WorldWideScience

Sample records for non-lte model stellar

  1. A spherical, non-LTE, blanketed model stellar atmosphere for Phi CAS (FOIa)

    Science.gov (United States)

    Rosenzweig, Patricia

    By constructing a model atmosphere, the theoretical energy distribution of the emergent radiation that best matches the observed energy distribution of the star Phi Cassiopeiae is calculated; its effective temperature and surface gravity are thus derived. In order to use the pair method to derive the extinction curve for NGC 457 of which Phi Cas is a member, a new method is developed for choosing a lightly reddened comparison star, which consists of matching the equivalent widths of spectral features that are particularly strong and sensitive to temperature and luminosity. The intrinsic energy distribution of Phi Cas was determined from 1500 to 5800 A. A detailed new spherical model atmosphere was constructed. The equation of transfer was solved with the constraints of hydrostatic and pure radiative equilibrium. The statistical equilibrium of 10 to the 6th transitions was treated. Several tests have demonstrated this model to be reliable. Results imply a mass of 6.3 + or - 3.6 solar masses, which agrees with the mass of the main-sequence turnoff of NGC 457.

  2. The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    CERN Document Server

    Osorio, Y; Lind, K; Asplund, M

    2011-01-01

    The influence of uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the collision data used in previous non-LTE calculations and compare with recent calculations using convergent close-coupling (CCC) techniques, as well our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up till now. The results of non-LTE calculations using the old and new data sets are compared and only small differences are found; of order 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that electron collision data are not a significant source of uncertainty in non-LTE Li line formation calculations. Indeed, together with the collision data for the charge exchange process Li(3s) + H ...

  3. Inelastic H+Li and H^-+Li^+ collisions and non-LTE Li I line formation in stellar atmospheres

    CERN Document Server

    Barklem, P S; Asplund, M

    2003-01-01

    Rate coefficients for inelastic collisions between Li and H atoms covering all transitions between the asymptotic states Li(2s,2p,3s,3p,3d,4s,4p,4d,4f)+H(1s) and Li^+ +H^- are presented for the temperature range 2000-8000 K based on recent cross-section calculations. The data are of sufficient completeness for non-LTE modelling of the Li I 670.8 nm and 610.4 nm features in late-type stellar atmospheres. Non-LTE radiative transfer calculations in both 1D and 3D model atmospheres have been carried out for test cases of particular interest. Our detailed calculations show that the classical modified Drawin-formula for collisional excitation and de-excitation (Li*+H Li*'+H) over-estimates the cross-sections by typically several orders of magnitude and consequently that these reactions are negligible for the line formation process. However, the charge transfer reactions collisional ion-pair production and mutual neutralization (Li*+H Li^+ +H^-) are of importance in thermalizing Li. In particular, 3D non-LTE calcu...

  4. Formation of Zr I and II lines under non-LTE conditions of stellar atmospheres

    CERN Document Server

    Velichko, A; Nilsson, H

    2011-01-01

    The non-local thermodynaic equilibrium (non-LTE) line formation for the two ions of zirconium is considered through a range of spectral types when the Zr abundance varies from the solar value down to [Zr/H] = -3. The model atom was built using 148 energy levels of Zr I, 772 levels of Zr II, and the ground state of Zr III. It was shown that the main non-LTE mechnism for the minority species Zr I is ultraviolet overionization. Non-LTE leads to systematically depleted total absorption in the Zr I lines and positive abundance corrections, reaching to 0.33 dex for the solar metallicity models. The excited levels of Zr II are overpopulated relative to their thermodynamic equilibrium populations in the line formation layers due to radiative pumping from the low-excitation levels. As a result, the line source function exceeds the Planck function leading to weakening the Zr II lines and positive non-LTE abundance corrections. Such corrections grow towards lower metallicity and lower surface gravity and reach to 0.34 d...

  5. Non-LTE modeling of supernova-fallback disks

    CERN Document Server

    Werner, K; Rauch, T

    2006-01-01

    We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the d...

  6. A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars

    CERN Document Server

    Mashonkina, L; Shi, J -R; Korn, A J; Grupp, F

    2011-01-01

    A comprehensive model atom for Fe with more than 3000 energy levels is presented. As a test and first application of this model atom, Fe abundances are determined for the Sun and five stars with well determined stellar parameters and high-quality observed spectra. Non-LTE leads to systematically depleted total absorption in the Fe I lines and to positive abundance corrections in agreement with the previous studies, however, the magnitude of non-LTE effect is smaller compared to the earlier results. Non-LTE corrections do not exceed 0.1 dex for the solar metallicity and mildly metal-deficient stars, and they vary within 0.21 dex and 0.35 dex in the very metal-poor stars HD 84937 and HD 122563, respectively, depending on the assumed efficiency of collisions with hydrogen atoms. Based on the analysis of the Fe I/Fe II ionization equilibrium in these two stars, we recommend to apply the Drawin formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the Fe II lines, non-LTE corrections do not exceed 0...

  7. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres

    CERN Document Server

    Prakapavicius, D; Kucinskas, A; Ludwig, H -G; Freytag, B; Caffau, E; Cayrel, R

    2013-01-01

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor 3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps ...

  8. Non-LTE modeling of radiatively driven dense plasmas

    Science.gov (United States)

    Scott, H. A.

    2017-03-01

    There are now several experimental facilities that use strong X-ray fields to produce plasmas with densities ranging from ˜1 to ˜103 g/cm3. Large laser facilities, such as the National Ignition Facility (NIF) and the Omega laser reach high densities with radiatively driven compression, short-pulse lasers such as XFELs produce solid density plasmas on very short timescales, and the Orion laser facility combines these methods. Despite the high densities, these plasmas can be very far from LTE, due to large radiation fields and/or short timescales, and simulations mostly use collisional-radiative (CR) modeling which has been adapted to handle these conditions. These dense plasmas present challenges to CR modeling. Ionization potential depression (IPD) has received much attention recently as researchers work to understand experimental results from LCLS and Orion [1,2]. However, incorporating IPD into a CR model is only one challenge presented by these conditions. Electron degeneracy and the extent of the state space can also play important roles in the plasma energetics and radiative properties, with effects evident in recent observations [3,4]. We discuss the computational issues associated with these phenomena and methods for handling them.

  9. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  10. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color–magnitude diagram (CMD) discretization. Johnson–Cousins–Bessel U – B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe i, Ca i, and Ti i, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  11. Non-LTE modeling of the near UV band of late-type stars

    CERN Document Server

    Short, C Ian

    2008-01-01

    We investigate the ability of both LTE and Non-LTE models to fit the near UV band absolute flux distribution and individual spectral line profiles of three standard stars for which high quality spectrophotometry and high resolution spectroscopy are available: The Sun (G2 V), Arcturus (K2 III), and Procyon (F5 IV-V). We investigate 1) the effect of the choice of atomic line list on the ability of NLTE models to fit the near UV band flux level, 2) the amount of a hypothesized continuous thermal absorption extinction source required to allow NLTE models to fit the observations, and 3) the semi-empirical temperature structure required to fit the observations with NLTE models and standard continuous near UV extinction. We find that all models that are computed with high quality atomic line lists predict too much flux in the near UV band for Arcturus, but fit the warmer stars well. The variance among independent measurements of the solar irradiance in the near UV is sufficiently large that we cannot definitely conc...

  12. Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models

    CERN Document Server

    Sukhorukov, Andrii V

    2016-01-01

    Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...

  13. Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2011-01-01

    Gaseous metal discs around single white dwarfs have been discovered recently. They are thought to develop from disrupted planetary bodies. Spectroscopic analyses will allow us to study the composition of extrasolar planetary material. We investigate in detail the first object for which a gas disc was discovered (SDSS J122859.93+104032.9). Therefor we perform non-LTE modelling of viscous gas discs by computing the detailed vertical structure and line spectra. The models are composed of carbon, oxygen, magnesium, silicon, calcium, and hydrogen with chemical abundances typical for Solar System asteroids. Line asymmetries are modelled by assuming spiral-arm and eccentric disc structures as suggested by hydrodynamical simulations. The observed infrared Ca II emission triplet can be modelled with a hydrogen-deficient metal gas disc located inside of the tidal disruption radius, with an effective temperature of about 6000 K and a surface mass density of 0.3 g/cm^2. The inner radius is well constrained at about 0.64 ...

  14. Non-LTE spectral models for the gaseous debris-disk component of Ton 345

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2014-01-01

    For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca II infrared emission triplet, hallmark of the gas disk. We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared w...

  15. New non-LTE model of OH(v) in the mesopshere/lower thermosphere

    Science.gov (United States)

    Panka, Peter; Kutepov, Alexander; Kalogerakis, Konstantinos; Janches, Diego; Feofilov, Artem; Rezac, Ladi; Marsh, Daniel; Yigit, Erdal

    2017-04-01

    We present a new detailed non-LTE model of OH(v) for the nighttime mesosphere/lower thermosphere. The model accounts for chemical production of vibrationally excited OH and for various vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges with main atmospheric constituents. The new feature was added to account for the "indirect" vibrational-electronic (VE) mechanism OH(v)→O(1D)→N2(v) of the OH vibrational energy transfer to N2, recently suggested by Sharma et al. [2015] and confirmed through laboratory studies by Kalogerakis et al. [2016]. We study the impact of this mechanism on the OH(v) populations and emissions in the two SABER channels at 1.6 and 2.0 μm. We also discuss the implications this mechanism will have on the retrieval of OH and O densities, as well as its effects on the nighttime CO2 density retrievals from the SABER 4.3 μm channel.

  16. Quantitative spectroscopy of extreme helium stars Model atmospheres and a non-LTE abundance analysis of BD+10°2179

    Science.gov (United States)

    Kupfer, T.; Przybilla, N.; Heber, U.; Jeffery, C. S.; Behara, N. T.; Butler, K.

    2017-10-01

    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper, we present a detailed quantitative non-LTE spectral analysis for BD+10°2179, a prototype of this rare class of stars, using UV-Visual Echelle Spectrograph and Fiber-fed Extended Range Optical Spectrograph spectra covering the range from ∼3100 to 10 000 Å. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the atlas12 code. Additionally, We tested atlas12 against the benchmark code sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Secondly, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give Teff =17 300±300 K and log g = 2.80±0.10, and an evolutionary mass of 0.55±0.05 M⊙. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disc membership, which is consistent with the metallicity [Fe/H] ≈ -1 and α-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.

  17. Ultra-metal-poor Stars: Spectroscopic Determination of Stellar Atmospheric Parameters Using Iron Non-LTE Line Abundances

    Science.gov (United States)

    Ezzeddine, Rana; Frebel, Anna; Plez, Bertrand

    2017-10-01

    We present new ultra-metal-poor stars parameters with [Fe/H] up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameters and show that they can grow up to ∼1.00 dex in [Fe/H], ∼150 K in {T}{eff} and ∼0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being significantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.

  18. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com; Yang, L. B., E-mail: s.duan@163.com; Xie, W. P., E-mail: s.duan@163.com; Duan, S. C., E-mail: s.duan@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  19. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  20. Non-LTE CO, revisited

    Science.gov (United States)

    Ayres, Thomas R.; Wiedemann, Gunter R.

    1989-01-01

    A more extensive and detailed non-LTE simulation of the Delta v = 1 bands of CO than attempted previously is reported. The equations of statistical equilibrium are formulated for a model molecule containing 10 bound vibrational levels, each split into 121 rotational substates and connected by more than 1000 radiative transitions. Solutions are obtained for self-consistent populations and radiation fields by iterative application of the 'Lambda-operator' to an initial LTE distribution. The formalism is used to illustrate models of the sun and Arcturus. For the sun, negligible departures from LTE are found in either a theoretical radiative-equilibrium photosphere with outwardly falling temperatures in its highest layers or in a semiempirical hot chromosphere that reproduces the spatially averaged emission cores of Ca II H and K. The simulations demonstrate that the puzzling 'cool cores' of the CO Delta V = 1 bands observed in limb spectra of the sun and in flux spectra of Arcturus cannot be explained simply by non-LTE scattering effects.

  1. How Do Type Ia Supernova Nebular Spectra Depend on Explosion Properties? Insights from Systematic Non-LTE Modeling

    Science.gov (United States)

    Botyánszki, János; Kasen, Daniel

    2017-08-01

    We present a radiative transfer code to model the nebular phase spectra of supernovae (SNe) in non-LTE (NLTE). We apply it to a systematic study of SNe Ia using parameterized 1D models and show how nebular spectral features depend on key physical parameters, such as the time since explosion, total ejecta mass, kinetic energy, radial density profile, and the masses of 56Ni, intermediate-mass elements, and stable iron-group elements. We also quantify the impact of uncertainties in atomic data inputs. We find the following. (1) The main features of SN Ia nebular spectra are relatively insensitive to most physical parameters. Degeneracy among parameters precludes a unique determination of the ejecta properties from spectral fitting. In particular, features can be equally well fit with generic Chandrasekhar mass ({M}{ch}), sub-{M}{Ch}, and super-{M}{Ch} models. (2) A sizable (≳0.1 {M}⊙ ) central region of stable iron-group elements, often claimed as evidence for {M}{Ch} models, is not essential to fit the optical spectra and may produce an unusual flat-top [Co iii] profile. (3) The strength of [S iii] emission near 9500 Å can provide a useful diagnostic of explosion nucleosynthesis. (4) Substantial amounts (≳0.1 {M}⊙ ) of unburned C/O mixed throughout the ejecta produce [O iii] emission not seen in observations. (5) Shifts in the wavelength of line peaks can arise from line-blending effects. (6) The steepness of the ejecta density profile affects the line shapes, offering a constraint on explosion models. (7) Uncertainties in atomic data limit the ability to infer physical parameters.

  2. Influence of inelastic collisions with hydrogen atoms on the non-LTE modelling of Ca i and Ca ii lines in late-type stars

    Science.gov (United States)

    Mashonkina, L.; Sitnova, T.; Belyaev, A. K.

    2017-09-01

    We performed the non-local thermodynamic equilibrium (non-LTE, NLTE) calculations for Ca i-ii with the updated model atom that includes new quantum-mechanical rate coefficients for Ca i + H i collisions from two recent studies and investigated the accuracy of calcium abundance determinations using the Sun, Procyon, and five metal-poor (MP, -2.6 ≤ [Fe/H] ≤-1.3) stars with well-determined stellar parameters. Including H i collisions substantially reduces over-ionisation of Ca i in the line formation layers compared with the case of pure electronic collisions and thus the NLTE effects on abundances derived from Ca i lines. We show that both collisional recipes lead to very similar NLTE results. As for Ca ii, the classical Drawinian rates scaled by SH = 0.1 are still applied. When using the subordinate lines of Ca i and the high-excitation lines of Ca ii, NLTE provides the smaller line-to-line scatter compared with the LTE case for each star. For Procyon, NLTE removes a steep trend with line strength among strong Ca i lines seen in LTE and leads to consistent [Ca/H] abundances from the two ionisation stages. In the MP stars, the NLTE abundance from Ca ii 8498 Å agrees well with the abundance from the Ca i subordinate lines, in contrast to LTE, where the abundance difference grows towards lower metallicity and reaches 0.46 dex in BD -13°3442 ([Fe/H] = -2.62). NLTE largely removes abundance discrepancies between the high-excitation lines of Ca ii and Ca ii 8498 Å obtained for our four [Fe/H] situation is improved when the calcium abundance decreases and the Ca i 4226 Å line formation depths are shifted into deep atmospheric layers that are dominated by over-ionisation of Ca i. However, the departures from LTE are still underestimated for Ca i 4226 Å at [Ca/H] ≃ -4.4 (HE 0557-4840). Consistent NLTE abundances from the Ca i resonance line and the Ca ii lines are found for HE 0107-5240 and HE 1327-2326 with [Ca/H] ≤-5. Thus, the Ca i/Ca ii ionisation

  3. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    Science.gov (United States)

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  4. VLT spectroscopy and non-LTE modeling of the C/O-dominated accretion disks in two ultracompact X-ray binaries

    CERN Document Server

    Werner, K; Hammer, N J; Nagel, T; Rauch, T

    2006-01-01

    We present new medium-resolution high-S/N optical spectra of the ultracompact low-mass X-ray binaries 4U0614+091 and 4U1626-67, taken with the ESO Very Large Telescope. They are pure emission line spectra and the lines are identified as due to C II-IV and O II-III Line identification is corroborated by first results from modeling the disk spectra with detailed non-LTE radiation transfer calculations. Hydrogen and helium lines are lacking in the observed spectra. Our models confirm the deficiency of H and He in the disks. The lack of neon lines suggests an Ne abundance of less than about 10 percent (by mass), however, this result is uncertain due to possible shortcomings in the model atom. These findings suggest that the donor stars are eroded cores of C/O white dwarfs with no excessive neon overabundance. This would contradict earlier claims of Ne enrichment concluded from X-ray observations of circumbinary material, which was explained by crystallization and fractionation of the white dwarf core.

  5. Non-LTE models for synthetic spectra of type Ia supernovae/hot stars with extremely extended atmospheres

    CERN Document Server

    Sauer, D N; Pauldrach, A W A

    2006-01-01

    Realistic atmospheric models that link the properties and the physical conditions of supernova ejecta to observable spectra are required for the quantitative interpretation of observational data of type Ia supernovae (SN Ia) and the assessment of the physical merits of theoretical supernova explosion models. The numerical treatment of the radiation transport - yielding the synthetic spectra - in models of SN Ia ejecta in early phases is usually carried out in analogy to atmospheric models of `normal' hot stars. Applying this analogy indiscriminately leads to inconsistencies in SN Ia models because a diffusive lower boundary, while justified for hot stars, is invalid for hydrogen and helium-deficient supernova ejecta. In type Ia supernovae the radiation field does not thermalize even at large depths, and large optical depths are not reached at all wavelengths. We derive an improved description of the lower boundary that allows a more consistent solution of the radiation transfer in SN Ia and therefore yields m...

  6. On line contribution functions and examining spectral line formation in 3D model stellar atmospheres

    CERN Document Server

    Amarsi, Anish Mayur

    2015-01-01

    Line contribution functions are useful diagnostics for studying spectral line formation in stellar atmospheres. I derive an expression for the contribution function to the abso- lute flux depression that emerges from three-dimensional box-in-a-star model stellar atmospheres. I illustrate the result by comparing the local thermodynamic equilibrium (LTE) spectral line formation of the high-excitation permitted OI777nm lines with the non-LTE case.

  7. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  8. Non-LTE Spectral Analysis of Extremely Hot Post-AGB Stars: Constraints for Evolutionary Theory

    CERN Document Server

    Rauch, Thomas; Ziegler, Marc; Koesterke, Lars; Kruk, Jeffrey W

    2008-01-01

    Spectral analysis by means of Non-LTE model-atmosphere techniques has arrived at a high level of sophistication: fully line-blanketed model atmospheres which consider opacities of all elements from H to Ni allow the reliable determination of photospheric parameters of hot, compact stars. Such models provide a crucial test of stellar evolutionary theory: recent abundance determinations of trace elements like, e.g., F, Ne, Mg, P, S, Ar, Fe, and Ni are suited to investigate on AGB nucleosynthesis. E.g., the strong Fe depletion found in hydrogen-deficient post-AGB stars is a clear indication of an efficient s-process on the AGB where Fe is transformed into Ni or even heavier trans iron-group elements. We present results of recent spectral analyses based on high-resolution UV observations of hot stars.

  9. The role of hydrogen collisions in non-LTE abundance analyses of aluminium

    Science.gov (United States)

    Nordlander, Thomas; Lind, Karin

    2015-08-01

    The abundance patterns of metal-poor stars contain crucial information on the early evolution of the Galaxy. Stellar abundances must however be inferred from spectrum synthesis, which hinges on the input physics. Stellar atmospheres are typically assumed to be one-dimensional, with the equation of state fully determined only by local properties (in LTE, local thermodynamic equilibrium). Although non-LTE has been studied for decades, there are still unsolved problems related primarily to collisional rates. Due to a lack of laboratory data at the low collisional energies typical of stellar atmospheres, Drawin's order-of-magnitude estimates based on Thomson electron scattering are typically applied to inelastic hydrogen collisions.We critically evaluate the influence of uncertainties in input data on non-LTE abundance determinations of aluminium in metal-poor stars. We execute these analyses using different sources for the atomic data, and update the classical collisional rates with modern, physically appropriate estimates.

  10. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    Science.gov (United States)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-08-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves.We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally- and temporally-averaged 3D STAGGER model atmospheres.

  11. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    Science.gov (United States)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-12-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves. We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally and temporally averaged 3D STAGGER model atmospheres.

  12. The solar silicon abundance based on 3D non-LTE calculations

    Science.gov (United States)

    Amarsi, A. M.; Asplund, M.

    2017-01-01

    We present 3D non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations for silicon in the solar photosphere, using an extensive model atom that includes recent, realistic neutral hydrogen collisional cross-sections. We find that photon losses in the Si I lines give rise to slightly negative non-LTE abundance corrections of the order of -0.01 dex. We infer a 3D non-LTE-based solar silicon abundance of lg ɛ_{Si{⊙}}=7.51 dex. With silicon commonly chosen to be the anchor between the photospheric and meteoritic abundances, we find that the meteoritic abundance scale remains unchanged compared with the Asplund et al. and Lodders et al. results.

  13. The solar silicon abundance based on 3D non-LTE calculations

    CERN Document Server

    Amarsi, A M

    2016-01-01

    We present three-dimensional (3D) non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations for silicon in the solar photosphere, using an extensive model atom that includes recent, realistic neutral hydrogen collisional cross-sections. We find that photon losses in the SiI lines give rise to slightly negative non-LTE abundance corrections of the order -0.01 dex. We infer a 3D non-LTE based solar silicon abundance of 7.51 dex. With silicon commonly chosen to be the anchor between the photospheric and meteoritic abundances, we find that the meteoritic abundance scale remains unchanged compared with the Asplund et al. (2009) and Lodders et al. (2009) results.

  14. Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    CERN Document Server

    Yan, H L; Nissen, P E; Zhao, G

    2016-01-01

    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obt...

  15. The non-LTE formation of Li I lines in cool stars

    NARCIS (Netherlands)

    Carlsson, M.; Rutten, R.J.; Bruls, J.H.M.J.; Shchukina, N. G.

    1994-01-01

    We study the non-LTE (non local thermodynamic equilibrium) formation of Li I lines in the spectra of cool stars for a grid of radiative-equilibrium model atmospheres with variation in effective temperature, gravity, metallicity and lithium abundance. We analyze the mechanisms by which departures fro

  16. Non-LTE Line Blanketing in Stars With Extended Outflowing Atmospheres.

    Science.gov (United States)

    Hillier, D. J.; Miller, D. L.

    1995-05-01

    With continuing advances in radiative transfer techniques, increases in computing power, and the availability of at least some of the necessary atomic data, it is now possible to consider the computation of detailed non-LTE model atmospheres in which the full effects of non-LTE line blanketing are taken into account. We discuss our own implementation of non-LTE line blanketing in a spherical non-LTE code developed for the investigation of objects with extended outflows. A partial linearization technique is used to simultaneously solve the radiative transfer equation in conjunction with the equations of statistical equilibrium. Convergence properties are similar to that obtained with an ``Optimal'' Approximate-Lambda Operator. CNO line blanketing has been incorporated without major difficulty, while Fe blanketing is currently being installed. Comparisons of model spectra with recent HST observations of an LMC WC star will be presented. When completed we anticipate the code will be applicable to the study of a wide range of phenomena exhibiting outflows including Luminous-Blue variables, Supernovae, Wold-Rayet stars and Novae. Partial support for this work was provided by NASA through grant Nos GO-5460.01-93A and GO-4550.01-92A from the Space Science Institute which is operated under the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support from NASA award NAGW-3828 is also gratefully acknowledged.

  17. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    CERN Document Server

    Amarsi, A M; Asplund, M; Barklem, P S; Collet, R

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic Stagger model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe i/Fe ii excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is over-estimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmos...

  18. The Stellar Oxygen Abundance Gradient in M33

    Science.gov (United States)

    Monteverde, M. I.; Herrero, A.; Lennon, D. J.; Kudritzki, R.-P.

    1997-01-01

    We report here first results concerning stellar oxygen abundances in M33. Non-LTE model atmosphere and non-LTE line formation calculations were used to determine the oxygen abundance of B-type supergiants. By choosing stars located at different projected radial distances to the center of M33, we are able to determine the oxygen abundance gradient, for which we obtain a value of -0.16 +/- 0.06 dex kpc-1. This is the first time that the oxygen stellar abundance gradient has been determined in a spiral galaxy other than the Milky Way.

  19. Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. IV. Effects of Compton Scattering and Metal Opacities

    CERN Document Server

    Hubeny, I; Krolik, J H; Agol, E; Hubeny, Ivan; Blaes, Omer; Krolik, Julian H.

    2001-01-01

    We extend our models of the vertical structure and emergent radiation field of accretion disks around supermassive black holes described in previous papers of this series. Our models now include both a self-consistent treatment of Compton scattering and the effects of continuum opacities of the most important metal species (C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni). With these new effects incorporated, we compute the predicted spectrum from black holes accreting at nearly the Eddington luminosity (L/L_Edd = 0.3) and central masses of 10^6, 10^7, and 10^8 M_sun. We also consider two values of the Shakura-Sunyaev alpha parameter, 0.1 and 0.01. Although it has little effect when M > 10^8 M_sun, Comptonization grows in importance as the central mass decreases and the central temperature rises. It generally produces an increase in temperature with height in the uppermost layers of hot atmospheres. Compared to models with coherent electron scattering, Comptonized models have enhanced EUV/soft X-ray emission, but they...

  20. Non-LTE Line Formation in the Near-IR: Hot Stars

    CERN Document Server

    Przybilla, Norbert

    2010-01-01

    Line-formation calculations in the Rayleigh-Jeans tail of the spectral energy distribution are complicated by an amplification of non-LTE effects. For hot stars this can make quantitative modelling of spectral lines in the near-IR challenging. An introduction to the modelling problems is given and several examples in the context of near-IR line formation for hydrogen and helium are discussed.

  1. Accurate Collisional Cross-Sections: Important Non-Lte Input Data

    Science.gov (United States)

    Mashonkina, L.

    2010-11-01

    Non-LTE modelling for a particular atom requires accurate collisional excitation and ionization cross-sections for the entire system of transitions in the atom. This review concerns with inelastic collisions with electrons and neutral hydrogen atoms. For the selected atoms, H i and Ca ii, comparisons are made between electron impact excitation rates from ab initio calculations and various theoretical approximations. The effect of the use of modern data on non-LTE modelling is shown. For most transitions and most atoms, hydrogen collisional rates are calculated using a semi-empirical modification of the classical Thomson formula for ionization by electrons. Approaches used to estimate empirically the efficiency of hydrogenic collisions in the statistical equilibrium of atoms are reviewed. This research was supported by the Deutsche Forschungsgemeinschaft with grant 436 RUS 17/13/07.

  2. A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared

    Science.gov (United States)

    Lopez-Valverde, Miguel Angel; García-Comas, Maya; Funke, Bernd; Jimenez-Monferrer, Sergio; Lopez-Puertas, Manuel

    2016-04-01

    Several instruments on board Mars Express have been sounding the upper atmosphere of Mars systematically in a limb geometry in the IR part of the spectrum. Two of them in particular, OMEGA and PFS, performed emission measurements during daytime and detected the strongest IR bands of species like CO2 and CO (Piccialli et al, JGRE, submitted). Similarly on Venus, the instrument VIRTIS carried out observations of CO2 and CO bands at 2.7, 4.3 and 4.7 um at high altitudes (Gilli et al, JGRE, 2009). All these daylight atmospheric emissions respond to fluorescent situations, a case of non-local thermodynamic equilibrum conditions (non-LTE), well understood nowadays using comprehensive non-LTE theoretical models and tools (Lopez-Valverde et al., Planet. Space Sci., 2011). However, extensive exploitation of these emissions has only been done in optically thin conditions to date (Gilli et al, Icarus, 2015) or in a broad range of altitudes if in nadir geometry (Peralta et al, Apj, 2015). Within the H2020 project UPWARDS we aim at performing retrievals under non-LTE conditions including optically thick cases, like those of the CO2 and CO strongest bands during daytime in the upper atmosphere of Mars. Similar effort will also be applied eventually to Venus. We will present the non-LTE scheme used for such retrievals, based on similar efforts performed recently in studies of the Earth's upper atmosphere using data from the MIPAS instrument, on board Envisat (Funke et al., Atmos. Chem. Phys., 2009; Jurado-Navarro, PhD Thesis, Univ. Granada, 2015). Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  3. A Mega-Grid of CMFGEN Model Atmospheres for Rapid Analysis of Stellar Spectra

    Science.gov (United States)

    Zsargo, J.; Arrieta, A.; Fierro, C.; Klapp, J.; Hillier, D. J.; Arias, L.; Mendoza, J.; Georgiev, L. N.

    2017-02-01

    CMFGEN (Hillier & Miller 1998) is a sophisticated and widely-used non-LTE stellar atmosphere code. It models the full spectrum, and has been used to model OB stars, W-R stars, luminous blue variables, and supernovae. However, it requires the user to have substantial knowledge and experience to run it, and even then a complete analysis of a star can be very difficult and time consuming. Computations and modeling with CMFGEN are greatly eased when suitable initial models are available. To expedite modeling, or to run a quick rudimentary analysis of the stellar spectra, we are undertaking a project to create a mega-grid of pre-calculated CMFGEN models which will be available to the general astronomical community via internet. Tools are also being developed to use this database for analysis.

  4. Non-LTE analysis of subluminous O-star. V - The binary system HD 128220

    Science.gov (United States)

    Gruschinske, J.; Hamann, W. R.; Kudritzki, R. P.; Simon, K. P.; Kaufmann, J. P.

    1983-05-01

    Spectra of the binary system HD 128220 were taken in the UV and in the visual. The hot component - an O subdwarf - is analysed by means of non-LTE calculations. The cool companion has an effective temperature about 5500 ± 500K (Type G). The discussion of the stellar parameters arrives at results which agree with those derived from the mass function (Wallerstein and Wolff, 1966): if both components have about the same mass, these masses lie above 3 M_sun;. An O subdwarf of such a high mass has not yet been found and may be a supernova candidate. However, within the error margin of the orbital data also a mass ratio of MO/MG = 0.5 cannot be excluded, which would lead to stellar parameters which are more common for sdO's.

  5. Non-LTE Infrared Emission from Protoplanetary Disk Surfaces

    Science.gov (United States)

    Lockwood, A.; Blake, G.

    2011-05-01

    Accurately characterizing protoplanetary disks (proplyds) is integral to understanding the formation and evolution of planetary systems. The chemical reactions and physical processes within a disk determine the abundances and variety of molecular building blocks available for planet formation. Observations at infrared to millimeter wavelengths confirm a plethora of organic molecules exist in proplyds, including H2O, OH, HCN, C2H2, CO, and CO2 (Carr & Najita, 2008; Pontoppidan et al., 2010). These molecules not only provide the solid material for ice+rock planetary cores, their line emission dominates the thermal balance in the disk and provides robust signatures to examine the dynamical evolution of protoplanetary environments. Thus, it is critical to understand molecular abundance profiles in disks and the processes that affect them. We aim to model molecular excitation in a sample of proplyds and thereby verify certain disk properties. Densities in the warm molecular layers of a disk are insufficient to ensure the conditions for local thermodynamic equilibrium (LTE), so the state of the gas must be computed precisely. We utilize a radiative transfer code to model the radiation field in the disk, coupled with an escape probability code to determine the excitation of a given molecule, to derive the non-LTE level populations. We then utilize a raytracer to generate spectral image cubes covering the entire disk. We will present results for CO, whose relatively stable abundance and strong emission features provide a good foundation from which we can further constrain the parameters of a disk. Using infrared spectra from the NIRSPEC instrument on the Keck Telescope, we constrain column densities, temperatures, and emitting radii for a suite of nearby proplyds.

