is associated with a random renewal process where each event consist in the application of a superoperator over a density matrix. Strong nonexponential decay arise by choosing different statistics of the renewal process. As examples we analyze the stochastic and averaged dynamics of simple systems that admit an analytical solution. The problem of positivity in quantum master equations induced by memory effects [S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808 (2001)] is clarified in this context

  12. Non-Markovian quantum processes: Complete framework and efficient characterization

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  13. Stochastic parameterizing manifolds and non-Markovian reduced equations stochastic manifolds for nonlinear SPDEs II

    CERN Document Server

    Chekroun, Mickaël D; Wang, Shouhong

    2015-01-01

    In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.

  14. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  15. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  16. Mean first-passage times in confined media: from Markovian to non-Markovian processes

    International Nuclear Information System (INIS)

    Bénichou, O; Voituriez, R; Guérin, T

    2015-01-01

    We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source–target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this non- Markovian problem. (topical review)

  17. Markovianity and non-Markovianity in quantum and classical systems

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.

  18. Joint probability distributions for a class of non-Markovian processes.

    Science.gov (United States)

    Baule, A; Friedrich, R

    2005-02-01

    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H. C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single-time probability distributions to the case of N -time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-Markovian character of the process.

  19. Spherical particle Brownian motion in viscous medium as non-Markovian random process

    International Nuclear Information System (INIS)

    Morozov, Andrey N.; Skripkin, Alexey V.

    2011-01-01

    The Brownian motion of a spherical particle in an infinite medium is described by the conventional methods and integral transforms considering the entrainment of surrounding particles of the medium by the Brownian particle. It is demonstrated that fluctuations of the Brownian particle velocity represent a non-Markovian random process. The features of Brownian motion in short time intervals and in small displacements are considered. -- Highlights: → Description of Brownian motion considering the entrainment of medium is developed. → We find the equations for statistical characteristics of impulse fluctuations. → Brownian motion at small time intervals is considered. → Theoretical results and experimental data are compared.

  20. Non-Markovian stochastic Schroedinger equations: Generalization to real-valued noise using quantum-measurement theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction

  1. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...... the polaritonic quasi-particle nature of the carrier-photon system interacting with the phonon reservoir....

  2. Femtosecond Non-Markovian Optical Dynamics in Solution

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos

    1991-01-01

    Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the

  3. Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks

    Science.gov (United States)

    Liu, Qiang; Van Mieghem, Piet

    2018-02-01

    Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1 /ln(λ1+1 ) , where λ1 is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1 /ln(λ1+1 ) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.

  4. Persistence of non-Markovian Gaussian stationary processes in discrete time

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig

    2018-04-01

    The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time n . Few results are known for the persistence P0(n ) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through P0(n ) ˜θn . Using a modified version of the independent interval approximation (IIA) that we developed before, we are able to calculate P0(n ) analytically in z -transform space in terms of the autocorrelation function A (n ) . If A (n )→0 as n →∞ , we extract θ numerically, while if A (n )=0 , for finite n >N , we find θ exactly (within the IIA). We apply our results to three special cases: the nearest-neighbor-correlated "first order moving average process", where A (n )=0 for n >1 , the double exponential-correlated "second order autoregressive process", where A (n ) =c1λ1n+c2λ2n , and power-law-correlated variables, where A (n ) ˜n-μ . Apart from the power-law case when μ <5 , we find excellent agreement with simulations.

  5. Large deviation estimates for a Non-Markovian Lévy generator of big order

    International Nuclear Information System (INIS)

    Léandre, Rémi

    2015-01-01

    We give large deviation estimates for a non-markovian convolution semi-group with a non-local generator of Lévy type of big order and with the standard normalisation of semi-classical analysis. No stochastic process is associated to this semi-group. (paper)

  6. A hybrid stochastic hierarchy equations of motion approach to treat the low temperature dynamics of non-Markovian open quantum systems

    Science.gov (United States)

    Moix, Jeremy M.; Cao, Jianshu

    2013-10-01

    The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.

  7. Joint Probability Distributions for a Class of Non-Markovian Processes

    OpenAIRE

    Baule, A.; Friedrich, R.

    2004-01-01

    We consider joint probability distributions for the class of coupled Langevin equations introduced by Fogedby [H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)]. We generalize well-known results for the single time probability distributions to the case of N-time joint probability distributions. It is shown that these probability distribution functions can be obtained by an integral transform from distributions of a Markovian process. The integral kernel obeys a partial differential equation with fr...

  8. Mixing-induced quantum non-Markovianity and information flow

    Science.gov (United States)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  9. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  10. Exact solution for a non-Markovian dissipative quantum dynamics.

    Science.gov (United States)

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  11. Investigating non-Markovian dynamics of quantum open systems

    Science.gov (United States)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  12. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  13. Quantum non-Markovianity: characterization, quantification and detection

    International Nuclear Information System (INIS)

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2014-01-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions. (review article)

  14. Quantum non-Markovianity: characterization, quantification and detection

    Science.gov (United States)

    Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  15. Non-Markovian decoherent quantum walks

    International Nuclear Information System (INIS)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect

  16. Zero-crossing statistics for non-Markovian time series.

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  17. Zero-crossing statistics for non-Markovian time series

    Science.gov (United States)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  18. A classical appraisal of quantum definitions of non-Markovian dynamics

    International Nuclear Information System (INIS)

    Vacchini, Bassano

    2012-01-01

    We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian processes. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behaviour is analysed in detail for quantum dynamics which can be built taking as input a class of classical processes. (paper)

  19. Non-Markovianity in the collision model with environmental block

    Science.gov (United States)

    Jin, Jiasen; Yu, Chang-shui

    2018-05-01

    We present an extended collision model to simulate the dynamics of an open quantum system. In our model, the unit to represent the environment is, instead of a single particle, a block which consists of a number of environment particles. The introduced blocks enable us to study the effects of different strategies of system–environment interactions and states of the blocks on the non-Markovianities. We demonstrate our idea in the Gaussian channels of an all-optical system and derive a necessary and sufficient condition of non-Markovianity for such channels. Moreover, we show the equivalence of our criterion to the non-Markovian quantum jump in the simulation of the pure damping process of a single-mode field. We also show that the non-Markovianity of the channel working in the strategy that the system collides with environmental particles in each block in a certain order will be affected by the size of the block and the embedded entanglement and the effects of heating and squeezing the vacuum environmental state will quantitatively enhance the non-Markovianity.

  20. Non-Markovian nuclear dynamics

    International Nuclear Information System (INIS)

    Kolomietz, V.M.

    2011-01-01

    A prove of equations of motion for the nuclear shape variables which establish a direct connection of the memory effects with the dynamic distortion of the Fermi surface is suggested. The equations of motion for the nuclear Fermi liquid drop are derived from the collisional kinetic equation. In general, the corresponding equations are non-Markovian. The memory effects appear due to the Fermi surface distortions and depend on the relaxation time. The main purpose of the present work is to apply the non-Markovian dynamics to the description of the nuclear giant multipole resonances (GMR) and the large amplitude motion. We take also into consideration the random forces and concentrate on the formation of both the conservative and the friction forces to make more clear the memory effect on the nuclear dynamics. In this respect, the given approach represents an extension of the traditional liquid drop model (LDM) to the case of the nuclear Fermi liquid drop. In practical application, we pay close attention to the description of the descent of the nucleus from the fission barrier to the scission point.

  1. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  2. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  3. Foundations and measures of quantum non-Markovianity

    International Nuclear Information System (INIS)

    Breuer, Heinz-Peter

    2012-01-01

    The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behaviour. Here, we review recent ideas developing a general mathematical definition for non-Markovianity in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems, which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system–environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system. (topical review)

  4. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  5. Entanglement, non-Markovianity, and causal non-separability

    Science.gov (United States)

    Milz, Simon; Pollock, Felix A.; Le, Thao P.; Chiribella, Giulio; Modi, Kavan

    2018-03-01

    Quantum mechanics, in principle, allows for processes with indefinite causal order. However, most of these causal anomalies have not yet been detected experimentally. We show that every such process can be simulated experimentally by means of non-Markovian dynamics with a measurement on additional degrees of freedom. In detail, we provide an explicit construction to implement arbitrary a causal processes. Furthermore, we give necessary and sufficient conditions for open system dynamics with measurement to yield processes that respect causality locally, and find that tripartite entanglement and nonlocal unitary transformations are crucial requirements for the simulation of causally indefinite processes. These results show a direct connection between three counter-intuitive concepts: entanglement, non-Markovianity, and causal non-separability.

  6. Non-Markovian features of deeply inelastic collisions

    International Nuclear Information System (INIS)

    Pal, D.; Chattopadhyay, S.; Kar, K.

    1988-01-01

    To study the effect of memory in the diffusion processes (of charge, mass etc) observed in deeply inelastic heavy-ion reactions, we derive non-Markovian transport equations for the exponential and Gaussian memory kernels. The centroid and the variance of the distribution are expressed in terms of the memory time, drift and diffusion coefficients. The predictions based on this theory show better agreement with the experimental data than the Markovian results. (author)

  7. THE HALO MASS FUNCTION FROM EXCURSION SET THEORY. I. GAUSSIAN FLUCTUATIONS WITH NON-MARKOVIAN DEPENDENCE ON THE SMOOTHING SCALE

    International Nuclear Information System (INIS)

    Maggiore, Michele; Riotto, Antonio

    2010-01-01

    A classic method for computing the mass function of dark matter halos is provided by excursion set theory, where density perturbations evolve stochastically with the smoothing scale, and the problem of computing the probability of halo formation is mapped into the so-called first-passage time problem in the presence of a barrier. While the full dynamical complexity of halo formation can only be revealed through N-body simulations, excursion set theory provides a simple analytic framework for understanding various aspects of this complex process. In this series of papers we propose improvements of both technical and conceptual aspects of excursion set theory, and we explore up to which point the method can reproduce quantitatively the data from N-body simulations. In Paper I of the series, we show how to derive excursion set theory from a path integral formulation. This allows us both to derive rigorously the absorbing barrier boundary condition, that in the usual formulation is just postulated, and to deal analytically with the non-Markovian nature of the random walk. Such a non-Markovian dynamics inevitably enters when either the density is smoothed with filters such as the top-hat filter in coordinate space (which is the only filter associated with a well-defined halo mass) or when one considers non-Gaussian fluctuations. In these cases, beside 'Markovian' terms, we find 'memory' terms that reflect the non-Markovianity of the evolution with the smoothing scale. We develop a general formalism for evaluating perturbatively these non-Markovian corrections, and in this paper we perform explicitly the computation of the halo mass function for Gaussian fluctuations, to first order in the non-Markovian corrections due to the use of a top-hat filter in coordinate space. In Paper II of this series we propose to extend excursion set theory by treating the critical threshold for collapse as a stochastic variable, which better captures some of the dynamical complexity of the

  8. Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond

    Science.gov (United States)

    Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen

    2018-01-01

    The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.

  9. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  10. Non-Markovianity of Gaussian Channels.

    Science.gov (United States)

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  11. The simulation of the non-Markovian behaviour of a two-level system

    Science.gov (United States)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  12. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  13. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  14. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  15. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Svertilov, S.I.

    1999-01-01

    The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

  16. Basic mechanisms in the laser control of non-Markovian dynamics

    Science.gov (United States)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  17. Delineating incoherent non-Markovian dynamics using quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  18. Exploiting Non-Markovianity for Quantum Control.

    Science.gov (United States)

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  19. Non-Markovian dynamics in the theory of full counting statistics

    DEFF Research Database (Denmark)

    Flindt, Christian; Braggio, A.; Novotny, Tomas

    2007-01-01

    generating function corresponding to the resulting non-Markovian rate equation and find that the measured current cumulants behave significantly differently compared to those of a Markovian transport process. Our findings provide a novel interpretation of noise suppression found in a number of systems....

  20. Non-Markovian Investigation of an Autonomous Quantum Heat Engine

    Science.gov (United States)

    Goyal, Ketan

    A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.

  1. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system.......We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  2. Uhrig dynamical control of a three-level system via non-Markovian quantum state diffusion

    International Nuclear Information System (INIS)

    Shu, Wenchong; Zhao, Xinyu; Jing, Jun; Yu, Ting; Wu, Lian-Ao

    2013-01-01

    In this paper, we use the quantum state diffusion (QSD) equation to implement the Uhrig dynamical decoupling to a three-level quantum system coupled to a non-Markovian reservoir comprising of infinite numbers of degrees of freedom. For this purpose, we first reformulate the non-Markovian QSD to incorporate the effect of the external control fields. With this stochastic QSD approach, we demonstrate that an unknown state of the three-level quantum system can be universally protected against both coloured phase and amplitude noises when the control-pulse sequences and control operators are properly designed. The advantage of using non-Markovian QSD equations is that the control dynamics of open quantum systems can be treated exactly without using Trotter product formula and be efficiently simulated even when the environment is comprised of infinite numbers of degrees of freedom. We also show how the control efficacy depends on the environment memory time and the designed time points of applied control pulses. (paper)

  3. Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments

    Science.gov (United States)

    Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping

    2018-03-01

    Quantum memory-assisted entropic uncertainty relation (QMA EUR) addresses that the lower bound of Maassen and Uffink's entropic uncertainty relation (without quantum memory) can be broken. In this paper, we investigated the dynamical features of QMA EUR in the Markovian and non-Markovian dissipative environments. It is found that dynamical process of QMA EUR is oscillation in non-Markovian environment, and the strong interaction is favorable for suppressing the amount of entropic uncertainty. Furthermore, we presented two schemes by means of prior weak measurement and posterior weak measurement reversal to control the amount of entropic uncertainty of Pauli observables in dissipative environments. The numerical results show that the prior weak measurement can effectively reduce the wave peak values of the QMA-EUA dynamic process in non-Markovian environment for long periods of time, but it is ineffectual on the wave minima of dynamic process. However, the posterior weak measurement reversal has an opposite effects on the dynamic process. Moreover, the success probability entirely depends on the quantum measurement strength. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.

  4. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  5. Non-Markovian effect on the geometric phase of a dissipative qubit

    International Nuclear Information System (INIS)

    Chen Juanjuan; Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-01-01

    We studied the geometric phase of a two-level atom coupled to an environment with Lorentzian spectral density. The non-Markovian effect on the geometric phase is explored analytically and numerically. In the weak coupling limit, the lowest order correction to the geometric phase is derived analytically and the general case is calculated numerically. It was found that the correction to the geometric phase is significantly large if the spectral width is small, and in this case the non-Markovian dynamics has a significant impact on the geometric phase. When the spectral width increases, the correction to the geometric phase becomes negligible, which shows the robustness of the geometric phase to the environmental white noises. The result is significant to the quantum information processing based on the geometric phase.

  6. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments

    International Nuclear Information System (INIS)

    Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang

    2014-01-01

    The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)

  7. Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels

    International Nuclear Information System (INIS)

    An, J.-H.; Zhang, W.-M.

    2007-01-01

    We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case

  8. Data-based Non-Markovian Model Inference

    Science.gov (United States)

    Ghil, Michael

    2015-04-01

    This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close

  9. Solutions for a non-Markovian diffusion equation

    International Nuclear Information System (INIS)

    Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Oliveira, E.C. de

    2010-01-01

    Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.