  6. Characterization of OMEGA/MEx CO2 non-LTE limb observations on the dayside of Mars

    Science.gov (United States)

    Piccialli, A.; Drossart, P.; Lopez-Valverde, M. A.; Altieri, F.; Määttänen, A.; Gondet, B.; Witasse, O.; Bibring, J. P.

    2012-09-01

    The upper atmosphere of a terrestrial planet is a region difficult to sound, both by in-situ and remote sounding [1]. This atmospheric region is characterized by non-local thermodynamic equilibrium (non-LTE) that occurs when collisions between atmospheric species are not enough efficient in transferring energy. The CO2 non-LTE emission at 4.3 μm originates in the upper layers of the atmosphere and is a feature common to the three terrestrial planets with an atmosphere (Venus, Earth, and Mars). It provides a useful tool to gain insight into the atmospheric processes at these altitudes [2]. Non-LTE fluorescent emissions were first observed in the Earth's upper atmosphere in CO2 bands at 15 and 4.3 μm [3] and were later observed on several planets in different spectral bands. Ground-based observations of CO2 laser bands at 10 μm in the atmospheres of Venus and Mars [4] were interpreted as non-LTE emissions by several atmospheric models developed in the 1980s [5]. On Jupiter, Saturn and Titan non-LTE emissions were identified in the CH4 band at 3.3 μm [6]. More recently, CO2 non-LTE emission at 4.3 μm was detected in the upper atmosphere of Mars and Venus by the PFS (Planetary Fourier Spectrometer) and OMEGA (Visible and Infrared Mapping Spectrometer) experiments on board the European spacecraft Mars Express [7, 8, 9] and by VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) on board the European Venus Express [10]. These observations led to the development of a more comprehensive non-LTE model for the upper atmosphere [9, 11]. According to these models, during daytime the solar radiation in several near-IR bands from 1 to 5 μm produce enhanced state populations of many CO2 vibrational levels which cascade down to lower states emitting photons in diverse 4.3 μm bands. These emissions produce what is observed.

  7. Non-LTE iron abundances in cool stars: The role of hydrogen collisions

    CERN Document Server

    Ezzeddine, Rana; Plez, Bertrand

    2015-01-01

    In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed, which includes hydrogen collisions for excitation, ionization and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star {\\alpha} Cen A and the metal-poor star HD140283.

  8. Non-LTE iron abundances in cool stars: The role of hydrogen collisions

    Science.gov (United States)

    Ezzeddine, R.; Merle, Th.; Plez, B.

    2016-09-01

    In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed which includes hydrogen collisions for excitation, ionization, and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star α Cen A, and the metal-poor star HD 140283.

  9. Non-LTE Radiation Transport in High Radiation Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Scott, H A

    2005-01-07

    A primary goal of numerical radiation transport is obtaining a self-consistent solution for both the radiation field and plasma properties. Obtaining such a solution requires consideration of the coupling between the radiation and the plasma. The different characteristics of this coupling for continuum and line radiation have resulted in two separate sub-disciplines of radiation transport with distinct emphases and computational techniques. LTE radiation transfer focuses on energy transport and exchange through broadband radiation, primarily affecting temperature and ionization balance. Non-LTE line transfer focuses on narrowband radiation and the response of individual level populations, primarily affecting spectral properties. Many high energy density applications, particularly those with high-Z materials, incorporate characteristics of both these regimes. Applications with large radiation fields including strong line components require a non-LTE broadband treatment of energy transport and exchange. We discuss these issues and present a radiation transport treatment which combines features of both types of approaches by explicitly incorporating the dependence of material properties on both temperature and radiation fields. The additional terms generated by the radiation dependence do not change the character of the system of equations and can easily be added to a numerical transport implementation. A numerical example from a Z-pinch application demonstrates that this method improves both the stability and convergence of the calculations. The information needed to characterize the material response to radiation is closely related to that used by the Linear Response Matrix (LRM) approach to near-LTE simulation, and we investigate the use of the LRM for these calculations.

  10. Absolute Time-Resolved Emission of Non-LTE L-Shell Spectra from Ti-Doped Aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Back,C.; Feldman, U.; Weaver, J.; Seely, J.; Constantin, C.; Holland, G.; Lee, R.; Chung, H.; Scott, H.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2 mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3 keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {gamma}/{delta}{gamma} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  11. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  12. Strontium: To LTE or non-LTE that is the question

    CERN Document Server

    Hansen, Camilla J; Cescutti, Gabriele; Francois, Patrick; Arcones, Almudena; Karakas, Amanda I; Lind, Karin; Chiappini, Cristina

    2012-01-01

    Strontium has proven itself to be one of the most important neutron-capture elements in the study of metal-poor stars. Thanks to the strong absorption lines of Sr, they can be detected even in the most metal-poor stars and also in low-resolution spectra. However, we still cannot explain the large star-to-star abundance scatter we derive for metal-poor stars. Here we confront Galactic chemical evolution (GCE) with improved abundances for SrI+II including updated atomic data, to evaluate possible explanations for the large star-to-star scatter at low metallicities. We derive abundances under both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) for stars spanning a large interval of stellar parameters. Gravities and metallicities are also determined in NLTE. We confirm that the ionisation equilibrium between SrI and SrII is satisfied under NLTE but not LTE, where the difference between SrI and SrII is on average ~0.3dex. We show that the NLTE corrections are of increasing importance as the metallicity d...

  13. Evidence of a significant rotational non-LTE effect in the CO2 4.3 µm PFS-MEX limb spectra

    Science.gov (United States)

    Kutepov, Alexander A.; Rezac, Ladislav; Feofilov, Artem G.

    2017-01-01

    Since January 2004, the planetary Fourier spectrometer (PFS) on board the Mars Express satellite has been recording near-infrared limb spectra of high quality up to the tangent altitudes ≈ 150 km, with potential information on density and thermal structure of the upper Martian atmosphere. We present first results of our modeling of the PFS short wavelength channel (SWC) daytime limb spectra for the altitude region above 90 km. We applied a ro-vibrational non-LTE model based on the stellar astrophysics technique of accelerated lambda iteration (ALI) to solve the multi-species and multi-level CO2 problem in the Martian atmosphere. We show that the long-standing discrepancy between observed and calculated spectra in the cores and wings of 4.3 µm region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states 10011 and 10012 of the CO2 main isotope second hot (SH) bands above 90 km altitude. The redistribution of SH band intensities from band branch cores into their wings is caused (a) by intensive production of the CO2 molecules in rotational states with j > 30 due to the absorption of solar radiation in optically thin wings of 2.7 µm bands and (b) by a short radiative lifetime of excited molecules, which is insufficient at altitudes above 90 km for collisions to maintain rotation of excited molecules thermalized. Implications for developing operational algorithms for massive processing of PFS and other instrument limb observations are discussed.

  14. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.;

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  15. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: The role of non-LTE excitation

    CERN Document Server

    Parfenov, S Yu; Sobolev, A M; Gray, M D

    2016-01-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub-)millimetre spectrum of gaseous methanol (CH$_3$OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH$_3$OH abundances along with the CH$_3$OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH$_3$OH lines can be lower by factor of $>10$--$100$ than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub-)millimetre transitions, it does not lead to the stro...

  16. Neon and CNO Abundances for Extreme Helium Stars -- A Non-LTE Analysis

    CERN Document Server

    Pandey, Gajendra

    2010-01-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10 2179, BD-9 4395, and LS IV+6 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of a He white dwarf with a C-O white dwarf.

  17. Neon and CNO Abundances for Extreme Helium Stars—A Non-LTE Analysis

    Science.gov (United States)

    Pandey, Gajendra; Lambert, David L.

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10° 2179, BD-9° 4395, and LS IV+6° 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  18. Relativistic stellar models

    Indian Academy of Sciences (India)

    A J John; S D Maharaj

    2011-09-01

    We obtain a class of solutions to the Einstein–Maxwell equations describing charged static spheres. Upon specifying particular forms for one of the gravitational potentials and the electric field intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters. For particular parameter values we recover uncharged solutions corresponding to specific neutron star models. We find two charged solutions in terms of elementary functions for particular parameter values. The first charged model is physically reasonable and the metric functions and thermodynamic variables are well behaved. The second charged model admits a negative energy density and violates the energy conditions.

  19. Magnetohydrostatic modelling of stellar coronae

    CERN Document Server

    MacTaggart, David; Neukirch, Thomas; Donati, Jean-Francois

    2015-01-01

    We introduce to the stellar physics community a method of modelling stellar coronae that can be considered to be an extension of the potential field. In this approach, the magnetic field is coupled to the background atmosphere. The model is magnetohydrostatic (MHS) and is a balance between the Lorentz force, the pressure gradient and gravity. Analytical solutions are possible and we consider a particular class of equilibria in this paper. The model contains two free parameters and the effects of these on both the geometry and topology of the coronal magnetic field are investigated. A demonstration of the approach is given using a magnetogram derived from Zeeman-Doppler imaging of the 0.75 M$_{\\odot}$ M-dwarf star GJ 182.

  20. Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo

    Institute of Scientific and Technical Information of China (English)

    Yoichi Takeda; Gang Zhao; Masahide Takada-Hidai; Yu-Qin Chen; Yu-ji Saito; Hua-Wei Zhang

    2003-01-01

    We performed an extensive non-LTE analysis of the neutral sodiumlines of Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halo starsof types F-K covering a wide metallicity range (-4 [Fe/H] +0.4), using ourown data as well as data collected from the literature. For comparatively metal-rich disk stars (-1 [Fe/H] +0.4) where the weaker 6154/6161 lines are thebest abundance indicators, we confirmed [Na/Fe] ~ 0 with an "upturn" (i.e., ashallow/broad dip around -0.5 [Fe/H] 0) as already reported in previousstudies. For the metal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE corrections amountingto 0.5 dex have to be used, our analysis suggests mildly "subsolar" [Na/Fe] valuesdown to ~ -0.4 (with a somewhat large scatter of ~±0.2 dex) on the average at thetypical halo metallicity of [Fe/H] ~ -2, followed by a rise again to a near-solar ratioof [Na/Fe] ~ 0 at the very metal-poor regime [Fe/H] ~ -3 to -4. These resultsare discussed in comparison with the previous observational studies along with thetheoretical predictions from the available chemical evolution models.

  1. Non-LTE inversions of the Mg II h&k and UV triplet lines

    CERN Document Server

    Rodríguez, Jaime de la Cruz; Ramos, Andrés Asensio

    2016-01-01

    The Mg II h&k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the IRIS satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study we utilize another approach to analyze observations: non-LTE inversions of the Mg II h&k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmosphere that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg II h&k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg II h&k, the Ca II 854.2 nm and the Fe I ...

  2. Stellar models in Brane Worlds

    CERN Document Server

    Linares, Francisco X; Ureña-Lopez, L Arturo

    2015-01-01

    We consider here a full study of stellar dynamics from the brane-world point of view in the case of constant density and of a polytropic fluid. We start our study cataloguing the minimal requirements to obtain a compact object with a Schwarszchild exterior, highlighting the low and high energy limit, the boundary conditions, and the appropriate behavior of Weyl contributions inside and outside of the star. Under the previous requirements we show an extensive study of stellar behavior, starting with stars of constant density and its extended cases with the presence of nonlocal contributions. Finally, we focus our attention to more realistic stars with a polytropic equation of state, specially in the case of white dwarfs, and study their static configurations numerically. One of the main results is that the inclusion of the Weyl functions from braneworld models allow the existence of more compact configurations than within General Relativity.

  3. Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements

    Science.gov (United States)

    Gilli, G.; López-Valverde, M. A.; Peralta, J.; Bougher, S.; Brecht, A.; Drossart, P.; Piccioni, G.

    2015-03-01

    The upper mesosphere and the lower thermosphere of Venus (from 90 to 150 km altitude) seems to play a transition region in photochemistry, dynamics and radiation, but is still very poorly constrained observationally. Since 2006 VIRTIS on board Venus Express has been obtaining limb observations of CO fluorescent infrared emissions in a systematic manner. This study represents the scientific exploitation of this dataset and reports new information on the composition and temperature at those altitudes. This work is focused on the 4.7 μ m emission of CO as observed by VIRTIS, which contains two emission bands, the fundamental and the first hot of the main CO isotope. A specific scheme for a simultaneous retrieval of CO and temperature is proposed, based on results of a comprehensive non-LTE model of these molecular emissions. A forward model containing such non-LTE model is used at the core of an inversion scheme that consists of two steps: (i) a minimization procedure of model-data differences and (ii) a linear inversion around the solution of the first step. A thorough error analysis is presented, which shows that the retrievals of CO and temperature are very noisy but can be improved by suitable averaging of data. These averages need to be consistent with the non-LTE nature of the emissions. Unfortunately, the data binning process reduced the geographical coverage of the results. The obtained retrieval results indicate a global distribution of the CO in the Venus dayside with a maximum around the sub-solar point, and a decrease of a factor 2 towards high latitudes. Also a gradient from noon to the morning and evening sides is evident in the equator, this being smaller at high latitudes. No morning-afternoon differences in the CO concentration are observed, or are comparable to our retrieval errors. All this argues for a CO distribution controlled by dynamics in the lower thermosphere, with a dominant sub-solar to anti-solar gradient. Similar variations are found

  4. Mg line formation in late-type stellar atmospheres: I. The model atom

    CERN Document Server

    Osorio, Y; Lind, K; Belyaev, A K; Spielfiedel, A; Guitou, M; Feautrier, N

    2015-01-01

    Mg is often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from LTE. The astrophysical importance of Mg as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. The modelled spectra agree well with observed spectra. The line-to-line scatter in the derived abundances shows improve...

  5. Exact vs. Gauss-Seidel numerical solutions of the non-LTE radiation transfer problem

    Science.gov (United States)

    Quang, Carine; Paletou, Frédéric; Chevallier, Loïc

    2004-12-01

    Although published in 1995 (Trujillo Bueno & Fabiani Bendicho, ApJ 455, 646), the Gauss-Seidel method for solving the non-LTE radiative transfer problem has deserved too little attention in the astrophysical community yet. Further tests of the performances and of the accuracy of the numerical scheme are provided.

  6. A new solar carbon abundance based on non-LTE CN molecular spectra

    Science.gov (United States)

    Mount, G. H.; Linsky, J. L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggest a revised carbon abundance for the sun. We recommend a value of log carbon abundance = 8.35 plus or minus 0.15 which is significantly lower than the presently accepted value of log carbon abundance = 8.55. This revision may have important consequences in astrophysics.

  7. Stellar modelling of Spica, a high-mass spectroscopic binary with a beta Cep variable primary component

    CERN Document Server

    Tkachenko, A; Aerts, C; Pavlovski, K; Papics, P I; Zwintz, K; Cameron, C; Walker, G A H; Kuschnig, R; Degroote, P; Debosscher, J; Moravveji, E; Kolbas, V; Guenther, D B; Moffat, A F J; Rowe, J F; Rucinski, S M; Sasselov, D; Weiss, W W

    2016-01-01

    Binary stars provide a valuable test of stellar structure and evolution, because the masses of the individual stellar components can be derived with high accuracy and in a model-independent way. In this work, we study Spica, an eccentric double-lined spectroscopic binary system with a beta Cep type variable primary component. We use state-of-the-art modelling tools to determine accurate orbital elements of the binary system and atmospheric parameters of both stellar components. We interpret the short-period variability intrinsic to the primary component, detected on top of the orbital motion both in the photometric and spectroscopic data. The non-LTE based spectrum analysis reveals two stars of similar atmospheric chemical composition consistent with the present day cosmic abundance standard defined by Nieva&Przybilla (2012). The masses and radii of the stars are found to be 11.43+/-1.15 M_sun and 7.21+/-0.75 M_sun, and 7.47+/-0.54 R_sun and 3.74+/-0.53 R_sun for the primary and secondary, respectively. W...

  8. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation

    Science.gov (United States)

    Parfenov, S. Yu.; Semenov, D. A.; Sobolev, A. M.; Gray, M. D.

    2016-08-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub)millimetre spectrum of gaseous methanol (CH3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3OH abundances along with the CH3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3OH lines can be lower by factor of >10-100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3OH (sub)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3OH 50 - 40A+ (241.791 GHz) and 5-1 - 4-1E (241.767 GHz) lines, which could possibly be detected with the ˜5σ signal-to-noise ratio after ˜3 h of integration with the full ALMA array.

  9. Combined stellar structure and atmosphere models for massive stars; 4, The impact on the ionization structure of single star HII regions

    CERN Document Server

    Stasinska, G; Stasinska, Grazyna; Schaerer, Daniel

    1996-01-01

    We study the impact of modern stellar atmospheres that take into account the effects of stellar winds, departures from LTE and line blanketing ("CoStar" models) on the ionization structure of HII regions. Results from a large grid of photoionization models are presented. Due to a flatter energy distribution in the HeI continuum, compared to the widely used Kurucz models, generally higher ionic ratios are obtained. We find that N+/O+ and Ne++/O++ can be safely used as direct indicators of N/O and Ne/O abundance ratios in HII regions, over a wide range of astrophysical situations. The roughly constant observed value of Ne++/O++ ionic ratios in Galactic HII regions is naturally reproduced by photoionization models using CoStar fluxes, while Kurucz models at solar metallicity fail to reproduce this behaviour. This gives support to ionizing fluxes from non-LTE atmospheres including stellar winds and line blanketing. However, we also point out that tests of stellar atmosphere models from observations of HII regions...

  10. Theory of stellar convection - II. First stellar models

    Science.gov (United States)

    Pasetto, S.; Chiosi, C.; Chiosi, E.; Cropper, M.; Weiss, A.

    2016-07-01

    We present here the first stellar models on the Hertzsprung-Russell diagram, in which convection is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al. The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few per cent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from the `calibrated' MT theory for main-sequence stars. We conclude that the old scale dependent ML theory can now be replaced with a self-consistent scale-free theory able to predict correct results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory offers a deeper insight of the underlying physics than numerical simulations.

  11. Theory of stellar convection II: first stellar models

    CERN Document Server

    Pasetto, S; Chiosi, E; Cropper, M; Weiss, A

    2015-01-01

    We present here the first stellar models on the Hertzsprung-Russell diagram (HRD), in which convection is treated according to the novel scale-free convection theory (SFC theory) by Pasetto et al. (2014). The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few percent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients of the ambient and of the convective element, and energy fluxes that are very similar to those derived from the "calibrated" MT theory for main s...

  12. Determining element abundances of [WC]-type Central Stars for probing stellar evolution and nucleosynthesis

    CERN Document Server

    Todt, H; Hamann, W -R; Gräfener, G

    2007-01-01

    [WC]-type CSPNs are hydrogen-deficient Central Stars of Planetary Nebulae showing strong stellar winds and a carbon-rich chemistry. We have analyzed new high-resolution spectra of [WC]-type CSPNs with the Potsdam Wolf-Rayet (PoWR) non-LTE expanding atmosphere models, using upgraded model atoms and atomic data. Previous analyses are repeated on the basis of the current models which account for iron-line blanketing. We especially focus on determining the chemical composition, including some trace elements like nitrogen which are of key importance for understanding the evolutionary origin of the hydrogen-deficient Central Stars.

  13. Chemical element transport in stellar evolution models

    Science.gov (United States)

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  14. Recent advances in modeling stellar interiors (u)

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Joyce Ann [Los Alamos National Laboratory

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  15. Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation

    CERN Document Server

    Leenaarts, J; Hansteen, V; van der Voort, L Rouppe

    2009-01-01

    Interpretation of imagery of the solar chromosphere in the widely used \\CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE formation. Forward modelling is required to aid understanding. We use a 3D non-LTE radiative transfer code to compute synthetic \\CaIIIR images from a radiation-MHD simulation of the solar atmosphere spanning from the convection zone to the corona. We compare the simulation with observations obtained with the CRISP filter at the Swedish 1--m Solar Telescope. We find that the simulation reproduces dark patches in the blue line wing caused by Doppler shifts, brightenings in the line core caused by upward-propagating shocks and thin dark elongated structures in the line core that form the interface between upward and downward gas motion in the chromosphere. The synthetic line core is narrower than the observed one, indicating that the sun exhibits both more vigorous large-scale dynamics as well as small scale motions that are not resolved within the simulation, pre...

  16. Three-dimensional non-LTE radiative transfer effects in Fe I lines I. Flux sheet and flux tube geometries

    CERN Document Server

    Holzreuter, R

    2012-01-01

    In network and active region plages, the magnetic field is concentrated into structures often described as flux tubes (FTs) and sheets (FSs). 3-D radiative transfer (RT) is important for energy transport in these concentrations. It is also expected to be important for diagnostic purposes but has rarely been applied for that purpose. Using true 3-D, non-LTE (NLTE) RT in FT/FS models, we compute Fe line profiles commonly used to diagnose the Sun's magnetic field by comparing the results with those obtained from LTE/1-D (1.5-D) NLTE calculations. Employing a multilevel iron atom, we study the influence of basic parameters such as Wilson depression, wall thickness, radius/width, thermal stratification or magnetic field strength on all Stokes $I$ parameters in the thin-tube approximation. The use of different levels of approximations of RT may lead to considerable differences in profile shapes, intensity contrasts, equivalent widths, and the determination of magnetic field strengths. In particular, LTE, which ofte...

  17. Approximate input physics for stellar modelling

    CERN Document Server

    Pols, O R; Eggleton, P P; Han, Z; Pols, O R; Tout, C A; Eggleton, P P; Han, Z

    1995-01-01

    We present a simple and efficient, yet reasonably accurate, equation of state, which at the moderately low temperatures and high densities found in the interiors of stars less massive than the Sun is substantially more accurate than its predecessor by Eggleton, Faulkner & Flannery. Along with the most recently available values in tabular form of opacities, neutrino loss rates, and nuclear reaction rates for a selection of the most important reactions, this provides a convenient package of input physics for stellar modelling. We briefly discuss a few results obtained with the updated stellar evolution code.

  18. Galactic stellar haloes in the CDM model

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Helly, J.; Benson, A. J.; De Lucia, G.; Helmi, A.; Jenkins, A.; Navarro, J. F.; Springel, V.; Wang, J.

    2010-01-01

    We present six simulations of galactic stellar haloes formed by the tidal disruption of accreted dwarf galaxies in a fully cosmological setting. Our model is based on the Aquarius project, a suite of high-resolution N-body simulations of individual dark matter haloes. We tag subsets of particles in

  19. A coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, $\\delta$ Orionis Aa: IV. A multiwavelength, non-LTE spectroscopic analysis

    CERN Document Server

    Shenar, T; Hamann, W -R; Corcoran, M F; Moffat, A F J; Pablo, H; Richardson, N D; Waldron, W L; Huenemoerder, D P; Apellániz, J Maíz; Nichols, J S; Todt, H; Nazé, Y; Hoffman, J L; Pollock, A M T; Negueruela, I

    2015-01-01

    Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system $\\delta$ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the ${\\rm \\it Hipparcos}$ parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if $\\delta$ Ori lies at about twice the ${\\rm \\it Hipparcos}$ distance, in the vicinity of the $\\sigma$-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be $\\Delta V \\approx 2.\\!\\!^{\\rm m}8$. The inferred parameters suggest the secondary is an early B-type dwarf ($\\approx$ B1 V), while the te...

  20. Stellar wind models of subluminous hot stars

    CERN Document Server

    Krticka, J; Krtickova, I

    2016-01-01

    Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influence of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived...

  1. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  2. Hypervirial Models of Stellar Systems

    CERN Document Server

    Evans, N W

    2005-01-01

    A family of cusped potential-density pairs is introduced for modelling galaxies and dark haloes. The density profile is cusped like 1/r^(2-p) at small radii. The distribution function takes the simple form L^(p-2) E^([3p+1]/2) (where E is the binding energy and L is the angular momentum). The models all possess the remarkable property that the virial theorem holds locally, from which they earn their name as the hypervirial family. Famously, this property was first discovered by Eddington to hold for the Plummer model in 1916. In fact, the seductive properties of the Plummer model extend to the whole hypervirial family, including the members possessing the cosmologically important cusps with density behaving like 1/r or 1/r^1.5 or 1/r^1.33. The intrinsic and projected properties of the family of models are discussed in some detail.

  3. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis

    Science.gov (United States)

    Shenar, T.; Oskinova, L.; Hamann, W.-R.; Corcoran, M. F.; Moffat, A. F. J.; Pablo, H.; Richardson, N. D.; Waldron, W. L.; Huenemoerder, D. P.; Maíz Apellániz, J.; Nichols, J. S.; Todt, H.; Nazé, Y.; Hoffman, J. L.; Pollock, A. M. T.; Negueruela, I.

    2015-08-01

    Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system δ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary’s distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if δ Ori lies at about twice the Hipparcos distance, in the vicinity of the σ-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be {{Δ }}V≈ 2\\buildrel{{m}}\\over{.} 8. The inferred parameters suggest that the secondary is an early B-type dwarf (≈B1 V), while the tertiary is an early B-type subgiant (≈B0 IV). We find evidence for rapid turbulent velocities (˜200 km s-1) and wind inhomogeneities, partially optically thick, in the primary’s wind. The bulk of the X-ray emission likely emerges from the primary’s stellar wind ({log}{L}{{X}}/{L}{Bol}≈ -6.85), initiating close to the stellar surface at {R}0˜ 1.1 {R}*. Accounting for clumping, the mass-loss rate of the primary is found to be {log}\\dot{M}≈ -6.4 ({M}⊙ {{yr}}-1), which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains.

  4. Inelastic e+Mg collision data and its impact on modelling stellar and supernova spectra

    Science.gov (United States)

    Barklem, P. S.; Osorio, Y.; Fursa, D. V.; Bray, I.; Zatsarinny, O.; Bartschat, K.; Jerkstrand, A.

    2017-09-01

    Results of calculations for inelastic e+Mg effective collision strengths for the lowest 25 physical states of Mg i (up to 3s6p1P), and thus 300 transitions, from the convergent close-coupling (CCC) and the B-spline R-matrix (BSR) methods are presented. At temperatures of interest, 5000 K, the results of the two calculations differ on average by only 4%, with a scatter of 27%. As the methods are independent, this suggests that the calculations provide datasets for e+Mg collisions accurate to this level. Comparison with the commonly used dataset compiled by Mauas et al. (1988, ApJ, 330, 1008), covering 25 transitions among 12 states, suggests the Mauas et al. data are on average 57% too low, and with a very large scatter of a factor of 6.5. In particular the collision strength for the transition corresponding to the Mg i intercombination line at 457 nm is significantly underestimated by Mauas et al., which has consequences for models that employ this dataset. In giant stars the new data leads to a stronger line compared to previous non-LTE calculations, and thus a reduction in the non-LTE abundance correction by 0.1 dex ( 25%). A non-LTE calculation in a supernova ejecta model shows this line becomes significantly stronger, by a factor of around two, alleviating the discrepancy where the 457 nm line in typical models with Mg/O ratios close to solar tended to be too weak compared to observations. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A11

  5. Numerical simulations of stellar winds polytropic models

    CERN Document Server

    Keppens, R

    1999-01-01

    We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the...

  6. The Solar Heavy Element Abundances: I. Constraints from Stellar Interiors

    CERN Document Server

    Delahaye, F; Delahaye, Franck; Pinsonneault, Marc

    2005-01-01

    The latest solar atmosphere models include non-LTE corrections and 3D hydrodynamic convection simulations. These models predict a significant reduction in the solar metal abundance, which leads to a serious conflict between helioseismic data and the predictions of solar interiors models. We demonstrate that the helioseismic constraints on the surface convection zone depth and helium abundance combined with stellar interiors models can be used to define the goodness of fit for a given chemical composition. After a detailed examination of the errors in the theoretical models we conclude that models constructed with the older solar abundances are consistent (<2 \\sigma) with the seismic data. Models constructed with the proposed new low abundance scale are strongly disfavored, disagreeing at the 15 \\sigma level. We then use the sensitivity of the seismic properties to abundance changes to invert the problem and infer a seismic solar heavy element abundance mix with two components: meteoritic abundances, and th...

  7. New atmospheric model of Epsilon Eridani

    Science.gov (United States)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  8. Improvements on analytic modelling of stellar spots

    CERN Document Server

    Montalto, M; Oshagh, M; Boisse, I; Bruno, G; Santos, N C

    2014-01-01

    In this work we present the solution of the stellar spot problem using the Kelvin-Stokes theorem. Our result is applicable for any given location and dimension of the spots on the stellar surface. We present explicitely the result up to the second degree in the limb darkening law. This technique can be used to calculate very efficiently mutual photometric effects produced by eclipsing bodies occulting stellar spots and to construct complex spot shapes.

  9. A Novel Approach to Constraining Uncertain Stellar Evolution Models

    Science.gov (United States)

    Rosenfield, Philip; Girardi, Leo; Dalcanton, Julianne; Johnson, L. C.; Williams, Benjamin F.; Weisz, Daniel R.; Bressan, Alessandro; Fouesneau, Morgan

    2017-01-01

    Stellar evolution models are fundamental to nearly all studies in astrophysics. They are used to interpret spectral energy distributions of distant galaxies, to derive the star formation histories of nearby galaxies, and to understand fundamental parameters of exoplanets. Despite the success in using stellar evolution models, some important aspects of stellar evolution remain poorly constrained and their uncertainties rarely addressed. We present results using archival Hubble Space Telescope observations of 10 stellar clusters in the Magellanic Clouds to simultaneously constrain the values and uncertainties of the strength of core convective overshooting, metallicity, interstellar extinction, cluster distance, binary fraction, and age.

  10. Fundamental stellar parameters of $\\zeta$ Pup and $\\gamma^2$ Vel from HIPPARCOS data

    CERN Document Server

    Schärer, D; Grenon, Michel; Schaerer, Daniel; Schmutz, Werner; Grenon, Michel

    1997-01-01

    We report parallax measurements by the HIPPARCOS satellite of zeta Puppis and gamma^2 Velorum. The distance of zeta Pup is d=429 (+120/ -77) pc, in agreement with the commonly adopted value to Vela OB2. However, a significantly smaller distance is found for the gamma^2 Vel system: d=258 (+41/-31) pc. The total mass of gamma^2 Vel derived from its parallax, the angular size of the semi-major axis as measured with intensity interferometry, and the period is M(WR+O)=29.5 (+/-15.9) Msun. This result favors the orbital solution of Pike et al. (1983) over that of Moffat et al. (1986). The stellar parameters for the O star companion derived from line blanketed non-LTE atmosphere models are: Teff=34000 (+/-1500) K, log L/Lsun=5.3 (+/-0.15) from which an evolutionary mass of M=29 (+/-4) Msun and an age of 4.0 (+0.8/-0.5) Myr is obtained from single star evolutionary models. With non-LTE model calculations including He and C we derive a luminosity log L/Lsun~4.7 (+/-0.2) for the WR star. The mass-luminosity relation of...

  11. Confronting Substellar Theoretical Models with Stellar Ages

    CERN Document Server

    Dupuy, Trent J; Ireland, Michael J

    2009-01-01

    By definition, brown dwarfs never reach the main-sequence, cooling and dimming over their entire lifetime, thus making substellar models challenging to test because of the strong dependence on age. Currently, most brown dwarfs with independently determined ages are companions to nearby stars, so stellar ages are at the heart of the effort to test substellar models. However, these models are only fully constrained if both the mass and age are known. We have used the Keck adaptive optics system to monitor the orbit of HD 130948BC, a brown dwarf binary that is a companion to the young solar analog HD 130948A. The total dynamical mass of 0.109+/-0.003 Msun shows that both components are substellar, and the ensemble of available age indicators from the primary star suggests an age comparable to the Hyades, with the most precise age being 0.79 Gyr based on gyrochronology. Therefore, HD 130948BC is unique among field L and T dwarfs as it possesses a well-determined mass, luminosity, and age. Our results indicate tha...

  12. An updated MILES stellar library and stellar population models (Research Note)

    NARCIS (Netherlands)

    Falcon-Barroso, J.; Sanchez-Blazquez, P.; Vazdekis, A.; Ricciardelli, E.; Cardiel, N.; Cenarro, A. J.; Gorgas, J.; Peletier, R. F.

    Aims: We present a number of improvements to the MILES library and stellar population models. We correct some small errors in the radial velocities of the stars, measure the spectral resolution of the library and models more accurately, and give a better absolute flux calibration of the models.

  13. Starspots, stellar cycles and stellar flares: Lessons from solar dynamo models

    Science.gov (United States)

    Choudhuri, Arnab Rai

    2017-01-01

    In this review, we discuss whether the present solar dynamo models can be extrapolated to explain various aspects of stellar activity. We begin with a summary of the following kinds of data for solar-like stars: (i) data pertaining to stellar cycles from Ca H/K emission over many years; (ii) X-ray data indicating hot coronal activity; (iii) starspot data (especially about giant polar spots); and (iv) data pertaining to stellar superflares. Then we describe the current status of solar dynamo modelling—giving an introduction to the flux transport dynamo model, the currently favoured model for the solar cycle. While an extrapolation of this model to solar-like stars can explain some aspects of observational data, some other aspects of the data still remain to be theoretically explained. It is not clear right now whether we need a different kind of dynamo mechanism for stars having giant starspots or producing very strong superflares.

  14. A non-LTE study of silicon abundances in giant stars from the Si I infrared lines in the zJ-band

    CERN Document Server

    Tan, Kefeng; Takada-Hidai, Masahide; Takeda, Yoichi; Zhao, Gang

    2016-01-01

    We investigate the feasibility of the Si I infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si I IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13dex), and are higher than those from the optical lines. However, when the non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about $-$0.35dex. Our results demonstrate that the Si I IR lines could be reliable abundance indicators provided that the non-LTE effects are properly taken into account.

  15. Atomic collision processes for modelling cool star spectra

    Science.gov (United States)

    Barklem, Paul

    2015-05-01

    The abundances of chemical elements in cool stars are very important in many problems in modern astrophysics. They provide unique insight into the chemical and dynamical evolution of the Galaxy, stellar processes such as mixing and gravitational settling, the Sun and its place in the Galaxy, and planet formation, to name a just few examples. Modern telescopes and spectrographs measure stellar spectral lines with precision of order 1 per cent, and planned surveys will provide such spectra for millions of stars. However, systematic errors in the interpretation of observed spectral lines leads to abundances with uncertainties greater than 20 per cent. Greater precision in the interpreted abundances should reasonably be expected to lead to significant discoveries, and improvements in atomic data used in stellar atmosphere models play a key role in achieving such advances in precision. In particular, departures from the classical assumption of local thermodynamic equilibrium (LTE) represent a significant uncertainty in the modelling of stellar spectra and thus derived chemical abundances. Non-LTE modelling requires large amounts of radiative and collisional data for the atomic species of interest. I will focus on inelastic collision processes due to electron and hydrogen atom impacts, the important perturbers in cool stars, and the progress that has been made. I will discuss the impact on non-LTE modelling, and what the modelling tells us about the types of collision processes that are important and the accuracy required. More specifically, processes of fundamentally quantum mechanical nature such as spin-changing collisions and charge transfer have been found to be very important in the non-LTE modelling of spectral lines of lithium, oxygen, sodium and magnesium.

  16. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  17. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    CERN Document Server

    Byler, Nell; Conroy, Charlie; Johnson, Benjamin D

    2016-01-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...

  18. GrayStar: Web-based pedagogical stellar modeling

    Science.gov (United States)

    Short, C. Ian

    2017-01-01

    GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.

  19. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    Science.gov (United States)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  20. The s Process: Nuclear Physics, Stellar Models, Observations

    CERN Document Server

    Kaeppeler, Franz; Bisterzo, Sara; Aoki, Wako

    2010-01-01

    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear...

  1. Uncertainties in stellar evolution models: convective overshoot

    CERN Document Server

    Bressan, Alessandro; Marigo, Paola; Rosenfield, Philip; Tang, Jing

    2014-01-01

    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.

  2. Uncertainties in Stellar Evolution Models: Convective Overshoot

    Science.gov (United States)

    Bressan, Alessandro; Girardi, Léo; Marigo, Paola; Rosenfield, Philip; Tang, Jing

    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties remain due to our poor knowledge of some complex physical processes that require an empirical calibration, such as the efficiency of the interior mixing related to convective overshoot. Here we review the impact of convective overshoot on the evolution of stars during the main Hydrogen and Helium burning phases.

  3. THE STEADY-STATE WIND MODEL FOR YOUNG STELLAR CLUSTERS WITH AN EXPONENTIAL STELLAR DENSITY DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Martinez-Gonzalez, Sergio [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico); Bisnovatyi-Kogan, Gennadiy, E-mail: silich@inaoep.mx, E-mail: gkogan@iki.rssi.ru [Space Research Institute, 84/32 Profsoyuznaya, Moscow 117810 (Russian Federation)

    2011-12-20

    A hydrodynamic model for steady-state, spherically symmetric winds driven by young stellar clusters with an exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the singular point R{sub sp}, which separates the inner subsonic zone from the outer supersonic flow, is not associated with the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition from the subsonic to the supersonic flow occurs always at R{sub sp} Almost-Equal-To 4R{sub c} , where R{sub c} is the characteristic scale for the stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic cooling regime, when the temperature drops abruptly at a short distance from the star cluster center, and the transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center. The impact from the major star cluster parameters to the wind inner structure is thoroughly discussed. Particular attention is paid to the effects which radiative cooling provides to the flow. The results of the calculations for a set of input parameters, which lead to different hydrodynamic regimes, are presented and compared to the results from non-radiative one-dimensional numerical simulations and to those from calculations with a homogeneous stellar mass distribution.

  4. Stellar models: firm evidence, open questions and future developments

    CERN Document Server

    Cassisi, Santi

    2009-01-01

    During this last decade our knowledge of the evolutionary properties of stars has significantly improved. This result has been achieved thanks to our improved understanding of the physical behavior of stellar matter in the thermal regimes characteristic of the different stellar mass ranges and/or evolutionary stages. This notwithstanding, the current generation of stellar models is still affected by several, not negligible, uncertainties related to our poor knowledge of some thermodynamical processes and nuclear reaction rates, as well as the efficiency of mixing processes. These drawbacks have to be properly taken into account when comparing theory with observations, to derive evolutionary properties of both resolved and unresolved stellar populations. In this paper we review the major sources of uncertainty along the main evolutionary stages, and emphasize their impact on population synthesis techniques.

  5. Accurate Low-Mass Stellar Models of KOI-126

    CERN Document Server

    Feiden, Gregory A; Dotter, Aaron

    2011-01-01

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. (2011) appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M-dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.

  6. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Science.gov (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  7. The Steady State Wind Model for Young Stellar Clusters with an Exponential Stellar Density Distribution

    CERN Document Server

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Martinez-Gonzalez, Sergio

    2011-01-01

    A hydrodynamic model for steady state, spherically-symmetric winds driven by young stellar clusters with an exponential stellar density distribution is presented. Unlike in most previous calculations, the position of the singular point R_sp, which separates the inner subsonic zone from the outer supersonic flow, is not associated with the star cluster edge, but calculated self-consistently. When the radiative losses of energy are negligible, the transition from the subsonic to the supersonic flow occurs always at R_sp ~ 4 R_c, where R_c is the characteristic scale for the stellar density distribution, irrespective of other star cluster parameters. This is not the case in the catastrophic cooling regime, when the temperature drops abruptly at a short distance from the star cluster center and the transition from the subsonic to the supersonic regime occurs at a much smaller distance from the star cluster center. The impact from the major star cluster parameters to the wind inner structure is thoroughly discusse...

  8. Model stars for the modelling of galaxies: $\\alpha$-enhancement in stellar populations models

    CERN Document Server

    Coelho, P

    2008-01-01

    Stellar population (SP) models are an essential tool to understand the observations of galaxies and clusters. One of the main ingredients of a SP model is a library of stellar spectra, and both empirical and theoretical libraries can been used for this purpose. Here I will start by giving a short overview of the pros and cons of using theoretical libraries, i.e. model stars, to produce our galaxy models. Then I will address the question on how theoretical libraries can be used to model stellar populations, in particular to explore the effect of $\\alpha$-enhancement on spectral observables.

  9. MODEL STARS FOR THE MODELLING OF GALAXIES: a-ENHANCEMENT IN STELLAR POPULATIONS MODELS

    Directory of Open Access Journals (Sweden)

    P. Coelho

    2009-01-01

    Full Text Available Stellar population (SP models are an essential tool to understand the observations of galaxies and clusters. One of the main ingredients of a SP model is a library of stellar spectra, and both empirical and theoretical libraries can been used for this purpose. Here I will start by giving a short overview of the pros and cons ofusing theoretical libraries, i.e. model stars, to produce our galaxy models. Then I will address the question on how theoretical libraries can be used to model stellar populations, in particular to explore the e ect of -enhancement on spectral observables.

  10. Testing galaxy formation models with galaxy stellar mass functions

    Science.gov (United States)

    Lim, S. H.; Mo, H. J.; Lan, Ting-Wen; Ménard, Brice

    2016-10-01

    We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter halos, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation and stellar mass assembly histories in dark matter halos. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.

  11. Testing galaxy formation models with galaxy stellar mass functions

    Science.gov (United States)

    Lim, S. H.; Mo, H. J.; Lan, T.-W.; Ménard, B.

    2017-01-01

    We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass haloes changes behaviour at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter haloes, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation, and stellar mass assembly histories in dark matter haloes. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.

  12. Detailed opacity calculations for stellar models

    Science.gov (United States)

    Pain, Jean-Christophe; Gilleron, Franck

    2016-10-01

    We present a state of the art of precise spectral opacity calculations illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments of hot dense plasmas produced by ultra-high-intensity laser interaction. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. Focus is put on iron, due to its crucial role in the understanding of asteroseismic observations of Beta Cephei-type and Slowly Pulsating B stars, as well as in the Sun. For instance, in Beta Cephei-type stars (which should not be confused with Cepheid variables), the iron-group opacity peak excites acoustic modes through the kappa-mechanism. A particular attention is paid to the higher-than-predicted iron opacity measured on Sandia's Z facility at solar interior conditions (boundary of the convective zone). We discuss some theoretical aspects such as orbital relaxation, electron collisional broadening, ionic Stark effect, oscillator-strength sum rules, photo-ionization, or the ``filling-the-gap'' effect of highly excited states.

  13. The evolution of C and O abundances in stellar populations

    DEFF Research Database (Denmark)

    Nissen, Poul E.; Schuster, William J.

    2014-01-01

    Carbon and oxygen abundances in F and G main-sequence stars ranging in metallicity from [Fe/H] = -1.6 to +0.5 are determined from a non-LTE analysis of C i and O i atomic lines in high-resolution spectra. Both C and O are good tracers of stellar populations; distinct trends of [C/Fe] and [O...

  14. A Unified Computational Model for Solar and Stellar Flares

    Science.gov (United States)

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.

  15. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  16. Stellar Models and Yields of Asymptotic Giant Branch Stars

    CERN Document Server

    Karakas, Amanda I

    2007-01-01

    We present stellar yields calculated from detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars. We evolve models with a range of mass from 1 to 6Msun, and initial metallicities from solar to 1/200th of the solar metallicity. Each model was evolved from the zero age main sequence to near the end of the thermally-pulsing AGB phase, and through all intermediate phases including the core He-flash for stars initially less massive than 2.5Msun. For each mass and metallicity, we provide tables containing structural details of the stellar models during the TP-AGB phase, and tables of the stellar yields for 74 species from hydrogen through to sulphur, and for a small number of iron-group nuclei. All tables are available for download. Our results have many applications including use in population synthesis studies and the chemical evolution of galaxies and stellar systems, and for comparison to the composition of AGB and post-AGB stars and planetary nebulae.

  17. A Non-LTE Study of Silicon Abundances in Giant Stars from the Si I Infrared Lines in the zJ-Band

    Science.gov (United States)

    Tan, Kefeng; Shi, Jianrong; Takada-Hidai, Masahide; Takeda, Yoichi; Zhao, Gang

    2016-05-01

    We investigate the feasibility of Si i infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si i IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13 dex), and are higher than those from the optical lines. However, when non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06 dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about -0.35 dex. Our results demonstrate that the Si i IR lines could be reliable abundance indicators, provided that the non-LTE effects are properly taken into account. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 266.D-5655(A) and 084.D-0912(A); based on observations carried out at the National Astronomical Observatories (Xinglong, China).

  18. Stellar yields from metal-rich asymptotic giant branch models

    CERN Document Server

    Karakas, Amanda I

    2016-01-01

    We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1$M_{\\odot}$ and 7.5$M_{\\odot}$ for $Z=0.007$, and 1$M_{\\odot}$ and 8$M_{\\odot}$ for $Z=0.014$ (solar) and $Z=0.03$. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., $^{12}$C/$^{13}$C), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium and all stable elements from C to Bi. Yields of Li are al...

  19. Dense Molecular Gas: A Sensitive Probe of Stellar Feedback Models

    CERN Document Server

    Hopkins, Philip F; Murray, Norman; Quataert, Eliot

    2012-01-01

    We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-de...

  20. Late stages of stellar evolution in population models

    Science.gov (United States)

    Maraston, Claudia

    2015-04-01

    My contribution to Roger's celebration symposium focuses on the treatment of late stellar evolutionary phases in stellar population models, reviewing the state of art and discussing some very recent developments, ranging from local stellar clusters up to distant galaxies at high redshift. I shall focus in particular on the Thermally Pulsating Asymptotic Giant Branch, about which a vivid discussion has been ongoing since a few years. I shall present renewed evidence in favour of a sizable contribution from this phase for matching the observed spectral energy distribution of distant massive galaxies. I shall also discuss the possible reasons why such a conclusion has been controversial in the recent literature. Stellar population models are the magic tool to shape the physics of galaxies out of their observed light, and enter virtually all papers presented at this symposium. In a collective effort to properly treat all relevant aspects of the modelling, we split the discussion into six contributions given by experts in the field, as our present to Roger and his outstanding career.

  1. The Impact of Stellar Model Spectra in Disk Detection

    CERN Document Server

    Sinclair, J A; Greaves, J S

    2010-01-01

    We present a study of the impact of different model groups in the detection of circumstellar debris disks. Almost all previous studies in this field have used Kurucz model spectra to predict the stellar contribution to the flux at the wavelength of observation thus determining the existence of a disk excess. Only recently have other model groups or families like Marcs and NextGen-Phoenix become available to the same extent. This study aims to determine whether the predicted stellar flux of a disk target can change with the choice of model family - can a disk excess be present in the use of one model family whilst being absent from another? A simple comparison of Kurucz model spectra with Mrcs and NextGen model spectra of identical stellar parameters was conducted and differences were present at near-infrared wavelengths. Model spectra often do not extend in wavelength to that of observation and therefore extrapolation of the spectrum is required. In extrapolation of model spectra to the Spitzer MIPS passbands...

  2. Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics

    OpenAIRE

    Zadelhoff, van, G.-J.; Dullemond, C.P.; Tak, van der, C.; Yates, J. A.; Doty, S. D.; Ossenkopf, V.; Hogerheijde, M. R.; Juvela, M.; Wiesemeyer, H.; Schöier, F.L.

    2002-01-01

    Comparison is made between a number of independent computer programs for radiative transfer in molecular rotational lines. The test models are spherically symmetric circumstellar envelopes with a given density and temperature profile. The first two test models have a simple power law density distribution, constant temperature and a fictive 2-level molecule, while the other two test models consist of an inside-out collapsing envelope observed in rotational transitions of HCO+. For the 2-level ...

  3. Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology

    DEFF Research Database (Denmark)

    Campbell, S. W.; Constantino, T. N.; D'Orazi, V.;

    2016-01-01

    Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutin...

  4. A new simple dynamo model for stellar activity cycle

    CERN Document Server

    Yokoi, Nobumitsu; Pipin, Valery; Hamba, Fujihiro

    2016-01-01

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous mean flow effect on turbulence, it is shown that turbulent cross helicity (velocity--magnetic-field correlation) should enter the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. The inclusion of the cross-helicity effect makes the present model different from the current $\\alpha$--$\\Omega$-type models mainly in two points. First, in addition to the usual $\\alpha$ (helicity effect) and $\\beta$ (turbulent magnetic diffusivity), we consider the $\\gamma$ coefficient (cross-helicity effect). Second, unlike the $\\alpha$ and $\\beta$ coefficients, which are often treated as an adjustable parameter in the current studies, the spatiotemporal evolution of $\\gamma$ coefficient should be solved simultaneously with the mean magnetic-field equations. The basic scenario for the stellar activity cycle in the present model is as follows: In the presence of turbulent cross he...

  5. Old star clusters: Bench tests of low mass stellar models

    Directory of Open Access Journals (Sweden)

    Salaris M.

    2013-03-01

    Full Text Available Old star clusters in the Milky Way and external galaxies have been (and still are traditionally used to constrain the age of the universe and the timescales of galaxy formation. A parallel avenue of old star cluster research considers these objects as bench tests of low-mass stellar models. This short review will highlight some recent tests of stellar evolution models that make use of photometric and spectroscopic observations of resolved old star clusters. In some cases these tests have pointed to additional physical processes efficient in low-mass stars, that are not routinely included in model computations. Moreover, recent results from the Kepler mission about the old open cluster NGC6791 are adding new tight constraints to the models.

  6. Quantification of non-LTE contributions to OH rotational temperatures based on VLT/X-shooter, VLT/UVES, and TIMED/SABER data

    Science.gov (United States)

    Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Proxauf, Bastian; Unterguggenberger, Stefanie; Jones, Amy M.

    2016-04-01

    The hydroxyl (OH) airglow emission is very valuable for estimating atmospheric temperatures at about 87 km because it is relatively easy to measure. The usual approach is based on intensity ratios of OH lines with low rotational upper levels of a given band and the assumption of a Boltzmann distribution of the level populations consistent with the ambient temperature. However, this assumption can be unrealistic if the frequency of thermalising collisions is too low, which is most likely at the highest emission altitudes. We have investigated the amounts of possible non-LTE contributions to the measured OH rotational temperatures depending on the selected lines, band, and time of observation. For this, we used several hundred spectra from the echelle spectrograph X-shooter at the Very Large Telescope (VLT) at Cerro Paranal in Chile. These data with a very wide wavelength coverage allowed us to simultaneously measure temperatures for 25 OH bands and two O2 bands. The latter were used to obtain reference temperatures, which is possible since the radiative lifetimes of the upper states are sufficiently long for establishing full thermalisation for the populations of the different rotational levels. For a comparison of the resulting temperatures, a correction of the different emission altitudes is required. Hence, we also used CO2-based temperature and OH and O2 emission profile data from the SABER multi-channel radiometer on the TIMED satellite. The altitude-corrected OH rotational temperatures show significant non-LTE effects for higher vibrational levels of the upper state v' and especially even v'. The maximum deviations of more than 10 K were found for v' = 8. The non-LTE effects can vary within a range of a few K. The studied nocturnal variations indicate that the non-LTE contributions increase when the emission layer rises. Finally, we will also present first results for several thousand spectra taken with the VLT high-resolution optical echelle spectrograph UVES

  7. A computer program for fast non-LTE analysis of interstellar line spectra

    NARCIS (Netherlands)

    Tak, Floris van der; Black, John; Schoeier, Fredrik; Jansen, David; Dishoeck, Ewine van

    2007-01-01

    Abstract: The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. We present a computer program to calculate the intensities of atomic

  8. Parker's Model for Stellar Wind and Magnetohydrodynamic Extensions

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    In this paper, we first revisit Parker's hydrodynamic model for a stellar wind and make further analytic considerations. We show that the visualization of an effective de Laval type nozzle associated with Parker's model is valid only in a superficial sense and not on the dynamical level. We then make an analytic considerations on the Weber-Davis magnetohydrodynamic (MHD) extension of Parker's model with a view to provide a qualitative understanding of the coupling between the magnetic field and the plasma motion in the stellar wind. We find that, *the MHD azimuthal velocity profile actually resembles that for hydrodynamic Lamb-Oseen vortex; *Keplerian-orbit conditions prevail near a strong rotator even in a magnetized situation; *Parker's hydrodynamic scenario \\cite{Par} seems to reappear in the strong magnetization regime.\\end{itemize}

  9. A Unified Computational Model for Solar and Stellar Flares

    CERN Document Server

    Allred, Joel C; Carlsson, Mats

    2015-01-01

    We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and...

  10. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    Science.gov (United States)

    Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.

    2016-10-01

    Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.

  11. Non-LTE Luminosity and Abundance Diagnostics of Classical Novae in X-rays

    CERN Document Server

    Németh, Péter

    2013-01-01

    Classical novae are significant sources of interstellar material, especially carbon, nitrogen and oxygen. These standard candles are only behind supernovae and $\\gamma$-ray bursts as the third brightest objects in the sky, and the most probable progenitors of type Ia supernovae. After a nova outburst the system enters into the constant bolometric luminosity phase and the nova maintains a stable hydrogen burning in the surface layers of the white dwarf. As the expanding shell around the nova attenuates, progressively deeper and hotter layers become visible. At the end of the constant bolometric luminosity phase, the hottest layers are exposed and novae radiate X-rays. This work uses the static, plane-parallel model atmosphere code TLUSTY to calculate atmospheric structure and SYNSPEC to calculate synthetic X-ray spectra. It was necessary to incorporate atomic data for the highest ionization stages of elements ranging from hydrogen to iron in both programs. Atomic data on energy levels, bound-free, bound-bound ...

  12. Spiral Structure Dynamics in Pure Stellar Disk Models

    CERN Document Server

    Valencia-Enriquez, Diego

    2013-01-01

    In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion and the disk scale height.

  13. Anisotropic stellar models admitting conformal motion

    Science.gov (United States)

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali

    2017-04-01

    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  14. A new methodology to test galaxy formation models using the dependence of clustering on stellar mass

    CERN Document Server

    Campbell, David J R; Mitchell, Peter D; Helly, John C; Gonzalez-Perez, Violeta; Lacey, Cedric G; Lagos, Claudia del P; Simha, Vimal; Farrow, Daniel J

    2014-01-01

    We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a new high resolution, large volume N-body simulation, set in the WMAP7 cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highligh...

  15. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    Science.gov (United States)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  16. Stellar population synthesis models between 2.5 and 5 {\\mu}m based on the empirical IRTF stellar library

    CERN Document Server

    Röck, B; Peletier, R F; Knapen, J H; Falcón-Barroso, J

    2015-01-01

    We present the first single-burst stellar population models in the infrared wavelength range between 2.5 and 5 {\\mu}m which are exclusively based on empirical stellar spectra. Our models take as input 180 spectra from the stellar IRTF (Infrared Telescope Facility) library. Our final single-burst stellar population models are calculated based on two different sets of isochrones and various types of initial mass functions of different slopes, ages larger than 1 Gyr and metallicities between [Fe/H] = -0.70 and 0.26. They are made available online to the scientific community on the MILES web page. We analyse the behaviour of the Spitzer [3.6]-[4.5] colour calculated from our single stellar population models and find only slight dependences on both metallicity and age. When comparing to the colours of observed early-type galaxies, we find a good agreement for older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours with respect to ...

  17. Ultraviolet Radiation from Evolved Stellar Populations -- I. Models

    CERN Document Server

    Dorman, B; O'Connell, R

    1993-01-01

    This series of papers comprises a systematic exploration of the hypothesis that the far ultraviolet radiation from star clusters and elliptical galaxies originates from extremely hot horizontal-branch (HB) stars and their post-HB progeny. This first paper presents an extensive grid of calculations of stellar models from the Zero Age Horizontal Branch through to a point late in post-HB evolution or a point on the white dwarf cooling track. We use the term `Extreme Horizontal Branch' (EHB) to refer to HB sequences of constant mass that do not reach the thermally-pulsing stage on the AGB. These models evolve after core helium exhaustion

  18. A Unified Computational Model for Solar and Stellar Flares

    OpenAIRE

    Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats

    2015-01-01

    We present a unified computational framework which can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into...

  19. Warm stellar matter within the quark-meson-coupling model

    Science.gov (United States)

    Panda, P. K.; Providência, C.; Menezes, D. P.

    2010-10-01

    In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.

  20. The metastable dynamo model of stellar rotational evolution

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Timothy M., E-mail: tbrown@lcogt.net [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States)

    2014-07-10

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  1. On the connections between solar and stellar dynamo models

    Science.gov (United States)

    Jouve, Laurène; Kumar, Rohit

    2017-10-01

    We here discuss the various dynamo models which have been designed to explain the generation and evolution of large-scale magnetic fields in stars. We focus on the models that have been applied to the Sun and can be tested for other solar-type stars now that modern observational techniques provide us with detailed stellar magnetic field observations. Mean-field flux-transport dynamo models have been developed for decades to explain the solar cycle and applications to more rapidly-rotating stars are discussed. Tremendous recent progress has been made on 3D global convective dynamo models. They do not however for now produce regular flux emergence that could be responsible for surface active regions and questions about the role of these active regions in the dynamo mechanism are still difficult to address with such models. We finally discuss 3D kinematic dynamo models which could constitute a promising combined approach, in which data assimilation could be applied.

  2. A multipurpose 3-D grid of stellar models

    CERN Document Server

    Apellániz, J Maíz

    2012-01-01

    The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxi...

  3. Truncated $\\gamma$-exponential models for tidal stellar systems

    CERN Document Server

    Gomez-Leyton, Y J

    2016-01-01

    We introduce a parametric family of models to characterize the properties of astrophysical systems in a quasi-stationary evolution under the incidence evaporation. We start from an one-particle distribution $f_{\\gamma}\\left(\\mathbf{q},\\mathbf{p}|\\beta,\\varepsilon_{s}\\right)$ that considers an appropriate deformation of Maxwell-Boltzmann form with inverse temperature $\\beta$, in particular, a power-law truncation at the scape energy $\\varepsilon_{s}$ with exponent $\\gamma>0$. This deformation is implemented using a generalized $\\gamma$-exponential function obtained from the \\emph{fractional integration} of ordinary exponential. As shown in this work, this proposal generalizes models of tidal stellar systems that predict particles distributions with \\emph{isothermal cores and polytropic haloes}, e.g.: Michie-King models. We perform the analysis of thermodynamic features of these models and their associated distribution profiles. A nontrivial consequence of this study is that profiles with isothermal cores and p...

  4. The Stagger-grid: A grid of 3D stellar atmosphere models - VI. Surface appearance of stellar granulation

    CERN Document Server

    Magic, Zazralt

    2014-01-01

    In the surface layers of late-type stars, stellar convection is manifested with its typical granulation pattern due to the presence of convective motions. The resulting photospheric up- and downflows leave imprints in the observed spectral line profiles. We perform a careful statistical analysis of stellar granulation and its properties for different stellar parameters. We employ realistic 3D radiative hydrodynamic (RHD) simulations of surface convection from the Stagger-grid, a comprehensive grid of atmosphere models that covers a large parameter space in terms of Teff, logg, and [Fe/H]. Individual granules are detected from the (bolometric) intensity maps at disk center with an efficient granulation pattern recognition algorithm. From these we derive their respective properties: diameter, fractal dimension (area-perimeter relation), geometry, topology, variation of intensity, temperature, density and velocity with granule size. Also, the correlation of the physical properties at the optical surface are stud...

  5. A non-LTE study of neutral and singly-ionized calcium in late-type stars

    Science.gov (United States)

    Mashonkina, L.; Korn, A. J.; Przybilla, N.

    2007-01-01

    Aims:Non-local thermodynamical equilibrium (NLTE) line formation for neutral and singly-ionized calcium is considered through a range of spectral types when the Ca abundance varies from the solar value down to [Ca/H] = -5. We evaluate the influence of departures from LTE on Ca abundance determinations and inspect the possibility of using Ca I / Ca II line-strength ratios as indicators of surface gravity for extremely metal-poor stars. Methods: A comprehensive model atom for Ca I and Ca II is presented. Accurate radiative and electron collisional atomic data are incorporated. The role of inelastic collisions with hydrogen atoms in the statistical equilibrium of Ca I/II is estimated empirically from inspection of their different influences on the Ca I and Ca II lines in selected stars with well determined stellar parameters and high-quality observed spectra. Results: The dependence of NLTE effects on the atmospheric parameters is discussed. Departures from LTE significantly affect the profiles of Ca I lines over the whole range of stellar parameters being considered. However, at [Ca/H] ≥ -2, NLTE abundance correction of individual lines have a low absolute value due to the different influence of NLTE effects on line wings and the line core. At lower Ca abundances, NLTE leads to systematically depleted total absorption in the line and positive abundance corrections, exceeding +0.5 dex for Ca I λ 4226 at [Ca/H] = -4.9. In contrast, the NLTE effects strengthen the Ca II lines and lead to negative abundance corrections. NLTE corrections are small, ≤0.02 dex, for the Ca II resonance lines, and they grow in absolute value with decreasing Ca abundance for the IR lines of multiplet 3d-4p, exceeding 0.4 dex in the metal-poor models with [Fe/H] ≤ -3. As a test and first application of the Ca I/II model atom, Ca abundances are determined on the basis of plane-parallel LTE model atmospheres for the Sun, Procyon (F IV-V), and seven metal-poor stars, using high S/N and high

  6. When the Jeans don't fit: How stellar feedback drives stellar kinematics and complicates dynamical modeling in low-mass galaxies

    CERN Document Server

    El-Badry, Kareem; Geha, Marla; Quataert, Eliot; Hopkins, Philip F; Kereš, Dusan; Chan, T K; Faucher-Giguère, Claude-André

    2016-01-01

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments (FIRE) project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies' starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test of the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy's dynamical mass dur...

  7. Models of cuspy triaxial stellar systems. II. Regular orbits

    CERN Document Server

    Muzzio, J C; Zorzi, A F

    2012-01-01

    In the first paper of this series we used the N--body method to build a dozen cuspy (gamma ~ 1) triaxial models of stellar systems, and we showed that they were highly stable over time intervals of the order of a Hubble time, even though they had very large fractions of chaotic orbits (more than 85 per cent in some cases). The models were grouped in four sets, each one comprising models morphologically resembling E2, E3, E4 and E5 galaxies, respectively. The three models within each set, although different, had the same global properties and were statistically equivalent. In the present paper we use frequency analysis to classify the regular orbits of those models. The bulk of those orbits are short axis tubes (SATs), with a significant fraction of long axis tubes (LATs) in the E2 models that decreases in the E3 and E4 models to become negligibly small in the E5 models. Most of the LATs in the E2 and E3 models are outer LATs, but the situation reverses in the E4 and E5 models where the few LATs are mainly inn...

  8. Modelling turbulent stellar convection zones: sub-grid scales effects

    CERN Document Server

    Strugarek, A; Brun, A S; Charbonneau, P; Mathis, S; Smolarkiewicz, P K

    2016-01-01

    The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We deriv...

  9. A stellar model with diffusion in general relativity

    CERN Document Server

    Alho, Artur

    2016-01-01

    We consider a spherically symmetric stellar model in general relativity whose interior consists of a pressureless fluid undergoing microscopic velocity diffusion in a cosmological scalar field. We show that the diffusion dynamics compel the interior to be spatially homogeneous, by which one can infer immediately that within our model, and in contrast to the diffusion-free case, no naked singularities can form in the gravitational collapse. We then study the problem of matching an exterior Bondi type metric to the surface of the star and find that the exterior can be chosen to be a modified Vaidya metric with variable cosmological constant. Finally, we study in detail the causal structure of an explicit, self-similar solution.