  10. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  11. Non-Markovianity and memory of the initial state

    Science.gov (United States)

    Hinarejos, Margarida; Bañuls, Mari-Carmen; Pérez, Armando; de Vega, Inés

    2017-08-01

    We explore in a rigorous manner the intuitive connection between the non-Markovianity of the evolution of an open quantum system and the performance of the system as a quantum memory. Using the paradigmatic case of a two-level open quantum system coupled to a bosonic bath, we compute the recovery fidelity, which measures the best possible performance of the system to store a qubit of information. We deduce that this quantity is connected, but not uniquely determined, by the non-Markovianity, for which we adopt the Breuer-Laine-Piilo measure proposed in Breuer et al (2009 Phys. Rev. Lett. 103 210401). We illustrate our findings with explicit calculations for the case of a structured environment.

  12. From BBGKY hierarchy to non-Markovian evolution equations

    International Nuclear Information System (INIS)

    Gerasimenko, V.I.; Shtyk, V.O.; Zagorodny, A.G.

    2009-01-01

    The problem of description of the evolution of the microscopic phase density and its generalizations is discussed. With this purpose, the sequence of marginal microscopic phase densities is introduced, and the appropriate BBGKY hierarchy for these microscopic distributions and their average values is formulated. The microscopic derivation of the generalized evolution equation for the average value of the microscopic phase density is given, and the non-Markovian generalization of the Fokker-Planck collision integral is proposed

  13. Population density equations for stochastic processes with memory kernels

    Science.gov (United States)

    Lai, Yi Ming; de Kamps, Marc

    2017-06-01

    We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.

  14. Composite stochastic processes

    NARCIS (Netherlands)

    Kampen, N.G. van

    Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

  15. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  16. Essentials of stochastic processes

    CERN Document Server

    Durrett, Richard

    2016-01-01

    Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

  17. Optimal management of non-Markovian biological populations

    Science.gov (United States)

    Williams, B.K.

    2007-01-01

    Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.

  18. Non-Markovian effects on quantum-communication protocols

    International Nuclear Information System (INIS)

    Yeo, Ye; Oh, C. H.; An, Jun-Hong

    2010-01-01

    We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.

  19. Non-Markovian dynamics of charge carriers in quantum dots

    International Nuclear Information System (INIS)

    Vaz, E; Kyriakidis, J

    2008-01-01

    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals

  20. Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Blasone, Massimo; Bernardini, Alex E.

    2018-03-01

    The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation—which includes pseudovectorlike and tensorlike field interactions—the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.

  1. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  2. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  3. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    Science.gov (United States)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  4. Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems

    Science.gov (United States)

    Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan

    2017-12-01

    One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.

  5. System–environment correlations and non-Markovian dynamics

    International Nuclear Information System (INIS)

    Pernice, A; Helm, J; Strunz, W T

    2012-01-01

    We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system–environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of ‘non-Markovianity’ will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system–environment correlations. Depending on the initial purity of the qubit state, these system–environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system–environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and ‘non-Markovianity’. (paper)

  6. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)

  7. Simulations of a non-Markovian description of nucleation

    NARCIS (Netherlands)

    Kuipers, J.; Barkema, G.T.

    2010-01-01

    In most nucleation theories, the state of a nucleating system is described by a distribution of droplet masses and this distribution evolves as a memoryless stochastic process. This is incorrect for a large class of nucleating systems. In a recent paper [ J. Kuipers and G. T. Barkema, Phys. Rev. E

  8. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    Science.gov (United States)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  9. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  10. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  11. Bulk-mediated surface diffusion: non-Markovian desorption and biased behaviour in an infinite system

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Wio, Horacio S

    2005-01-01

    We analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework. We consider that the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption and its motion in the bulk are governed by Markovian dynamics, and include the effect of an external field in the form of a bias in the normal motion to the surface. We study this system for the diffusion of particles in a semi-infinite lattice, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The agreement between numerical and analytical asymptotic results is discussed

  12. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  13. Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits

    Science.gov (United States)

    Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina

    2018-03-01

    The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.

  14. Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model

    International Nuclear Information System (INIS)

    Ayik, S.

    1996-01-01

    In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations

  15. Non-Markovian modification of the golden rule rate expression

    International Nuclear Information System (INIS)

    Basilevsky, M. V.; Davidovich, G. V.; Titov, S. V.; Voronin, A. I.

    2006-01-01

    The reformulation of the standard golden rule approach considered in this paper for treating reactive tunneling reduces the computation of the reaction rate to a derivation of band shapes for energy levels of reactant and product states. This treatment is based on the assumption that the medium environment is actively involved as a partner in the energy exchange with the reactive subsystem but its reorganization effect is negligible. Starting from the quantum relaxation equation for the density matrix, the required band shapes are represented in terms of the spectral density function, exhibiting the continuum spectrum inherent to the interaction between the reactants and the medium in the total reactive system. The simplest Lorentzian spectral bands, obtained under Redfield approximation, proved to be unsatisfactory because they produced a divergent rate expression at low temperature. The problem is resolved by invoking a refined spectral band shape, which behaves as Lorentzian one at the band center but decays exponentially at its tails. The corresponding closed non-Markovian rate expression is derived and investigated taking as an example the photochemical H-transfer reaction between fluorene and acridine proceeding in the fluorene molecular crystal. The kinetics in this reactive system was thoroughly studied experimentally in a wide temperature range [B. Prass et al., Ber. Bunsenges. Phys. Chem. 102, 498 (1998)

  16. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  17. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    ference between Markovian and non-Markovian systems lies in the memory ... In recent years, research on quantum entanglement has attracted a lot of attention, which .... Hamiltonians for three types of atoms in the interaction picture are.

  18. Connecting two jumplike unravelings for non-Markovian open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto (Finland)

    2011-09-15

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  19. Connecting two jumplike unravelings for non-Markovian open quantum systems

    International Nuclear Information System (INIS)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki

    2011-01-01

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  20. Non-Markovian Effects on the Brownian Motion of a Free Particle

    OpenAIRE

    Bolivar, A. O.

    2010-01-01

    Non-Markovian effects upon the Brownian movement of a free particle in the presence as well as in the absence of inertial force are investigated within the framework of Fokker-Planck equations (Rayleigh and Smoluchowski equations). More specifically, it is predicted that non-Markovian features can enhance the values of the mean square displacement and momentum, thereby assuring the mathematical property of differentiability of the these physically observable quantities.

  1. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  2. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  3. Study on the security of discrete-variable quantum key distribution over non-Markovian channels

    International Nuclear Information System (INIS)

    Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua

    2012-01-01

    The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)

  4. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  5. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2011-01-01

    A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

  6. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  7. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  8. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  9. Quantum operation for a one-qubit system under a non-Markovian environment

    International Nuclear Information System (INIS)

    Xue Shibei; Zhang Jing; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong

    2011-01-01

    This paper introduces a simple alternating-current (AC) control strategy to perform quantum state manipulations under non-Markovian noise. A genetic algorithm is adopted to optimize the parameters of the AC control, which can be further used to fulfil one-qubit quantum operations at a given final time. Theoretical analysis and simulations show that our method works almost equally well for 1/f noise, ohmic, sub-ohmic and super-ohmic noise, which demonstrates the robustness of our strategy for noise with various spectra. In comparison with the Markovian cases, our method is more suitable to be used to suppress non-Markovian noise.

  10. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  11. Introduction to stochastic processes

    CERN Document Server

    Cinlar, Erhan

    2013-01-01

    Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

  12. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  13. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    We solve the Nakajima–Zwanzig (NZ) non-Markovian master equation to study the dynamics of different types of three-level atomic systems interacting with bosonic Lorentzian reservoirs at zero temperature. Von Neumann entropy (S) is used to show the evolution of the degree of entanglement of the subsystems.

  14. Simple non-Markovian microscopic models for the depolarizing channel of a single qubit

    International Nuclear Information System (INIS)

    Fonseca Romero, K M; Lo Franco, R

    2012-01-01

    The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.

  15. Fault-tolerant quantum computation for local non-Markovian noise

    International Nuclear Information System (INIS)

    Terhal, Barbara M.; Burkard, Guido

    2005-01-01

    We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis

  16. Enhancement of Quantum Correlations in Qubit-Qutrit Systems under the non-Markovian Environment

    Institute of Scientific and Technical Information of China (English)

    Abdul Basit; Hamad Ali; Fazal Badshah; Guo-Qin Ge

    2017-01-01

    We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck (OU) noise.Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs.A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters,the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations.In addition,it is observed that the non-Markovian strength (γ/F) has a positive impact on the correlations time.For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property.Moreover,its decay can be significantly delayed.

  17. Optical signatures of non-Markovian behavior in open quantum systems

    DEFF Research Database (Denmark)

    McCutcheon, Dara

    2016-01-01

    for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature...

  18. Evolution of entropy in different types of non-Markovian three-level ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 5. Evolution of entropy in different types of non-Markovian three-level systems: Single reservoir vs. two independent reservoirs. JAGHOURI HAKIMEH SARBISHAEI MOHSEN JAVIDAN KUROSH. Regular Volume 86 Issue 5 May 2016 pp 997-1008 ...

  19. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  20. Verification of Stochastic Process Calculi

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya

    algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...

  1. Stochastic processes, slaves and supersymmetry

    International Nuclear Information System (INIS)

    Drummond, I T; Horgan, R R

    2012-01-01

    We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

  2. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  3. Non-Markovian dynamics of quantum systems: decay rate, capture and pure states

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: With the exact numerical solution of the equation for the reduced density matrix we found a minor role of the time dependence of the friction and diffusion coefficients in the escape rate from a potential well [1]. Since the used friction and diffusion coefficients were self- consistently under certain approximations derived, they preserve the positivity of the density matrix at any time. The mixed diffusion coefficient leads to a decrease of the escape rate. Since the used value of quantum diffusion coefficient in momentum is larger than the one following from a 'classic' treatment, the obtained escape rate is close to the rate calculated with the 'classic' set of diffusion coefficients. If the regime of motion is close to the under damped case or the temperature is small, the quasi-stationary escape rate can increase with friction. This is explained by the larger role of the increasing diffusion in the decay process. The agreement of the escape rate obtained with the analytical expressions in comparison to numerically calculated data depends on the characteristics of the considered system. The agreement is better in the overdamped regime. However, for any regime the deviations are not larger than in the case of the classical Kramers formula. Therefore, the analytical expressions can be applied in a large range of parameters for the potential and diffusion coefficients. We demonstrated that the uncertainty function is related to the linear entropy. The diffusion coefficients supplying the purity of states were elaborated for the non-Markovian dynamics. The obtained dependences of the capture probability on the friction proves that the quantum nature of this process should be taken into consideration when one calculates the capture cross section in nucleus-nucleus collisions

  4. Survival probability of a local excitation in a non-Markovian environment: Survival collapse, Zeno and anti-Zeno effects

    International Nuclear Information System (INIS)

    Rufeil-Fiori, E.; Pastawski, H.M.

    2009-01-01

    The decay dynamics of a local excitation interacting with a non-Markovian environment, modeled by a semi-infinite tight-binding chain, is exactly evaluated. We identify distinctive regimes for the dynamics. Sequentially: (i) early quadratic decay of the initial-state survival probability, up to a spreading time t S , (ii) exponential decay described by a self-consistent Fermi Golden Rule, and (iii) asymptotic behavior governed by quantum diffusion through the return processes, leading to an inverse power law decay. At this last cross-over time t R a survival collapse becomes possible. This could reduce the survival probability by several orders of magnitude. The cross-over times t S and t R allow to assess the range of applicability of the Fermi Golden Rule and give the conditions for the observation of the Zeno and anti-Zeno effect.

  5. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2012-01-01

    This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

  6. Data-driven non-Markovian closure models

    Science.gov (United States)

    Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael

    2015-03-01

    This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter

  7. Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators

    International Nuclear Information System (INIS)

    Wilkie, Joshua; Wong Yinmei

    2009-01-01

    We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects

  8. Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2015-01-01

    The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)

  9. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  10. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ubbelohde, N.; Maire, N.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover (Germany); Roszak, K. [Institute of Physics, Wrocław University of Technology, PL-50370 Wrocław (Poland); Hohls, F. [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany); Novotný, T. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, CZ-12116 Prague (Czech Republic)

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  11. Discrete stochastic processes and applications

    CERN Document Server

    Collet, Jean-François

    2018-01-01

    This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

  12. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  13. Pseudothermalization in driven-dissipative non-Markovian open quantum systems

    Science.gov (United States)

    Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo

    2018-03-01

    We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.

  14. Quantum measurements in spin-boson model under non-Markovian environment

    Science.gov (United States)

    Berrada, K.; Aldaghri, O.

    2017-07-01

    We propose a control approach of the parameter estimation for a two-level quantum system interacting with a bosonic reservoir considering non-Markovian open, dissipative quantum system. We show that the precision of the estimation significantly affected and behaves differently within the framework of the markovian and non-Markovian regimes. The influence of memory effects for an Ohmic reservoir with Lorentz-Drude regularization on the estimation-parameter precision are numerically demonstrated under the following three conditions: ω0 ≪ωc , ω0 ≈ωc or ω0 ≫ωc , where ω0 is the characteristic frequency of the two-level system, and ωc is the cut-off frequency of Ohmic reservoir. We investigate the precision rate in high temperature, intermediate temperature, and low temperature reservoirs for various values of the ratio r =ωc /ω0 considering manifold external fields. We reveal that the enhancement and preservation of the measurement precision, highly depend on the combination of the external control field, reservoir parameters, and non-Markovian effects.

  15. Non-Markovian State-Dependent Networks in Critical Loading

    Science.gov (United States)

    2015-02-04

    Under suitable moment and mixing conditions which imply the invariance principle (cf. Herrndorf[8], Peligrad[17], Jacod and Shiryaev[9]), Corollary 4.1...volume 288 of Grundlehren der Mathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag: Berlin, second...arrival rate control policy on throughput and work-in-process in production systems with workload dependent processing rates. Int. J. Prod. Econ . 2003, 85

  16. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs

    Science.gov (United States)

    Lebreuilly, José; Biella, Alberto; Storme, Florent; Rossini, Davide; Fazio, Rosario; Ciuti, Cristiano; Carusotto, Iacopo

    2017-09-01

    We introduce a frequency-dependent incoherent pump scheme with a square-shaped spectrum as a way to study strongly correlated photons in arrays of coupled nonlinear resonators. This scheme can be implemented via a reservoir of population-inverted two-level emitters with a broad distribution of transition frequencies. Our proposal is predicted to stabilize a nonequilibrium steady state sharing important features with a zero-temperature equilibrium state with a tunable chemical potential. We confirm the efficiency of our proposal for the Bose-Hubbard model by computing numerically the steady state for finite system sizes: first, we predict the occurrence of a sequence of incompressible Mott-insulator-like states with arbitrary integer densities presenting strong robustness against tunneling and losses. Secondly, for stronger tunneling amplitudes or noninteger densities, the system enters a coherent regime analogous to the superfluid state. In addition to an overall agreement with the zero-temperature equilibrium state, exotic nonequilibrium processes leading to a finite entropy generation are pointed out in specific regions of parameter space. The equilibrium ground state is shown to be recovered by adding frequency-dependent losses. The promise of this improved scheme in view of quantum simulation of the zero-temperature many-body physics is highlighted.

  17. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  18. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  19. Error Distributions on Large Entangled States with Non-Markovian Dynamics

    DEFF Research Database (Denmark)

    McCutcheon, Dara; Lindner, Netanel H.; Rudolph, Terry

    2014-01-01

    We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten...... of errors occurs has a bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model....

  20. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)

    2017-02-15

    A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  1. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  2. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  3. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  4. Stochastic Processes in Epidemic Theory

    CERN Document Server

    Lefèvre, Claude; Picard, Philippe

    1990-01-01

    This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.

  5. Stochastic processes in mechanical engineering

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2006-01-01

    Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the

  6. Towards Model Checking Stochastic Process Algebra

    NARCIS (Netherlands)

    Hermanns, H.; Grieskamp, W.; Santen, T.; Katoen, Joost P.; Stoddart, B.; Meyer-Kayser, J.; Siegle, M.

    2000-01-01

    Stochastic process algebras have been proven useful because they allow behaviour-oriented performance and reliability modelling. As opposed to traditional performance modelling techniques, the behaviour- oriented style supports composition and abstraction in a natural way. However, analysis of

  7. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

    Science.gov (United States)

    Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.

    2012-09-01

    Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

  8. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    Science.gov (United States)

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  9. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    Science.gov (United States)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  10. An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty

    Science.gov (United States)

    Xi, Xiaopeng; Chen, Maoyin; Zhang, Hanwen; Zhou, Donghua

    2018-05-01

    It is widely noted in the literature that the degradation should be simplified into a memoryless Markovian process for the purpose of predicting the remaining useful life (RUL). However, there actually exists the long-term dependency in the degradation processes of some industrial systems, including electromechanical equipments, oil tankers, and large blast furnaces. This implies the new degradation state depends not only on the current state, but also on the historical states. Such dynamic systems cannot be accurately described by traditional Markovian models. Here we present an improved non-Markovian degradation model with both the long-term dependency and the item-to-item uncertainty. As a typical non-stationary process with dependent increments, fractional Brownian motion (FBM) is utilized to simulate the fractal diffusion of practical degradations. The uncertainty among multiple items can be represented by a random variable of the drift. Based on this model, the unknown parameters are estimated through the maximum likelihood (ML) algorithm, while a closed-form solution to the RUL distribution is further derived using a weak convergence theorem. The practicability of the proposed model is fully verified by two real-world examples. The results demonstrate that the proposed method can effectively reduce the prediction error.

  11. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  12. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  13. Selected papers on noise and stochastic processes

    CERN Document Server

    1954-01-01

    Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

  14. Is human failure a stochastic process?

    International Nuclear Information System (INIS)

    Dougherty, Ed M.

    1997-01-01

    Human performance results in failure events that occur with a risk-significant frequency. System analysts have taken for granted the random (stochastic) nature of these events in engineering assessments such as risk assessment. However, cognitive scientists and error technologists, at least those who have interest in human reliability, have, over the recent years, claimed that human error does not need this stochastic framework. Yet they still use the language appropriate to stochastic processes. This paper examines the potential for the stochastic nature of human failure production as the basis for human reliability analysis. It distinguishes and leaves to others, however, the epistemic uncertainties over the possible probability models for the real variability of human performance

  15. Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments

    Science.gov (United States)

    Mortezapour, Ali; Ahmadi Borji, Mahdi; Lo Franco, Rosario

    2017-05-01

    Efficient entanglement preservation in open quantum systems is a crucial scope towards a reliable exploitation of quantum resources. We address this issue by studying how two-qubit entanglement dynamically behaves when two atom qubits move inside two separated identical cavities. The moving qubits independently interact with their respective cavity. As a main general result, we find that under resonant qubit-cavity interaction the initial entanglement between two moving qubits remains closer to its initial value as time passes compared to the case of stationary qubits. In particular, we show that the initial entanglement can be strongly protected from decay by suitably adjusting the velocities of the qubits according to the non-Markovian features of the cavities. Our results supply a further way of preserving quantum correlations against noise with a natural implementation in cavity-QED scenarios and are straightforwardly extendable to many qubits for scalability.

  16. Entanglement backflow under the composite effect of two non-Markovian reservoirs

    International Nuclear Information System (INIS)

    Li, Jun-Gang; Zou, Jian; Shao, Bin

    2012-01-01

    The entanglement backflow of two qubits coupled to two independent reservoirs is investigated. It is found that under the collective effects of the two independent reservoirs, the entanglement backflow of the qubits does not always increase with the increase of the non-Markovianity of one of the reservoirs but demonstrates an intricate behavior. Interestingly, the action of one reservoir can affect the other reservoir's contribution to the entanglement backflow even when the two reservoirs are independent. -- Highlights: ► We study entanglement backflow of two qubits coupled to two independent reservoirs. ► We find that the entanglement backflow demonstrates an intricate behavior. ► The action of one reservoir can affect the contribution of the other reservoir.

  17. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    Directory of Open Access Journals (Sweden)

    Pengqin Shi

    2016-09-01

    Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  18. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    Science.gov (United States)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  19. Exact master equations for the non-Markovian decay of a qubit

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Breuer, Heinz-Peter

    2010-01-01

    Exact master equations describing the decay of a two-state system into a structured reservoir are constructed. By employing the exact solution for the model, analytical expressions are determined for the memory kernel of the Nakajima-Zwanzig master equation and for the generator of the corresponding time-convolutionless master equation. This approach allows an explicit comparison of the convergence behavior of the corresponding perturbation expansions. Moreover, the structure of widely used phenomenological master equations with a memory kernel may be incompatible with a nonperturbative treatment of the underlying microscopic model. Several physical implications of the results on the microscopic analysis and the phenomenological modeling of non-Markovian quantum dynamics of open systems are discussed.

  20. Recursive approach for non-Markovian time-convolutionless master equations

    Science.gov (United States)

    Gasbarri, G.; Ferialdi, L.

    2018-02-01

    We consider a general open system dynamics and we provide a recursive method to derive the associated non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing a diagrammatic description of the associated series.

  1. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  2. Lectures on Topics in Spatial Stochastic Processes

    CERN Document Server

    Capasso, Vincenzo; Ivanoff, B Gail; Dozzi, Marco; Dalang, Robert C; Mountford, Thomas S

    2003-01-01

    The theory of stochastic processes indexed by a partially ordered set has been the subject of much research over the past twenty years. The objective of this CIME International Summer School was to bring to a large audience of young probabilists the general theory of spatial processes, including the theory of set-indexed martingales and to present the different branches of applications of this theory, including stochastic geometry, spatial statistics, empirical processes, spatial estimators and survival analysis. This theory has a broad variety of applications in environmental sciences, social sciences, structure of material and image analysis. In this volume, the reader will find different approaches which foster the development of tools to modelling the spatial aspects of stochastic problems.

  3. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  4. Topological superposition of abstractions of stochastic processes

    NARCIS (Netherlands)

    Bujorianu, L.M.; Bujorianu, M.C.

    2008-01-01

    In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a

  5. Fractional noise destroys or induces a stochastic bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Sciences, South China University of Technology, Guangzhou 510640 (China); Zeng, Caibin, E-mail: zeng.cb@mail.scut.edu.cn [School of Sciences, South China University of Technology, Guangzhou 510640 (China); School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Cong, E-mail: wangcong@scut.edu.cn [School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2013-12-15

    Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework.

  6. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  7. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  8. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  9. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  10. Optimized auxiliary representation of non-Markovian impurity problems by a Lindblad equation

    International Nuclear Information System (INIS)

    Dorda, A; Sorantin, M; Linden, W von der; Arrigoni, E

    2017-01-01

    We present a general scheme to address correlated nonequilibrium quantum impurity problems based on a mapping onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number N B of noninteracting auxiliary bath sites whose dynamics are described by a Lindblad equation, which can then be exactly solved by numerical methods such as Lanczos or matrix-product states. The mapping becomes exponentially exact with increasing N B , and is already quite accurate for small N B . Due to the presence of the intermediate bath sites, the overall dynamics acting on the impurity site is non-Markovian. While in previous work we put the focus on the manybody solution of the associated Lindblad problem, here we discuss the mapping scheme itself, which is an essential part of the overall approach. On the one hand, we provide technical details together with an in-depth discussion of the employed algorithms, and on the other hand, we present a detailed convergence study. The latter clearly demonstrates the above-mentioned exponential convergence of the procedure with increasing N B . Furthermore, the influence of temperature and an external bias voltage on the reservoirs is investigated. The knowledge of the particular convergence behavior is of great value to assess the applicability of the scheme to certain physical situations. Moreover, we study different geometries for the auxiliary system. On the one hand, this is of importance for advanced manybody solution techniques such as matrix product states which work well for short-ranged couplings, and on the other hand, it allows us to gain more insights into the underlying mechanisms when mapping non-Markovian reservoirs onto Lindblad-type impurity problems. Finally, we present results for the spectral function of the Anderson impurity model in and out of equilibrium and discuss the accuracy obtained with the different geometries of the auxiliary system

  11. Non-Markovian decay of a three-level cascade atom in a structured reservoir

    International Nuclear Information System (INIS)

    Dalton, B.J.; Garraway, B.M.

    2003-01-01

    The dynamics of a three-level atom in a cascade (or ladder) configuration with both transitions coupled to a single structured reservoir of quantized electromagnetic field modes is treated using Laplace transform methods applied to the coupled amplitude equations. In this system two-photon excitation of the reservoir occurs, and both sequences for emitting the two photons are allowed and included in the theory. An integral equation is found to govern the complex amplitudes of interest. It is shown that the dynamics of the atomic system is completely determined in terms of reservoir structure functions, which are products of the mode density with the coupling constant squared. This dependence on reservoir structure functions rather than on the mode density or coupling constants alone, shows that it may be possible to extend pseudomode theory to treat multiphoton excitation of a structured reservoir--pseudomodes being introduced in one-one correspondence with the poles of reservoir structure functions in the complex frequency plane. A general numerical method for solving the integral equations based on discretizing frequency space, and applicable to different structured reservoirs such as high-Q cavities and photonic band-gap systems, is presented. An application to a high-Q-cavity case with identical Lorentzian reservoir structure functions is made, and the non-Markovian decay of the excited state shown. A formal solution to the integral equations in terms of right and left eigenfunctions of a non-Hermitian kernel is also given. The dynamics of the cascade atom, with the two transitions coupled to two separate structured reservoirs of quantized electromagnetic field modes, is treated similarly to the single structured reservoir situation. Again the dynamics only depends on reservoir structure functions. As only one sequence of emitting the two photons now occurs, the integral equation for the amplitudes can be solved analytically. The non-Markovian decay of the

  12. Memory effects on stochastic resonance

    Science.gov (United States)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  13. Probability of stochastic processes and spacetime geometry

    International Nuclear Information System (INIS)

    Canessa, E.

    2007-01-01

    We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

  14. Stochastic Processes in Finance and Behavioral Finance

    OpenAIRE

    Steinbacher, Matjaz

    2008-01-01

    In the paper, we put some foundations for studying asset pricing and finance as a stochastic and behavioral process. In such process, preferences and psychology of agents represent the most important factor in the decision-making of people. Individuals have their own ways of acquiring the information they need, how to deal with them and how to make predictions and decisions. People usually also do not behave consistent in time, but learn. Therefore, in order to understand the behavior on the ...

  15. Periodic linear differential stochastic processes

    NARCIS (Netherlands)

    Kwakernaak, H.

    1975-01-01

    Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

  16. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  17. Continued-fraction representation of the Kraus map for non-Markovian reservoir damping

    Science.gov (United States)

    van Wonderen, A. J.; Suttorp, L. G.

    2018-04-01

    Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.

  18. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    Science.gov (United States)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  19. Non-Markovian quantum Brownian motion in one dimension in electric fields

    Science.gov (United States)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  20. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    International Nuclear Information System (INIS)

    Yao, Yao

    2015-01-01

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model

  1. AdS/CFT correspondence, critical strings and stochastic quantization

    International Nuclear Information System (INIS)

    Polyakov, D.

    2000-05-01

    In our previous paper we have shown that the NSR string sigma-model with the massless 5-form vertex operator in D = 10 NSR string theory: V 5 ∼e -3φ ψ 0 ψ 1 ψ 2 ψ 3 ψ t δ-barX t e ikparallelxparallel (t = 4, ..9) reproduces the correlators of the N = 4 D = 4 super Yang-Mills theory. In particular, this implies that the sigma-model with the V 5 operator in flat space-time should be the NSR analogue of the GS string theory on AdS 5 x S 5 . This means that the V 5 -operator plays the role of cosmological constant, curving flat ten-dimensional space-time into that of AdS 5 x S 5 . In the present paper we show that dilaton beta-function equation in such a sigma-model has the form of stochastic Langevin equation with the non-Markovian noise. The worldsheet cutoff is identified with stochastic time and the V 5 -operator plays the role of the noise. We derive the Fokker-Planck equation associated with this stochastic process and show that the Hamiltonian of the AdS 5 supergravity defines the distribution satisfying this Fokker-Planck equation. This means that the dynamical compactification of the space-time on AdS 5 x S 5 occurs as a result of the non-Markovian stochastic process, generated by the V 5 -operator noise. This provides us with an insight into relations between holography principle and the concept of stochastic quantization from the point of view of critical string theory. (author)

  2. On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, E; Scala, M; Napoli, A [CNISM and Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy); Migliore, R, E-mail: ferraro@fisica.unipa.i, E-mail: matteo.scala@fisica.unipa.i [CNR-INFM, Research Unit CNISM of Palermo, via Archirafi 36, 90123 Palermo (Italy)

    2010-09-01

    In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima-Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.

  3. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  4. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  5. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  6. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  7. A first course in stochastic processes

    CERN Document Server

    Karlin, Samuel

    1975-01-01

    The purpose, level, and style of this new edition conform to the tenets set forth in the original preface. The authors continue with their tack of developing simultaneously theory and applications, intertwined so that they refurbish and elucidate each other.The authors have made three main kinds of changes. First, they have enlarged on the topics treated in the first edition. Second, they have added many exercises and problems at the end of each chapter. Third, and most important, they have supplied, in new chapters, broad introductory discussions of several classes of stochastic processe

  8. Stationary stochastic processes for scientists and engineers

    CERN Document Server

    Lindgren, Georg; Sandsten, Maria

    2013-01-01

    ""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains

  9. A singular perturbation approach to non-Markovian escape rate problems

    International Nuclear Information System (INIS)

    Dygas, M.M.; Matkowsky, B.J.; Schuss, Z.

    1986-01-01

    The authors employ singular perturbation methods to examine the generalized Langevin equation which describes the dynamics of a Brownian particle in an arbitrary potential force field, acted on by a fluctuating force describing collisions between the Brownian particle and lighter particles comprising a thermal bath. In contrast to models in which the collisions occur instantaneously, and the dynamics are modeled by a Langevin stochastic equation, they consider the situation in which the collisions do not occur instantaneously, so that the process is no longer a Markov process and the generalized Langevin equation must be employed. They compute expressions for the mean exit time of the Brownian particle from the potential well in which it is confined

  10. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts

    Science.gov (United States)

    Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em

    2017-01-01

    Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.