  10. Testing galaxy formation models with galaxy stellar mass functions

    CERN Document Server

    Lim, Seunghwan; Lan, Ting-Wen; Ménard, Brice

    2016-01-01

    We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. Among all the models considered, only the model of Lu et al. can match the observational data; all other models fail to reproduce the faint-end upturn seen in the observation. The CSMFs are used to update the halo-based empirical model of Lu et al., and the model parameters obtained are very similar to those inferred by Lu et al. from a completely different set of observational constraints. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift $z_c \\sim 2$. There is also tentative evidence that this characteristic redshift depends on environments, becoming $z_c \\sim 4$ in regions that eventually evolve into rich clusters of galaxies. The constrained model ...

  11. Carbon Abundances In The Light Of 3D Model Stellar Atmospheres

    DEFF Research Database (Denmark)

    Collet, Remo

    ) hydrodynamic modelling of stellar atmospheres and stellar spectra. In this contribution, I describe quantitatively the impact of realistic, time-dependent, 3D hydrodynamic model atmospheres on the spectroscopic determination of carbon abundances from CH molecular lines for stars with a wide range of stellar...... carbon abundance corrections on the oxygen abundance in carbon-enhanced metal-poor (CEMP) stars and show that such corrections are extremely sensitive to the atmospheric C/O ratio....

  12. Chromospheric Models and the Oxygen Abundance in Giant Stars

    CERN Document Server

    Dupree, A K; Kurucz, R L

    2016-01-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri that include a chromosphere influence the formation of optical lines of Oxygen I: the forbidden lines (630nm, 636nm) and the infrared triplet (777.1-777.5 nm). One-dimensional semi-empirical non-LTE models are constructed based on observed Balmer lines. A full non-LTE formulation is applied in evaluating line strengths of O I including photoionization by the Lyman continuum and photoexcitation by Ly-alpha and Ly-beta. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors ~3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate mass AGB stars contribute to the observed abundance pattern in globular cluste...

  13. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    2016-01-01

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical wi

  14. The truncation of stellar discs A theoretical model

    CERN Document Server

    Battaner, E; Jiménez-Vicente, J

    1998-01-01

    The truncation of stellar discs is not abrupt but characterized by a continuous distancing from the exponential profile. There exists a truncation curve, $t(r)$, ending at a truncation radius, $r_t$. We present here a theoretical model in which it is assumed that the magnetic hypothesis explaining the flat rotation curve also explains the truncation. Once stars are born, the centripetal magnetic force previously acting on the progenitor gas cloud is suddenly interrupted, and stars must move to larger orbits or escape. The agreement between theoretical and observed truncation curves is very satisfactory. Parameters defining the disc gas rotation curve should therefore be related to those defining the truncation. It is predicted that rotation curves that quickly reach the asymptotic value $\\theta_0 = \\theta (r=\\infty)$ would have small truncation radii. On the contrary, $r_t$ and $\\theta_0$ itself, would be uncorrelated quantities.

  15. Stellar Winds on the Main-Sequence I: Wind Model

    CERN Document Server

    Johnstone, C P; Lüftinger, T; Toth, G; Brott, I

    2015-01-01

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

  16. Models of cuspy triaxial stellar systems. IV: Rotating systems

    CERN Document Server

    Carpintero, D D

    2016-01-01

    We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the center and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semiaxes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short axis tubes, while long axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are...

  17. Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology

    CERN Document Server

    Campbell, S W; D'Orazi, V; Meakin, C; Stello, D; Christensen-Dalsgaard, J; Kuehn, C; De Silva, G M; Arnett, W D; Lattanzio, J C; MacLean, B T

    2015-01-01

    Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed and the next generation of stellar models is needed as soon as possible. The current uncertainties in the models propagate to the later phases of stellar evolution, hindering our understanding of stellar populations and chemical evolution. Here we give a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling.

  18. Towards 21st century stellar models: Star clusters, supercomputing and asteroseismology

    Science.gov (United States)

    Campbell, S. W.; Constantino, T. N.; D'Orazi, V.; Meakin, C.; Stello, D.; Christensen-Dalsgaard, J.; Kuehn, C.; De Silva, G. M.; Arnett, W. D.; Lattanzio, J. C.; MacLean, B. T.

    2016-09-01

    Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy - through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys - are placing stellar models under greater quantitative scrutiny than ever. The model limitations are being exposed and the next generation of stellar models is needed as soon as possible. The current uncertainties in the models propagate to the later phases of stellar evolution, hindering our understanding of stellar populations and chemical evolution. Here we give a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling. This study uses observational data from from HST, VLT, AAT, Kepler, and supercomputing resources in Australia provided by the National Computational Infrastructure (NCI) and Pawsey Supercomputing Centre.

  19. Integrated astrophysical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T. A.; Eastman, R. G.; Dubois, P.; Eltgroth, P. G.; Gentile, N.; Jedamzik, K.; Wilson, J. R.

    1997-06-03

    In this project, we have developed prototype techniques for defining and extending a variety of astrophysical modeling capabilities, including those involving multidimensional hydrodynamics, complex transport, and flexibly-coupled equation-of state and nuclear reaction networks. As expected, this project is having both near-term payoffs in understanding complex astrophysical phenomena, as well as significant spin-offs in terms of people and ideas to related ASCI code efforts. Most of our work in the first part of this project was focused on the modularization, extension, and initial integration of 4 previously separate and incommensurate codes: the stellar evolution/explosion code KEPLER; the non-LTE spectral line transport code, EDDINGTON, used for modeling supernovae spectra; the 3-D smooth particle hydro code, PIP; and the discontinuous-finite-element, 3D hydro module from the lCF3D code.

  20. The Evolutionary Population Synthesis Model for Helium-Enhanced Stellar Populations

    Science.gov (United States)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook

    2017-01-01

    The discovery of multiple stellar populations in the Milky Way globular clusters has stimulated a great deal of researches on the helium enhanced stellar populations. Here, we present the evolutionary population synthesis models for integrated spectro-photometric evolution of simple stellar populations (SSPs) with varied initial helium abundances. The integrated properties of helium-enhanced SSPs depend on metallicity and age as are the normal-helium SSPs, but the properties vary greatly with the initial helium abundance. We will discuss how helium-enhanced stellar populations explain many interesting observations of globular clusters and their host galaxies.

  1. Modeling non-thermal emission from stellar bow shocks

    CERN Document Server

    Pereira, V; Miceli, M; Bonito, R; de Castro, E

    2016-01-01

    Runaway O- and early B-type stars passing throughout the interstellar medium at supersonic velocities and characterized by strong stellar winds may produce bow shocks that can serve as particle acceleration sites. Previous theoretical models predict the production of high energy photons by non-thermal radiative processes, but their efficiency is still debated. We aim to test and explain the possibility of emission from the bow shocks formed by runaway stars traveling through the interstellar medium by using previous theoretical models. We apply our model to AE Aurigae, the first reported star with an X-ray detected bow shock, to BD+43 3654, in which the observations failed in detecting high energy emission, and to the transition phase of a supergiant star in the late stages of its life.From our analysis, we confirm that the X-ray emission from the bow shock produced by AE Aurigae can be explained by inverse Compton processes involving the infrared photons of the heated dust. We also predict low high energy fl...

  2. Stellar Models of Multiple Populations in Globular Clusters. I. The Main Sequence of NGC 6752

    CERN Document Server

    Dotter, Aaron; Conroy, Charlie; Milone, A P; Marino, A F; Yong, David

    2014-01-01

    We present stellar atmosphere and evolution models of main sequence stars in two stellar populations of the Galactic globular cluster NGC 6752. These populations represent the two extremes of light-element abundance variations in the cluster. NGC 6752 is a benchmark cluster in the study of multiple stellar populations because of the rich array of spectroscopic abundances and panchromatic Hubble Space Telescope photometry. The spectroscopic abundances are used to compute stellar atmosphere and evolution models. The synthetic spectra for the two populations show significant differences in the ultraviolet and, for the coolest temperatures, in the near-infrared. The stellar evolution models exhibit insignificant differences in the H-R diagram except on the lower main sequence. The appearance of multiple sequences in the colour-magnitude diagrams (CMDs) of NGC 6752 is almost exclusively due to spectral effects caused by the abundance variations. The models reproduce the observed splitting and/or broadening of sequ...

  3. The propagation of uncertainties in stellar population synthesis modeling I: The relevance of uncertain aspects of stellar evolution and the IMF to the derived physical properties of galaxies

    CERN Document Server

    Conroy, Charlie; White, Martin

    2008-01-01

    The stellar masses, mean ages, metallicities, and star formation histories of galaxies are now commonly estimated via stellar population synthesis (SPS) techniques. SPS relies on stellar evolution calculations from the main sequence to stellar death, stellar spectral libraries, phenomenological dust models, and stellar initial mass functions (IMFs). The present work is the first in a series that explores the impact of uncertainties in key phases of stellar evolution and the IMF on the derived physical properties of galaxies and the expected luminosity evolution for a passively evolving set of stars. A Monte-Carlo Markov-Chain approach is taken to fit near-UV through near-IR photometry of a representative sample of low- and high-redshift galaxies with this new SPS model. Significant results include the following: 1) including uncertainties in stellar evolution, stellar masses at z~0 carry errors of ~0.3 dex at 95% CL with little dependence on luminosity or color, while at z~2, the masses of bright red galaxies...

  4. Modeling turbulent stellar convection zones: Sub-grid scales effects

    Science.gov (United States)

    Strugarek, A.; Beaudoin, P.; Brun, A. S.; Charbonneau, P.; Mathis, S.; Smolarkiewicz, P. K.

    2016-10-01

    The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modeled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.

  5. Cepheid models based on self-consistent stellar evolution and pulsation calculations : The right answer?

    NARCIS (Netherlands)

    Baraffe, [No Value; Alibert, Y; Mera, D; Charbrier, G; Beaulieu, JP

    1998-01-01

    We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables (3 stellar evolution calculations are coupled to a linear nonadiabatic stability

  6. Modeling for Stellar Feedback in Galaxy Formation Simulations

    Science.gov (United States)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov–Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H ii regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3–130) × 104 solar masses.

  7. A new methodology to test galaxy formation models using the dependence of clustering on stellar mass

    Science.gov (United States)

    Campbell, David J. R.; Baugh, Carlton M.; Mitchell, Peter D.; Helly, John C.; Gonzalez-Perez, Violeta; Lacey, Cedric G.; Lagos, Claudia del P.; Simha, Vimal; Farrow, Daniel J.

    2015-09-01

    We present predictions for the two-point correlation function of galaxy clustering as a function of stellar mass, computed using two new versions of the GALFORM semi-analytic galaxy formation model. These models make use of a high resolution, large volume N-body simulation, set in the 7-year Wilkinson Microwave Anisotropy Probe cosmology. One model uses a universal stellar initial mass function (IMF), while the other assumes different IMFs for quiescent star formation and bursts. Particular consideration is given to how the assumptions required to estimate the stellar masses of observed galaxies (such as the choice of IMF, stellar population synthesis model, and dust extinction) influence the perceived dependence of galaxy clustering on stellar mass. Broad-band spectral energy distribution fitting is carried out to estimate stellar masses for the model galaxies in the same manner as in observational studies. We show clear differences between the clustering signals computed using the true and estimated model stellar masses. As such, we highlight the importance of applying our methodology to compare theoretical models to observations. We introduce an alternative scheme for the calculation of the merger time-scales for satellite galaxies in GALFORM, which takes into account the dark matter subhalo information from the simulation. This reduces the amplitude of small-scale clustering. The new merger scheme offers improved or similar agreement with observational clustering measurements, over the redshift range 0 Public Extragalactic Redshift Survey, depending on the GALFORM model used.

  8. Stellar energy loss rates in the pair-annihilation process beyond the standard model

    Science.gov (United States)

    Hernández-Ruíz, M. A.; Gutiérrez-Rodríguez, A.; González-Sánchez, A.

    2017-01-01

    We calculate the stellar energy loss due to neutrino-pair production in e+e- annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in e+e- annihilation.

  9. A Legacy Magellanic Clouds Star Clusters Sample for the Calibration of Stellar Evolution Models

    Science.gov (United States)

    Fouesneau, Morgan

    2014-10-01

    Stellar evolution models are fundamental to all studies in astrophysics. These models are the foundations of the interpretation of colors and luminosities of stars necessary to address problems ranging from galaxy formation to determining the habitable zone of planets and interstellar medium properties. For decades the standard calibration of these models relied on a handful of star clusters. However, large uncertainties remain in the fundamental parameters underlying stellar evolution models. The project we propose is two-fold. First we propose to generate a new high quality reference dataset of the resolved stars in 121 Magellanic Cloud clusters, selected from 18 past programs to efficiently sample a large grid of stellar evolution models. Our team will measure the photometry of individual stars in those clusters and characterize individual completeness and photometric uncertainties. Second, we will migrate the calibration of the stellar evolution into a fully probabilistic framework, that will not only reflect the state-of-the-art, but will also be published with fully characterized uncertainties, based on the entire reference data set, rather than a few select clusters.We have entered an era dominated by large surveys {e.g. SDSS, PanSTARRS, Gaia, LSST} where the variations between families of stellar models are greater than the nominal precision of the instruments. Our proposed program will provide a library needed for a convergence in the stellar models and our understanding of stellar evolution.

  10. Computational Models of Stellar Collapse and Core-Collapse Supernovae

    CERN Document Server

    Ott, C D; Burrows, A; Livne, E; O'Connor, E; Löffler, F

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar col...

  11. Connecting Galaxies with Halos Across Cosmic Time: Stellar mass assembly distribution modeling of galaxy statistics

    CERN Document Server

    Becker, Matthew R

    2015-01-01

    In this work, I explore an empirically motivated model for investigating the relationship between galaxy stellar masses, star formation rates and their halo masses and mass accretion histories. The core statistical quantity in this model is the stellar mass assembly distribution, $P(dM_{*}/dt|\\mathbf{X},a)$, which specifies the probability density distribution of stellar mass assembly rates given a set of halo properties $\\mathbf{X}$ and epoch $a$. Predictions from this model are obtained by integrating the stellar mass assembly distribution (SMAD) over halo merger trees, easily obtained from modern, high-resolution $N$-body simulations. Further properties of the galaxies hosted by the halos can be obtained by post-processing the stellar mass assembly histories with stellar population synthesis models. In my particular example implementation of this model, I use the \\citet{behroozi13a} constraint on the median stellar mass assembly rates of halos as a function of their mass and redshift to construct an exampl...

  12. Building a Predictive Model of Galaxy Formation - I: Phenomenological Model Constrained to the $z=0$ Stellar Mass Function

    CERN Document Server

    Benson, A J

    2014-01-01

    We constrain a highly simplified semi-analytic model of galaxy formation using the $z\\approx 0$ stellar mass function of galaxies. Particular attention is paid to assessing the role of random and systematic errors in the determination of stellar masses, to systematic uncertainties in the model, and to correlations between bins in the measured and modeled stellar mass functions, in order to construct a realistic likelihood function. We derive constraints on model parameters and explore which aspects of the observational data constrain particular parameter combinations. We find that our model, once constrained, provides a remarkable match to the measured evolution of the stellar mass function to $z=1$, although fails dramatically to match the local galaxy HI mass function. Several "nuisance parameters" contribute significantly to uncertainties in model predictions. In particular, systematic errors in stellar mass estimate are the dominant source of uncertainty in model predictions at $z\\approx 1$, with addition...

  13. Towards 21st Century Stellar Models: Star Clusters, Supercomputing, and Asteroseismology

    DEFF Research Database (Denmark)

    Campbell, S. W.; Constantino, T. N.; D'Orazi, V.;

    2016-01-01

    Stellar models provide a vital basis for many aspects of astronomy and astrophysics. Recent advances in observational astronomy -- through asteroseismology, precision photometry, high-resolution spectroscopy, and large-scale surveys -- are placing stellar models under greater quantitative scrutin...... a brief overview of the evolution, importance, and substantial uncertainties of core helium burning stars in particular and then briefly discuss a range of methods, both theoretical and observational, that we are using to advance the modelling....

  14. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    CERN Document Server

    Kuncarayakti, H; Anderson, J P; Krühler, T; Hamuy, M

    2016-01-01

    CONTEXT. Stellar populations are the building blocks of galaxies including the Milky Way. The majority, if not all extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, their study is mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. AIMS. This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, i.e. age and metallicity. METHODS. Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, is used to study the properties of the cluster both as a resolved and unresolved stellar population. The unresolved stellar population is analysed using the H$\\alpha$ equivalent width as ...

  15. A non-LTE study of neutral and singly-ionized calcium in late-type stars

    CERN Document Server

    Mashonkina, L I; Przybilla, N

    2006-01-01

    Non-local thermodynamical equilibrium (NLTE) line formation for neutral and singly-ionized calcium is considered through a range of spectral types when the Ca abundance varies from the solar value down to [Ca/H] = -5. Departures from LTE significantly affect the profiles of Ca I lines over the whole range of stellar parameters considered. However, at [Ca/H] >= -2, NLTE abundance correction of individual lines may be small in absolute value due to the different influence of NLTE effects on line wings and the line core. At lower Ca abundances, NLTE leads to systematically depleted total absorption in the line and positive abundance corrections, exceeding +0.5 dex for Ca I 4226 at [Ca/H] = -4.9. In contrast, NLTE effects strengthen the Ca II lines and lead to negative abundance corrections. NLTE corrections are small, <= 0.02 dex, for the Ca II resonance lines. For the IR lines of multiplet 3d - 4p, they grow in absolute value with decreasing Ca abundance exceeding 0.4 dex in metal-poor stars with [Fe/H] <...

  16. Galactic evolution. I - Single-zone models. [encompassing stellar evolution and gas-star dynamic theories

    Science.gov (United States)

    Thuan, T. X.; Hart, M. H.; Ostriker, J. P.

    1975-01-01

    The two basic approaches of physical theory required to calculate the evolution of a galactic system are considered, taking into account stellar evolution theory and the dynamics of a gas-star system. Attention is given to intrinsic (stellar) physics, extrinsic (dynamical) physics, and computations concerning the fractionation of an initial mass of gas into stars. The characteristics of a 'standard' model and its variants are discussed along with the results obtained with the aid of these models.

  17. The simplest model of galaxy formation I: A formation history model of galaxy stellar mass growth

    CERN Document Server

    Mutch, Simon J; Poole, Gregory B

    2013-01-01

    We introduce a simple model to self-consistently connect the growth of galaxies to the formation history of their host dark matter halos. Our model is defined by two simple functions: the "baryonic growth function" which controls the rate at which new baryonic material is made available for star formation, and the "physics function" which controls the efficiency with which this material is converted into stars. Using simple, phenomenologically motivated forms for both functions that depend only on a single halo property, we demonstrate the model's ability to reproduce the z=0 red and blue stellar mass functions. Furthermore, by adding redshift as a second input variable to the physics function we show that the reproduction of the global stellar mass function out to z=3 is improved. We conclude by discussing the general utility of our new model, highlighting its usefulness for creating mock galaxy samples which have a number of key advantages over those generated by other techniques.

  18. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Science.gov (United States)

    Cohen, O.

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  19. Stellar models for very low mass main sequence stars the role of model atmospheres

    CERN Document Server

    Brocato, E; Castellani, V

    1997-01-01

    We present Very Low Mass stellar models as computed including non-grey model atmospheres for selected assumptions about the star metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation and with similar models appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass-luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighborhood reveals a satisfactory agreement together with the existence of some residual mismatches.

  20. The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile

    Science.gov (United States)

    Bernardi, M.; Meert, A.; Sheth, R. K.; Fischer, J.-L.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.

    2017-01-01

    We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ˜ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order ≤0.5 dex, systematics in photometry are now about 0.1 dex, in contrast to some recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of ρ★( ≥ M★) by factors of 3 - 10 in the mass range 1011 - 1011.6M⊙, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order ≤0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.

  1. LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths

    DEFF Research Database (Denmark)

    Brinch, Christian; Hogerheijde, Michiel

    2010-01-01

    can be used as input, ranging from analytical descriptions over tabulated models to SPH simulations. To generate the Delaunay grid we sample the input model randomly, but weigh the sample probability with the molecular density and other parameters, and thereby we obtain an average grid point...

  2. Grids of stellar models including second harmonic and colours: Solar composition

    CERN Document Server

    Yildiz, Mutlu

    2015-01-01

    Grids of stellar evolution are required in many fields of astronomy/astrophysics, such as planet hosting stars, binaries, clusters, chemically peculiar stars, etc. In this study, a grid of stellar evolution models with updated ingredients and {recently determined solar abundaces} is presented. The solar values for the initial abundances of hydrogen, heavy elements and mixing-length parameter are 0.0172, 0.7024 and 1.98, respectively. The mass step is small enough (0.01 M$_\\odot$) that interpolation for a given star mass is not required. The range of stellar mass is 0.74 to 10.00 M$_\\odot$. We present results in different forms of tables for easy and general application. The second stellar harmonic, required for analysis of apsidal motion of eclipsing binaries, is also listed. We also construct rotating models to determine effect of rotation on stellar structure and derive fitting formula for luminosity, radius and the second stellar harmonic as a function of rotational parameter. We also compute and list colo...

  3. AME - Asteroseismology Made Easy. Estimating stellar properties by use of scaled models

    CERN Document Server

    Lundkvist, M; Aguirre, V Silva

    2014-01-01

    We present a new method to obtain stellar properties for stars exhibiting solar-like oscillations in an easy, fast, and transparent way. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean-densities, radii, and surface gravities, as well as estimate ages. In this writing we present AME as a visual and powerful tool which could be useful; in particular in the light of the large number of exoplanets being found. AME consists of a set of figures from which the stellar parameters are deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 Msun to 1.6 Msun in steps of 0.1 Msun and metallicities in the interval -0.3 dex <= [Fe/H] <= +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. We have compared the results from AME with results for three groups of stars; stars with radii determined from inter...

  4. Improving stellar parameter and abundance determinations of early B-type stars

    CERN Document Server

    Nieva, Maria-Fernanda

    2009-01-01

    In the past years we have made great efforts to reduce the statistical and systematic uncertainties in stellar parameter and chemical abundance determinations of early B-type stars. Both the construction of robust model atoms for non-LTE line-formation calculations and a novel self-consistent spectral analysis methodology were decisive to achieve results of unprecedented precision. They were extensively tested and applied to high-quality spectra of stars from OB associations and the field in the solar neighbourhood, covering a broad parameter range. Initially, most lines of hydrogen, helium and carbon in the optical/near-IR spectral range were reproduced simultaneously in a consistent way for the first time, improving drastically on the accuracy of results in published work.By taking additional ionization equilibria of oxygen, neon, silicon and iron into account, uncertainties as low as ~1% in effective temperature, ~10% in surface gravity and ~20% in elemental abundances are achieved - compared to ~5-10%, ~2...

  5. Exponential Disks from Stellar Scattering: III. Stochastic Models

    CERN Document Server

    Elmegreen, Bruce G

    2016-01-01

    Stellar scattering off irregularities in a galaxy disk has been shown to make an exponential radial profile, but no fundamental reason for this has been suggested. Here we show that exponentials are mathematically expected from random scattering in a disk when there is a slight inward bias in the scattering probability. Such a bias was present in our previous scattering experiments that formed exponential profiles. Double exponentials can arise when the bias varies with radius. This is a fundamental property of scattering and may explain why piece-wise exponential profiles are ubiquitous in galaxies, even after minor mergers and other disruptive events.

  6. Influence of Inelastic Collisions with Hydrogen Atoms on the Formation of Al I and Si I Lines in Stellar Spectra

    CERN Document Server

    Mashonkina, Lyudmila; Shi, Jianrong

    2016-01-01

    The non-LTE line formation for Al I and Si I was calculated with model atmospheres corresponding to F-G-K type stars of different metallicity. To account for inelastic collisions with H I, for the first time we applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born-Oppenheimer quantum theory. For Al I non-LTE leads to overionization in the line formation layers and to weakened spectral lines, in line with earlier non-LTE studies. However, in contrast to the previuos studies, our results predict smaller magnitude of the non-LTE effects for the subordinate lines. Owing to large cross sections, the ion-pair production and mutual neutralization processes Al I(nl) + H I(1s) $\\leftrightarrow$ Al~II(3s^2) + H^- provide a close coupling of high-excitation Al I levels to the Al II ground state, which causes smaller deviations from the TE populations compared to the case of pure electron collisions. For three metal-poor stars, the Al abundance was determined from...

  7. Single stellar populations in the near-infrared II. Synthesis models

    CERN Document Server

    Meneses-Goytia, S; Trager, S C; Vazdekis, A

    2015-01-01

    We present unresolved single stellar population synthesis models in the near-infrared (NIR) range. The extension to the NIR is important for the study of early-type galaxies, since these galaxies are predominantly old and therefore emit most of their light in this wavelength range. The models are based on a library of empirical stellar spectra, the NASA infrared telescope facility (IRTF) spectral library. Integrating these spectra along theoretical isochrones, while assuming an initial mass function (IMF), we have produced model spectra of single age-metallicity stellar populations at a resolution R~2000. These models can be used to fit observed spectral of globular clusters and galaxies, to derive their age distribution, chemical abundances and IMF. The models have been tested by comparing them to observed colours of elliptical galaxies and clusters in the Magellanic Clouds. Predicted absorption line indices have been compared to published indices of other elliptical galaxies. The comparisons show that our m...

  8. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disk's damping effects

    Science.gov (United States)

    Picogna, G.; Marzari, F.

    2014-04-01

    Context. Stellar flybys in star clusters are suspected of affecting the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. Aims: We explore whether the impulsive changes in the orbital elements of planets, caused by a hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is comparable to the circumstellar disk's lifetime. Since we perform 3D simulations, we can also test the inclination, excitation, and damping. Methods: We have modeled in 3D with the SPH code VINE, a system made of a solar-type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star of similar mass and with its own disk. Different inclinations between the disks, planet orbit, and star trajectory have been considered to explore various encounter geometries. We focus on an extreme configuration where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows us to test in full the ability of the disk to erase the effects of the stellar encounter. Results: We find that the amount of mass lost by the disk during the stellar flyby is less than in 2D models where a single disk was considered. This is mostly related to the mass exchange between the two disks at the encounter. The damping in eccentricity is slightly faster than in 2D models and it occurs on timescales on the order of a few kyr. During the flyby both the disks are warped owing to the mutual interaction and to the stellar gravitational perturbations, but they quickly relax to a new orbital plane. The planet is quickly dragged back within the disk by the tidal interaction with the gas. The only trace of the flyby left in the planet system, after about 104 yr, is a small misalignment, lower than 9°, between the star equatorial plane and the

  9. Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disks damping effects

    CERN Document Server

    Picogna, Giovanni

    2014-01-01

    Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar fly...

  10. Stellar energy loss rates in the pair-annihilation process beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ruiz, M.A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ciencias Quimicas, Apartado Postal C-585, Zacatecas (Mexico); Gutierrez-Rodriguez, A. [Universidad Autonoma de Zacatecas, Facultad de Fisica, Apartado Postal C-580, Zacatecas (Mexico); Gonzalez-Sanchez, A. [Universidad Autonoma de Zacatecas, Facultad de Fisica, Apartado Postal C-580, Zacatecas (Mexico); PSL Research University, Observatoire de Paris, LERMA, CNRS UMR 8112, Paris (France)

    2017-01-15

    We calculate the stellar energy loss due to neutrino-pair production in e{sup +}e{sup -} annihilation in the context of a 331 model, a left-right symmetric model and a simplest little Higgs model in a way that can be used in supernova calculations. We also present some simple estimates which show that such process can act as an efficient energy loss mechanism in the shocked supernova core. We find that the stellar energy loss is almost independent of the parameters of the models in the allowed range for these parameters. This work complements other studies on the stellar energy loss rate in e{sup +}e{sup -} annihilation. (orig.)

  11. Non-LTE Inversion of Spectropolarimetric and Spectroscopic Observations of a Small Active-region Filament Observed at the VTT

    Science.gov (United States)

    Schwartz, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Gömöry, P.; Rybák, J.; Kučera, A.; Heinzel, P.

    2016-04-01

    An active region mini-filament was observed by VTT simultaneously in the HeI 10 830 Å triplet by the TIP 1 spectropolarimeter, in Hα by the TESOS Fabry-Pérot interferometer, and in Ca II 8542 Å by the VTT spectrograph. The spectropolarimetric data were inverted using the HAZEL code and Hα profiles were modelled solving a NLTE radiative transfer in a simple isobaric and isothermal 2D slab irradiated both from bottom and sides. It was found that the mini-filament is composed of horizontal fluxtubes, along which the cool plasma of T˜10 000 K can flow by very large - even supersonic - velocities.

  12. Stellar dynamo models with prominent surface toroidal fields

    CERN Document Server

    Bonanno, Alfio

    2016-01-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular it is argued that the observed increase in the toroidal energy in low mass fast rotating stars can be naturally explained with an underlying $\\alpha\\Omega$ mechanism.

  13. Stellar Dynamo Models with Prominent Surface Toroidal Fields

    Science.gov (United States)

    Bonanno, Alfio

    2016-12-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.

  14. Propagating Linear Waves in Convectively Unstable Stellar Models: a Perturbative Approach

    CERN Document Server

    Papini, Emanuele; Birch, Aaron C

    2013-01-01

    Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization, however, affects the result. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field, while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within $1~\\mu$Hz for low-degree modes with frequencies near $3~\\mu$Hz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.

  15. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    CERN Document Server

    North, Thomas S H; Gilliland, Ronald L; Huber, Daniel; Campante, Tiago L; Handberg, Rasmus; Lund, Mikkel N; Veras, Dimitri; Kuszlewicz, James S; Farr, Will M

    2016-01-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation, and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESS missions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune sized planets should be detectable around low luminosity red giant branch stars.

  16. A simple model to describe intrinsic stellar noise for exoplanet detection around red giants

    Science.gov (United States)

    North, Thomas S. H.; Chaplin, William J.; Gilliland, Ronald L.; Huber, Daniel; Campante, Tiago L.; Handberg, Rasmus; Lund, Mikkel N.; Veras, Dimitri; Kuszlewicz, James S.; Farr, Will M.

    2017-02-01

    In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission, there remain only a small number of transit detections around evolved stars. Here, we present a reformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation and the stellar oscillations described by asteroseismology play a key role. The new noise model is a significant improvement on the current Kepler results for evolved stars. Our noise model may be used to help understand planet detection thresholds for the ongoing K2 and upcoming TESSmissions, and serve as a predictor of stellar noise for these missions. As an application of our noise model, we explore the minimum detectable planet radii for red giant stars, and find that Neptune-sized planets should be detectable around low-luminosity red giant branch stars.

  17. MILES extended: Stellar population synthesis models from the optical to the infrared

    Science.gov (United States)

    Röck, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcón-Barroso, J.

    2016-05-01

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 Å and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [ Fe / H ] = - 0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models are found to reproduce the colours well that were observed for various samples of early-type galaxies. Our models will enable a detailed analysis of the stellar populations of observed galaxies.

  18. Systematic problems with using dark matter simulations to model stellar halos

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Bell, Eric F.; Valluri, Monica [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Stinson, Greg S. [Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, D-69117 Heidelberg (Germany); Debattista, Victor P. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Couchman, H. M. P.; Wadsley, James, E-mail: jbailin@ua.edu [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)

    2014-03-10

    The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.

  19. General spherical anisotropic Jeans models of stellar kinematics: including proper motions and radial velocities

    CERN Document Server

    Cappellari, Michele

    2015-01-01

    Cappellari (2008) presented a flexible and efficient method to model the stellar kinematics of anisotropic axisymmetric and spherical stellar systems. The spherical formalism could be used to model the line-of-sight velocity second moments allowing for essentially arbitrary radial variation in the anisotropy and general luminous and total density profiles. Here we generalize the spherical formalism by providing the expressions for all three components of the projected second moments, including the two proper motion components. A reference implementation is now included in the public JAM package available at http://purl.org/cappellari/software

  20. Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    CERN Document Server

    Münch, A; Lada, C J; Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.

    1999-01-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.

  1. Modelling stellar jets with magnetospheres using as initial states analytical MHD solutions

    CERN Document Server

    Todorov, P; Cayatte, V; Sauty, C; Lima, J J G; Tsinganos, K

    2016-01-01

    In this paper we focus on the construction of stellar outflow models emerging from a polar coronal hole-type region surrounded by a magnetosphere in the equatorial regions during phases of quiescent accretion. The models are based on initial analytical solutions. We adopt a meridionally self-similar solution of the time-independent and axisymmetric MHD equations which describes effectively a jet originating from the corona of a star. We modify appropriately this solution in order to incorporate a physically consistent stellar magnetosphere. We find that the closed fieldline region may exhibit different behaviour depending on the associated boundary conditions and the distribution of the heat flux. However, the stellar jet in all final equilibrium states is very similar to the analytical one prescribed in the initial conditions. When the initial net heat flux is maintained, the magnetosphere takes the form of a dynamical helmet streamer with a quasi steady state slow magnetospheric wind. With no heat flux, a s...

  2. NH3 (10-00) in the pre-stellar core L1544

    DEFF Research Database (Denmark)

    Caselli, P.; Bizzocchi, L.; Keto, E.

    2017-01-01

    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores....... The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10-00) line at 572...... GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas...

  3. Radiative Hydrodynamic Models of Optical and Ultraviolet Emission from M Dwarf Flares

    CERN Document Server

    Allred, J C; Carlsson, M; Hawley, S L; Abbett, William P.; Allred, Joel C.; Carlsson, Mats; Hawley, Suzanne L.

    2006-01-01

    We report on radiative hydrodynamic simulations of M dwarf stellar flares and compare the model predictions to observations of several flares. The flares were simulated by calculating the hydrodynamic response of a model M dwarf atmosphere to a beam of non-thermal electrons. Radiative backwarming through numerous soft X-ray, extreme ultraviolet, and ultraviolet transitions are also included. The equations of radiative transfer and statistical equilibrium are treated in non-LTE for many transitions of hydrogen, helium and the Ca II ion allowing the calculation of detailed line profiles and continuum radiation. Two simulations were carried out, with electron beam fluxes corresponding to moderate and strong beam heating. In both cases we find the dynamics can be naturally divided into two phases: an initial gentle phase in which hydrogen and helium radiate away much of the beam energy, and an explosive phase characterized by large hydrodynamic waves. During the initial phase, lower chromospheric material is evap...

  4. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    Science.gov (United States)

    Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.

    2016-09-01

    Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation

  5. The stellar evolution of Luminous Red Galaxies, and its dependence on colour, redshift, luminosity and modelling

    CERN Document Server

    Tojeiro, Rita; Heavens, Alan F; Jimenez, Raul

    2010-01-01

    We present a series of colour evolution models for Luminous Red Galaxies (LRGs) in the 7th spectroscopic data release of the Sloan Digital Sky Survey (SDSS), computed using the full-spectrum fitting code VESPA on high signal-to-noise stacked spectra. The colour-evolution models are computed as a function of colour, luminosity and redshift, and we do not a-priori assume that LRGs constitute a uniform population of galaxies in terms of stellar evolution. By computing star-formation histories from the fossil record, the measured stellar evolution of the galaxies is decoupled from the survey's selection function, which also evolves with redshift. We present these evolutionary models computed using three different sets of Stellar Population Synthesis (SPS) codes. We show that the traditional fiducial model of purely passive stellar evolution of LRGs is broadly correct, but it is not sufficient to explain the full spectral signature. We also find that higher-order corrections to this model are dependent on the SPS ...

  6. Constraining stellar population models - I. Age, metallicity, and abundance pattern compilation for Galactic globular clusters

    CERN Document Server

    Roediger, Joel C; Graves, Genevieve; Schiavon, Ricardo

    2013-01-01

    We present an extenstive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. (2005). Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavours, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the alpha-elements. When paired with the ages...

  7. Modelling realistic horizontal branch morphologies and their impact on spectroscopic ages of unresolved stellar systems

    CERN Document Server

    Percival, Susan M

    2010-01-01

    The presence of an extended blue horizontal branch (HB) in a stellar population is known to affect the age inferred from spectral fitting to stellar population synthesis models. However, most population synthesis models still rely on theoretical isochrones which do not include realistic modelling of extended HBs. In this work, we create detailed models for a range of old simple stellar populations (SSPs), to create a variety of realistic HB morphologies, from extended red clumps, to extreme blue HBs. We achieve this by utilising stellar tracks from the BaSTI database and implementing a different mass loss prescription for each SSP created, resulting in different HB morphologies. We find that, for each metallicity, there is some HB morphology which maximises Hbeta, making an underlying 14Gyr population look ~5-6Gyr old for the low and intermediate metallicity cases, and as young as 2Gyr for a solar metallicity SSP. We explore whether there are any spectral indices capable of breaking the degeneracy between an ...

  8. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Science.gov (United States)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  9. Constraints on galaxy formation models from the galaxy stellar mass function and its evolution

    CERN Document Server

    Rodrigues, Luiz Felippe S; Bower, Richard

    2016-01-01

    We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian Emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within the model uncertainties. We find that the GSMF strongly constrains parameters related to the quiescent star formation in discs, stellar and AGN feedback and the threshold for disc instabilities, but more weakly restricts other parameters. Constraining the model using the local data alone does not usually select models that match the evolution of the mass function well. Nevertheless, we show that a small subset of models provides an acceptable match to GSMF data out to redshift 1.5, without introducing an explicit redshift dependence of feedback parameters. We explore the physical significanc...

  10. Modelling realistic horizontal branch morphologies and their impact on spectroscopic ages of unresolved stellar systems

    Science.gov (United States)

    Percival, Susan M.; Salaris, Maurizio

    2011-04-01

    The presence of an extended blue horizontal branch (HB) in a stellar population is known to affect the age inferred from spectral fitting to stellar population synthesis models. This is due to the hot blue component which increases the strength of the Balmer lines and can make an old population look spuriously young. However, most population synthesis models still rely on theoretical isochrones, which do not include realistic modelling of extended HBs. In this work, we create detailed models for a range of old simple stellar populations (SSPs), with metallicities ranging from [Fe/H]=-1.3 to solar, to create a variety of realistic HB morphologies, from extended red clumps, to extreme blue HBs. We achieve this by utilizing stellar tracks from the BaSTI data base and implementing a different mass-loss prescription for each SSP created. This includes setting an average mass and a Gaussian spread in masses of individual stars coming on to the zero-age HB for each model, and hence resulting in different HB morphologies. We find that, for each metallicity, there is some HB morphology which maximizes Hβ, making an underlying 14-Gyr population look ˜5-6 Gyr old for the low- and intermediate-metallicity cases, and as young as 2 Gyr in the case of the solar metallicity SSP. We explore whether there are any spectral indices capable of breaking the degeneracy between an old SSP with extended blue HB and a truly young or intermediate-age SSP, and find that the Ca II index of Rose and the strength of the Mg II doublet at 2800 Å are promising candidates, in combination with Hβ and other metallicity indicators, such as Mgb and Fe5406. We also run Monte Carlo simulations to investigate the level of statistical fluctuations in the spectra of typical stellar clusters. We find that fluctuations in spectral indices are significant even for average to large globular clusters and that various spectral indices are affected in different ways, which has implications for full

  11. Fundamental stellar parameters

    CERN Document Server

    Wittkowski, M

    2004-01-01

    I present a discussion of fundamental stellar parameters and their observational determination in the context of interferometric measurements with current and future optical/infrared interferometric facilities. Stellar parameters and the importance of their determination for stellar physics are discussed. One of the primary uses of interferometry in the field of stellar physics is the measurement of the intensity profile across the stellar disk, both as a function of position angle and of wavelength. High-precision fundamental stellar parameters are also derived by characterizations of binary and multiple system using interferometric observations. This topic is discussed in detail elsewhere in these proceedings. Comparison of observed spectrally dispersed center-to-limb intensity variations with models of stellar atmospheres and stellar evolution may result in an improved understanding of key phenomena in stellar astrophysics such as the precise evolutionary effects on the main sequence, the evolution of meta...

  12. Testing spectral models for stellar populations with star clusters: I. Methodology

    CERN Document Server

    Fernandes, Roberto Cid

    2009-01-01

    High resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well studied star clusters from the work of Leonardi & Rose (2003) spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic clouds. This paper concentrates on methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the MILES library. Best-fit and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal un...

  13. Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models

    CERN Document Server

    Fields, C E; Petermann, I; Iliadis, C; Timmes, F X

    2016-01-01

    We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 M$_{\\odot}$ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95\\% confidence interval to be $\\Delta M_{{\\rm 1TP}}$ $\\approx$ 0.019 M$_{\\odot}$ for the core mass at the first thermal pulse, $\\Delta$$t_{\\rm{1TP}}$ $\\approx$ 12.50 Myr for the age, $\\Delta \\log(T_{{\\rm c}}/{\\rm K}) \\approx$ 0.013 for the central temperat...

  14. MILES extended: Stellar population synthesis models from the optical to the infrared

    CERN Document Server

    Röck, B; Ricciardelli, E; Peletier, R F; Knapen, J H; Falcon-Barroso, J

    2016-01-01

    We present the first single-burst stellar population models which covers the optical and the infrared wavelength range between 3500 and 50000 Angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis of two different sets of isochrones. They are available to the scientific community on the MILES web page. We checked the internal consistency of our models and compared their colour predictions to those of other models that are available in the literature. Optical and near infrared colours that are measured from our models...

  15. Distance determination for RAVE stars using stellar models II: Most likely values assuming a standard stellar evolution scenario

    CERN Document Server

    Zwitter, T; Breddels, M A; Smith, M C; Helmi, A; Munari, U; Bienaym\\'{e), O; Bland-Hawthorn, J; Boeche, C; Brown, A G A; Campbell, R; Freeman, K C; Fulbright, J; Gibson, B; Gilmore, G; Grebel, E K; Navarro, J F; Parker, Q A; Seabroke, G M; Siebert, A; Siviero, A; Steinmetz, M; Watson, F G; Williams, M; Wyse, R F G

    2010-01-01

    The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 235,064 high quality spectra which show no peculiarities and belong to 210,872 different stars. The numbers will grow as the RAVE survey progresses. The public version of the catalog will be made available through the CDS services along with the ongoing RAVE public data releases. The distances are determined with a method based on the work by Breddels et al.~(2010). Here we assume that the star undergoes a standard stellar evolution and that its spectrum shows no peculiarities. The refinements include: the use of either of the three isochrone sets, a better account of the stellar ages and masses, use of more realistic errors of stellar parameter values, and application to a larger dataset. The derived distances of both dwarfs and giants match within ~21% to the astr...

  16. An atmospheric general circulation model for Pluto with predictions for New Horizons temperature profiles

    Science.gov (United States)

    Zalucha, Angela M.

    2016-06-01

    Results are presented from a 3D Pluto general circulation model (GCM) that includes conductive heating and cooling, non-local thermodynamic equilibrium (non-LTE) heating by methane at 2.3 and 3.3 μm, non-LTE cooling by cooling by methane at 7.6 μm, and LTE CO rotational line cooling. The GCM also includes a treatment of the subsurface temperature and surface-atmosphere mass exchange. An initially 1 m thick layer of surface nitrogen frost was assumed such that it was large enough to act as a large heat sink (compared with the solar heating term) but small enough that the water ice subsurface properties were also significant. Structure was found in all three directions of the 3D wind field (with a maximum magnitude of the order of 10 m s-1 in the horizontal directions and 10-5 microbar s-1 in the vertical direction). Prograde jets were found at several altitudes. The direction of flow over the poles was found to very with altitude. Broad regions of up-welling and down-welling were also found. Predictions of vertical temperature profiles are provided for the Alice and Radio science Experiment instruments on New Horizons, while predictions of light curves are provided for ground-based stellar occultation observations. With this model methane concentrations of 0.2 per cent and 1.0 per cent and 8 and 24 microbar surface pressures are distinguishable. For ground-based stellar occultations, a detectable difference exists between light curves with the different methane concentrations, but not for different initial global mean surface pressures.

  17. Red Giant Oscillations: Stellar Models and Mode Frequency Calculations

    DEFF Research Database (Denmark)

    Jendreieck, A.; Weiss, A.; Aguirre, Victor Silva

    2012-01-01

    We present preliminary results on modelling KIC 7693833, the so far most metal-poor red-giant star observed by {\\it Kepler}. From time series spanning several months, global oscillation parameters and individual frequencies were obtained and compared to theoretical calculations. Evolution models ......_\\odot$ in radius and of about 2.5 Gyr in age....

  18. Stellar and HI Mass Functions Predicted by a Simple Preheating Galaxy Formation Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star formation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.

  19. SMART - a computer program for modelling stellar atmospheres

    CERN Document Server

    Aret, Anna; Poolamäe, Raivo; Sapar, Lili

    2013-01-01

    Program SMART (Spectra and Model Atmospheres by Radiative Transfer) has been composed for modelling atmospheres and spectra of hot stars (O, B and A spectral classes) and studying different physical processes in them (Sapar & Poolam\\"ae 2003, Sapar et al. 2007). Line-blanketed models are computed assuming plane-parallel, static and horizontally homogeneous atmosphere in radiative, hydrostatic and local thermodynamic equilibrium. Main advantages of SMART are its shortness, simplicity, user friendliness and flexibility for study of different physical processes. SMART successfully runs on PC both under Windows and Linux.

  20. Discriminating among stellar population synthesis models of the TP-AGB phase in early quiescent galaxies

    Science.gov (United States)

    MacDougall, Mason; Newman, Andrew; Belli, Sirio; Ellis, Richard S.

    2017-01-01

    Galactic evolution at high redshifts is largely understood through stellar population synthesis (SPS) modeling of spectra and photometry integrated over all starlight of a galaxy. However, complex and poorly understood stellar phases like the unstable thermally-pulsating asymptotic giant branch (TP-AGB) phase make SPS modeling a difficult task. Recent models fail to agree on the TP-AGB contribution to the infrared luminosity, leading to significant discrepancy among the properties derived from modern SPS models when applied to early galaxies. Here we provide a thorough assessment of each of the most widely used SPS models by comparing their results and assessing their accuracy in modeling our unique dataset. We combine high-resolution spectroscopic observations from Keck/MOSFIRE with photometric data for 21 early quiescent galaxies with redshifts of z ~ 2. These galaxies are around the age of peak TP-AGB activity, between ~0.3 and 2 Gyr, and therefore provide an ideal test of the models. We find that models with a “light” TP-AGB contribution provide much better descriptions of our galaxies at ages of ~1 Gyr or less. This is true at high statistical significance and holds for models with or without dust reddening. However, contrary to previous studies, the model-dependent photometrically estimated ages are similar among the models, but they show only moderate agreement with the more model-independent spectroscopic ages derived from stellar absorption lines. The largest discrepancies are found for the Charlot & Bruzual (2007) models which show an artificial clustering of ages around 1 Gyr. The TP-AGB “light” models require more reddening, which can be independently tested by examining dust emission in the mid-infrared. The modeled fluxes are also mostly consistent with mid-infrared observations, with the exception of one model. Resolving these differences among the models will substantially strengthen our estimates of the properties of early quiescent

  1. Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries

    CERN Document Server

    Stassun, Keivan G; Torres, Guillermo

    2014-01-01

    We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We also provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies...

  2. The construction of non-spherical models of quasi-relaxed stellar systems

    CERN Document Server

    Bertin, G

    2008-01-01

    Spherical models of collisionless but quasi-relaxed stellar systems have long been studied as a natural framework for the description of globular clusters. Here we consider the construction of self-consistent models under the same physical conditions, but including explicitly the ingredients that lead to departures from spherical symmetry. In particular, we focus on the effects of the tidal field associated with the hosting galaxy. We then take a stellar system on a circular orbit inside a galaxy represented as a "frozen" external field. The equilibrium distribution function is obtained from the one describing the spherical case by replacing the energy integral with the relevant Jacobi integral in the presence of the external tidal field. Then the construction of the model requires the investigation of a singular perturbation problem for an elliptic partial differential equation with a free boundary, for which we provide a method of solution to any desired order, with explicit solutions to two orders. We outl...

  3. An Iterative Method for the Construction of Equilibrium N-Body Models for Stellar Disks

    CERN Document Server

    Rodionov, S A

    2006-01-01

    One widely used technique for the construction of equilibrium models of stellar disks is based on the Jeans equations and the moments of velocity distribution functions derived using these equations. Stellar disks constructed using this technique are shown to be "not entirely" in equilibrium. Our attempt to abandon the epicyclic approximation and the approximation of infinite isothermal layers, which are commonly adopted in this technique, failed to improve the situation substantially. We conclude that the main drawback of techniques based on the Jeans equations is that the system of equations employed is not closed, and therefore requires adopting an essentially ad hoc additional closure condition. A new iterative approach to constructing equilibrium N-body models with a given density distribution is proposed. The main idea behind this approach is that a model is first constructed using some approximation method, and is then allowed to adjust to an equilibrium state with the specified density and the require...

  4. HRM: HII Region Models

    Science.gov (United States)

    Wenger, Trey V.; Kepley, Amanda K.; Balser, Dana S.

    2017-07-01

    HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

  5. Detecting the growth of structures in Pure Stellar Disk Models

    Science.gov (United States)

    Valencia-Enríquez, D.; Puerari, I.; Chaves-Velasquez, L.

    2017-10-01

    We performed a series of 3D N-body simulations where the initial conditions were chosen to get two sets of models; unbarred and barred ones. In this work, we analyze the growth of spirals and bar structures using 1D, and 2D Fourier transform (FT) methods. Spectrograms and diagrams of the amplitude of the Fourier coefficients as a function of time, radius and pitch angle show that the general morphology of our modeled galaxies is due to the superposition of structures which have different values of pitch angle and number of arms. Also, in barred models a geometric classification of orbits from the bar reference frame was done, showing that the barred potential and the Lagrangian points L4 and L5 catch approximately one-third of the total disk mass.

  6. Modeling the Near-Infrared Luminosity Function of Young Stellar Clusters

    Science.gov (United States)

    Muench, A. A.; Lada, E. A.; Lada, C. J.

    1999-12-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young (0-10 Myr) stellar populations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations: the underlying IMF, cluster star forming history, and theoretical pre-main sequence mass-to-luminosity relations. Our modeling techniques also allow us to explore the effects of unresolved binaries, infrared excess emission from circumstellar disks, and interstellar extinction on the cluster luminosity function. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5>Msun>0.02) and has a peak near the hydrogen burning limit. Below the hydrogen burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. We also test the hypothesis of a space varying IMF by performing model fits to the K band luminosity functions of several other young clusters.

  7. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models

    Science.gov (United States)

    Nieva, M.-F.; Przybilla, N.

    2012-03-01

    Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims: A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods: High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results: Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro- and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ1 Ori D, are

  8. 3D-modelling of the stellar auroral radio emission

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed on some ultra cool dwarfs, with spectral type earlier than M7. Such kind of coherent events resemble the auroral radio emission from the magnetized planets of the solar system. In this paper, we present a tridimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of the terrestrial auroral kilometric radiation. This model proves to be a powerful tool to understand the auroral radio-emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of the coherent pulses, and to learn more about the detectability of such...

  9. 3D modelling of stellar auroral radio emission

    Science.gov (United States)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  10. NH3 (10-00) in the pre-stellar core L1544

    Science.gov (United States)

    Caselli, P.; Bizzocchi, L.; Keto, E.; Sipilä, O.; Tafalla, M.; Pagani, L.; Kristensen, L. E.; van der Tak, F. F. S.; Walmsley, C. M.; Codella, C.; Nisini, B.; Aikawa, Y.; Faure, A.; van Dishoeck, E. F.

    2017-07-01

    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH3(10 - 00) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH3. The hyperfine structure of ortho-NH3(10 - 00) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH3(1, 1). The chemical model overestimates the NH3 abundance at radii between ≃4000 and 15 000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH3 observations. Based on observations carried out with Herschel, an ESA space observatory with science instruments provided by a European-led Principal Investigator consortium and with important participation from NASA.

  11. Modeling X-ray emission from stellar coronae

    CERN Document Server

    Gregory, S G; Argiroffi, C; Donati, J -F

    2008-01-01

    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.

  12. The dependence of AGN activity on stellar and halo mass in Semi-Analytic Models

    CERN Document Server

    Fontanot, Fabio; De Lucia, Gabriella; Bosch, Frank C van den; Somerville, Rachel S; Kang, Xi

    2010-01-01

    AGN feedback is believed to play an important role in shaping a variety of observed galaxy properties, as well as the evolution of their stellar masses and star formation rates. In particular, in the current theoretical paradigm of galaxy formation, AGN feedback is believed to play a crucial role in regulating the levels of activity in galaxies, in relatively massive halos at low redshift. Only in recent years, however, detailed statistical information on the dependence of galaxy activity on stellar mass, parent halo mass and hierarchy has become available. In this paper, we compare the fractions of galaxies belonging to different activity classes (star-forming, AGN and radio active) with predictions from four different and independently developed semi-analytical models. We adopt empirical relations to convert physical properties into observables (H_alpha emission lines, OIII line strength and radio power). We demonstrate that all models used in this study reproduce the overall distributions of galaxies belon...

  13. Role of f(T) gravity on the evolution of collapsing stellar model

    Science.gov (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.; Hanif, Sonia

    2017-06-01

    The aim of this paper is to exhibit the instability epochs of self-gravitating objects coupled with anisotropic radiative matter content. We perform our analysis in the background of f(T) gravity which is the extended version of teleparallel gravity. We probe the instability regions by taking a peculiar model f(T) = T + αT2. We explore the basic equations in order to model stellar interior, including field, dynamical and junction equations. We then study linear perturbations of our system. We formulate the modified collapse equation by using Harrison-Wheeler equation of state. We develop the instability constraints at Newtonian and post-Newtonian regimes. The major outcome of our work reveals that the stiffness parameter plays a significant role in the stability of relativistic anisotropic stellar interior in f(T) gravity.

  14. Ray tracing and ECRH absorption modeling in the HSX stellarator

    Science.gov (United States)

    Weir, G. M.; Likin, K. M.; Marushchenko, N. B.; Turkin, Y.

    2015-09-01

    To increase flexibility in ECRH experiments on the helically symmetric experiment (HSX), a second gyrotron and transmission line have been installed. The second antenna includes a steerable mirror for off-axis heating, and the launched power may be modulated for use in heat pulse propagation experiments. The extraordinary wave at the second harmonic of the electron gyrofrequency or the ordinary wave at the fundamental resonance are used for plasma start-up and heating on HSX. The tracing visualized ray tracing code (Marushchenko et al 2007 Plasma Fusion Res. 2 S1129) is used to estimate single-pass absorption and to model multi-pass wave damping in the three-dimensional HSX geometry. The single-pass absorption of the ordinary wave at the fundamental resonance is calculated to be as high as 30%, while measurements of the total absorption indicate that 45% of the launched power is absorbed. A multi-pass ray tracing model correctly predicts the experimental absorption and indicates that the launched power is absorbed within the plasma core (r/a≤slant 0.2 ).

  15. Galaxy assembly, stellar feedback and metal enrichment: the view from the GAEA model

    OpenAIRE

    Hirschmann, Michaela; De Lucia, Gabriella; Fontanot, Fabio

    2015-01-01

    One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical' evolution of galaxy assembly: massive galaxies appear to be in place since $z\\sim 3$, while a significant increase of the number densities of low mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-ana...

  16. Local models of stellar convection III: The Strouhal number

    CERN Document Server

    Käpylä, P J; Ossendrijver, M; Tuominen, I

    2004-01-01

    (Abbreviated) We determine the Strouhal number (St), a nondimensional measure of the correlation time, from numerical models of convection. The Strouhal number arises in the mean-field theories of angular momentum transport and dynamos, where its value determines the validity of certain widely used approximations, such as the first order smoothing (FOSA). More specifically, the relevant transport coefficients can be calculated by means of a cumulative series expansion if St < 1 (e.g. Knobloch 1978). We use two independent methods to estimate St. Firstly, we apply the minimal tau-approximation (MTA) in the equation of the time derivative of the Reynolds stress. In this approach the time derivative is essentially replaced by a term containing a relaxation time which can be interpreted as the correlation time of the turbulence. In this approach, the turnover time is estimated simply from the energy carrying scale of the convection and a typical velocity. In the second approach, we determine the correlation an...

  17. Mass content of UGC 6446 and UGC 7524 through H i rotation curves: deriving the stellar discs from stellar population synthesis models

    Science.gov (United States)

    Repetto, P.; Martínez-García, Eric E.; Rosado, M.; Gabbasov, R.

    2017-06-01

    In this work, we study the mass distribution of two irregular galaxies, UGC 6446 and UGC 7524, by means of H i rotation curves derived from high-resolution H i velocity fields obtained through the Westerbork Synthesis Radio Telescope data archive. We constrain the stellar and gas content of both galaxies with stellar population synthesis models and by deriving the H i+He+metals rotation curves from the total H i surface density maps, respectively. The discrepancy between the circular velocity maxima of the stellar plus the H i+He+metals rotation curves and the observed H i rotation curves of both galaxies requires the inclusion of a substantial amount of dark matter. We explore the Navarro Frenk and White, Burkert, Di Cintio, Einasto and Stadel dark matter halo models. We obtain acceptable fits to the observed H i rotation curves of UGC 6446 and UGC 7524 with the cored Burkert, Einasto and Stadel dark matter haloes. In particular, Einasto and Stadel models prove to be an appropriate alternative to the Burkert dark matter halo. This result should increase the empirical basis that justifies the usage of dark matter exponential models to adjust the observed rotation curves of real galaxies.

  18. Constraints on galaxy formation models from the galaxy stellar mass function and its evolution

    Science.gov (United States)

    Rodrigues, Luiz Felippe S.; Vernon, Ian; Bower, Richard G.

    2017-04-01

    We explore the parameter space of the semi-analytic galaxy formation model GALFORM, studying the constraints imposed by measurements of the galaxy stellar mass function (GSMF) and its evolution. We use the Bayesian emulator method to quickly eliminate vast implausible volumes of the parameter space and zoom in on the most interesting regions, allowing us to identify a set of models that match the observational data within model uncertainties. We find that the GSMF strongly constrains parameters related to quiescent star formation in discs, stellar and active galactic nucleus feedback and threshold for disc instabilities, but weakly restricts other parameters. Constraining the model using local data alone does not usually select models that match the evolution of the GSMF well. Nevertheless, we show that a small subset of models provides acceptable match to GSMF data out to redshift 1.5. We explore the physical significance of the parameters of these models, in particular exploring whether the model provides a better description if the mass loading of the galactic winds generated by starbursts (β0,burst) and quiescent discs (β0,disc) is different. Performing a principal component analysis of the plausible volume of the parameter space, we write a set of relations between parameters obeyed by plausible models with respect to GSMF evolution. We find that while β0,disc is strongly constrained by GSMF evolution data, constraints on β0,burst are weak. Although it is possible to find plausible models for which β0,burst = β0,disc, most plausible models have β0,burst > β0,disc, implying - for these - larger stellar feedback efficiency at higher redshifts.

  19. A Model for (Quasi-)Periodic Multi-wavelength Photometric Variability in Young Stellar Objects

    CERN Document Server

    Kesseli, Aurora Y; Wood, Kenneth; Whitney, Barbara A; Hillenbrand, L A; Gregory, Scott G; Stauffer, J R; Morales-Calderon, M; Rebull, L; Alencar, S H P

    2016-01-01

    We present radiation transfer models of rotating young stellar objects (YSOs) with hotspots in their atmospheres, inner disk warps and other 3-D effects in the nearby circumstellar environment. Our models are based on the geometry expected from the magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hotspots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project (Morales-Calderon et al. 2014, Cody et al. 2014) to determine if these processes can explain the variability observed at optical and mid-infrared wavelengths in young stars. We focus on those variables exhibiting "dipper" behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hotspot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR...

  20. The Effects of Stellar Rotation. II. A Comprehensive Set of Starburst99 Models

    CERN Document Server

    Leitherer, Claus; Meynet, Georges; Schaerer, Daniel; Agienko, Katerina B; Levesque, Emily M

    2014-01-01

    We present a new set of synthesis models for stellar populations obtained with Starburst99, which are based on new stellar evolutionary tracks with rotation. We discuss models with zero rotation velocity and with velocities of 40% of the break-up velocity on the zero-age main-sequence. These values are expected to bracket realistic rotation velocity distributions in stellar populations. The new rotating models for massive stars are more luminous and hotter due to a larger convective core and enhanced surface abundances. This results in pronounced changes in the integrated spectral energy distribution of a population containing massive stars. The changes are most significant at the shortest wavelengths where an increase of the ionizing luminosity by up to a factor of 5 is predicted. We also show that high equivalent widths of recombination lines may not necessarily indicate a very young age but can be achieved at ages as late as 10 Myr. Comparison of these two boundary cases (0 and 40% of the break-up velocity...

  1. Testing stellar evolution models with the retired A star HD 185351

    Science.gov (United States)

    Hjørringgaard, J. G.; Silva Aguirre, V.; White, T. R.; Huber, D.; Pope, B. J. S.; Casagrande, L.; Justesen, A. B.; Christensen-Dalsgaard, J.

    2017-01-01

    The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. using interferometry, spectroscopy, and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5 M⊙. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from ˜1.6 to 1.9 M⊙ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here, we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as the additional constraint of the observed g-mode period spacing is considered. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16 dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found to be in complete agreement with all observational constraints for a stellar mass of M ≃ 1.60 M⊙.

  2. Modelling Accretion Disk and Stellar Wind Interactions: the Case of Sgr A*

    CERN Document Server

    Christie, I M; Mimica, P; Giannios, D

    2016-01-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disk, the ram and thermal pressures of the disk terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in $\\sim10^{8}$ cm s$^{-1}$ range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericenter passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly ...

  3. Testing stellar evolution models with the retired A star HD 185351

    Science.gov (United States)

    Hjørringgaard, J. G.; Silva Aguirre, V.; White, T. R.; Huber, D.; Pope, B. J. S.; Casagrande, L.; Justesen, A. B.; Christensen-Dalsgaard, J.

    2016-10-01

    The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. (2014) using interferometry, spectroscopy and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of 1.5M⊙. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from ˜1.6 - 1.9M⊙ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as considering the additional constraint of the observed g-mode period spacing. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the overshooting efficiency using low-luminosity red giant stars. A theoretical model with metallicity [Fe/H] = 0.16dex, mixing-length parameter αMLT = 2.00, and convective overshooting efficiency parameter f = 0.030 is found to be in complete agreement with all observational constraints for a stellar mass of M ≃ 1.60M⊙.

  4. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    CERN Document Server

    Andrews, Brett H; Schönrich, Ralph; Johnson, Jennifer A

    2016-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the IMF, the SNIa delay time distribution, stellar yields, and mixing of stellar populations. Using flexCE, a new, flexible one-zone chemical evolution code, we investigate the effects of individual parameters and the trade-offs between them. Two of the most important parameters are the SFE and outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] that do not match the observed bimodality in this plane. A mix of one-zone models with variations in their inflow timescales and outflow mass-loading parameters, as motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the high- and low-alpha sequences b...