  11. XI Symposium on Probability and Stochastic Processes

    CERN Document Server

    Pardo, Juan; Rivero, Víctor; Bravo, Gerónimo

    2015-01-01

    This volume features lecture notes and a collection of contributed articles from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes. The book starts with notes from the mini-course given by Louigi Addario-Berry with an accessible description of some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. It includes a number of exercises and a section on unanswered questions. Further contributions provide the reader with a broad perspective on the state-of-the art of active areas of research. Contributions by: Louigi Addario-Berry Octavio Arizmendi Fabrice Baudoin Jochen Blath Loïc Chaumont J. Armando Domínguez-Molina Bjarki Eldon Shui Feng Tulio Gaxiola Adrián González Casanova Evgueni Gordienko Daniel...

  12. Stochastic processes from physics to finance

    CERN Document Server

    Paul, Wolfgang

    2013-01-01

    This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

  13. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomás; Braggio, Alessandro

    2010-01-01

    Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...

  14. Asymptotic propagators and trajectories in plasma turbulence theory. The importance of irreversibility, asymptoticity and non-Markovian terms

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1978-09-01

    The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions

  15. Applied probability and stochastic processes. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Richard M. [Texas A and M Univ., College Station, TX (United States). Industrial and Systems Engineering Dept.; Valdez-Flores, Ciriaco [Sielken and Associates Consulting, Inc., Bryan, TX (United States)

    2010-07-01

    This book presents applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications of the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. The initial chapters present a summary of probability and statistics and then Poisson processes, Markov chains, Markov processes and queuing processes are introduced. Advanced topics include simulation, inventory theory, replacement theory, Markov decision theory, and the use of matrix geometric procedures in the analysis of queues. Included in the second edition are appendices at the end of several chapters giving suggestions for the use of Excel in solving the problems of the chapter. Also new in this edition are an introductory chapter on statistics and a chapter on Poisson processes that includes some techniques used in risk assessment. The old chapter on queues has been expanded and broken into two new chapters: one for simple queuing processes and one for queuing networks. Support is provided through the web site http://apsp.tamu.edu where students will have the answers to odd numbered problems and instructors will have access to full solutions and Excel files for homework. (orig.)

  16. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  17. Mapping stochastic processes onto complex networks

    International Nuclear Information System (INIS)

    Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad

    2009-01-01

    We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks

  18. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  19. Reversibility in Quantum Models of Stochastic Processes

    Science.gov (United States)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  20. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  1. Process theory for supervisory control of stochastic systems with data

    NARCIS (Netherlands)

    Markovski, J.

    2012-01-01

    We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a

  2. Stochastic processes and long range dependence

    CERN Document Server

    Samorodnitsky, Gennady

    2016-01-01

    This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...

  3. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

    Directory of Open Access Journals (Sweden)

    V. Ilyin

    2010-01-01

    Full Text Available We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (sub- or super-diffusion at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the probability distribution function obtained within the continuous random walk approach but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.

  4. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  5. American option pricing with stochastic volatility processes

    Directory of Open Access Journals (Sweden)

    Ping LI

    2017-12-01

    Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

  6. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  7. Visualisation for Stochastic Process Algebras: The Graphic Truth

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Gilmore, Stephen

    2011-01-01

    and stochastic activity networks provide an automaton-based view of the model, which may be easier to visualise, at the expense of portability. In this paper, we argue that we can achieve the benefits of both approaches by generating a graphical view of a stochastic process algebra model, which is synchronised...

  8. Soil Erosion as a stochastic process

    Science.gov (United States)

    Casper, Markus C.

    2015-04-01

    corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  9. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  10. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.

    Science.gov (United States)

    Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang

    2017-05-15

    In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.

  11. Introduction to probability and stochastic processes with applications

    CERN Document Server

    Castañ, Blanco; Arunachalam, Viswanathan; Dharmaraja, Selvamuthu

    2012-01-01

    An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic t

  12. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  13. Verification and Planning for Stochastic Processes with Asynchronous Events

    National Research Council Canada - National Science Library

    Younes, Hakan L

    2005-01-01

    .... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption...

  14. Bibliography on the stochastic processes in plasma and related problems

    International Nuclear Information System (INIS)

    Polovin, R.V.

    1976-01-01

    Stochastic processes in plasma and related matters. The bibliography contains 500 references and was compiled from the open literature only. Some references are annotated or completed with short abstracts. There are subject and authors indexes

  15. Simulation and inference for stochastic processes with YUIMA a comprehensive R framework for SDEs and other stochastic processes

    CERN Document Server

    Iacus, Stefano M

    2018-01-01

    The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...

  16. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    Science.gov (United States)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  17. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

    Science.gov (United States)

    Vestergaard, Christian L; Génois, Mathieu

    2015-10-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

  18. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  19. Convergence of trajectories in fractal interpolation of stochastic processes

    International Nuclear Information System (INIS)

    MaIysz, Robert

    2006-01-01

    The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

  20. Stochastic Analysis of Gaussian Processes via Fredholm Representation

    Directory of Open Access Journals (Sweden)

    Tommi Sottinen

    2016-01-01

    Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

  1. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    Science.gov (United States)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  2. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    1995-01-01

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  3. Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Yusuke, E-mail: r1230160@risk.tsukuba.ac.jp; Konno, Hidetoshi

    2014-04-01

    Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.

  4. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    International Nuclear Information System (INIS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-01-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2 ′ -biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified

  5. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    Science.gov (United States)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  6. Power-law tails and non-Markovian dynamics in open quantum systems: An exact solution from Keldysh field theory

    Science.gov (United States)

    Chakraborty, Ahana; Sensarma, Rajdeep

    2018-03-01

    The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.

  7. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  8. Analyzing Properties of Stochastic Business Processes By Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    This chapter presents an approach to precise formal analysis of business processes with stochastic properties. The method presented here allows for both qualitative and quantitative properties to be individually analyzed at design time without requiring a full specification. This provides...... an effective means to explore possible designs for a business process and to debug any flaws....

  9. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  10. Warm inflation in the stochastic inflation formalism

    International Nuclear Information System (INIS)

    Silva, Leandro A. da; Ramos, Rudnei O.

    2011-01-01

    Full text: The basic assumption of stochastic inflation is the splitting, through the definition of a appropriate window function, of the quantum inflaton field in a long wavelength part (modes outside of the de Sitter horizon) and in a short wavelength (modes inside the de Sitter horizon) part. The inflationary mechanism then continuously shifts more and more modes of the bath field into the system stretching their physical wavelengths beyond the de Sitter horizon size, what generates an effective system-bath interaction. Therefore, the system field develops a stochastic dynamics driven by the bath field, that plays the role of noise source. The resulting equation of motion (EoM) is a Langevin-like equation. Applying this formalism to Warm Inflation scenario (where, alternatively to the cold inflation, we assume that the inflaton evolves in a thermal bath and through a dissipative process continuously generates radiation, thus avoiding the necessity of a reheating mechanism), we contrast the exact numerical solution of thermal power spectrum and two approximations currently used in the literature, and compare this to the quantum power spectrum at horizon crossing. Finally, we consider a more realistic model based on microscopic derivations to estimate the effects of non-Markovianity on the inflaton dynamics and on the thermal power spectrum. (author)

  11. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  12. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  13. A Constructive Sharp Approach to Functional Quantization of Stochastic Processes

    OpenAIRE

    Junglen, Stefan; Luschgy, Harald

    2010-01-01

    We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.

  14. Learning Theory Estimates with Observations from General Stationary Stochastic Processes.

    Science.gov (United States)

    Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K

    2016-12-01

    This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.

  15. Stochastic analysis in production process and ecology under uncertainty

    CERN Document Server

    Bieda, Bogusław

    2014-01-01

    The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...

  16. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  17. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  18. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  19. Stochastic evolution of the Universe: A possible dynamical process ...

    Indian Academy of Sciences (India)

    C Sivakumar

    2017-12-11

    Dec 11, 2017 ... https://doi.org/10.1007/s12043-017-1491-z. Stochastic evolution of the Universe: A possible dynamical process leading to fractal structures. C SIVAKUMAR. Department of Physics, Maharaja's College, Ernakulam 682 011, India. E-mail: thrisivc@yahoo.com. MS received 6 July 2016; revised 26 June 2017; ...

  20. Uncertainty Reduction for Stochastic Processes on Complex Networks

    Science.gov (United States)

    Radicchi, Filippo; Castellano, Claudio

    2018-05-01

    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

  1. Stochastic processes and applications diffusion processes, the Fokker-Planck and Langevin equations

    CERN Document Server

    Pavliotis, Grigorios A

    2014-01-01

    This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated.                 The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to eq...

  2. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  3. Expectation propagation for continuous time stochastic processes

    International Nuclear Information System (INIS)

    Cseke, Botond; Schnoerr, David; Sanguinetti, Guido; Opper, Manfred

    2016-01-01

    We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems. (paper)

  4. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  5. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-03-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  6. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  7. Stochastic Models in the Identification Process

    Czech Academy of Sciences Publication Activity Database

    Slovák, Dalibor; Zvárová, Jana

    2011-01-01

    Roč. 7, č. 1 (2011), s. 44-50 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : identification process * weight-of evidence formula * coancestry coefficient * beta-binomial sampling formula * DNA mixtures Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Slovak_en.pdf

  8. 5th Seminar on Stochastic Processes, Random Fields and Applications

    CERN Document Server

    Russo, Francesco; Dozzi, Marco

    2008-01-01

    This volume contains twenty-eight refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 30 to June 3, 2005. The seminar focused mainly on stochastic partial differential equations, random dynamical systems, infinite-dimensional analysis, approximation problems, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance. Contributors: Y. Asai, J.-P. Aubin, C. Becker, M. Benaïm, H. Bessaih, S. Biagini, S. Bonaccorsi, N. Bouleau, N. Champagnat, G. Da Prato, R. Ferrière, F. Flandoli, P. Guasoni, V.B. Hallulli, D. Khoshnevisan, T. Komorowski, R. Léandre, P. Lescot, H. Lisei, J.A. López-Mimbela, V. Mandrekar, S. Méléard, A. Millet, H. Nagai, A.D. Neate, V. Orlovius, M. Pratelli, N. Privault, O. Raimond, M. Röckner, B. Rüdiger, W.J. Runggaldi...

  9. Stochastic processes dominate during boreal bryophyte community assembly.

    Science.gov (United States)

    Fenton, Nicole J; Bergeron, Yves

    2013-09-01

    Why are plant species found in certain locations and not in others? The study of community assembly rules has attempted to answer this question, and many studies articulate the historic dichotomy of deterministic (predictable niches) vs. stochastic (random or semi-random processes). The study of successional sequences to determine whether they converge, as would be expected by deterministic theory, or diverge, as stochastic theory would suggest, has been one method used to investigate this question. In this article we ask the question: Do similar boreal bryophyte communities develop in the similar habitat created by convergent succession after fires of different severities? Or do the stochastic processes generated by fires of different severity lead to different communities? Specifically we predict that deterministic structure will be more important for large forest-floor species than stochastic processes, and that the inverse will be true for small bryophyte species. We used multivariate regression trees and model selection to determine the relative weight of structure (forest structure, substrates, soil structure) and processes (fire severity) for two groups of bryophyte species sampled in 12 sites (seven high-severity and five low-severity fires). Contrary to our first hypothesis, processes were as important for large forest-floor bryophytes as for small pocket species. Fire severity, its interaction with the quality of available habitat, and its impact on the creation of biological legacies played dominant roles in determining community structure. In this study, sites with nearly identical forest structure, generated via convergent succession after high- and low-severity fire, were compared to see whether these sites supported similar bryophyte communities. While similar to some degree, both the large forest-floor species and the pocket species differed after high-severity fire compared to low-severity fire. This result suggests that the "how," or process of

  10. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  11. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey)

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  12. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  13. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Energy Technology Data Exchange (ETDEWEB)

    Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany)

    2012-03-15

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  14. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    International Nuclear Information System (INIS)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-01-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  15. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Science.gov (United States)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-03-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  16. Random migration processes between two stochastic epidemic centers.

    Science.gov (United States)

    Sazonov, Igor; Kelbert, Mark; Gravenor, Michael B

    2016-04-01

    We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a...

  18. Quantitative sociodynamics stochastic methods and models of social interaction processes

    CERN Document Server

    Helbing, Dirk

    1995-01-01

    Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log...

  19. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy)

    2017-02-07

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  20. Stabilizing simulations of complex stochastic representations for quantum dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Perret, C; Petersen, W P, E-mail: wpp@math.ethz.ch [Seminar for Applied Mathematics, ETH, Zurich (Switzerland)

    2011-03-04

    Path integral representations of quantum dynamics can often be formulated as stochastic differential equations (SDEs). In a series of papers, Corney and Drummond (2004 Phys. Rev. Lett. 93 260401), Deuar and Drummond (2001 Comput. Phys. Commun. 142 442-5), Drummond and Gardnier (1980 J. Phys. A: Math. Gen. 13 2353-68), Gardiner and Zoller (2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer Series in Synergetics) 3rd edn (Berlin: Springer)) and Gilchrist et al (1997 Phys. Rev. A 55 3014-32) and their collaborators have derived SDEs from coherent states representations for density matrices. Computationally, these SDEs are attractive because they seem simple to simulate. They can be quite unstable, however. In this paper, we consider some of the instabilities and propose a few remedies. Particularly, because the variances of the simulated paths typically grow exponentially, the processes become de-localized in relatively short times. Hence, the issues of boundary conditions and stable integration methods become important. We use the Bose-Einstein Hamiltonian as an example. Our results reveal that it is possible to significantly extend integration times and show the periodic structure of certain functionals.

  1. Simulation of Stochastic Processes by Coupled ODE-PDE

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  2. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon

    2014-07-01

    Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke\\'s model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke\\'s model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke\\'s model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model\\'s algorithm. Numerical examples that strengthen these observations are also presented. © 2014 IEEE.

  3. Time Series, Stochastic Processes and Completeness of Quantum Theory

    International Nuclear Information System (INIS)

    Kupczynski, Marian

    2011-01-01

    Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

  4. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  5. Evolution and mass extinctions as lognormal stochastic processes

    Science.gov (United States)

    Maccone, Claudio

    2014-10-01

    In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra

  6. Suprathreshold stochastic resonance in neural processing tuned by correlation.

    Science.gov (United States)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  7. Stochastic investigation of precipitation process for climatic variability identification

    Science.gov (United States)

    Sotiriadou, Alexia; Petsiou, Amalia; Feloni, Elisavet; Kastis, Paris; Iliopoulou, Theano; Markonis, Yannis; Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The precipitation process is important not only to hydrometeorology but also to renewable energy resources management. We use a dataset consisting of daily and hourly records around the globe to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  8. Time-variant reliability assessment through equivalent stochastic process transformation

    International Nuclear Information System (INIS)

    Wang, Zequn; Chen, Wei

    2016-01-01

    Time-variant reliability measures the probability that an engineering system successfully performs intended functions over a certain period of time under various sources of uncertainty. In practice, it is computationally prohibitive to propagate uncertainty in time-variant reliability assessment based on expensive or complex numerical models. This paper presents an equivalent stochastic process transformation approach for cost-effective prediction of reliability deterioration over the life cycle of an engineering system. To reduce the high dimensionality, a time-independent reliability model is developed by translating random processes and time parameters into random parameters in order to equivalently cover all potential failures that may occur during the time interval of interest. With the time-independent reliability model, an instantaneous failure surface is attained by using a Kriging-based surrogate model to identify all potential failure events. To enhance the efficacy of failure surface identification, a maximum confidence enhancement method is utilized to update the Kriging model sequentially. Then, the time-variant reliability is approximated using Monte Carlo simulations of the Kriging model where system failures over a time interval are predicted by the instantaneous failure surface. The results of two case studies demonstrate that the proposed approach is able to accurately predict the time evolution of system reliability while requiring much less computational efforts compared with the existing analytical approach. - Highlights: • Developed a new approach for time-variant reliability analysis. • Proposed a novel stochastic process transformation procedure to reduce the dimensionality. • Employed Kriging models with confidence-based adaptive sampling scheme to enhance computational efficiency. • The approach is effective for handling random process in time-variant reliability analysis. • Two case studies are used to demonstrate the efficacy

  9. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems; Nicht-Markovsche Dynamik, Dekohaerenz und Verschraenkung in dissipativen Quantensystemen mit Anwendung in der Quanteninformationstheorie von Systemen kontinuierlicher Variablen

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, C.