  5. Properties of Carbon-Oxygen White Dwarfs From Monte Carlo Stellar Models

    Science.gov (United States)

    Fields, C. E.; Farmer, R.; Petermann, I.; Iliadis, C.; Timmes, F. X.

    2016-05-01

    We investigate properties of carbon-oxygen white dwarfs with respect to the composite uncertainties in the reaction rates using the stellar evolution toolkit, Modules for Experiments in Stellar Astrophysics (MESA) and the probability density functions in the reaction rate library STARLIB. These are the first Monte Carlo stellar evolution studies that use complete stellar models. Focusing on 3 {M}⊙ models evolved from the pre main-sequence to the first thermal pulse, we survey the remnant core mass, composition, and structure properties as a function of 26 STARLIB reaction rates covering hydrogen and helium burning using a Principal Component Analysis and Spearman Rank-Order Correlation. Relative to the arithmetic mean value, we find the width of the 95% confidence interval to be {{Δ }}{M}{{1TP}} ≈ 0.019 {M}⊙ for the core mass at the first thermal pulse, Δ{t}{{1TP}} ≈ 12.50 Myr for the age, {{Δ }}{log}({T}{{c}}/{{K}}) ≈ 0.013 for the central temperature, {{Δ }}{log}({ρ }{{c}}/{{g}} {{cm}}-3) ≈ 0.060 for the central density, {{Δ }}{Y}{{e,c}} ≈ 2.6 × 10-5 for the central electron fraction, {{Δ }}{X}{{c}}{(}22{{Ne}}) ≈ 5.8 × 10-4, {{Δ }}{X}{{c}}{(}12{{C}}) ≈ 0.392, and {{Δ }}{X}{{c}}{(}16{{O}}) ≈ 0.392. Uncertainties in the experimental 12C(α ,γ {)}16{{O}}, triple-α, and 14N({\\text{}}p,γ {)}15{{O}} reaction rates dominate these variations. We also consider a grid of 1-6 {M}⊙ models evolved from the pre main-sequence to the final white dwarf to probe the sensitivity of the initial-final mass relation to experimental uncertainties in the hydrogen and helium reaction rates.

  6. Modelling accretion disc and stellar wind interactions: the case of Sgr A*

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2016-07-01

    Sgr A* is an ideal target to study low-luminosity accreting systems. It has been recently proposed that properties of the accretion flow around Sgr A* can be probed through its interactions with the stellar wind of nearby massive stars belonging to the S-cluster. When a star intercepts the accretion disc, the ram and thermal pressures of the disc terminate the stellar wind leading to the formation of a bow shock structure. Here, a semi-analytical model is constructed which describes the geometry of the termination shock formed in the wind. With the employment of numerical hydrodynamic simulations, this model is both verified and extended to a region prone to Kelvin-Helmholtz instabilities. Because the characteristic wind and stellar velocities are in ˜108 cm s-1 range, the shocked wind may produce detectable X-rays via thermal bremsstrahlung emission. The application of this model to the pericentre passage of S2, the brightest member of the S-cluster, shows that the shocked wind produces roughly a month long X-ray flare with a peak luminosity of L ≈ 4 × 1033 erg s-1 for a stellar mass-loss rate, disc number density, and thermal pressure strength of dot{M}_w= 10^{-7} M_{⊙} yr^{-1}, nd = 105 cm-3, and α = 0.1, respectively. This peak luminosity is comparable to the quiescent X-ray emission detected from Sgr A* and is within the detection capabilities of current X-ray observatories. Its detection could constrain the density and thickness of the disc at a distance of ˜3000 gravitational radii from the supermassive black hole.

  7. Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    Science.gov (United States)

    Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.

    2000-04-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared (NIR) luminosity functions for constraining the initial mass function (IMF) of young stellar populations. We test the sensitivity of the NIR K-band luminosity function (KLF) of a young stellar cluster to variations in the underlying IMF, star-forming history, and pre-main-sequence mass-to-luminosity relations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star-forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. Variations in a cluster's star-forming history are also found to produce significant changes in the KLF. In particular, we find that the KLFs of young clusters evolve in a systematic manner with increasing mean age. Our experiments indicate that variations in the PMS mass-to-luminosity relation, resulting from differences in adopted PMS tracks, produce only small effects on the form of the model luminosity functions and that these effects are mostly likely not detectable observationally. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed KLF of the nearby Trapezium cluster. With knowledge of the star-forming history of this cluster obtained from optical spectroscopic studies, we derive the simplest underlying IMF whose model luminosity function matches the observations. Our derived mass function for the Trapezium spans 2 orders of magnitude in stellar mass (5>Msolar>0.02) and has a peak near the hydrogen-burning limit. Below the hydrogen-burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. Comparison

  8. Revisiting the fundamental properties of Cepheid Polaris using detailed stellar evolution models

    CERN Document Server

    Neilson, Hilding R

    2014-01-01

    Polaris the Cepheid has been observed for centuries, presenting surprises and changing our view of Cepheids and stellar astrophysics, in general. Specifically, understanding Polaris helps anchor the Cepheid Leavitt law, but the distance must be measured precisely. The recent debate regarding the distance to Polaris has raised questions about its role in calibrating the Leavitt law and even its evolutionary status. In this work, I present new stellar evolution models of Cepheids to compare with previously measured CNO abundances, period change and angular diameter. Based on the comparison, I show that Polaris cannot be evolving along the first crossing of the Cepheid instability strip and cannot have evolved from a rapidly-rotating main sequence star. As such, Polaris must also be at least 118 pc away and pulsates in the first overtone, disagreeing with the recent results of Turner et al. (2013).

  9. The evolution of C and O abundances in stellar populations

    DEFF Research Database (Denmark)

    Nissen, Poul E.; Schuster, William J.

    2014-01-01

    Carbon and oxygen abundances in F and G main-sequence stars ranging in metallicity from [Fe/H] = -1.6 to +0.5 are determined from a non-LTE analysis of C i and O i atomic lines in high-resolution spectra. Both C and O are good tracers of stellar populations; distinct trends of [C/Fe] and [O....../Fe] as a function of [Fe/H] are found for high- and low-alpha halo stars and for thick- and thin-disk stars. These trends and that of [C/O] provide new information on the nucleosynthesis sites of carbon and the time-scale for the chemical enrichment of the various Galactic components....

  10. A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones

    CERN Document Server

    Pietrinferni, A; Salaris, M; Castelli, F

    2004-01-01

    We present a large and updated stellar evolution database for low-, intermediate- and high-mass stars in a wide metallicity range, suitable for studying Galactic and extragalactic simple and composite stellar populations using population synthesis techniques. The stellar mass range is between \\sim0.5Mo and 10Mo with a fine mass spacing. The metallicity [Fe/H] comprises 10 values ranging from -2.27 to 0.40, with a scaled solar metal distribution. The initial He mass fraction ranges from Y=0.245, for the more metal-poor composition, up to 0.303 for the more metal-rich one, with Delta Y/Delta Z\\sim 1.4. For each adopted chemical composition, the evolutionary models have been computed without and with overshooting from the Schwarzschild boundary of the convective cores during the central H-burning phase. The whole set of evolutionary models can be used to compute isochrones in a wide age range, from \\sim30 Myr to \\sim15Gyr. Both evolutionary tracks and isochrones are available in several observational planes, emp...

  11. Modelling stellar proton event-induced particle radiation dose on close-in exoplanets

    Science.gov (United States)

    Atri, Dimitra

    2017-02-01

    Kepler observations have uncovered the existence of a large number of close-in exoplanets and serendipitously of stellar superflares with emissions several orders of magnitude higher than those observed on the Sun. The interaction between the two and their implications on planetary habitability are of great interest to the community. Stellar proton events (SPEs) interact with planetary atmospheres, generate secondary particles and increase the radiation dose on the surface. This effect is amplified for close-in exoplanets and can be a serious threat to potential planetary life. Monte Carlo simulations are used to model the SPE-induced particle radiation dose on the surface of such exoplanets. The results show a wide range of surface radiation doses on planets in close-in configurations with varying atmospheric column depths, magnetic moments and orbital radii. It can be concluded that for close-in exoplanets with sizable atmospheres and magnetospheres, the radiation dose contributed by stellar superflares may not be high enough to sterilize a planet (for life as we know it) but can result in frequent extinction level events. In light of recent reports, the interaction of hard-spectrum SPEs with the atmosphere of Proxima Centauri b is modelled and their implications on its habitability are discussed.

  12. Dynamical Modelling of the Galactic Bulge and Bar: Pattern Speed, Stellar, and Dark Matter Mass Distributions

    CERN Document Server

    Portail, Matthieu; Wegg, Christopher; Ness, Melissa

    2016-01-01

    We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 \\pm 3.5 \\,\\rm{km\\,s^{-1}\\,kpc^{-1}}$, placing the bar corotation radius at $6.1 \\pm 0.5 \\, \\rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{\\rm{bar/bulge}} = 1.88 \\pm 0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$, larger than the mass of disk in the bar region, $M_{\\rm{inner\\ disk}} = 1.29\\pm0.12 \\times 10^{10} \\, \\rm{M}_{\\odot}$. The total dynamical...

  13. PREFACE: Stellar Atmospheres in the Gaia Era - Preface

    Science.gov (United States)

    Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter

    2011-12-01

    new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the

  14. The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses

    CERN Document Server

    Casey, Andrew R; Ness, Melissa; Rix, Hans-Walter; Ho, Anna Q Y; Gilmore, Gerry

    2016-01-01

    We have shown that data-driven models are effective for inferring physical attributes of stars (labels; Teff, logg, [M/H]) from spectra, even when the signal-to-noise ratio is low. Here we explore whether this is possible when the dimensionality of the label space is large (Teff, logg, and 15 abundances: C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) and the model is non-linear in its response to abundance and parameter changes. We adopt ideas from compressed sensing to limit overall model complexity while retaining model freedom. The model is trained with a set of 12,681 red-giant stars with high signal-to-noise spectroscopic observations and stellar parameters and abundances taken from the APOGEE Survey. We find that we can successfully train and use a model with 17 stellar labels. Validation shows that the model does a good job of inferring all 17 labels (typical abundance precision is 0.04 dex), even when we degrade the signal-to-noise by discarding ~50% of the observing time. The model dependencie...

  15. Evolutionary stellar population synthesis with MILES - II. Scaled-solar and \\alpha-enhanced models

    CERN Document Server

    Vazdekis, A; Cassisi, S; Ricciardelli, E; Falcón-Barroso, J; Sánchez-Blázquez, P; La Barbera, F; Beasley, M A; Pietrinferni, A

    2015-01-01

    We present models that predict spectra of old- and intermediate-aged stellar populations at 2.51\\AA\\ (FWHM) with varying [\\alpha/Fe] abundance. The models are based on the MILES library and on corrections from theoretical stellar spectra. The models employ recent [Mg/Fe] determinations for the MILES stars and BaSTI scaled-solar and \\alpha-enhanced isochrones. We compute models for a suite of IMF shapes and slopes, covering a wide age/metallicity range. Using BaSTI, we also compute "base models" matching The Galactic abundance pattern. We confirm that the \\alpha-enhanced models show a flux excess with respect to the scaled-solar models blue-ward $\\sim$4500\\AA, which increases with age and metallicity. We also confirm that both [MgFe] and [MgFe]' indices are [\\alpha/Fe]-insensitive. We show that the sensitivity of the higher order Balmer lines to [\\alpha/Fe] resides in their pseudo-continua, with narrower index definitions yielding lower sensitivity. We confirm that the \\alpha-enhanced models yield bluer (redde...

  16. Stellar laboratories: new Ge V and Ge VI oscillator strengths and their validation in the hot white dwarf RE 0503-289

    CERN Document Server

    Rauch, T; Biemont, E; Quinet, P; Kruk, J W

    2012-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We ca...

  17. Comprehensive modelling of the planetary nebula LMC-SMP 61 and its [WC]-type central star

    CERN Document Server

    Stasinska, G; Peña, M; Hamann, W R; Koesterke, L; Szczerba, R

    2003-01-01

    We present a comprehensive study of the Magellanic Cloud planetary nebula SMP 61 and of its nucleus, a Wolf-Rayet type star classified [WC 5-6]. We have performed a detailed spectral analysis of the central star, using the Potsdam code for expanding atmospheres in non-LTE. The fluxes from the model stellar atmosphere were used to compute photoionization models of the nebula. All the available observations, within their error bars, were used to constrain these models. We find that the ionizing fluxes predicted by the stellar model are basically consistent with the fluxes needed by the photoionization model to reproduce the nebular emission, within the error margins. However, there are indications that the stellar model overestimates the number and hardness of Lyman continuum photons. The photoionization models imply a clumped density structure of the nebular material. The observed CIII] 1909/CII 4267 line ratio implies the existence of carbon-rich clumps in the nebula. Such clumps are likely produced by stella...

  18. UV-extended E-MILES stellar population models: young components in massive early-type galaxies

    Science.gov (United States)

    Vazdekis, A.; Koleva, M.; Ricciardelli, E.; Röck, B.; Falcón-Barroso, J.

    2016-12-01

    We present UV-extended E-MILES stellar population synthesis models covering the spectral range λλ 1680-50 000 Å at moderately high resolution. We employ the NGSL space-based stellar library to compute spectra of single-age, single-metallicity stellar populations in the wavelength range from 1680 to 3540 Å. These models represent a significant improvement in resolution and age/metallicity coverage over previous studies based on earlier space-based libraries. These model spectra were joined with those we computed in the visible using MILES, and other empirical libraries for redder wavelengths. The models span the metallicity range -1.79≤ [M/H]≤ +0.26 and ages above 30 Myr, for a suite of initial mass function types with varying slopes. We focus on the behaviour of colours, spectra and line-strength indices in the UV range as a function of relevant stellar population parameters. Whereas some indices strengthen with increasing age and metallicity, as most metallicity indicators in the visible, other indices peak around 3 Gyr for metal-rich stellar populations, such as Mg at 2800 Å. Our models provide reasonably good fits to the integrated colours and most line strengths of the stellar clusters of the Milky Way and Large Magellanic Cloud. Our full spectrum fits in the UV range for a representative set of early-type galaxies (ETGs) of varying mass yield age and metallicity estimates in very good agreement with those obtained in the optical range. The comparison of UV colours and line strengths of massive ETGs with our models reveals the presence of young stellar components, with ages in the range 0.1-0.5 Gyr and mass fractions 0.1-0.5 per cent, on the top of an old stellar population.

  19. The Surface of Stellar Models - Now with more 3D simulations!

    Directory of Open Access Journals (Sweden)

    Trampedach Regner

    2015-01-01

    Full Text Available We have constructed a grid of 3D hydrodynamic simulations of deep convective and line-blanketed atmospheres. We have developed a new consistent method for computing and employing T(τ relations from these simulations, as surface boundary conditions for 1D stellar structure models. These 1D models have, in turn, had their mixing-length, α, calibrated against the averaged structure of each of the simulations. Both α and T(τ vary significantly with Teff and log g.

  20. Excitation of Solar-like Oscillations: From PMS to MS Stellar Models

    Indian Academy of Sciences (India)

    R. Samadi; M.-J. Goupil; E. Alecian; F. Baudin; D. Georgobiani; R. Trampedach; R. Stein; Å. Nordlund

    2005-06-01

    The amplitude of solar-like oscillations results from a balance between excitation and damping. As in the sun, the excitation is attributed to turbulent motions that stochastically excite the modes in the uppermost part of the convective zone. We present here a model for the excitation mechanism. Comparisons between modeled amplitudes and helio and stellar seismic constraints are presented and the discrepancies discussed. Finally the possibility and the interest of detecting such stochastically excited modes in pre-main sequence stars are also discussed.

  1. Accelerated complete-linearization method for calculating NLTE model stellar atmospheres

    Science.gov (United States)

    Hubeny, I.; Lanz, T.

    1992-01-01

    Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.

  2. UVBLUE: A New High-Resolution Theoretical Library of Ultraviolet Stellar Spectra

    Science.gov (United States)

    Rodríguez-Merino, L. H.; Chavez, M.; Bertone, E.; Buzzoni, A.

    2005-06-01

    We present an extended ultraviolet-blue (850-4700 Å) library of theoretical stellar spectral energy distributions computed at high resolution, λ/Δλ=50,000. The UVBLUE grid, as we named the library, is based on LTE calculations carried out with ATLAS9 and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800 entries that cover a large volume of the parameter space. It spans a range in Teff from 3000 to 50,000 K, the surface gravity ranges from logg=0.0 to 5.0 with Δlogg=0.5 dex, while seven chemical compositions are considered: [M/H]=-2.0,-1.5,-1.0,-0.5,+0.0,+0.3, and +0.5 dex. For its coverage across the Hertzsprung-Russell diagram, this library is the most comprehensive one ever computed at high resolution in the short-wavelength spectral range, and useful application can be foreseen for both the study of single stars and in population synthesis models of galaxies and other stellar systems. We briefly discuss some relevant issues for a safe application of the theoretical output to ultraviolet observations, and a comparison of our LTE models with the non-LTE (NLTE) ones from the TLUSTY code is also carried out. NLTE spectra are found, on average, to be slightly ``redder'' compared to the LTE ones for the same value of Teff, while a larger difference could be detected for weak lines, which are nearly wiped out by the enhanced core emission component in case of NLTE atmospheres. These effects seem to be magnified at low metallicity (typically [M/H]<~-1). A match with a working sample of 111 stars from the IUE atlas, with available atmosphere parameters from the literature, shows that UVBLUE models provide an accurate description of the main mid- and low-resolution spectral features for stars along the whole sequence from the B to ~G5 type. The comparison sensibly degrades for later spectral types, with supergiant stars that are in general more poorly reproduced than dwarfs. As a possible explanation of this overall trend, we partly invoke the

  3. Measuring diffuse interstellar bands with cool stars. Improved line lists to model background stellar spectra

    Science.gov (United States)

    Monreal-Ibero, A.; Lallement, R.

    2017-03-01

    Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra

  4. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    Science.gov (United States)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  5. VizieR Online Data Catalog: Stellar models until He burning - III. (Claret+, 1997)

    Science.gov (United States)

    Claret, A.

    1997-04-01

    In this Paper I present grids for the stellar models with a slightly higher metallic content than in the previous works (Claret, 1995A&AS..109..441C; Claret & Gimenez, 1995A&AS..114..549C), say, Z=0.03. The initial helium abundances in mass are Yi=0.42, 0.32 and 0.22; this last value was used only to facilitate interpolations since it is a little bit smaller than the primordial helium abundance. The present computations are based on the radiative opacities with spin-orbi t coupling provided by the Lawrence Livermore group (Iglesias et al., 1992ApJ...397..771I). For the lower temperatures I have used the results by Alexander (1992, priv. comm.). Core overshooting was taken into account as well as mass loss. The models presented here cover the mass range between 1 and 40M⊙. I also compute for all models the internal structure constants kj and the radius of gyration β. For the first time the calculation of the tidal constants E2 and λ2, which are used to evaluate circularization and synchronization times in binary stars, are presented for stellar models as a function of the initial mass and time. The former is related with the dynamical tidal contribution to the total perturbed potential in a binary star while the latter is connected with the external structure of the outer layers. (1 data file).

  6. Modelling of intermediate-age stellar populations III Effects of dust-shells around AGB stars

    CERN Document Server

    Mouhcine, M

    2002-01-01

    In this paper,we present single stellar population models of intermediate age stellar populations where dust-enshrouded AGB stars are introduced. The formation of carbon stars is also accounted for, and is taken to be a function of both initial mass and metallicity. The effect of the dusty envelopes around AGB stars on the optical/near-infrared spectral energy distribution were introduced using semi-emipirical models where the mass-loss and the photospheric chemistry determine the spectral properties of a star along the AGB sequence. The spectral dichotomy between O-rich stars and C-rich stars is taken into account in the modelling. We have investigated the AGB sequence morphology in he near-infrared CMD as a function of time and metallicity. We show that this diaggram is characterized by three morphological features, occupied by optically bright O-rich stars, optically bright C-rich stars, and dust-enshrouded O-rich and C-rich stars respectively. Our models are able to reproduce the distribution of the three...

  7. Stellar abundance analyses in the light of 3D hydrodynamical model atmospheres

    CERN Document Server

    Asplund, M

    2003-01-01

    I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.

  8. Low Mach and Peclet number limit for a model of stellar tachocline and upper radiative zones

    Directory of Open Access Journals (Sweden)

    Donatella Donatelli

    2016-09-01

    Full Text Available We study a hydrodynamical model describing the motion of internal stellar layers based on compressible Navier-Stokes-Fourier-Poisson system. We suppose that the medium is electrically charged, we include energy exchanges through radiative transfer and we assume that the system is rotating. We analyze the singular limit of this system when the Mach number, the Alfven number, the Peclet number and the Froude number approache zero in a certain way and prove convergence to a 3D incompressible MHD system with a stationary linear transport equation for transport of radiation intensity. Finally, we show that the energy equation reduces to a steady equation for the temperature corrector.

  9. Self-consistent models of quasi-relaxed rotating stellar systems

    CERN Document Server

    Varri, A L

    2012-01-01

    Two new families of self-consistent axisymmetric truncated equilibrium models for the description of quasi-relaxed rotating stellar systems are presented. The first extends the spherical King models to the case of solid-body rotation. The second is characterized by differential rotation, designed to be rigid in the central regions and to vanish in the outer parts, where the energy truncation becomes effective. The models are constructed by solving the nonlinear Poisson equation for the self-consistent mean-field potential. For rigidly rotating configurations, the solutions are obtained by an asymptotic expansion on the rotation strength parameter. The differentially rotating models are constructed by means of an iterative approach based on a Legendre series expansion of the density and the potential. The two classes of models exhibit complementary properties. The rigidly rotating configurations are flattened toward the equatorial plane, with deviations from spherical symmetry that increase with the distance f...

  10. Hydrodynamical model atmospheres: Their impact on stellar spectroscopy and asteroseismology of late-type stars

    CERN Document Server

    Ludwig, Hans-G

    2016-01-01

    Hydrodynamical, i.e. multi-dimensional and time-dependent, model atmospheres of late-type stars have reached a high level of realism. They are commonly applied in high-fidelity work on stellar abundances but also allow the study of processes that are not modelled in standard, one-dimensional hydrostatic model atmospheres. Here, we discuss two observational aspects that emerge from such processes, the photometric granulation background and the spectroscopic microturbulence. We use CO5BOLD hydrodynamical model atmospheres to characterize the total granular brightness fluctuations and characteristic time scale for FGK stars. Emphasis is put on the diagnostic potential of the granulation background for constraining the fundamental atmospheric parameters. We find a clear metallicity dependence of the granulation background. The comparison between the model predictions and available observational constraints at solar metallicity shows significant differences, that need further clarification. Concerning microturbule...

  11. Testing spectral models for stellar populations with star clusters: II. Results

    CERN Document Server

    Delgado, Rosa M Gonzalez

    2009-01-01

    High spectral resolution evolutionary synthesis models have become a routinely used ingredient in extragalactic work, and as such deserve thorough testing. Star clusters are ideal laboratories for such tests. This paper applies the spectral fitting methodology outlined in Paper I to a sample of clusters, mainly from the Magellanic Clouds and spanning a wide range in age and metallicity, fitting their integrated light spectra with a suite of modern evolutionary synthesis models for single stellar population. The combinations of model plus spectral library employed in this investigation are Galaxev/STELIB, Vazdekis/MILES, SED@/GRANADA, and Galaxev/MILES+GRANADA, which provide a representative sample of models currently available for spectral fitting work. A series of empirical tests are performed with these models, comparing the quality of the spectral fits and the values of age, metallicity and extinction obtained with each of them. A comparison is also made between the properties derived from these spectral f...

  12. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    Science.gov (United States)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  13. 3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects

    Science.gov (United States)

    Ibgui, L.; Orlando, S.; Stehlé, C.; Chièze, J.-P.; Hubeny, I.; Lanz, T.; de Sá, L.; Matsakos, T.; González, M.; Bonito, R.

    2014-01-01

    We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation) under our "gray LTE approach", i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magnetohydrodynamic) structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of the shock. Further investigations are required to clarify the role of radiation, by relaxing both the gray and LTE approximations in RHD (radiation hydrodynamics) simulations. Post-processing the obtained structures through the resolution of the non-LTE monochromatic RTE will provide reference radiation quantities against which RHD approximate solutions will be compared.

  14. A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds

    Science.gov (United States)

    Montes, G.; González, R. F.; Cantó, J.; Pérez-Torres, M. A.; Alberdi, A.

    2011-07-01

    Context. In massive-star binary systems, the interaction of the strong stellar winds results in a wind collision region (WCR) between the stars, which is limited by two shock fronts. Besides the nonthermal emission resulting from the shock acceleration, these shocks emit thermal (free-free) radiation detectable at radio frequencies that increase the expected emission from the stellar winds. Observations and theoretical studies of these sources show that the shocked gas is an important, but not dominant, contributor to the total emission in wide binary systems, while it plays a very substantial role in close binaries. Aims: The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the WCR. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods: We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results: Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the WCR mainly arises from the optically thick region of the compressed layer and scales as ~D4/5, where D is the binary separation. The predicted flux density Sν from the WCR becomes more important as the frequency ν increases, showing higher spectral indices than the expected 0.6 value (Sν ∝ να, where α = 0.6) from the unshocked winds. We also investigate the emission from short-period WR+O systems calculated with our analytic formulation. In particular, we apply the model to the binary systems WR 98 and WR 113 and compare our results

  15. Cepheid models based on self-consistent stellar evolution and pulsation calculations the right answer?

    CERN Document Server

    Baraffe, I; Méra, D; Chabrier, G; Beaulieu, J P

    1998-01-01

    We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables ($3stellar evolution calculations are coupled to a linear non adiabatic stability analysis to get self-consistent mass-period-luminosity relations. The period - luminosity relation as a function of metallicity is analysed and compared to the recent EROS observations in the Magellanic Clouds. The models reproduce the observed width of the instability strips for the SMC and LMC. We determine a statistical P-L relationship, taking into account the evolutionary timescales and a mass distribution given by a Salpeter mass function. Excellent agreement is found with the SMC PL relationship determined by Sasselov et al. (1997). The models reproduce the change of slope in the P-L relationship near $P\\sim 2.5$ days discovered recently by the EROS collaboration (Bauer 1997; Bauer et al. 1998) and ...

  16. A Stellar Population Synthesis Model for the Study of Ultraviolet Star Counts of the Galaxy

    CERN Document Server

    Pradhan, Ananta C; Robin, A C; Ghosh, S K; Vickers, John J

    2014-01-01

    GALEX, the first all sky imaging UV satellite, has imaged a large part of the sky providing an excellent opportunity for studying UV star counts. The aim of our study is to investigate in detail the observed UV star counts obtained by GALEX vis-a-vis the model simulated catalogs produced by the Besancon model of stellar population synthesis in various Galactic directions, and to explore the potential for studying the structure of our Galaxy from images in multiple NUV and FUV filters of the forthcoming Ultraviolet Imaging Telescope (UVIT) to be flown onboard ASTROSAT. We have upgraded the Besancon model of stellar population synthesis to include the UV bands of GALEX and UVIT. Depending on the availability of contiguous GALEX, SDSS, WISE and 2MASS overlapping regions, we have chosen a set of 19 GALEX fields which spread over a range of Galactic directions. We cross-matched GALEX sources with the WISE+2MASS and SDSS catalogs and UV stars in the GALEX catalog are identified by choosing a suitable IR colour, J -...

  17. Testing spectral models for stellar populations with star clusters - I. Methodology

    Science.gov (United States)

    Cid Fernandes, Roberto; González Delgado, Rosa M.

    2010-04-01

    High-resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well-studied star clusters from the work of Leonardi and Rose spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic Clouds. This paper concentrates on the methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the Medium-resolution INT Library of Empirical Spectra. Best-fitting and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal uncertainties in t,Z and AV. In some cases, the spectral fits indicate that the models lack a blue old population, probably associated with the horizontal branch. This methodology, which is mostly based on the publicly available code STARLIGHT, is extended to other sets of models in Paper II, where a comparison with properties derived from spatially resolved data (colour-magnitude diagrams) is presented. The global aim of these two papers is to provide guidance to users of evolutionary synthesis models and empirical feedback to model makers.

  18. The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems

    CERN Document Server

    Schönberner, D; Sandin, C; Steffen, M

    2010-01-01

    By means of hydrodynamical models we do the first investigations of how the properties of planetary nebulae are affected by their metal content and what can be learned from spatially unresolved spectrograms of planetary nebulae in distant stellar systems. We computed a new series of 1D radiation-hydrodynamics planetary nebulae model sequences with central stars of 0.595 M_sun surrounded by initial envelope structures that differ only by their metal content. At selected phases along the evolutionary path, the hydrodynamic terms were switched off, allowing the models to relax for fixed radial structure and radiation field into their equilibrium state with respect to energy and ionisation. The analyses of the line spectra emitted from both the dynamical and static models enabled us to systematically study the influence of hydrodynamics as a function of metallicity and evolution. We also recomputed selected sequences already used in previous publications, but now with different metal abundances. These sequences w...

  19. Semi-empirical Modeling of the Photosphere, Chromosphere, Transition Region, and Corona of the M-dwarf Host Star GJ 832

    CERN Document Server

    Fontenla, J M; Witbrod, Jesse; France, Kevin; Buccino, A; Mauas, Pablo; Vietes, Mariela; Walkowicz, Lucianne M

    2016-01-01

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10--91.2~nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features in order to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2~V star GJ~832 as the first of a series of models for stars with different activity levels. Using non-LTE radiative transfer techniques and including many molecular lines, we construct a one-dimensional simple model for the physical structure of the star's chromosphere, chromosphere-corona transition region, and corona. The synthesized spectrum for this model fits the continuum and lin...

  20. A class of exact isotropic solutions of Einstein's equations and relativistic stellar models in general relativity

    Science.gov (United States)

    Murad, Mohammad Hassan; Pant, Neeraj

    2014-03-01

    In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.

  1. Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas

    Science.gov (United States)

    Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.

    2016-10-01

    V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.

  2. Simple Stellar Population Modeling of Low S/N Galaxy Spectra and Quasar Host Galaxy Applications

    CERN Document Server

    Mosby, Gregory; Hooper, Eric; Wolf, Marsha; Sheinis, Andrew; Richards, Joseph

    2014-01-01

    To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host are comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag per arcsec$^{2}$) and the resulting spectrum might have such low S/N that it hinders analysis with standard stellar population modeling techniques. To address this problem we have developed a method that can recover galaxy star formation histories (SFHs) from rest frame optical spectra with S/N $\\sim$ 5~\\AA$^{-1}$. This method uses the statistical technique diffusion k-means to tailor the stellar population modeling basis set. Our diffusion k-means minimal basis set, composed of 4 broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an...

  3. A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds

    CERN Document Server

    Montes, G; Canto, J; Perez-Torres, M A; Alberdi, A

    2011-01-01

    Aims. The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the wind collision region. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods. We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results. Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the wind collision region mainly arises from the optically thick region of the compressed layer and scales as ~ D^{4/5}, where D is the binary separation. The predicted flux density fro...

  4. Testing stellar evolution models with the retired A star HD 185351

    CERN Document Server

    Hjørringgaard, Jakob G; White, Tim R; Huber, Daniel; Pope, Benjamin J S; Casagrande, Luca; Justesen, Anders B; Christensen-Dalsgaard, Jørgen

    2016-01-01

    The physical parameters of the retired A star HD 185351 were analysed in great detail by Johnson et al. (2014) using interferometry, spectroscopy and asteroseismology. Results from all independent methods are consistent with HD 185351 having a mass in excess of $1.5\\mathrm{M}_{\\odot}$. However, the study also showed that not all observational constraints could be reconciled in stellar evolutionary models, leading to mass estimates ranging from $\\sim 1.6-1.9\\mathrm{M}_{\\odot}$ and casting doubts on the accuracy of stellar properties determined from asteroseismology. Here we solve this discrepancy and construct a theoretical model in agreement with all observational constraints on the physical parameters of HD 185351. The effects of varying input physics are examined as well as considering the additional constraint of the observed g-mode period spacing. This quantity is found to be sensitive to the inclusion of additional mixing from the convective core during the main sequence, and can be used to calibrate the...

  5. Absolute masses and radii determination in multiplanetary systems without stellar models

    CERN Document Server

    Almenara, J M; Mardling, R; Barros, S C C; Damiani, C; Bruno, G; Bonfils, X; Deleuil, M

    2015-01-01

    The masses and radii of extrasolar planets are key observables for understanding their interior, formation and evolution. While transit photometry and Doppler spectroscopy are used to measure the radii and masses respectively of planets relative to those of their host star, estimates for the true values of these quantities rely on theoretical models of the host star which are known to suffer from systematic differences with observations. When a system is composed of more than two bodies, extra information is contained in the transit photometry and radial velocity data. Velocity information (finite speed-of-light, Doppler) is needed to break the Newtonian $MR^{-3}$ degeneracy. We performed a photodynamical modelling of the two-planet transiting system Kepler-117 using all photometric and spectroscopic data available. We demonstrate how absolute masses and radii of single-star planetary systems can be obtained without resorting to stellar models. Limited by the precision of available radial velocities (38 $ms^{...

  6. Stellar Structure Modeling using a Parallel Genetic Algorithm for Objective Global Optimization

    CERN Document Server

    Metcalfe, T S

    2002-01-01

    Genetic algorithms are a class of heuristic search techniques that apply basic evolutionary operators in a computational setting. We have designed a fully parallel and distributed hardware/software implementation of the generalized optimization subroutine PIKAIA, which utilizes a genetic algorithm to provide an objective determination of the globally optimal parameters for a given model against an observational data set. We have used this modeling tool in the context of white dwarf asteroseismology, i.e., the art and science of extracting physical and structural information about these stars from observations of their oscillation frequencies. The efficient, parallel exploration of parameter-space made possible by genetic-algorithm-based numerical optimization led us to a number of interesting physical results: (1) resolution of a hitherto puzzling discrepancy between stellar evolution models and prior asteroseismic inferences of the surface helium layer mass for a DBV white dwarf; (2) precise determination of...

  7. Broad-band colours and overall photometric properties of template galaxy models from stellar population synthesis

    Science.gov (United States)

    Buzzoni, Alberto

    2005-08-01

    We present here a new set of evolutionary population synthesis models for template galaxies along the Hubble morphological sequence. The models, which account for the individual evolution of the bulge, disc, and halo components, provide basic morphological features, along with bolometric luminosity and colour evolution (including Johnson/Cousins, Gunn g, r, i, and Washington C, M, T1, T2 photometric systems) between 1 and 15 Gyr. The luminosity contribution from residual gas is also evaluated, both in terms of nebular continuum and Balmer-line enhancement. Our theoretical framework relies on the observed colours of present-day galaxies, coupled with a minimal set of physical assumptions related to simple stellar population (SSP) evolution theory, to constrain the overall distinctive properties of galaxies at earlier epochs. A comparison with more elaborate photometric models, and with empirical sets of reference spectral energy distributions (SEDs) for early- and late-type galaxies is accomplished, in order to test output reliability and investigate the internal uncertainty of the models. The match with observed colours of present-day galaxies tightly constrain the stellar birth rate, b, which smoothly increases from E to Im types. The comparison with the observed supernova (SN) rate in low-redshift galaxies shows, as well, a pretty good agreement, and allows us to tune up the inferred star formation activity and the SN and hypernova rates among the different galaxy morphological types. Among others, these results could find useful application also in cosmological studies, given for instance the claimed relationship between hypernova events and gamma-ray bursts. One outstanding feature of the back-in-time evolution model is the prevailing luminosity contribution of the bulge at early epochs. As a consequence, the current morphological look of galaxies might drastically change when moving to larger distances, and we discuss here how sensibly this bias could affect

  8. Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D

    DEFF Research Database (Denmark)

    Lind, K.; Amarsi, A. M.; Asplund, M.

    2017-01-01

    and quantum mechanical calculations of collisional excitation and charge transfer with neutral hydrogen; the latter effectively remove a free parameter that has hampered all previous line formation studies of Fe in non-local thermodynamic equilibrium (NLTE). For the first time, we use realistic 3D NLTE...

  9. Gids of rotating stellar models with masses between 1.0 and 3.0 M⊙

    Institute of Scientific and Technical Information of China (English)

    Wu-Ming Yang; Shao-Lan Bi; Xiang-Cun Meng

    2013-01-01

    We calculated a grid of evolutionary tracks of rotating models with masses between 1.0 and 3.0 M⊙ and resolution δM ≤ 0.02 M⊙,which can be used to study the effects of rotation on stellar evolution and on the characteristics of star clusters.The value of ~ 2.05 M⊙ is a critical mass for the effects of rotation on stellar structure and evolution.For stars with M > 2.05 M⊙,rotation leads to an increase in the convective core and prolongs their lifetime on the main sequence (MS); rotating models evolve more slowly than non-rotating ones; the effects of rotation on the evolution of these stars are similar to those of convective core overshooting.However for stars with 1.1 < M/M⊙ < 2.05,rotation results in a decrease in the convective core and shortens the duration of the MS stage; rotating models evolve faster than non-rotating ones.When the mass has values in the range ~ 1.7-2.0 M⊙,the mixing caused by rotationally induced instabilities is not efficient; the hydrostatic effects dominate processes associated with the evolution of these stars.For models with masses between about 1.6 and 2.0 M⊙,rotating models always exhibit lower effective temperatures than non-rotating ones at the same age during the MS stage.For a given age,the lower the mass,the smaller the change in the effective temperature.Thus rotations could lead to a color spread near the MS turnoff in the color-magnitude diagram for intermediate-age star clusters.

  10. A Grid of MHD Models for Stellar Mass Loss and Spin-down Rates of Solar Analogs

    CERN Document Server

    Cohen, Ofer

    2013-01-01

    Stellar winds are believed to be the dominant factor in spin down of stars over time. However, stellar winds of solar analogs are poorly constrained due to the challenges in observing them. A great improvement has been made in the last decade in our understanding of the mechanisms responsible for the acceleration of the solar wind and in the development of numerical models for solar and stellar winds. In this paper, we present a grid of Magnetohydrodynamic (MHD) models to study and quantify the values of stellar mass-loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass-loss rate of stars with thermally-driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the "solar dipole" case and a real case based on solar observations that overestimates the actua...

  11. Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation

    CERN Document Server

    Dittkrist, K -M; Klahr, H; Alibert, Y; Henning, T

    2014-01-01

    Context: Several recent studies have found that planet migration in adiabatic discs differs significantly from migration in isothermal discs. Depending on the thermodynamic conditions, i.e., the effectiveness of radiative cooling, and the radial surface density profile, planets migrate inward or outward. Clearly, this will influence the semimajor axis - mass distribution of planets as predicted by population synthesis simulations. Aims: Our goal is to study the global effects of radiative cooling, viscous torque desaturation and gap opening as well as stellar irradiation on the tidal migration of a synthetic planet population. Methods: We combine results from several analytical studies and 3D hydrodynamic simulations in a new semi-analytical migration model for the application in our planet population synthesis calculations. Results: We find a good agreement of our model with torques obtained in a 3D radiative hydrodynamic simulations. We find three convergence zones in a typical disc, towards which planets m...

  12. Ultraviolet Properties of Primeval Galaxies Theoretical Models from Stellar Population Synthesis

    CERN Document Server

    Buzzoni, A

    2002-01-01

    The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below 3000 Angstroms directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000 and 2800 Angstroms, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Angstroms Im irregulars are found in fact nearly four orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing model output and ob...

  13. Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications

    Science.gov (United States)

    Mosby, G.; Tremonti, C. A.; Hooper, E. J.; Wolf, M. J.; Sheinis, A. I.; Richards, J. W.

    2015-02-01

    To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host is comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag arcsec-2) and the resulting spectrum might have such low signal-to-noise ratio (S/N) that it hinders analysis with standard stellar population modelling techniques. To address this problem, we have developed a method that can recover galaxy star formation histories (SFHs) from rest-frame optical spectra with S/N ˜ 5 Å-1. This method uses the statistical technique diffusion k-means to tailor the stellar population modelling basis set. Our diffusion k-means minimal basis set, composed of four broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an analytic prescription for seeing conditions, we are able to simultaneously model scattered quasar light and the SFH of quasar host galaxies (QHGs). We use synthetic data to compare results of our novel method with previous techniques. We also present the modelling results on a previously published QHG and show that galaxy properties recovered from a diffusion k-means basis set are less sensitive to noise added to this QHG spectrum. Our new method has a clear advantage in recovering information from QHGs and could also be applied to the analysis of other low S/N galaxy spectra such as those typically obtained for high redshift objects or integral field spectroscopic surveys.

  14. Heart of Darkness: dust obscuration of the central stellar component in globular clusters younger than ~100Myr in multiple stellar population models

    CERN Document Server

    Longmore, Steven N

    2015-01-01

    To explain the observed anomalies in stellar populations within globular clusters, many globular cluster formation theories require two independent episodes of star formation. A fundamental prediction of these models is that the clusters must accumulate large gas reservoirs as the raw material to form the second stellar generation. We show that young clusters containing the required gas reservoir should exhibit the following observational signatures: (i) a dip in the measured luminosity profile or an increase in measured reddening towards the cluster centre, with Av >10mag within a radius of a few pc; (ii) bright (sub)mm emission from dust grains; (iii) bright molecular line emission once the gas is dense enough to begin forming stars. Unless the IMF is anomalously skewed towards low-mass stars, the clusters should also show obvious signs of star formation via optical emission lines (e.g. H_alpha) after the stars have formed. These observational signatures should be readily observable towards any compact clus...

  15. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres

    CERN Document Server

    Hayek, W; Pont, F; Asplund, M

    2012-01-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of the two transiting exoplanet systems HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated using 3D LTE spectrum formation and opacity sampling. We test our predictions using least-squares fits of model light curves to primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 between 2900 A and 5700 A produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of surface granulation. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 A and 5700 A, partly due ...

  16. Constructing Polynomial Spectral Models for Stars

    Science.gov (United States)

    Rix, Hans-Walter; Ting, Yuan-Sen; Conroy, Charlie; Hogg, David W.

    2016-08-01

    Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these { N } ˜ 10-40 model labels to observed spectra has been deemed unfeasible because the number of ab initio spectral model grid calculations scales exponentially with { N }. We suggest instead the construction of a polynomial spectral model (PSM) of order { O } for the model flux at each wavelength. Building this approximation requires a minimum of only ≤ft(≥nfrac{}{}{0em}{}{{ N }+{ O }}{{ O }}\\right) calculations: e.g., a quadratic spectral model ({ O }=2) to fit { N }=20 labels simultaneously can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number (˜300-1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation only over a portion of label space, which will vary case-by-case. Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good approximation to the exact ab initio spectral models across much of this survey: for random labels within that survey the PSM approximates the flux to within 10-3 and recovers the abundances to within ˜0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous many-label fitting of spectra with computationally expensive ab initio models for stellar spectra, such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters, such as the spectrum’s continuum or line-spread function.

  17. An Analytic Model for the Evolution of the Stellar, Gas, and Metal Content of Galaxies

    CERN Document Server

    Davé, Romeel; Oppenheimer, Benjamin D

    2011-01-01

    We present an analytic formalism that describes the evolution of the stellar, gas, and metal content of galaxies. It is based on the idea, inspired by hydrodynamic simulations, that galaxies live in a slowly-evolving equilibrium between inflow, outflow, and star formation. We argue that this formalism broadly captures the behavior of galaxy properties evolving in simulations. The resulting equilibrium equations for the star formation rate, gas fraction, and metallicity depend on three key free parameters that represent ejective feedback, preventive feedback, and re-accretion of ejected material. We schematically describe how these parameters are constrained by models and observations. Galaxies perturbed off the equilibrium relations owing to inflow stochasticity tend to be driven back towards equilibrium, such that deviations in star formation rate at a given mass are correlated with gas fraction and anti-correlated with metallicity. After an early gas accumulation epoch, quiescently star-forming galaxies are...

  18. Model-Independent Stellar and Planetary Masses from Multi-Transiting Exoplanetary Systems

    CERN Document Server

    Montet, Benjamin T

    2012-01-01

    Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find the two are consistent. We identify eight systems for which our technique could be applied if follow-up radial velocity measurements are collected. We conclude this analysis would be optimal for sy...

  19. Self-consistent modeling of radio-frequency plasma generation in stellarators

    Science.gov (United States)

    Moiseenko, V. E.; Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.

    2013-11-01

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell's equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell's equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell's equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell's equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  20. Stellar Opacity

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F J; Iglesias, C A

    1999-11-07

    The monochromatic opacity, {kappa}{sub v}, quantifies the property of a material to remove energy of frequency v from a radiation field. A harmonic average of {kappa}{sub v}, known as the Rosseland mean, {kappa}{sub R}, is frequently used to simplify the calculation of energy transport in stars. The term ''opacity'' is commonly understood to refer to {kappa}{sub R}. Opacity plays an important role in stellar modeling because for most stars radiation is the primary mechanism for transporting energy from the nuclear burning region in the core to the surface. Depending on the mass, convection and electron thermal conduction can also be important modes of stellar energy transport. The efficiency of energy transport is related to the temperature gradient, which is directly proportional to the mean radiative opacity in radiation dominated regions. When the radiative opacity is large, convection can become the more efficient energy transport mechanism. Electron conductive opacity, the resistance of matter to thermal conduction, is inversely proportional to electron thermal conductivity. Thermal conduction becomes the dominant mode of energy transport at high density and low temperature.

  1. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.

    2014-01-01

    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  2. Variations of the stellar initial mass function in semi-analytical models: implications for the mass assembly and the chemical enrichment of galaxies in the GAEA model

    Science.gov (United States)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela; Bruzual, Gustavo; Charlot, Stéphane; Zibetti, Stefano

    2017-02-01

    In this paper, we investigate the implications of the integrated galaxy-wide stellar initial mass function (IGIMF) approach in the framework of the semi-analytical model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [α/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of α-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high redshift, leading to stronger α-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation time-scales for more massive galaxies. We argue that in the IGIMF scenario the [α/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early-type galaxies.

  3. Numerical Simulation of Interacting Stellar Winds Model Using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Thronson, H. A., Jr.; Li, P. S.; Kwok, S.

    1997-12-01

    In the past decade, the Interacting Stellar Winds (ISW) model has been shown to be successful in explaining the formation of planetary nebulae, Wolf-Rayet nebulae, slow novae, and supernovae. Since analytical methods applied to the ISW model have been limited to the spherical symmetric (1D) geometry, numerical methods are necessary for axisymmetric (2D) or arbitrary (3D) geometries, such as the study of formation and evolution of planetary nebulae, and for symbiotic nova outbursts. The Smoothed Particle Hydrodynamics (SPH) algorithm has been developed to study hydrodynamics using the particle method. This algorithm has been applied in many different fields successfully. In this paper, we apply the SPH algorithm using the TREE code to the problem of interacting winds dynamics. We present three simulations: (1) the interaction of two winds in spherical symmetry to demonstrate the validity of the algorithm in dealing with ISW modeling, (2) the formation and evolution of an axisymmetric nebula in the first 500 years, and (3) the interacting-colliding winds caused by a slow nova outburst in a symbiotic system. It is the first time that the SPH algorithm has been applied to an ISW simulation. The SPH algorithm is proved to be an accurate and powerful tool in studying ISW model. This work is supported by NASA's US ISO program and the University of Calgary.

  4. Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators

    Science.gov (United States)

    Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.

    2015-11-01

    The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.

  5. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties

    Science.gov (United States)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.

    2013-09-01

    Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad

  6. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    CERN Document Server

    Williams, A A

    2015-01-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar halos. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening and anisotropy respectively. The DFs generate flattened stellar halos with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based distribution function to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best fit model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from $\\beta \\approx 0.4$ at Galactocentric radius of 15 kpc to $\\ap...

  7. The Chemical Properties of Milky Way and M31 Globular Clusters: II. Stellar Population Model Predictions

    CERN Document Server

    Beasley, M A; Strader, J; Forbes, D A; Proctor, R N; Barmby, P; Huchra, J P; Beasley, Michael A.; Brodie, Jean P.; Strader, Jay; Forbes, Duncan A.; Proctor, Robert N.; Barmby, Pauline; Huchra, John P.

    2004-01-01

    We derive ages, metallicities and [alpha/Fe] ratios from the integrated spectra of 23 globular clusters in M31, by employing multivariate fits to two stellar population models. In parallel we analyze spectra of 21 Galactic globular clusters in order to facilitate a differential analysis. We find that the M31 globular clusters separate into three distinct components in age and metallicity. We identify an old, metal-poor group (7 clusters), an old, metal-rich group (10 clusters) and an intermediate age (3-6 Gyr), intermediate-metallicity ([Z/H]~-1) group (6 clusters). This third group is not identified in the Galactic globular cluster sample. The majority of globular clusters in both samples appear to be enhanced in alpha-elements, the degree of enhancement being model-dependent. The intermediate age GCs appear to be the most enhanced, with [alpha/Fe]~0.4. These clusters are clearly depressed in CN with respect to the models and the bulk of the M31 and Milky Way sample. Compared to the bulge of M31, M32 and NGC...

  8. A Closure Model with Plumes II. Application to the stochastic excitation of stellar p modes

    CERN Document Server

    Belkacem, K; Goupil, M J; Kupka, F; Baudin, F

    2006-01-01

    Amplitudes of stellar p modes result from a balance between excitation and damping processes taking place in the upper-most part of convective zones in solar-type stars and can therefore be used as a seismic diagnostic for the physical properties of these external layers. Our goal is to improve the theoretical modelling of stochastic excitation of p modes by turbulent convection. With the help of the Closure Model with Plume (CMP) developed in a companion paper, we refine the theoretical description of the excitation by the turbulent Reynolds stress term. The CMP is generalized for two-point correlation products so as to apply it to the formalism developed by Samadi & Goupil (2001). The present model gives rise to a frequency dependence of the power supplied into solar p modes which is in agreement with GOLF observations for intermediate and high frequencies. Despite an increase of the Reynolds stress term contribution due to our improved description, an additional source of excitation, identified as the ...

  9. Galaxy assembly, stellar feeback and metal enrichment: the view from the GAEA model

    CERN Document Server

    Hirschmann, Michaela; Fontanot, Fabio

    2015-01-01

    One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently "anti-hierarchical" evolution of galaxy assembly: massive galaxies appear to be in place since $z\\sim 3$, while a significant evolution is measured for lower mass galaxies, whose number densities increase significantly with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes. Our analysis is carried out in the framework of GAEA, a new semi-analytic model that includes a self-consistent treatment for the timings of gas, metal and energy recycling, as well for the chemical yields. We show this to be crucial in order to use observational measurements of the metal content as independent and powerful constraints for the adopted feedback schemes. We find that the observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decreas...

  10. The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Science.gov (United States)

    Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.

    2014-06-01

    Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal

  11. Evolutionary Stellar Population Synthesis with MILES. Part I: The Base Models and a New Line Index System

    CERN Document Server

    Vazdekis, A; Falcón-Barroso, J; Cenarro, A J; Beasley, M A; Cardiel, N; Gorgas, J; Peletier, R F; 10.1111/j.1365-2966.2010.16407.x

    2010-01-01

    [Abridged]. We present SEDs for single-age, single-metallicity stellar populations (SSPs) covering the optical range at resolution 2.3A (FWHM). These SEDs constitute our base models, as they combine scaled-solar isochrones with MILES empirical stellar library, which follows the chemical evolution pattern of the solar neighbourhood. The models rely as much as possible on empirical ingredients, not just on the stellar spectra, but also on extensive photometric libraries. The unprecedented stellar parameter coverage of MILES allowed us to safely extend our optical SSP SED predictions from intermediate- to very-old age regimes, and the metallicity coverage of the SSPs from super-solar to [M/H]=-2.3. SSPs with such low metallicities are particularly useful for globular cluster studies. Observed spectra can be studied by means of full spectrum fitting or line-strengths. For the latter we propose a new Line Index System (LIS) to avoid the intrinsic uncertainties associated with the popular Lick/IDS system and provid...

  12. Galaxy assembly, stellar feedback and metal enrichment: the view from the GAEA model

    Science.gov (United States)

    Hirschmann, Michaela; De Lucia, Gabriella; Fontanot, Fabio

    2016-09-01

    One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical' evolution of galaxy assembly: massive galaxies appear to be in place since z ˜ 3, while a significant increase of the number densities of low-mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-analytic model of galaxy formation. It includes a self-consistent treatment for the timings of gas, metal and energy recycling, and for the chemical yields. We show this to be crucial to use observational measurements of the metallicity as independent and powerful constraints for the adopted feedback schemes. The observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time (as suggested by parametrizations of the cosmological `FIRE' simulations). Irrespective of the feedback scheme used, our successful models always imply that up to 60-70 per cent of the baryons reside in an `ejected' reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our fiducial model. The overall fraction of passive galaxies is found to be primarily determined by internal physical processes, with environment playing a secondary role.

  13. Limb darkening and exoplanets: testing stellar model atmospheres and indentifying biases in transit parameters

    CERN Document Server

    Espinoza, Néstor

    2015-01-01

    Limb-darkening is fundamental in determining transit lightcurve shapes, and is typically modeled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit lightcurve, some authors fix the parameters of these laws, the so-called limb-darkening coefficients (LDCs), while others prefer to let them float in the lightcurve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first re-calculating these LDCs, comparing them to measured values from Kepler transit lightcurves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb-darkening still needs to improve. Then, we show through simulations that ...

  14. GrayStar: A Web application for pedagogical stellar atmosphere and spectral line modelling and visualisation

    CERN Document Server

    Short, C Ian

    2014-01-01

    GrayStar is a stellar atmospheric and spectral line modelling, post-processing, and visualisation code, suitable for classroom demonstrations and laboratory-style assignments, that has been developed in Java and deployed in JavaScript and HTML. The only software needed to compute models and post-processed observables, and to visualise the resulting atmospheric structure and observables, is a common Web browser. Therefore, the code will run on any common PC or related X86 (-64) computer of the type that typically serves classroom data projectors, is found in undergraduate computer laboratories, or that students themselves own, including those with highly portable form-factors such as net-books and tablets. The user requires no experience with compiling source code, reading data files, or using plotting packages. More advanced students can view the JavaScript source code using the developer tools provided by common Web browsers. The code is based on the approximate gray atmospheric solution and runs quickly eno...

  15. Testing intermediate-age stellar evolution models with VLT photometry of LMC clusters. I. The data

    CERN Document Server

    Gallart, C; Bertelli, G; Chiosi, C; Demarque, P; Girardi, L; Nasi, E; Woo, J H; Yi, S

    2003-01-01

    This is the first of a series of three papers devoted to the calibration of a few parameters of crucial importance in the modeling of the evolution of intermediate-mass stars, with special attention to the amount of convective core overshoot. To this end we acquired deep V and R photometry for three globular clusters of the Large Magellanic Cloud (LMC), namely NGC 2173, SL 556 and NGC 2155, in the age interval 1-3 Gyr. In this first paper, we describe the aim of the project, the VLT observations and data reduction, and we make preliminary comparisons of the color-magnitude diagrams with both Padova and Yonsei-Yale isochrones. Two following papers in this series present the results of a detailed analysis of these data, independently carried out by members of the Yale and Padova stellar evolution groups. This allows us to compare both sets of models and discuss their main differences, as well as the systematic effects that they would have to the determination of the ages and metallicities of intermediate-age si...

  16. Testing intermediate-age stellar evolution models with VLT photometry of LMC clusters. III. Padova results

    CERN Document Server

    Bertelli, G; Girardi, L; Chiosi, C; Zoccali, M; Gallart, C

    2002-01-01

    The color-magnitude diagrams (CMDs) of three intermediate-age LMC clusters, NGC 2173, SL556 and NGC2155 are analyzed to determine their age and metallicity basing on Padova stellar models. Synthetic CMDs are compared with cluster data. The best match is obtained using two fitting functions based on star counts in the different bins of the cluster CMD. Two different criteria are used. One of them takes into account the uncertainties in the color of the red clump stars. Given the uncertainties on the experimental values of the clusters metallicity, we provide a set of acceptable solutions. They define the correspondent values of metallicity, age, reddening and distance modulus (for the assumed IMF). The comparison with Padova models suggests for NGC 2173 a prolonged star formation (spanning a period of about 0.3 Gyr), beginning 1.7 Gyr and ending 1.4 Gyr ago. The metallicity Z is in the range 0.0016 $-$ 0.003. Contrary to what suggested for NGC 2173 a period of extended star formation was not required to fit th...

  17. Ultraviolet Properties of Primeval Galaxies: Theoretical Models from Stellar Population Synthesis

    Science.gov (United States)

    Buzzoni, Alberto

    2002-03-01

    The ultraviolet luminosity evolution of star-forming galaxies is explored from the theoretical point of view, especially focusing on the theory of UV energetics in simple and composite stellar populations and its relationship to the star formation rate and other main evolutionary parameters. Galaxy emission below λ<3000 Å directly correlates with actual star formation, not depending on the total mass of the system. A straightforward calibration is obtained, in this sense, from the theoretical models at 1600, 2000, and 2800 Å, and a full comparison is carried out with IUE data and other balloon-borne observations for local galaxies. The claimed role of late-type systems as prevailing contributors to the cosmic UV background is reinforced by our results; at 2000 Å, Im irregulars are found in fact nearly 4 orders of magnitude brighter than ellipticals, per unit luminous mass. The role of dust absorption in the observation of high-redshift galaxies is assessed, comparing the model output and observed spectral energy distribution of local galaxy samples. Similar to what we observe in our own galaxy, a quick evolution in the dust environment might be envisaged in primeval galaxies, with an increasing fraction of luminous matter that would escape the regions of harder and ``clumpy'' dust absorption on a timescale of some 107 yr, comparable to the lifetime of stars of 5-10 Msolar.

  18. Radial electric field computations with DKES and neoclassical models in TJ-II stellarator

    Science.gov (United States)

    Martinell, Julio; Gutierrez-Tapia, Cesar; Lopez-Bruna, Daniel

    2015-11-01

    Radial electric fields arise due to the non-ambipolar transport in stellarator plasmas and play an important role in determining some improved confinement regimes. In order to calculate this electric field it is necessary to take all particle fluxes that are not ambipolar. The most important contribution to these fluxes comes from neoclassical transport. Here we use particle fluxes obtained from kinetic equation computations using the code DKES to evaluate the radial electric field profiles for certain discharges of the heliac TJ-II. Experimental profiles for the density and temperatures are used together with the diffusion coefficients obtained with DKES. A similar computation of the electric field is performed with three analytical neoclassical models that use an approximation for the magnetic geometry. The ambipolar electric field from the models is compared with the one given by DKES and we find that they are all qualitatively similar. They are also compared with experimental measurements of the electric field obtained with HIBP. It is shown that, although the electric field is reasonably well reproduced by the neoclassical computations, especially in high temperature regimes, the particle fluxes are not. Thus, neoclassical theory provides good Er estimates in TJ-II. Support from CONACyT 152905 and DGAPA IN109115 projects is acknowledged.

  19. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    Science.gov (United States)

    Munafò, Alessandro; Mansour, Nagi N.; Panesi, Marco

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α, β, and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  20. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and >3DChemical Properties of the Galactic Metal-poor Disk and the Halo

    Science.gov (United States)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph; Andrae, Rene; Kovalev, Mikhail; Ruchti, Greg; Hansen, Camilla Juul; Magic, Zazralt

    2017-09-01

    From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged models. We show that compared to the NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]–[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ ‑1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.

  1. Stellar ages from asteroseismology

    CERN Document Server

    Lebreton, Yveline

    2008-01-01

    Asteroseismology provides powerful means to probe stellar interiors. The oscillations frequencies are closely related to stellar interior properties via the density and sound speed profiles. Since these are tightly linked with the mass and evolutionary state, we can expect to determine the age and mass of a star from the comparison of its oscillation spectrum with predictions of stellar models. Such a comparison suffers both from the problems we face when modeling a particular star (as the uncertainties on global parameters and chemical composition) and from our misunderstanding of processes at work in stellar interiors (as the transport processes that may lead to core mixing and affect the model ages). For stars where observations have provided precise and numerous oscillation frequencies together with accurate global parameters and additional information (as the radius or the mass if the star is in a binary system, the interferometric radius or the mean density if the star is an exoplanet host), we can also...

  2. Stellar masses of SDSS-III BOSS galaxies at z~0.5 and constraints to galaxy formation models

    CERN Document Server

    Maraston, Claudia; Henriques, Bruno M; Thomas, Daniel; Wake, David; Brownstein, Joel R; Capozzi, Diego; Bundy, Kevin; Skibba, Ramin A; Beifiori, Alessandra; Nichol, Robert C; Edmondson, Edd; Schneider, Don P; Chen, Yanmei; Masters, Karen L; Steele, Oliver; Bolton, Adam S; York, Donald G; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Snedden, Stephanie; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey

    2012-01-01

    We calculate stellar masses for ~400,000 massive luminous galaxies at redshift ~0.2-0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to u,g,r,i,z magnitudes. Accurate BOSS spectroscopic redshifts are used to constrain the fits. We find that the distribution of stellar masses in BOSS is narrow (Delta log M ~0.5 dex) and peaks at about log M/M_sun ~ 11.3 (for a Kroupa initial stellar mass function), and that the mass sampling is uniform over the redshift range 0.2 to 0.6, in agreement with the intended BOSS target selection. The galaxy masses probed by BOSS extend over ~ 10^{12} M_{sun}, providing unprecedented measurements of the high-mass end of the galaxy mass function. We find that the galaxy number density above ~ 2.5 10^{11} M_{sun} agrees with previous determinations within 2sigma, but there is a slight offset towards lower number densities in BOSS. This alleviates a tension between th...

  3. Measuring Diffuse Interstellar Bands with cool stars. An improved line list to model the background stellar spectra

    CERN Document Server

    Monreal-Ibero, A

    2016-01-01

    DIBs are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot stars, because of their smooth continuum. In an era where there are several going-on or planned massive Galactic surveys using multi-object spectrographs, cool stars constitute an appealing set of targets. From the technical point of view, the extraction of DIBs in their spectra is more challenging due to the complexity of the continuum. In this contribution we will provide the community with an improved set of stellar lines in the spectral regions associated to the strong DIBs at l6196, l6269, l6284, and l6379. These lines will allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB. The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the VALD stellar line list. ...

  4. Evolution of CO lines in time-dependent models of protostellar disk formation

    CERN Document Server

    Harsono, Daniel; Bruderer, Simon; van Dishoeck, Ewine F; Kristensen, Lars E

    2013-01-01

    (Abridged) Star and planet formation theories predict an evolution in the density, temperature, and velocity structure as the envelope collapses and forms an accretion disk. The aim of this work is to model the evolution of the molecular excitation, line profiles, and related observables during low-mass star formation. Specifically, the signatures of disks during the deeply embedded stage are investigated. Semi-analytic 2D axisymmetric models have been used to describe the evolution of the density, stellar mass, and luminosity from the pre-stellar to the T-Tauri phase. A full radiative transfer calculation is carried out to accurately determine the time-dependent dust temperatures and CO abundance structure. We present non-LTE near-IR, FIR, and submm lines of CO have been simulated at a number of time steps. In contrast to the dust temperature, the CO excitation temperature derived from submm/FIR lines does not vary during the protostellar evolution, consistent with C18O observations obtained with Herschel an...