    2007-11-26

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  10. QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION

    Directory of Open Access Journals (Sweden)

    A.E.Kobryn

    2003-01-01

    Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.

  11. A measure theoretical approach to quantum stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Waldenfels, Wilhelm von

    2014-04-01

    Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.

  12. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0

  13. Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes

    International Nuclear Information System (INIS)

    Stolovitzky, G.; Sreenivasan, K.R.

    1994-01-01

    Kolmogorov's refined similarity hypotheses are shown to hold true for a variety of stochastic processes besides high-Reynolds-number turbulent flows, for which they were originally proposed. In particular, just as hypothesized for turbulence, there exists a variable V whose probability density function attains a universal form. Analytical expressions for the probability density function of V are obtained for Brownian motion as well as for the general case of fractional Brownian motion---the latter under some mild assumptions justified a posteriori. The properties of V for the case of antipersistent fractional Brownian motion with the Hurst exponent of 1/3 are similar in many details to those of high-Reynolds-number turbulence in atmospheric boundary layers a few meters above the ground. The one conspicuous difference between turbulence and the antipersistent fractional Brownian motion is that the latter does not possess the required skewness. Broad implications of these results are discussed

  14. A measure theoretical approach to quantum stochastic processes

    CERN Document Server

    Von Waldenfels, Wilhelm

    2014-01-01

    This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.

  15. Analyzing a stochastic time series obeying a second-order differential equation.

    Science.gov (United States)

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  16. Stochastic quantization of a topological quantum mechanical model

    International Nuclear Information System (INIS)

    Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux

    2011-01-01

    Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)

  17. SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

    2010-01-01

    Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

  18. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  19. Profiles of the stochastic star formation process in spiral galaxies

    International Nuclear Information System (INIS)

    Comins, N.

    1981-01-01

    The formation of spiral arms in disc galaxies is generally attributed to the effects of spiral density waves. These relatively small (i.e. 5 per cent) non-axisymmetric perturbations of the interstellar medium cause spiral arms highlighted by O and B type stars to be created. In this paper another mechanism for spiral arm formation, the stochastic self-propagating star formation (SSPSF) process is examined. The SSPSF process combines the theory that shock waves from supernovae will compress the interstellar medium to create new stars, some of which will be massive enough to also supernova, with a disc galaxy's differential rotation to create spiral arms. The present work extends this process to the case where the probability of star formation from supernova shocks decreases with galactic radius. Where this work and previous investigations overlap (namely the uniform probability case), the agreement is very good, pretty spirals with various numbers of arms are generated. The decreasing probability cases, taken to vary as rsup(-j), still form spiral arms for 0 1.5 the spiral structure is essentially non-existent. (author)

  20. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  1. Stochastic simulation of destruction processes in self-irradiated materials

    Directory of Open Access Journals (Sweden)

    T. Patsahan

    2017-09-01

    Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

  2. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  4. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  5. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  6. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  7. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    Science.gov (United States)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  8. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  9. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  10. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  11. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  12. A criterion for testing hypotheses about the covariance function of a stationary Gaussian stochastic process

    OpenAIRE

    Kozachenko, Yuriy; Troshki, Viktor

    2015-01-01

    We consider a measurable stationary Gaussian stochastic process. A criterion for testing hypotheses about the covariance function of such a process using estimates for its norm in the space $L_p(\\mathbb {T}),\\,p\\geq1$, is constructed.

  13. Modified stochastic fragmentation of an interval as an ageing process

    Science.gov (United States)

    Fortin, Jean-Yves

    2018-02-01

    We study a stochastic model based on modified fragmentation of a finite interval. The mechanism consists of cutting the interval at a random location and substituting a unique fragment on the right of the cut to regenerate and preserve the interval length. This leads to a set of segments of random sizes, with the accumulation of small fragments near the origin. This model is an example of record dynamics, with the presence of ‘quakes’ and slow dynamics. The fragment size distribution is a universal inverse power law with logarithmic corrections. The exact distribution for the fragment number as function of time is simply related to the unsigned Stirling numbers of the first kind. Two-time correlation functions are defined, and computed exactly. They satisfy scaling relations, and exhibit aging phenomena. In particular, the probability that the same number of fragments is found at two different times t>s is asymptotically equal to [4πlog(s)]-1/2 when s\\gg 1 and the ratio t/s is fixed, in agreement with the numerical simulations. The same process with a reset impedes the aging phenomenon-beyond a typical time scale defined by the reset parameter.

  14. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    International Nuclear Information System (INIS)

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  15. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  16. Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2009-01-01

    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance

  17. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...... is investigated, the problem is governed in the state space by two stochastic equations, because the stochastic equation for the excitation process is autonomic. However due to the parametric nature of the excitation, the nonlinear term appears at the right-hand sides of the equations. The equations become linear...... of the stochastic equation governing the natural logarithm of the hyperspherical amplitude process and using the modification of the method wherein the time averaging of the pertinent expressions is replaced by ensemble averaging. It is found that the direct simulation is more suitable and that the asymptotic mean...

  18. Coarse-grained representation of the quasi adiabatic propagator path integral for the treatment of non-Markovian long-time bath memory

    Science.gov (United States)

    Richter, Martin; Fingerhut, Benjamin P.

    2017-06-01

    The description of non-Markovian effects imposed by low frequency bath modes poses a persistent challenge for path integral based approaches like the iterative quasi-adiabatic propagator path integral (iQUAPI) method. We present a novel approximate method, termed mask assisted coarse graining of influence coefficients (MACGIC)-iQUAPI, that offers appealing computational savings due to substantial reduction of considered path segments for propagation. The method relies on an efficient path segment merging procedure via an intermediate coarse grained representation of Feynman-Vernon influence coefficients that exploits physical properties of system decoherence. The MACGIC-iQUAPI method allows us to access the regime of biological significant long-time bath memory on the order of hundred propagation time steps while retaining convergence to iQUAPI results. Numerical performance is demonstrated for a set of benchmark problems that cover bath assisted long range electron transfer, the transition from coherent to incoherent dynamics in a prototypical molecular dimer and excitation energy transfer in a 24-state model of the Fenna-Matthews-Olson trimer complex where in all cases excellent agreement with numerically exact reference data is obtained.

  19. Anomalous scaling due to correlations: limit theorems and self-similar processes

    International Nuclear Information System (INIS)

    Stella, Attilio L; Baldovin, Fulvio

    2010-01-01

    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, explain their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance

  20. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  1. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  2. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement...

  3. Stochastic process variation in deep-submicron CMOS circuits and algorithms

    CERN Document Server

    Zjajo, Amir

    2014-01-01

    One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...

  4. A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution

    Directory of Open Access Journals (Sweden)

    Rice Sean H

    2008-09-01

    Full Text Available Abstract Background Evolution involves both deterministic and random processes, both of which are known to contribute to directional evolutionary change. A number of studies have shown that when fitness is treated as a random variable, meaning that each individual has a distribution of possible fitness values, then both the mean and variance of individual fitness distributions contribute to directional evolution. Unfortunately the most general mathematical description of evolution that we have, the Price equation, is derived under the assumption that both fitness and offspring phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to study an important class of evolutionary processes. Results I present a general equation for directional evolutionary change that incorporates both deterministic and stochastic processes and applies to any evolving system. This is essentially a stochastic version of the Price equation, but it is derived independently and contains terms with no analog in Price's formulation. This equation shows that the effects of selection are actually amplified by random variation in fitness. It also generalizes the known tendency of populations to be pulled towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also contains a term, having no analog in the Price equation, that captures cases in which the fitness of parents has a direct effect on the phenotype of their offspring. Conclusion Directional evolution is influenced by the entire distribution of individual fitness, not just the mean and variance. Though all moments of individuals' fitness distributions contribute to evolutionary change, the ways that they do so follow some general rules. These rules are invisible to the Price equation because it describes evolution retrospectively. An equally general

  5. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  6. Susceptibility of optimal train schedules to stochastic disturbances of process times

    DEFF Research Database (Denmark)

    Larsen, Rune; Pranzo, Marco; D’Ariano, Andrea

    2013-01-01

    study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact...... and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced...

  7. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  8. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    independent, negative exponential distributed variables; hence, the arrival process may be termed as a generalized Erlang renewal process. The excitation process is governed by the stochastic equation driven by two independent Poisson processes, with different parameters. If the response in a single mode...

  9. Perturbation expansions of stochastic wavefunctions for open quantum systems

    Science.gov (United States)

    Ke, Yaling; Zhao, Yi

    2017-11-01

    Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.

  10. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  11. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  12. Effect of multiplicative noise on stationary stochastic process

    Science.gov (United States)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  13. Unifying three perspectives on information processing in stochastic thermodynamics.

    Science.gov (United States)

    Barato, A C; Seifert, U

    2014-03-07

    So far, feedback-driven systems have been discussed using (i) measurement and control, (ii) a tape interacting with a system, or (iii) by identifying an implicit Maxwell demon in steady-state transport. We derive the corresponding second laws from one master fluctuation theorem and discuss their relationship. In particular, we show that both the entropy production involving mutual information between system and controller and the one involving a Shannon entropy difference of an information reservoir like a tape carry an extra term different from the usual current times affinity. We, thus, generalize stochastic thermodynamics to the presence of an information reservoir.

  14. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  15. Consensus states of local majority rule in stochastic process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yu-Pin [Department of Electronic Engineering, National Formosa University, Huwei, 63201, Taiwan (China); Tang, Chia-Wei; Xu, Hong-Yuan [Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Wu, Jinn-Wen [Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Huang, Ming-Chang, E-mail: mchuang@cycu.edu.tw [Center for Theoretical Science and Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China)

    2015-04-03

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states.

  16. Consensus states of local majority rule in stochastic process

    International Nuclear Information System (INIS)

    Luo, Yu-Pin; Tang, Chia-Wei; Xu, Hong-Yuan; Wu, Jinn-Wen; Huang, Ming-Chang

    2015-01-01

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states

  17. Non-markovian boltzmann equation

    International Nuclear Information System (INIS)

    Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.

    1997-01-01

    A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov endash Born endash Green endash Kirkwood endash Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. copyright 1997 Academic Press, Inc

  18. Effect of the Potential Shape on the Stochastic Resonance Processes

    Science.gov (United States)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  19. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    Science.gov (United States)

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more

  20. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  1. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  2. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  3. Comments on the use of stochastic processes in the field of the ionizing radiations

    International Nuclear Information System (INIS)

    Alvarez Romero, Jose T.

    2008-01-01

    Stochastic process is the name given to a time dependent random process, unfortunately, its time dependence is not always clearly emphasized. In fact, such dependence is not unequivocally stated in the different disciplines of radiation physics, radiobiology or in radiation protection. This is the cause of some conceptual confusion when interpreting relationships between quantities is analyzed, e.g.: imparted energy vs. absorbed dose, stochastic vs. deterministic biological effects; or in radiation protection models, whether: linear or quadratic, relative or absolute. Most of these relationships are associated to stochastic phenomena, and they carry a time dependence that requires clarification. To mention some examples, in radiation physics: the absorbed dose is a non stochastic quantity resulting from averaging a stochastic one namely, the imparted energy, over a representative ensemble via an operation analogous to the Gibbs-Einstein algorithm. On the other hand stochastic quantities require specialized mathematical techniques of stochastic processes to handle them. These refinements are unfortunately ignored in the reports of ICRU 33 and 60. Essentially, a problem to be solved is to establish a clear relationship between micro or mesoscopic stochastic quantities and their macroscopic counterparts, these latter ones possibly being time dependent or not. This is the main objective of microdosimetry. Another problem is to describe phenomena such as electronic equilibrium which is nothing else than a stationary state thus exhibiting no time dependence. Still a different question is the interpretation of radioactive decay as a stochastic process of the Poisson and Markov type. In radiobiology a basic problem is the study of biological stochastic phenomena is to determine the characteristics and structure of those time dependent probabilistic functions allowing the quantification of macroscopic biological manifestations, such as carcinogenesis or genetic effects

  4. Stationary distributions of stochastic processes described by a linear neutral delay differential equation

    International Nuclear Information System (INIS)

    Frank, T D

    2005-01-01

    Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)

  5. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    NARCIS (Netherlands)

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcao

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with

  6. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  7. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    Science.gov (United States)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  8. Continuous strong Markov processes in dimension one a stochastic calculus approach

    CERN Document Server

    Assing, Sigurd

    1998-01-01

    The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.

  9. Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Gabriel Martos

    2018-01-01

    Full Text Available We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.

  10. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    Science.gov (United States)

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  11. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  12. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    Science.gov (United States)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  13. Stochastic light-cone CTMRG: a new DMRG approach to stochastic models 02.50.Ey Stochastic processes; 64.60.Ht Dynamic critical phenomena; 02.70.-c Computational techniques; 05.10.Cc Renormalization group methods;

    CERN Document Server

    Kemper, A; Nishino, T; Schadschneider, A; Zittartz, J

    2003-01-01

    We develop a new variant of the recently introduced stochastic transfer matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG, adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process are studied and compared with exact data and Monte Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10 sup 5 shows a considerable improvement on the old stochastic TMRG algorithm.

  14. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    Science.gov (United States)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  15. ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2004-01-01

    Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.

  16. Stochastic processes and functional analysis a volume of recent advances in honor of M. M. Rao

    CERN Document Server

    Krinik, Alan C

    2004-01-01

    This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes, as made manifest in M. M. Rao's prolific research achievements. Featuring a biography of M. M. Rao, a complete bibliography of his published works,

  17. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Science.gov (United States)

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  18. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

    DEFF Research Database (Denmark)

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

    2012-01-01

    Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

  19. Using Max-Plus Algebra for the Evaluation of Stochastic Process Algebra Prefixes

    NARCIS (Netherlands)

    Cloth, L.; de Alfaro, L.; Gilmore, S.; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.

    2001-01-01

    In this paper, the concept of complete finite prefixes for process algebra expressions is extended to stochastic models. Events are supposed to happen after a delay that is determined by random variables assigned to the preceding conditions. Max-plus algebra expressions are shown to provide an

  20. Explicit calibration and simulation of stochastic fields by low-order ARMA processes

    DEFF Research Database (Denmark)

    Krenk, Steen

    2011-01-01

    A simple framework for autoregressive simulation of stochastic fields is presented. The autoregressive format leads to a simple exponential correlation structure in the time-dimension. In the case of scalar processes a more detailed correlation structure can be obtained by adding memory...... to the process via an extension to autoregressive moving average (ARMA) processes. The ARMA format incorporates a more detailed correlation structure by including previous values of the simulated process. Alternatively, a more detailed correlation structure can be obtained by including additional 'state......-space' variables in the simulation. For a scalar process this would imply an increase of the dimension of the process to be simulated. In the case of a stochastic field the correlation in the time-dimension is represented, although indirectly, in the simultaneous spatial correlation. The model with the shortest...

  1. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  2. Kinetic theory of age-structured stochastic birth-death processes

    Science.gov (United States)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  3. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon; Nyberg, Henrik

    2014-01-01

    . By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also

  4. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  5. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  6. Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Kocijan, J.

    2012-01-01

    Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf

  7. Modeling laser velocimeter signals as triply stochastic Poisson processes

    Science.gov (United States)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  8. Learning process mapping heuristics under stochastic sampling overheads

    Science.gov (United States)

    Ieumwananonthachai, Arthur; Wah, Benjamin W.

    1991-01-01

    A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.

  9. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  10. Modelling M/G/1 queueing systems with server vacations using stochastic Petri nets

    Directory of Open Access Journals (Sweden)

    K Ramanath

    2006-12-01

    Full Text Available The theory of non-Markovian stochastic Petri nets is employed in this paper to derive an alternative method for studying the steady state behaviour of the M/G/1 vacation queueing system with a limited service discipline. Three types of vacation schemes are considered, and sytems with both a finite population and those with an infinite population (but finite capacity are considered. Simple numerical examples are also provided to illustrate the functionality of the methods and some useful performance measures for the system are obtained.

  11. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Science.gov (United States)

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  12. Stochastic behavior of cooling processes in hot nuclei

    International Nuclear Information System (INIS)

    de Oliveira, P.M.; Sa Martins, J.S.; Szanto de Toledo, A.

    1997-01-01

    The collapse of structure effects observed in hot nuclei is interpreted in terms of a dynamic lattice model which describes the process of nucleon (clusters) evaporation from a hot nucleus, predicting the final mass distribution. Results are compared with experimental data for the 10 B+ 9 Be and 10 B+ 10 B reactions, and indicate that the structures observed in the low-energy mass distributions in both simulation and experiment are a consequence of the competition between the residual interactions and the thermalization dissipative process. As a characteristic feature of complex evolving systems, this competition leads to long term memory during the dissipative path, the observables becoming thus insensitive to the actual microscopic interactions. copyright 1997 The American Physical Society

  13. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  14. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  15. Linear kinetic theory and particle transport in stochastic mixtures. Third year and final report, June 15, 1993--December 14, 1996

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1997-05-01

    The goal in this research was to continue the development of a comprehensive theory of linear transport/kinetic theory in a stochastic mixture of solids and immiscible fluids. Such a theory should predict the ensemble average and higher moments, such as the variance, of the particle or energy density described by the underlying transport/kinetic equation. The statistics studied correspond to N-state discrete random variables for the interaction coefficients and sources, with N denoting the number of components in the mixture. The mixing statistics considered were Markovian as well as more general statistics. In the absence of time dependence and scattering, the theory is well developed and described exactly by the master (Liouville) equation for Markovian mixing, and by renewal equations for non-Markovian mixing. The intent of this research was to generalize these treatments to include both time dependence and scattering. A further goal of this research was to develop approximate, but simpler, models from any comprehensive theory. In particular, a specific goal was to formulate a renormalized transport/kinetic theory of the usual nonstochastic form, but with effective interaction coefficients and sources to account for the stochastic nature of the problem. In the three and one-half year period of research summarized in this final report, they have made substantial progress in the development of a comprehensive theory of kinetic processes in stochastic mixtures. This progress is summarized in 16 archival journal articles, 7 published proceedings papers, and 2 comprehensive review articles. In addition, 17 oral presentations were made describing these research results

  16. Reflection Positive Stochastic Processes Indexed by Lie Groups

    Science.gov (United States)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  17. Tempered stable distributions stochastic models for multiscale processes

    CERN Document Server

    Grabchak, Michael

    2015-01-01

    This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions.  A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.

  18. Reliability and maintenance in European nuclear power plants: A structural analysis of a controlled stochastic process

    International Nuclear Information System (INIS)

    Sturm, R.

    1991-01-01

    Two aspects of performance are of main concern: plant availability and plant reliability (defined as the conditional probability of an unplanned shutdown). The goal of the research is a unified framework that combines behavioral models of optimizing agents with models of complex technical systems that take into account the dynamic and stochastic features of the system. In order to achieve this synthesis, two liens of work are necessary. One line requires a deeper understanding of complex production systems and the type of data they give rise to; the other line involves the specification and estimation of a rigorously specified behavioral model. Plant operations are modeled as a controlled stochastic process, and the sequence of up and downtime spells is analyzed during failure time and point process models. Similar to work on rational expectations and structural econometric models, the behavior model of how the plant process is controlled is formulated at the level of basic processes, i.e., the objective function of the plant manager, technical constraints, and stochastic disturbances

  19. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  20. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  1. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  2. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

  3. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    Science.gov (United States)

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  4. Stationary and related stochastic processes sample function properties and their applications

    CERN Document Server

    Cramér, Harald

    2004-01-01

    This graduate-level text offers a comprehensive account of the general theory of stationary processes, with special emphasis on the properties of sample functions. Assuming a familiarity with the basic features of modern probability theory, the text develops the foundations of the general theory of stochastic processes, examines processes with a continuous-time parameter, and applies the general theory to procedures key to the study of stationary processes. Additional topics include analytic properties of the sample functions and the problem of time distribution of the intersections between a

  5. Stochastic Wilson–Cowan models of neuronal network dynamics with memory and delay

    International Nuclear Information System (INIS)

    Goychuk, Igor; Goychuk, Andriy

    2015-01-01

    We consider a simple Markovian class of the stochastic Wilson–Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around −1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence. (paper)

  6. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    Science.gov (United States)

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  7. A decision dependent stochastic process model for repairable systems with applications

    Directory of Open Access Journals (Sweden)

    Paul F. Zantek

    2015-12-01

    This paper mathematically formalizes the notion of how management actions impact the functioning of a repairable system over time by developing a new stochastic process model for such systems. The proposed model is illustrated using both simulated and real data. The proposed model compares favorably to other models for well-known data on Boeing airplanes. The model is further illustrated and compared to other models on failure time and maintenance data stemming from the South Texas Project nuclear power plant.

  8. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  9. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  10. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  11. Stochastic processes, optimization, and control theory a volume in honor of Suresh Sethi

    CERN Document Server

    Yan, Houmin

    2006-01-01

    This edited volume contains 16 research articles. It presents recent and pressing issues in stochastic processes, control theory, differential games, optimization, and their applications in finance, manufacturing, queueing networks, and climate control. One of the salient features is that the book is highly multi-disciplinary. The book is dedicated to Professor Suresh Sethi on the occasion of his 60th birthday, in view of his distinguished career.

  12. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    Science.gov (United States)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  13. Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zixin; Peng, Yongbo

    2017-11-01

    Conventional Karhunen-Loeve expansions for simulation of stochastic processes often encounter the challenge of dealing with hundreds of random variables. For breaking through the barrier, a random function embedded Karhunen-Loeve expansion method is proposed in this paper. The updated scheme has a similar form to the conventional Karhunen-Loeve expansion, both involving a summation of a series of deterministic orthonormal basis and uncorrelated random variables. While the difference from the updated scheme lies in the dimension reduction of Karhunen-Loeve expansion through introducing random functions as a conditional constraint upon uncorrelated random variables. The random function is expressed as a single-elementary-random-variable orthogonal function in polynomial format (non-Gaussian variables) or trigonometric format (non-Gaussian and Gaussian variables). For illustrative purposes, the simulation of seismic ground motion is carried out using the updated scheme. Numerical investigations reveal that the Karhunen-Loeve expansion with random functions could gain desirable simulation results in case of a moderate sample number, except the Hermite polynomials and the Laguerre polynomials. It has the sound applicability and efficiency in simulation of stochastic processes. Besides, the updated scheme has the benefit of integrating with probability density evolution method, readily for the stochastic analysis of nonlinear structures.

  14. Contribution to the stochastically studies of space-time dependable hydrological processes

    International Nuclear Information System (INIS)

    Kjaevski, Ivancho

    2002-12-01

    One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro

  15. On a stochastic process associated to non-abelian gauge fields

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1989-01-01

    A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state of abelian (free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory in the Schroedinger representation. An analysis of the qualitative behaviour of the theory seems to imply a quasi-free behaviour at short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. Scaling relations for the mass gap are inferred from the theory of small random perturbations of dynamical systems. (orig.)

  16. On time-dependent diffusion coefficients arising from stochastic processes with memory

    Science.gov (United States)

    Carpio-Bernido, M. Victoria; Barredo, Wilson I.; Bernido, Christopher C.

    2017-08-01

    Time-dependent diffusion coefficients arise from anomalous diffusion encountered in many physical systems such as protein transport in cells. We compare these coefficients with those arising from analysis of stochastic processes with memory that go beyond fractional Brownian motion. Facilitated by the Hida white noise functional integral approach, diffusion propagators or probability density functions (pdf) are obtained and shown to be solutions of modified diffusion equations with time-dependent diffusion coefficients. This should be useful in the study of complex transport processes.

  17. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

    Science.gov (United States)

    Yuan, Ruoshi; Tang, Ying; Ao, Ping

    2017-12-01

    An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

  18. Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors

    International Nuclear Information System (INIS)

    Nafidi, A.; Gutiérrez, R.; Gutiérrez-Sánchez, R.; Ramos-Ábalos, E.; El Hachimi, S.

    2016-01-01

    The aim of this study is to model electric power consumption during a period of economic crisis, characterised by declining gross domestic product. A novel aspect of this study is its use of a Gamma-type diffusion process for short and medium-term forecasting – other techniques that have been used to describe such consumption patterns are not valid in this situation. In this study, we consider a new extension of the stochastic Gamma diffusion process by introducing time functions (exogenous factors) that affect its trend. This extension is defined in terms of Kolmogorov backward and forward equations. After obtaining the transition probability density function and the moments (specifically, the trend function), the inference on the process parameters is obtained by discrete sampling of the sample paths. Finally, this stochastic process is applied to model total net electricity consumption in Spain, when affected by the following set of exogenous factors: Gross Domestic Product (GDP), Gross Fixed Capital Formation (GFCF) and Final Domestic Consumption (FDC). - Highlights: • The aim is modelling and predicting electricity consumption in Spain. • We propose a Gamma-type diffusion process for short and medium-term forecasting. • We compared the fit using diffusion processes with different exogenous factors.

  19. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    Science.gov (United States)

    González Arenas, Zochil; Barci, Daniel G.

    2012-12-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

  20. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    International Nuclear Information System (INIS)

    Arenas, Zochil González; Barci, Daniel G

    2012-01-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward–Takahashi identities. (paper)

  1. Stochastic analysis for Poisson point processes Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry

    CERN Document Server

    Peccati, Giovanni

    2016-01-01

    Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolvi...

  2. Quantum learning of classical stochastic processes: The completely positive realization problem

    Science.gov (United States)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  3. Quantum learning of classical stochastic processes: The completely positive realization problem

    Energy Technology Data Exchange (ETDEWEB)

    Monràs, Alex [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Winter, Andreas [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); ICREA—Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, 23, 08010 Barcelona (Spain)

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  4. Quantum learning of classical stochastic processes: The completely positive realization problem

    International Nuclear Information System (INIS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine

  5. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  6. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  7. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  8. Expressing stochastic unravellings using random evolution operators

    International Nuclear Information System (INIS)

    Salgado, D; Sanchez-Gomez, J L

    2002-01-01

    We prove how the form of the most general invariant stochastic unravelling for Markovian (recently given in the literature by Wiseman and Diosi) and non-Markovian but Lindblad-type open quantum systems can be attained by imposing a single mathematical condition upon the random evolution operator of the system, namely a.s. trace preservation (a.s. stands for almost surely). The use of random operators ensures the complete positivity of the density operator evolution and characterizes the linear/non-linear character of the evolution in a straightforward way. It is also shown how three quantum stochastic evolution models - continuous spontaneous localization, quantum state diffusion and quantum mechanics with universal position localization - appear as concrete choices for the noise term of the evolution random operators are assumed. We finally conjecture how these operators may in the future be used in two different directions: both to connect quantum stochastic evolution models with random properties of space-time and to handle noisy quantum logical gates

  9. Stochastic Processes and Queueing Theory used in Cloud Computer Performance Simulations

    Directory of Open Access Journals (Sweden)

    Florin-Catalin ENACHE

    2015-10-01

    Full Text Available The growing character of the cloud business has manifested exponentially in the last 5 years. The capacity managers need to concentrate on a practical way to simulate the random demands a cloud infrastructure could face, even if there are not too many mathematical tools to simulate such demands.This paper presents an introduction into the most important stochastic processes and queueing theory concepts used for modeling computer performance. Moreover, it shows the cases where such concepts are applicable and when not, using clear programming examples on how to simulate a queue, and how to use and validate a simulation, when there are no mathematical concepts to back it up.

  10. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    Science.gov (United States)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  11. Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations

    Science.gov (United States)

    Krylov, N. V.; Priola, E.

    2017-09-01

    We show, among other things, how knowing Schauder or Sobolev-space estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs for equations with coefficients depending only on the time variable with the same constants as in the case of the one-dimensional heat equation. The method is quite general and is based on using the Poisson stochastic process. It also applies to equations involving non-local operators. It looks like no other methods are available at this time and it is a very challenging problem to find a purely analytical approach to proving such results.

  12. Stochastic approach for round-off error analysis in computing application to signal processing algorithms

    International Nuclear Information System (INIS)

    Vignes, J.

    1986-01-01

    Any result of algorithms provided by a computer always contains an error resulting from floating-point arithmetic round-off error propagation. Furthermore signal processing algorithms are also generally performed with data containing errors. The permutation-perturbation method, also known under the name CESTAC (controle et estimation stochastique d'arrondi de calcul) is a very efficient practical method for evaluating these errors and consequently for estimating the exact significant decimal figures of any result of algorithms performed on a computer. The stochastic approach of this method, its probabilistic proof, and the perfect agreement between the theoretical and practical aspects are described in this paper [fr

  13. Analysis methods of stochastic transient electro–magnetic processes in electric traction system

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2013-04-01

    Full Text Available Purpose. The essence and basic characteristics of calculation methods of transient electromagnetic processes in the elements and devices of non–linear dynamic electric traction systems taking into account the stochastic changes of voltages and currents in traction networks of power supply subsystem and power circuits of electric rolling stock are developed. Methodology. Classical methods and the methods of non–linear electric engineering, as well as probability theory method, especially the methods of stationary ergodic and non–stationary stochastic processes application are used in the research. Findings. Using the above-mentioned methods an equivalent circuit and the system of nonlinear integra–differential equations for electromagnetic condition of the double–track inter-substation zone of alternating current electric traction system are drawn up. Calculations allow obtaining electric traction current distribution in the areas of feeder zones. Originality. First of all the paper is interesting and important from scientific point of view due to the methods, which allow taking into account probabilistic character of change for traction voltages and electric traction system currents. On the second hand the researches develop the most efficient methods of nonlinear circuits’ analysis. Practical value. The practical value of the research is presented in application of the methods to the analysis of electromagnetic and electric energy processes in the traction power supply system in the case of high-speed train traffic.

  14. Strategic WIP Inventory Positioning for Make-to-Order Production with Stochastic Processing Times

    Directory of Open Access Journals (Sweden)

    Jingjing Jiang

    2017-01-01

    Full Text Available It is vital for make-to-order manufacturers to shorten the lead time to meet the customers’ requirements. Holding work-in-process (WIP inventory at more stations can reduce the lead time, but it also brings about higher inventory holding cost. Therefore, it is important to seek out the optimal set of stations to hold WIP inventory to minimize the total inventory holding cost, while meeting the required due date for the final product at the same time. Since the problem with deterministic processing times at the stations has been addressed, as a natural extension, in this study, we address the problem with stochastic processing times, which is more realistic in the manufacturing environment. Assuming that the processing times follow normal distributions, we propose a solution procedure using genetic algorithm.

  15. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    Science.gov (United States)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  16. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.

    Science.gov (United States)

    Drawert, Brian; Engblom, Stefan; Hellander, Andreas

    2012-06-22

    Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic setting already at

  17. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    Science.gov (United States)

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  18. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  19. Analysis and Prediction on Vehicle Ownership Based on an Improved Stochastic Gompertz Diffusion Process

    Directory of Open Access Journals (Sweden)

    Huapu Lu

    2017-01-01

    Full Text Available This paper aims at introducing a new improved stochastic differential equation related to Gompertz curve for the projection of vehicle ownership growth. This diffusion model explains the relationship between vehicle ownership and GDP per capita, which has been studied as a Gompertz-like function before. The main innovations of the process lie in two parts: by modifying the deterministic part of the original Gompertz equation, the model can present the remaining slow increase when the S-shaped curve has reached its saturation level; by introducing the stochastic differential equation, the model can better fit the real data when there are fluctuations. Such comparisons are carried out based on data from US, UK, Japan, and Korea with a time span of 1960–2008. It turns out that the new process behaves better in fitting curves and predicting short term growth. Finally, a prediction of Chinese vehicle ownership up to 2025 is presented with the new model, as China is on the initial stage of motorization with much fluctuations in growth.

  20. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Roh, Myung Sub

    2013-01-01

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  1. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  2. Nonparametric Inference of Doubly Stochastic Poisson Process Data via the Kernel Method.

    Science.gov (United States)

    Zhang, Tingting; Kou, S C

    2010-01-01

    Doubly stochastic Poisson processes, also known as the Cox processes, frequently occur in various scientific fields. In this article, motivated primarily by analyzing Cox process data in biophysics, we propose a nonparametric kernel-based inference method. We conduct a detailed study, including an asymptotic analysis, of the proposed method, and provide guidelines for its practical use, introducing a fast and stable regression method for bandwidth selection. We apply our method to real photon arrival data from recent single-molecule biophysical experiments, investigating proteins' conformational dynamics. Our result shows that conformational fluctuation is widely present in protein systems, and that the fluctuation covers a broad range of time scales, highlighting the dynamic and complex nature of proteins' structure.

  3. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  4. Monitoring and pollution control: A stochastic process approach to model oil spills

    International Nuclear Information System (INIS)

    Viladrich-Grau, M.

    1991-01-01

    The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

  5. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  6. Comment on "Fault Tolerant analysis for stochastic systems using switching diffusion processes' by Yang, Jiang and Cocquempot

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef

    2011-01-01

    Results are given in [Yang et. al. 2009] regarding the overall stability of switched diffusion processes based on stability properties of separate processes combined through stochastic switching. This paper argues two main results to be empty, in that the presented hypotheses are logically...

  7. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on 16-21 August 1987.

    Science.gov (United States)

    1987-08-21

    examples of so-called self-similar processes. 522 -°- °.. 0 * - -= uu~.~w- - v , LOCAL BEHAVIOUR OF SIMPLE STOCHASTIC MODELS by Rudolf Grfibel...theorem en- tails results on the growth of matchings, Steiner trees, traveling-salesman processes as well as triangulations in large areas. These

  8. Main Achievements 2003-2004 - Interdisciplinary Research - Applications of theoretical physics - Stochastic processes

    International Nuclear Information System (INIS)

    2005-01-01

    Some specific stochastic, jumping processes have been studied. They are defined in terms of the jump size distribution and the waiting time distribution which are mutually dependent. For the simplest case (the kangaroo process), the corresponding master equation has been completely solved and simple asymptotic expressions for the time-dependent probability distributions have been derived. A generalized version of that process, which takes into account the memory effects, has been proposed and a connection to transport processes, namely to the Boltzmann kinetic theory and diffusion, has been demonstrated. The same process, but defined on the circle instead of the axis, can possess the power law autocorrelation function; a simple formula for this function has been derived. Therefore, the process can serve as a useful model for the colored noises, in particular for the 1/f noise. It has been applied as a model of the driving force in the generalized Langevin equation, an impossible task with the standard kangaroo process. The equation has been solved by means of the Monte Carlo simulations. The resulting velocity and energy distributions exhibit extremely long memory about the initial conditions, despite an apparent fast equilibration of their comprehensive shape. The tails of both distributions fall faster than in the Maxwellian case

  9. Quantum stochastics

    CERN Document Server

    Chang, Mou-Hsiung

    2015-01-01

    The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...

  10. Stochastic Dynamics of Discrete Curves and Exclusion Processes. Part 1: Hydrodynamic Limit of the ASEP System

    CERN Document Server

    Fayolle, G; Fayolle, Guy; Furtlehner, Cyril

    2006-01-01

    This report is the foreword of a series of stochastic deformations of curves. Problems are set in terms of exclusion processes, the ultimate goal being to derive hydrodynamic limits for these systems after proper scalings. In this study, solely the basic texts system on the torus is analyzed. The usual sequence of empirical measures, converges in probability to a deterministic measure, which is the unique weak solution of a Cauchy problem. The method presents some new features, letting hope for extensions to higher dimension. It relies on the analysis of a family of parabolic differential operators, involving variational calculus. Namely, the variables are the values of functions at given points, their number being possibly infinite.

  11. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  12. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    Science.gov (United States)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  13. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2017-01-01

    Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

  14. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  15. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  16. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  17. Stochastic disturbances and dynamics of thermal processes. With application to municipal solid waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Van Kessel, L.B.M.

    2003-06-11

    with the on-line calorific value sensor from chapter 2 and a validated dynamic model of the process is available, the theory from stochastic processes can be applied to MSWC. This new application field of stochastics is discussed in chapter 4. The results obtained in chapter 2 will be used in this analysis. Also new linear transfer functions for thermal processes will be given and applied to MSWC. Finally, applications of the new developed tools will be discussed. As already mentioned, the validation experiments lead to the conclusion that the dynamics of the combustion process can change when the primary air temperature changes. This was a new result, which has never been reported in literature before. For that reason during the research it was decided to start an extensive study into the influence of the primary air temperature on the combustion process. This has been performed by using laboratory experiments. In chapter 5 the results from this search will be presented. The existing theory for combustion of solid fuels is extended with a qualitative as well as a quantitative description of the influence of primary preheating. The new theory is used to explain observations from real plants and the results from system identification. Furthermore, the value of laboratory experiments to simulate the real combustion process on a grate is discussed.

  18. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    Science.gov (United States)

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  19. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

    Science.gov (United States)

    Forman, Yakir; Cameron, Maria

    2017-07-01

    We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

  20. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    Science.gov (United States)

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  1. Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.

    Science.gov (United States)

    Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard

    2012-01-01

    Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting

  2. StochPy: A Comprehensive, User-Friendly Tool for Simulating Stochastic Biological Processes

    NARCIS (Netherlands)

    T.R. Maarleveld (Timo); B.G. Olivier (Brett); F.J. Bruggeman (Frank)

    2013-01-01

    htmlabstractSingle-cell and single-molecule measurements indicate the importance of stochastic phenomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers of key macromolecules and the timing of reaction events between genetically-identical cells. Mathematical models

  3. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    Science.gov (United States)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  4. Conference on Stochastic Processes and their Applications (16th) Held in Stanford, California on August 17-21, 1987.

    Science.gov (United States)

    1987-08-01

    ESTIMATION FOR STOCHASTIC PROCESSES by C. C. Heyde Australian National University Canberra, Australia ABSTRACT Optimality is a widely and loosely used...Case 240 S. Australia 1211 Geneva 24 Switzerland Christopher C. Heyde Dept. of Statistics, IAS Patricia Jacobs . Australian National University...Universitat Regensburg USA Postfach D-8400 Regensburg Anatole Joffe W. Germany Dept. of Mathematics & Statatistics Frank Kelly Universite de Montreal

  5. A customizable stochastic state point process filter (SSPPF) for neural spiking activity.

    Science.gov (United States)

    Xin, Yao; Li, Will X Y; Min, Biao; Han, Yan; Cheung, Ray C C

    2013-01-01

    Stochastic State Point Process Filter (SSPPF) is effective for adaptive signal processing. In particular, it has been successfully applied to neural signal coding/decoding in recent years. Recent work has proven its efficiency in non-parametric coefficients tracking in modeling of mammal nervous system. However, existing SSPPF has only been realized in commercial software platforms which limit their computational capability. In this paper, the first hardware architecture of SSPPF has been designed and successfully implemented on field-programmable gate array (FPGA), proving a more efficient means for coefficient tracking in a well-established generalized Laguerre-Volterra model for mammalian hippocampal spiking activity research. By exploring the intrinsic parallelism of the FPGA, the proposed architecture is able to process matrices or vectors with random size, and is efficiently scalable. Experimental result shows its superior performance comparing to the software implementation, while maintaining the numerical precision. This architecture can also be potentially utilized in the future hippocampal cognitive neural prosthesis design.

  6. Operational Markov Condition for Quantum Processes

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.

  7. Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi

    2010-01-01

    In terms of the stochastic process of quantum-mechanical version of Markov chain Monte Carlo method (the MCMC), we analytically derive macroscopically deterministic flow equations of order parameters such as spontaneous magnetization in infinite-range (d(= ∞)-dimensional) quantum spin systems. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding (d + 1)-dimensional classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. In the steady state, we show that the equations are identical to the saddle point equations for the equilibrium state of the same system. The equation for the dynamical Ising model is recovered in the classical limit. We also check the validity of the static approximation by making use of computer simulations for finite size systems and discuss several possible extensions of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we shall use our procedure to evaluate the decoding process of Bayesian image restoration. With the assistance of the concept of dynamical replica theory (the DRT), we derive the zero-temperature flow equation of image restoration measure showing some 'non-monotonic' behaviour in its time evolution.

  8. Stochastic production phase design for an open pit mining complex with multiple processing streams

    Science.gov (United States)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  9. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

  10. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  11. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    Science.gov (United States)

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  12. Phenomenological and ratio bifurcations of a class of discrete time stochastic processes

    NARCIS (Netherlands)

    Diks, C.G.H.; Wagener, F.O.O.

    2011-01-01

    Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L. Arnold. The classification is however not invariant under diffeomorphisms of the

  13. Relative importance of deterministic and stochastic processes in driving arbuscular mycorrhizal fungal assemblage during the spreading of a toxic plant.

    Directory of Open Access Journals (Sweden)

    Guoxi Shi

    Full Text Available Both deterministic and stochastic processes are expected to drive the assemblages of arbuscular mycorrhizal (AM fungi, but little is known about the relative importance of these processes during the spreading of toxic plants. Here, the species composition and phylogenetic structure of AM fungal communities colonizing the roots of a toxic plant, Ligularia virgaurea, and its neighborhood plants, were analyzed in patches with different individual densities of L. virgaurea (represents the spreading degree. Community compositions of AM fungi in both root systems were changed significantly by the L. virgaurea spreading, and also these communities fitted the neutral model very well. AM fungal communities in patches with absence and presence of L. virgaurea were phylogenetically random and clustered, respectively, suggesting that the principal ecological process determining AM fungal assemblage shifted from stochastic process to environmental filtering when this toxic plant was present. Our results indicate that deterministic and stochastic processes together determine the assemblage of AM fungi, but the dominant process would be changed by the spreading of toxic plants, and suggest that the spreading of toxic plants in alpine meadow ecosystems might be involving the mycorrhizal symbionts.

  14. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

    Directory of Open Access Journals (Sweden)

    Akira Ikuta

    2014-01-01

    Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

  15. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-02-15

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

  16. The measurement problem on classical diffusion process: inverse method on stochastic processes

    International Nuclear Information System (INIS)

    Bigerelle, M.; Iost, A.

    2004-01-01

    In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm and secondly to examine the physical meaning of the results. Statistical mechanic considerations show that, passing over a time-distance criterion, measurement becomes uncertain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-entropy at a mesoscopique scale that is in violation to quantum theory about measurement

  17. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    Science.gov (United States)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  18. Non-Markovian reservoir-dependent squeezing

    International Nuclear Information System (INIS)

    Paavola, J

    2010-01-01

    The squeezing dynamics of a damped harmonic oscillator are studied for different types of environment without making the Markovian approximation. The squeezing dynamics of a coherent state depend on the reservoir spectrum in a unique way that can, in the weak coupling approximation, be analysed analytically. Comparison of squeezing dynamics for ohmic, sub-ohmic and super-ohmic environments is done, showing a clear connection between the squeezing-non-squeezing oscillations and reservoir structure. Understanding the effects occurring due to structured reservoirs is important both from a purely theoretical point of view and in connection with evolving experimental techniques and future quantum computing applications.

  19. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

    Science.gov (United States)

    Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

    2017-02-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a

  20. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Andres [Iowa State Univ., Ames, IA (United States)

    2017-08-05

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

  1. ANALYSIS OF EFFECTIVENESS OF METHODOLOGICAL SYSTEM FOR PROBABILITY AND STOCHASTIC PROCESSES COMPUTER-BASED LEARNING FOR PRE-SERVICE ENGINEERS

    Directory of Open Access Journals (Sweden)

    E. Chumak

    2015-04-01

    Full Text Available The author substantiates that only methodological training systems of mathematical disciplines with implementation of information and communication technologies (ICT can meet the requirements of modern educational paradigm and make possible to increase the educational efficiency. Due to this fact, the necessity of developing the methodology of theory of probability and stochastic processes computer-based learning for pre-service engineers is underlined in the paper. The results of the experimental study for analysis of the efficiency of methodological system of theory of probability and stochastic processes computer-based learning for pre-service engineers are shown. The analysis includes three main stages: ascertaining, searching and forming. The key criteria of the efficiency of designed methodological system are the level of probabilistic and stochastic skills of students and their learning motivation. The effect of implementing the methodological system of probability theory and stochastic processes computer-based learning on the level of students’ IT literacy is shown in the paper. The expanding of the range of objectives of ICT applying by students is described by author. The level of formation of students’ learning motivation on the ascertaining and forming stages of the experiment is analyzed. The level of intrinsic learning motivation for pre-service engineers is defined on these stages of the experiment. For this purpose, the methodology of testing the students’ learning motivation in the chosen specialty is presented in the paper. The increasing of intrinsic learning motivation of the experimental group students (E group against the control group students (C group is demonstrated.

  2. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

    Science.gov (United States)

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-01

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  3. Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R.; Lutovinov, V.S.

    1986-09-11

    The continuous stochastic formalism for the description of systems with birth and death processes randomly distributed in space is developed with the use of local birth and death operators and local generalization of the corresponding Chapman-Kolmogorov equation. The functional stochastic equation for the evolution of the probability functional is derived and its modifications for evolution of the characteristic functional and the first passage time problem are given. The corresponding evolution equations for equal-time correlators are also derived. The results are generalized then on the exothermic and endothermic chemical reactions. As examples of the particular applications of the results the small fluctuations near stable equilibrium state and fluctuations in mono-molecular reactions, Lotka-Volterra model, Schloegl reaction and brusselator are considered. It is shown that the two-dimensional Lotka-Volterra model may exhibit synergetic phase transition analogous to the topological transition of the Kosterlitz-Thouless-Berezinskii type. At the end of the paper some general consequences from stochastic evolution of the birth and death processes are discussed and the arguments on their importance in evolution of populations, cellular dynamics and in applications to various chemical and biological problems are presented.

  4. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

  5. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  6. Stochastic Greybox Modeling for Control of an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vezzaro, Luca; Grum, M.

    We present a stochastic greybox model of a BioDenitro WWTP that can be used for short time horizon Model Predictive Control. The model is based on a simplified ASM1 model and takes model uncertainty in to account. It estimates unmeasured state variables in the system, e.g. the inlet concentration...

  7. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  8. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  9. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

  10. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  11. Power Scheduling Method for Demand Response based on Home Energy Management System using Stochastic Process

    OpenAIRE

    Moreno, Pablo; García, Marcelo

    2016-01-01

    The increase in energy consumption, especially in residential consumers, means that the electrical system should grow at pair, in infrastructure and installed capacity, the energy prices vary to meet these needs, so this paper uses the methodology of demand response using stochastic methods such as Markov, to optimize energy consumption of residential users. It is necessary to involve customers in the electrical system because in this way it can be verified the actual amount of electric charg...

  12. Stochastic processes and the non-perturbative structure of the QCD vacuum

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1992-01-01

    Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)

  13. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  14. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  15. Stochastic kinetics

    International Nuclear Information System (INIS)

    Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.

    1975-01-01

    A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)

  16. Pricing of American Put Option under a Jump Diffusion Process with Stochastic Volatility in an Incomplete Market

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available We study the pricing of American options in an incomplete market in which the dynamics of the underlying risky asset is driven by a jump diffusion process with stochastic volatility. By employing a risk-minimization criterion, we obtain the Radon-Nikodym derivative for the minimal martingale measure and consequently a linear complementarity problem (LCP for American option price. An iterative method is then established to solve the LCP problem for American put option price. Our numerical results show that the model and numerical scheme are robust in capturing the feature of incomplete finance market, particularly the influence of market volatility on the price of American options.

  17. Effluent trading in river systems through stochastic decision-making process: a case study.

    Science.gov (United States)

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  18. Minimal representation of matrix valued white stochastic processes and U–D factorisation of algorithms for optimal control

    NARCIS (Netherlands)

    Willigenburg, van L.G.; Koning, de W.L.

    2013-01-01

    Two different descriptions are used in the literature to formulate the optimal dynamic output feedback control problem for linear dynamical systems with white stochastic parameters and quadratic criteria, called the optimal compensation problem. One describes the matrix valued white stochastic

  19. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  20. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  1. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  2. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  3. Stochastic interest model driven by compound Poisson process andBrownian motion with applications in life contingencies

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2018-03-01

    Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.

  4. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    Science.gov (United States)

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  5. KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi, and stochastic Rayleigh and Ornstein-Uhlenbeck processes

    International Nuclear Information System (INIS)

    Biyajima, M.

    1984-01-01

    Stochastic backgrounds of the KNO scaling functions given by Buras and Koba and by Barshay and Yamaguchi are investigated. It is found that they are connected with the stochastic Rayleigh process, and the (1+2)- and (1+4)-dimensional Ornstein-Uhlenbeck process. Moreover those KNO scaling functions are transformed into the KNO scaling functions given by the Perina-McGill formula in terms of a nonlinear transformation. Analyses of data by means of them are made. Probability distributions of the former KNO scaling functions are also calculated by the Poisson transformation. (orig.)

  6. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  8. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    Science.gov (United States)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  9. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  10. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  11. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul

    2015-01-01

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  12. A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control

    KAUST Repository

    Djehiche, Boualem

    2015-02-24

    In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng\\'s type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.

  13. The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes

    Science.gov (United States)

    Bouchaud, Jean-Philippe; Sornette, Didier

    1994-06-01

    The ability to price risks and devise optimal investment strategies in thé présence of an uncertain "random" market is thé cornerstone of modern finance theory. We first consider thé simplest such problem of a so-called "European call option" initially solved by Black and Scholes using Ito stochastic calculus for markets modelled by a log-Brownien stochastic process. A simple and powerful formalism is presented which allows us to generalize thé analysis to a large class of stochastic processes, such as ARCH, jump or Lévy processes. We also address thé case of correlated Gaussian processes, which is shown to be a good description of three différent market indices (MATIF, CAC40, FTSE100). Our main result is thé introduction of thé concept of an optimal strategy in the sense of (functional) minimization of the risk with respect to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasiGaussian' stochastic processes (including Black and Scholes model), this is no longer the case for more general stochastic processes. The value of the residual risk is obtained and suggests the concept of risk-corrected option prices. In the presence of very large deviations such as in Lévy processes, new criteria for rational fixing of the option prices are discussed. We also apply our method to other types of options, `Asian', `American', and discuss new possibilities (`doubledecker'...). The inclusion of transaction costs leads to the appearance of a natural characteristic trading time scale. L'aptitude à quantifier le coût du risque et à définir une stratégie optimale de gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de la finance. Nous considérons d'abord le problème le plus simple de ce type, à savoir celui de l'option d'achat `européenne', qui a été résolu par Black et Scholes à l'aide du calcul stochastique d'Ito appliqué aux marchés modélisés par un processus Log

  14. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    Science.gov (United States)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  15. A software framework for process flow execution of stochastic multi-scale integrated models

    NARCIS (Netherlands)

    Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek

    2016-01-01

    Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a

  16. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    E. Barndorff-Nielsen, Ole; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G* of Potthoff-Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discussed...

  17. On stochastic integration for volatility modulated Brownian-driven Volterra processes via white noise analysis

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Benth, Fred Espen; Szozda, Benedykt

    This paper generalizes the integration theory for volatility modulated Brownian-driven Volterra processes onto the space G∗ of Potthoff--Timpel distributions. Sufficient conditions for integrability of generalized processes are given, regularity results and properties of the integral are discusse...

  18. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  19. Thermal mixtures in stochastic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, F [Rome Univ. (Italy). Ist. di Matematica; Loffredo, M I [Salerno Univ. (Italy). Ist. di Fisica

    1981-01-17

    Stochastic mechanics is extended to systems in thermal equilibrium. The resulting stochastic processes are mixtures of Nelson processes. Their Markov property is investigated in some simple cases. It is found that in order to inforce Markov property the algebra of observable associated to the present must be suitably enlarged.

  20. Stochastic Pi-calculus Revisited

    DEFF Research Database (Denmark)

    Cardelli, Luca; Mardare, Radu Iulian

    2013-01-01

    We develop a version of stochastic Pi-calculus with a semantics based on measure theory. We dene the behaviour of a process in a rate environment using measures over the measurable space of processes induced by structural congruence. We extend the stochastic bisimulation to include the concept of...

  1. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images

    Science.gov (United States)

    Tournaire, O.; Paparoditis, N.

    Road detection has been a topic of great interest in the photogrammetric and remote sensing communities since the end of the 70s. Many approaches dealing with various sensor resolutions, the nature of the scene or the wished accuracy of the extracted objects have been presented. This topic remains challenging today as the need for accurate and up-to-date data is becoming more and more important. Based on this context, we will study in this paper the road network from a particular point of view, focusing on road marks, and in particular dashed lines. Indeed, they are very useful clues, for evidence of a road, but also for tasks of a higher level. For instance, they can be used to enhance quality and to improve road databases. It is also possible to delineate the different circulation lanes, their width and functionality (speed limit, special lanes for buses or bicycles...). In this paper, we propose a new robust and accurate top-down approach for dashed line detection based on stochastic geometry. Our approach is automatic in the sense that no intervention from a human operator is necessary to initialise the algorithm or to track errors during the process. The core of our approach relies on defining geometric, radiometric and relational models for dashed lines objects. The model also has to deal with the interactions between the different objects making up a line, meaning that it introduces external knowledge taken from specifications. Our strategy is based on a stochastic method, and in particular marked point processes. Our goal is to find the objects configuration minimising an energy function made-up of a data attachment term measuring the consistency of the image with respect to the objects and a regularising term managing the relationship between neighbouring objects. To sample the energy function, we use Green algorithm's; coupled with a simulated annealing to find its minimum. Results from aerial images at various resolutions are presented showing that our

  2. Application of stochastic dynamic simulation to waste form qualification for the HWVP vitrification process

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Westsik, J.H. Jr.

    1989-01-01

    Processing steps during the conversion of high-level nuclear waste into borosilicate glass in the Hanford Waste Vitrification Plant are being simulated on a computer by addressing transient mass balances. The results are being used to address the US Department of Energy's Waste Form Qualification requirements. The simulated addresses discontinuous (batch) operations and perturbations in the transient behavior of the process caused by errors in measurements and control actions. A collection of tests, based on process measurements, is continually checked and used to halt the simulated process when specified conditions are met. An associated set of control actions is then implemented in the simulation. The results for an example simulation are shown. 8 refs

  3. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race

    NARCIS (Netherlands)

    Warnke, T.; Reinhardt, O.; Klabunde, A.; Willekens, F.J.; Uhrmacher, A.

    2017-01-01

    Individuals’ decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for

  4. Stochastic quantization

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1983-01-01

    The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)

  5. Chaotic transitions in deterministic and stochastic dynamical systems applications of Melnikov processes in engineering, physics, and neuroscience

    CERN Document Server

    Simiu, Emil

    2002-01-01

    The classical Melnikov method provides information on the behavior of deterministic planar systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This book develops a unified treatment of deterministic and stochastic systems that extends the applicability of the Melnikov method to physically realizable stochastic planar systems with additive, state-dependent, white, colored, or dichotomous noise. The extended Melnikov method yields the novel result that motions with transitions are chaotic regardless of whether the excitation is deterministic or stochastic. It explains the role in the occurrence of transitions of the characteristics of the system and its deterministic or stochastic excitation, and is a powerful modeling and identification tool. The book is designed primarily for readers interested in applications. The level of preparation required corresponds to the equivalent of a first-year graduate course in applied mathematics. No previous exposure to d...

  6. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

    International Nuclear Information System (INIS)

    Wehner, M.F.

    1983-01-01

    A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

  7. Stochastic stability of mechanical systems under renewal jump process parametric excitation

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R.K.; Larsen, Jesper Winther

    2005-01-01

    A dynamic system under parametric excitation in the form of a non-Erlang renewal jump process is considered. The excitation is a random train of nonoverlapping rectangular pulses with equal, deterministic heights. The time intervals between two consecutive jumps up (or down), are the sum of two...

  8. Analysis of the stochastic channel model by Saleh & Valenzuela via the theory of point processes

    DEFF Research Database (Denmark)

    Jakobsen, Morten Lomholt; Pedersen, Troels; Fleury, Bernard Henri

    2012-01-01

    and underlying features, like the intensity function of the component delays and the delaypower intensity. The flexibility and clarity of the mathematical instruments utilized to obtain these results lead us to conjecture that the theory of spatial point processes provides a unifying mathematical framework...

  9. Macrotransport processes: Brownian tracers as stochastic averagers in effective medium theories of heterogeneous media

    International Nuclear Information System (INIS)

    Brenner, H.

    1991-01-01

    Macrotransport processes (generalized Taylor dispersion phenomena) constitute coarse-grained descriptions of comparable convective diffusive-reactive microtransport processes, the latter supposed governed by microscale linear constitutive equations and boundary conditions, but characterized by spatially nonuniform phenomenological coefficients. Following a brief review of existing applications of the theory, the author focuses - by way of background information-upon the original (and now classical) Taylor - Aris dispersion problem, involving the combined convective and molecular diffusive transport of a point-size Brownian solute molecule (tracer) suspended in a Poiseuille solvent flow within a circular tube. A series of elementary generalizations of this prototype problem to chromatographic-like solute transport processes in tubes is used to illustrate some novel statistical-physical features. These examples emphasize the fact that a solute molecule may, on average, move axially down the tube at a different mean velocity (either larger or smaller) than that of a solvent molecule. Moreover, this solute molecule may suffer axial dispersion about its mean velocity at a rate greatly exceeding that attributable to its axial molecular diffusion alone. Such chromatographic anomalies represent novel macroscale non-linearities originating from physicochemical interactions between spatially inhomogeneous convective-diffusive-reactive microtransport processes

  10. Non-homogeneous stochastic birth and death processes with applications to epidemic outbreak data

    NARCIS (Netherlands)

    van den Broek, J.

    2012-01-01

    The subject of this thesis is the non-homogeneous birth-death process with some of its special cases and its use in modeling epidemic data. This model describes changes in the size of a population. New population members can appear with a rate, called the birth rate or the reproductive power, and

  11. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  12. Transport properties of stochastic Lorentz models

    NARCIS (Netherlands)

    Beijeren, H. van

    Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

  13. Environmental vs Demographic Stochasticity in Population Growth

    OpenAIRE

    Braumann, C. A.

    2010-01-01

    Compares the effect on population growth of envinonmental stochasticity (random environmental variations described by stochastic differential equations) with demographic stochasticity (random variations in births and deaths described by branching processes and birth-and-death processes), in the density-independent and the density-dependent cases.

  14. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  15. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  16. ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

    OpenAIRE

    W. Nakanishi; T. Fuse; T. Ishikawa

    2015-01-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...

  17. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  18. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China.

    Science.gov (United States)

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  19. STOCHASTIC ASSESSMENT OF NIGERIAN STOCHASTIC ...

    African Journals Online (AJOL)

    eobe

    STOCHASTIC ASSESSMENT OF NIGERIAN WOOD FOR BRIDGE DECKS ... abandoned bridges with defects only in their decks in both rural and urban locations can be effectively .... which can be seen as the detection of rare physical.

  20. Determination of the carbon market incremental payoff considering a stochastic jump-diffusion process

    Directory of Open Access Journals (Sweden)

    Fabio Rodrigo Siqueira Batista

    2013-12-01

    Full Text Available The objective of this paper is to verify the robustness of the Least Square Monte Carlo and Grant, Vora & Weeks methods when used to determine the incremental payoff of the carbon market for renewable electricity generation projects, considering that the behavior of the price of Certified Emission Reductions, otherwise known as Carbon Credits, may be modeled using a jump-diffusion process. In addition, this paper analyses particular characteristics, such as absence of monotonicity, found in trigger curves obtained through use of the Grant, Vora & Weeks method to valuate these types of project.