  5. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  6. Chromospheric Models and the Oxygen Abundance in Giant Stars

    Science.gov (United States)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.

    2016-04-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771-7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ˜3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  7. An intermediate-luminosity-optical-transient (ILOT) model for the young stellar object ASASSN-15qi

    CERN Document Server

    Kashi, Amit

    2016-01-01

    We construct a scenario where the outburst of the young-stellar-object ASASSN-15qi is an intermediate luminosity optical transient (ILOT). In this scenario a sub-Jupiter young planet was tidally destructed on to a young main-sequence star. The system is young, therefore the radius of the planet is larger than its final value, and consequently it has smaller density. The lower density allows the tidal destruction of the young Saturn-like planet on to the main-sequence star of mass $\\approx 2.4 ~M_\\odot$, resulting in a formation of a disc and a gravitationally-powered ILOT. Unlike the case of the more energetic ILOT V838~Mon, the mass of the destroyed planet is too low to inflate a giant envelope, and hence the merger remnant stays hot. If our suggested model holds, this ILOT possesses two interesting properties: (1) its luminosity and total energy are below those of novae, and (2) it is not as red as other ILOTs. The unusual outburst of ASASSN-15qi, if indeed is an ILOT, further increases the diversity of the...

  8. Minimalist coupled evolution model for stellar x-ray activity, rotation, mass loss, and magnetic field

    CERN Document Server

    Blackman, Eric G

    2015-01-01

    Late-type main sequence stars exhibit an x-ray to bolometric flux that depends on the Corolis number $Co$ (product of convective turnover time and angular rotation speed) as $Co^{\\zeta}$ with $2\\le \\zeta \\le 3$ for $Co > 1$. Stars in the unsaturated regime also obey the Skumanich law--- their rotation speeds scale inversely with square root of their age. The associated stellar magnetic field strengths follow a similar decrease with age. While the connection between faster rotators, stronger fields, and higher activity has been well established observationally, a basic theory for the time evolution of x-ray luminosity, rotation, magnetic field and mass loss been lacking. Here we offer a minimalist model for the time evolution of these quantities built from combining a Parker wind with several new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the x-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of x-ray activity and mass loss saturation to dynamo...

  9. Star Formation in Galaxy Mergers with Realistic Models of Stellar Feedback & the Interstellar Medium

    CERN Document Server

    Hopkins, Philip F; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C; Murray, Norman

    2012-01-01

    We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star formation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation micro...

  10. Implications of WMAP observations on Li abundance and stellar evolution models

    CERN Document Server

    Richard, O; Richer, J; Richard, Olivier; Michaud, Georges; Richer, Jacques

    2004-01-01

    The WMAP determination of the baryon-to-photon ratio implies, through Big Bang nucleosynthesis, a cosmological Li abundance larger, by a factor of 2 to 3, than the Li abundance plateau observed in the oldest Pop II stars. It is however inescapable that there be a reduction by a factor of at least 1.6 to 2.0 of the surface Li abundance during the evolution of Pop II field stars with [Fe/H] < -1.5. That the observed Li be lower than cosmologically produced Li is expected from stellar evolution models. Since at turnoff most of the Li abundance reduction is caused by gravitational settling, the presence of Lithium 6 in some turnoff stars is also understood. Given that the WMAP implications for Li cosmological abundance and the Li Spite plateau can be naturally explained by gravitational settling in the presence of weak turbulence, there appears little need for exotic physics as suggested by some authors. Instead, there is a need for a better understanding of turbulent transport in the radiative zones of stars....

  11. The Meaning and Consequences of Star Formation Criteria in Galaxy Models with Resolved Stellar Feedback

    CERN Document Server

    Hopkins, Philip F; Murray, Norman

    2013-01-01

    We consider the effects of different star formation criteria on galactic scales, in high-resolution simulations with explicitly resolved GMCs and stellar feedback. We compare: (1) a self-gravity criterion (based on the local virial parameter and the assumption that self-gravitating gas collapses to high density in a free-fall time), (2) a fixed density threshold, (3) a molecular-gas law, (4) a temperature threshold, (5) a Jeans-instability requirement, (6) a criteria that cooling times be shorter than dynamical times, and (7) a convergent-flow criterion. We consider these both MW-like and high-density (starburst) galaxies. With feedback present, all models produce identical integrated star formation rates (SFRs), in agreement with the Kennicutt relation. Without feedback all produce orders-of-magnitude excessive SFRs. This is totally dependent on feedback and independent of the SF law. However, the spatial and density distribution of SF depend strongly on the SF criteria. Because cooling rates are generally f...

  12. Measurement, Modeling and Reconstruction of Parallel Currents in the HSX Stellarator

    Science.gov (United States)

    Schmitt, J. C.; Talmadge, J. N.; Lore, J.

    2010-11-01

    Parallel currents are measured with a set of magnetic diagnostics on the HSX. Measurements show that the Pfirsch-Schlüter current is helical due to the lack of toroidal curvature and is reduced in magnitude compared to an equivalent tokamak because of the high effective transform (˜3) in a quasihelically symmetric stellarator. The bootstrap current density is calculated using the PENTA code,^1 which includes momentum conservation between plasma species. The data shows better agreement with a model that includes momentum conservation. HSX plasmas are heated by a 28 GHz gyrotron which allows the electrons to access the low collisionality regime, while the cold ions are generally in the plateau. In HSX, a 3-D plasma with small symmetry-breaking, the calculations show that for two species in different collisionality regimes, the bootstrap current can be strong function of the radial electric field. In the plasma core, multiple stable electric field solutions to the ambipolarity constraint exist. The large positive electric field, the ``electron-root'' solution, can result in a reduction and even a reversal of the bootstrap current. The measured fields and fluxes are used in the V3FIT^2 code to reconstruct the current profile. Supported by DOE grant DE-FG02-93ER54222. ^1D.A. Spong, Phys. Plasmas 12 (2005) 056114. ^2J.D. Hanson, et al, Nucl. Fusion 49 (2009) 075031.

  13. MODEL-INDEPENDENT STELLAR AND PLANETARY MASSES FROM MULTI-TRANSITING EXOPLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Montet, Benjamin T. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Johnson, John Asher, E-mail: btm@astro.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, MC 170-25, Pasadena, CA 91125 (United States)

    2013-01-10

    Precise exoplanet characterization requires precise classification of exoplanet host stars. The masses of host stars are commonly estimated by comparing their spectra to those predicted by stellar evolution models. However, spectroscopically determined properties are difficult to measure accurately for stars that are substantially different from the Sun, such as M-dwarfs and evolved stars. Here, we propose a new method to dynamically measure the masses of transiting planets near mean-motion resonances and their host stars by combining observations of transit timing variations with radial velocity (RV) measurements. We derive expressions to analytically determine the mass of each member of the system and demonstrate the technique on the Kepler-18 system. We compare these analytic results to numerical simulations and find that the two are consistent. We identify eight systems for which our technique could be applied if follow-up RV measurements are collected. We conclude that this analysis would be optimal for systems discovered by next-generation missions similar to TESS or PLATO, which will target bright stars that are amenable to efficient RV follow-up.

  14. Testing Stellar Population Models with Star Clusters in the Large Magellanic Cloud

    CERN Document Server

    Beasley, M A; Sharples, R M; Beasley, Michael A.; Hoyle, Fiona; Sharples, Ray M.

    2002-01-01

    We present high S/N integrated spectra of 24 star clusters in the LMC obtained using the FLAIR spectrograph at the UK Schmidt. The spectra have been placed onto the Lick/IDS system in order to test the calibration of Simple Stellar Population (SSP) models. We have compared the SSP-predicted metallicities of the clusters with literature Ca-Triplet values, and find that there is good agreement in the range --2.10 0. We present metallicities for 11 clusters with no previous measurements. Comparison of the SSP ages of the clusters (from Balmer lines) with the literature data shows good agreement for the majority. This includes six old globular clusters in our sample, which have ages consistent with their HST CMD turn-offs. However, two clusters, NGC 1754 and NGC 2005, have Hbeta line-strengths which lead to ages which are too young (~8 and ~6 Gyr respectively at 3 sigma) for their HST CMDs. Comparison between the horizontal branch (HB) morphology and Balmer lines of these clusters suggests that blue HBs have inc...

  15. Stellar Population Synthesis-based Modelling of the Milky Way Using Asteroseismology of Dwarfs and Subgiants from Kepler

    Science.gov (United States)

    Sharma, Sanjib; Stello, Dennis; Huber, Daniel; Bland-Hawthorn, Joss; Bedding, Timothy R.

    2017-02-01

    Early attempts to apply asteroseismology to study the Galaxy have already shown unexpected discrepancies for the mass distribution of stars between the Galactic models and the data; a result that is still unexplained. Here, we revisit the analysis of the asteroseismic sample of dwarf and subgiant stars observed by Kepler and investigate in detail the possible causes for the reported discrepancy. We investigate two models of the Milky Way based on stellar population synthesis, Galaxia and TRILEGAL. In agreement with previous results, we find that TRILEGAL predicts more massive stars compared to Galaxia, and that TRILEGAL predicts too many blue stars compared to 2MASS observations. Both models fail to match the distribution of the stellar sample in ({log} g,{T}{eff}) space, pointing to inaccuracies in the models and/or the assumed selection function. When corrected for this mismatch in ({log} g,{T}{eff}) space, the mass distribution calculated by Galaxia is broader and the mean is shifted toward lower masses compared to that of the observed stars. This behavior is similar to what has been reported for the Kepler red giant sample. The shift between the mass distributions is equivalent to a change of 2% in νmax, which is within the current uncertainty in the νmax scaling relation. Applying corrections to the Δν scaling relation predicted by the stellar models makes the observed mass distribution significantly narrower, but there is no change to the mean.

  16. The Stagger-grid: A Grid of 3D Stellar Atmosphere Models - I. Methods and General Properties

    CERN Document Server

    Magic, Z; Asplund, M; Trampedach, R; Hayek, W; Chiavassa, A; Stein, R F; Nordlund, Å

    2013-01-01

    We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy va...

  17. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Guillermo; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ruiz-Rodriguez, Dary; Prato, L.; Wasserman, Lawrence H. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Badenas, Mariona [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Schaefer, G. H. [CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Mathieu, Robert D., E-mail: gtorres@cfa.harvard.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-08-10

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close ({approx}0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of {alpha}{sub ML} = 1.0 strongly favor the Dartmouth models.

  18. Influence of inelastic collisions with hydrogen atoms on the formation of AlI and SiI lines in stellar spectra

    Science.gov (United States)

    Mashonkina, L. I.; Belyaev, A. K.; Shi, J.-R.

    2016-06-01

    We have performed calculations by abandoning the assumption of local thermodynamic equilibrium (within the so-called non-LTE approach) for Al I and Si I with model atmospheres corresponding to stars of spectral types F-G-Kwith differentmetal abundances. To take into account inelastic collisions with hydrogen atoms, for the first time we have applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born-Oppenheimer quantum theory. We show that for Al I non-LTE leads to higher ionization (overionization) than in LTE in the spectral line formation region and to a weakening of spectral lines, which is consistent with earlier non-LTE studies. However, our results, especially for the subordinate lines, differ quantitatively from the results of predecessors. Owing to their large cross sections, the ion-pair production and mutual neutralization processes Al I( nl) + HI(1 s) ↔ Al II(3 s 2) + H- provide a close coupling of highly excited Al I levels with the Al II ground state, which causes the deviations from the equilibrium level population to decrease compared to the calculations where the collisions only with electrons are taken into account. For three moderately metal-deficient dwarf stars, the aluminum abundance has been determined from seven Al I lines in different models of their formation. Under the assumption of LTE and in non-LTE calculations including the collisions only with electrons, the Al I 3961 ˚A resonance line gives a systematically lower abundance than the mean abundance from the subordinate lines, by 0.25-0.45 dex. The difference for each star is removed by taking into account the collisions with hydrogen atoms, and the rms error of the abundance derived from all seven Al I lines decreases by a factor of 1.5-3 compared to the LTE analysis. We have calculated the non- LTE corrections to the abundance for six subordinate Al I lines as a function of the effective temperature (4500 K ≤ T eff ≤ 6500 K

  19. Probing Atlas model atmospheres at high spectral resolution. Stellar synthesis and reference template validation

    Science.gov (United States)

    Bertone, E.; Buzzoni, A.; Chávez, M.; Rodríguez-Merino, L. H.

    2008-07-01

    Aims: The fast improvement of spectroscopic observations makes mandatory a strong effort on the theoretical side to better reproduce the spectral energy distribution (SED) of stars at high spectral resolution. In this regard, relying on the Kurucz Atlas/Synthe original codes we computed the Bluered library, consisting of 832 synthetic SED of stars, that cover a large parameter space at very high spectral resolution (R = 500 000) along the 3500-7000 Å wavelength range. Methods: Bluered synthetic spectra have been used to assess in finer detail the intrinsic reliability and the performance limits of the Atlas theoretical framework. The continuum-normalized spectra of the Sun, Arcturus, and Vega, plus a selected list of 45 bright stars with high-quality SEDs from the Prugniel & Soubiran Elodie catalog, form our sample designed to probe the global properties of synthetic spectra across the entire range of H-R parameters. Results: Atlas models display a better fitting performance with increasing stellar temperature. High-resolution spectra of Vega, the Sun, and Arcturus have been reproduced at R=100 000, respectively, within a 0.7%, 4.5%, and 8.8% relative scatter in residual flux. In all the three cases, the residual flux distribution shows a significant asymmetry (skewness parameter γ = -2.21, -0.98, -0.67, respectively), which neatly confirms an overall “excess” of theoretical line blanketing. For the Sun, this apparent discrepancy is alleviated, but not recovered, by a systematic decrease (-40%) of the line oscillator strengths, log (gf), especially referring to iron transitions. Definitely, a straight “astrophysical” determination of log (gf) for each individual atomic transition has to be devised to overcome the problem. By neglecting overblanketing effects in theoretical models when fitting high-resolution continuum-normalized spectra of real stars, we lead to a systematically warmer effective temperature (between +80 and +300 K for the solar fit) and a

  20. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    Energy Technology Data Exchange (ETDEWEB)

    Zemskova, Varvara [Department of Marine Sciences, University of North Carolina at Chapel Hill, 3202 Venable Hall, CB 3300, Chapel Hill, NC 27599-3300 (United States); Garaud, Pascale [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Deal, Morgan; Vauclair, Sylvie [Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, Université de Toulouse, F-31400-Toulouse (France)

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  1. Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings from stellar models

    CERN Document Server

    Cunha, M S; Avelino, P P; Christensen-Dalsgaard, J; Townsend, R H D

    2015-01-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations -- glitches -- in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red-giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the \\'echelle diagram. Interestingly, along the red-giant branch glitch-induced variation occurs only at the luminosity bump, potentially providin...

  2. Semi-empirical white dwarf initial-final mass relationships: a thorough analysis of systematic uncertainties due to stellar evolution models

    CERN Document Server

    Salaris, Maurizio; Weiss, Achim; Bertolami, Marcelo Miller

    2008-01-01

    Using the most recent results about white dwarfs in 10 open clusters, we revisit semi-empirical estimates of the initial-final mass relation in star clusters, with emphasis on the use of stellar evolution models. We discuss the influence of these models on each step of the derivation. One intention of our work is to use consistent sets of calculations both for the isochrones and the white dwarf cooling tracks. The second one is to derive the range of systematic errors arising from stellar evolution theory. This is achieved by using different sources for the stellar models and by varying physical assumptions and input data. We find that systematic errors, including the determination of the cluster age, are dominating the initial mass values, while observational uncertainties influence the final mass primarily. After having determined the systematic errors, the initial-final mass relation allows us finally to draw conclusions about the physics of the stellar models, in particular about convective overshooting.

  3. The dynamics of general relativistic isotropic stellar cluster models -- Do relativistic extensions of the Plummer model exist?

    CERN Document Server

    De Rijcke, Sven; Boelens, Thomas

    2014-01-01

    We show that the general relativistic theory of the dynamics of isotropic stellar clusters can be developed essentially along the same lines as the Newtonian theory. We prove that the distribution function can be derived from any isotropic momentum moment and that every higher-order moment of the distribution can be written as an integral over a zeroth-order moment. We propose a mathematically simple expression for the distribution function of a family of isotropic general relativistic cluster models and investigate their dynamical properties. In the Newtonian limit, these models obtain a distribution function of the form F(E) ~ (E-E_0)^alpha, with E binding energy and E_0 a constant that determines the model's outer radius. The slope alpha sets the steepness of the distribution function and the corresponding radial density and pressure profiles. We show that the field equations only yield solutions with finite mass for alpha3.5, only Newtonian models exist. In other words: within the context of this family o...

  4. Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    Science.gov (United States)

    Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin

    2009-05-01

    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae > ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.

  5. Use of AO PSF models for the Study of Resolved Stellar Populations

    NARCIS (Netherlands)

    Deep, A.; Fiorentino, G.; Jolissaint, L.; Tolstoy, E.; Clénet, Y.; Conan, J.-M.; Fusco, Th.; Rousset, G.

    2010-01-01

    The full scientific exploitation of AO images to study resolved stellar populations is still in a nascent stage. This requires pushing to the faint limits and carrying out deep and accurate crowded field photometry and astrometry. The main complexity of AO images is that the correction is never perf

  6. Kinematic modeling of the Milky Way using the RAVE and GCS stellar surveys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Binney, J. [Rudolf Peierls Center for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Freeman, K. C. [RSAA Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, Canberra, ACT 72611 (Australia); Steinmetz, M.; Williams, M. E. K. [Leibniz Institut für Astrophysik Potsdam (AIP), An der Sterwarte 16, D-14482 Potsdam (Germany); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, D-69120 Heidelberg (Germany); Bienaymé, O.; Siebert, A. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Gibson, B. K. [Jeremiah Horrocks Institute for Astrophysics and Super-computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. F.; Kordopatis, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Munari, U. [INAF-Astronomical Observatory of Padova, I-36012 Asiago (VI) (Italy); Navarro, J. F. [University of Victoria, P.O. Box 3055, Station CSC, Victoria, BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. A. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT (United Kingdom); Watson, F. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); and others

    2014-09-20

    We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE) and Geneva-Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (ℓ, b, v {sub los}). Using the Markov Chain Monte Carlo technique, we investigate the full posterior distributions of the parameters given the data. We investigate the age-velocity dispersion relation for the three kinematic components (σ {sub R}, σ{sub φ}, σ {sub z}), the radial dependence of the velocity dispersions, the solar peculiar motion (U {sub ☉}, V {sub ☉}, W {sub ☉}), the circular speed Θ{sub 0} at the Sun, and the fall of mean azimuthal motion with height above the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in V {sub ☉} and Θ{sub 0}. We find that, for an extended sample of stars, Θ{sub 0} is underestimated by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without

  7. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    Science.gov (United States)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  8. Measurement and Modeling of Large Helical Flows in the HSX Stellarator

    Science.gov (United States)

    Briesemeister, Alexis

    2012-10-01

    Symmetry in a device's magnetic field strength allows large flows to develop, which may reduce turbulent transport. Although symmetry is an inherent feature of tokamaks and other axisymmetric devices, stellarators typically do not have a direction of symmetry. The quasihelically symmetric HSX stellarator is the only device with a helical direction of approximately constant magnetic field strength. We present here first results that verify the capability for the class of quasisymmetric stellarators to have large intrinsic flows. Flow velocities of up to 20 km/s along the helical direction, with no external momentum injection, have been measured using charge exchange recombination spectroscopy in HSX. Measurements are made using the 529 nm C+5 line at 10 radial locations from two viewing directions allowing the flow direction and magnitude to be determined. These measured flows are compared to the neoclassical values calculated by the PENTA code [1]. A non-momentum conserving collision operator is used when solving the drift kinetic equation for stellarators, which typically have large flow damping in all directions. HSX's parallel flow is under-predicted by an order of magnitude by the non-momentum conserving calculations, but good agreement is seen with parallel flows calculated by PENTA when a momentum conservation correction technique [2] is applied. In addition to verifying a key attribute of quasisymmetric stellarators, these results validate a neoclassical code that can calculate plasma flows in a wide range of toroidal devices from perfectly axisymmetric systems to fully 3D configurations. This allows the effects of symmetry breaking magnetic field components, which can increase flow drive as well as damping, to be studied.[4pt] [1] D. Spong, Phys. Plas. 12 (2005) 056114.[0pt] [2] H. Sugama, S. Nishimura, Phys. Plas. 9 (2002) 4637.

  9. Stellar feedback efficiencies: supernovae versus stellar winds

    CERN Document Server

    Fierlinger, Katharina M; Ntormousi, Evangelia; Fierlinger, Peter; Schartmann, Marc; Ballone, Alessandro; Krause, Martin G H; Diehl, Roland

    2015-01-01

    Stellar winds and supernova (SN) explosions of massive stars ("stellar feedback") create bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is thermalized and immediately removed from the ISM by radiative cooling. The rest is available for driving ISM dynamics. In this work we estimate the amount of feedback energy retained as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient medium. We show that the feedback of the most massive star outweighs the feedback from less massive stars. For a giant molecular cloud (GMC) mass of 1e5 solar masses (as e.g. found in the Orion GMCs) and a star formation efficiency of 8% the initial mass function predicts a most massive star of approximately 60 solar masses. For this stellar evolution model we test the dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar winds. In our model w...

  10. Gray Models of convection in core collapse supernovae

    CERN Document Server

    Swesty, F D

    1998-01-01

    One of the major difficulties encountered in modeling core collapse supernovae is obtaining an accurate description of the transport of neutrinos through the collapsed stellar core. The behavior of the neutrino distribution function transitions from an LTE distribution in the center of the core to a non-LTE distribution in the outer regions of the core. One method that has been recently employed in order to model the flow of neutrinos in 2-D models is the gray approximation. This approximation assumes that the neutrino distribution can be described by a function that is parameterized in terms of a neutrino temperature and a neutrino chemical potential. However, these parameters must be assumed. Furthermore, the parameters will also differ between the LTE and NLTE regions. Additionally, within the gray approximation the location at which the neutrino distribution function transitions from LTE to NLTE must be assumed. By considering a series of models where the LTE/NLTE decoupling point is varied we show that t...

  11. Tutorial models of the climate and habitability of Proxima Centauri b: a thin atmosphere is sufficient to distribute heat given low stellar flux

    CERN Document Server

    Goldblatt, Colin

    2016-01-01

    Proxima Centauri b, an Earth-size planet in the habitable zone of our nearest stellar neighbour, has just been discovered. A theoretical framework of synchronously rotating planets, in which the risk of a runaway greenhouse on the sunlight side and atmospheric collapse on the reverse side are mutually ameliorated via heat transport is discussed. This is developed via simple (tutorial) models of the climate. These show that lower incident stellar flux means that less heat transport, so less atmospheric mass, is required. The incident stellar flux at Proxima Centauri b is indeed low, which may help enhance habitability if it has suffered some atmospheric loss or began with a low volatile inventory.

  12. Improving the Ni I atomic model for solar and stellar atmospheric models

    CERN Document Server

    Vieytes, Mariela C

    2013-01-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 A. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere considered only few levels of this species. Here we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model improves significantly the calculation of the solar spectral irradiance at near-UV wavelengths that are important for Earth atmo spheric studies, and particularly for ozone chemistry.

  13. STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haibo; Liu, Xiaowei [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Xiang, Maosheng; Huang, Yang; Chen, Bingqiu [Department of Astronomy, Peking University, Beijing 100871 (China); Wu, Yue [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Hou, Yonghui; Zhang, Yong, E-mail: yuanhb4861@pku.edu.cn, E-mail: x.liu@pku.edu.cn [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)

    2015-02-01

    We propose a stellar locus outlier (SLOT) method to determine the binary fraction of main-sequence stars statistically. The method is sensitive to neither the period nor mass ratio distributions of binaries and is able to provide model-free estimates of binary fraction for large numbers of stars of different populations in large survey volumes. We have applied the SLOT method to two samples of stars from the Sloan Digital Sky Survey (SDSS) Stripe 82, constructed by combining the recalibrated SDSS photometric data with the spectroscopic information from the SDSS and LAMOST surveys. For the SDSS spectroscopic sample, we find an average binary fraction for field FGK stars of 41% ± 2%. The fractions decrease toward late spectral types and are 44% ± 5%, 43% ± 3%, 35% ± 5%, and 28% ± 6% for stars with g – i colors in the range 0.3-0.6 mag, 0.6-0.9 mag, 0.9-1.2 mag, and 1.2-1.6 mag, respectively. A modest metallicity dependence is also found. The fraction decreases with increasing metallicity. For stars with [Fe/H] between –0.5 and 0.0 dex, –1.0 and –0.5 dex, –1.5 and –1.0 dex, and –2.0 and –1.5 dex, the inferred binary fractions are 37% ± 3%, 39% ± 3%, 50% ± 9%, and 53% ± 20%, respectively. We have further divided the sample into stars from the thin disk, the thick disk, the transition zone between them, and the halo. The results suggest that the Galactic thin and thick disks have comparable binary fractions, whereas the Galactic halo contains a significantly larger fraction of binaries. Applying the method to the LAMOST spectroscopic sample yields consistent results. Finally, other potential applications and future work with the method are discussed.

  14. MODELING THE ROSSITER–MCLAUGHLIN EFFECT: IMPACT OF THE CONVECTIVE CENTER-TO-LIMB VARIATIONS IN THE STELLAR PHOTOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Cegla, H. M.; Watson, C. A. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Oshagh, M.; Figueira, P.; Santos, N. C. [Instituto de Astrofisica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Shelyag, S., E-mail: h.cegla@qub.ac.uk [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria, 3800 (Australia)

    2016-03-01

    Observations of the Rossiter–McLaughlin (RM) effect provide information on star–planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modeling and explore the impact of a convective blueshift that varies across the stellar disk and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a four-day orbit about a Sun-like star and injected center-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modeling and classical RM modeling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i and with decreasing intrinsic profile width. For slowly rotating stars the center-to-limb convective variation dominated the residuals (with amplitudes of 10 s of cm s{sup −1} to ∼1 m s{sup −1}); however, for faster rotating stars the dominant residual signature was due a non-Gaussian intrinsic profile (with amplitudes from 0.5 to 9 m s{sup −1}). When the impact factor was 0, neglecting to account for the convective center-to-limb variation led to an uncertainty in the obliquity of ∼10°–20°, even though the true v sin i was known. Additionally, neglecting to properly model an asymmetric intrinsic profile had a greater impact for more rapidly rotating stars (e.g., v sin i = 6 km s{sup −1}) and caused systematic errors on the order of ∼20° in the measured obliquities. Hence, neglecting the impact of stellar surface convection may bias star–planet alignment measurements and consequently theories on planetary migration and evolution.

  15. Stellar Populations

    NARCIS (Netherlands)

    Peletier, Reynier F.

    2013-01-01

    This is a summary of my lectures during the 2011 Canary Islands Winter School in Puerto de la Cruz. I give an introduction to the field of stellar populations in galaxies, and highlight some new results. Since the title of the Winter School is Secular Evolution in Galaxies I mostly concentrate on ne

  16. Stellar remnants

    CERN Document Server

    Kawaler, S D; Srinivasan, G

    1997-01-01

    This volume examines the internal structure, origin and evolution of white dwarfs, neutron stars and black holes, all objects at the final stage of stellar evolution. It covers topics such as: pulsation of white dwarfs; millisecond pulsars; and the dynamics around black holes.

  17. Dynamical modelling of the galactic bulge and bar: the Milky Way's pattern speed, stellar and dark matter mass distribution

    Science.gov (United States)

    Portail, Matthieu; Gerhard, Ortwin; Wegg, Christopher; Ness, Melissa

    2017-02-01

    We construct a large set of dynamical models of the galactic bulge, bar and inner disc using the made-to-measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS Survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of 39.0 ± 3.5 km s- 1 kpc- 1, placing the bar corotation radius at 6.1 ± 0.5 kpc and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be Mbar/bulge = 1.88 ± 0.12 × 1010 M⊙, larger than the mass of disc in the bar region, Minner disc = 1.29 ± 0.12 × 1010 M⊙. The total dynamical mass in the bulge volume is 1.85 ± 0.05 × 1010 M⊙. Thanks to more extended kinematic data sets and recent measurement of the bulge initial mass function, our models have a low dark matter fraction in the bulge of 17 ± 2 per cent. We find a dark matter density profile which flattens to a shallow cusp or core in the bulge region. Finally, we find dynamical evidence for an extra central mass of ∼ 0.2 × 1010 M⊙, probably in a nuclear disc or discy pseudo-bulge.

  18. The Stagger-grid: A grid of 3D stellar atmosphere models - III. The relation to mixing length convection theory

    CERN Document Server

    Magic, Zazralt; Asplund, Martin

    2014-01-01

    We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. The adiabatic entropy value of the deep convection zone, s_bot, and the entropy jump, {\\Delta}s, determined from the 3D RHD models, are matched with the mixing length parameter, {\\alpha}_MLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derive the mass mixing length, {\\alpha}_m, and the vertical correlation length of the vertical velocity, C[v_z,v_z], directly from the 3D hydrodynamical simulations of stellar subsurface convection. The calibrated mixing length parameter for the Sun is {\\alpha}_MLT (s_bot) = 1.98. For different stellar parameters, {\\alpha}_MLT varies systematically in the range of 1.7 - 2.4. In particular, {\\alpha}_MLT decreases towards higher effective temperature, lower surface gravity and higher metallicity...

  19. Tracing the evolution of NGC6397 through the chemical composition of its stellar populations

    CERN Document Server

    Lind, K; Decressin, T; Primas, F; Grundahl, F; Asplund, M

    2010-01-01

    With the aim to constrain multiple populations in the metal-poor globular cluster NGC6397, we analyse and discuss the chemical compositions of a large number of elements in 21 red giant branch stars. High-resolution spectra were obtained with the FLAMES/UVES spectrograph on VLT. We have determined non-LTE abundances of Na and LTE abundances for the remaining 21 elements, including O, Mg, Al, alpha, iron-peak, and neutron-capture elements, many of which have not previously been analysed for this cluster. We have also considered the influence of possible He enrichment in the analysis of stellar spectra. We find that the Na abundances of evolved, as well as unevolved, stars show a distinct bimodality, which suggests the presence of two stellar populations; one primordial stellar generation with composition similar to field stars, and a second generation that is enriched in material processed through hydrogen-burning (enriched in Na and Al and depleted in O and Mg). The cluster is dominated (75%) by the second ge...

  20. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC2264

    CERN Document Server

    Landin, N R; Vaz, L P R; Alencar, S H P

    2015-01-01

    Rotational evolution in young stars is described by pMS evolutionary tracks including rotation, conservation of angular momentum (AM), and simulations of disk-locking (DL). By assuming that DL is the regulation mechanism for the stellar angular velocity during the early stages of pMS, we use our models and observational data to constrain disk lifetimes (Tdisk) of a sample of low-mass stars in the ONC and NGC2264. The period distributions of the ONC and NGC2264 are bimodal and depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated some sets of evolutionary tracks. We assumed that the evolution of fast rotators can be modeled by considering conservation of AM during all stages and of moderate rotators by considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects locked in the...

  1. Modelling the Rossiter-McLaughlin Effect: Impact of the Convective Centre-to-Limb Variations in the Stellar Photosphere

    CERN Document Server

    Cegla, H M; Watson, C A; Figueira, P; Santos, N C; Shelyag, S

    2016-01-01

    Observations of the Rossiter-McLaughlin (RM) effect provide information on star-planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modelling and explore the impact of a convective blueshift that varies across the stellar disc and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a 4 d orbit about a Sun-like star and injected centre-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modelling and classical RM modelling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i, and with decreasing intrinsic profile width. For slowly rotating stars the centre-to-limb convective variation dominated the residuals (with amplitudes of 10s of cm/s to ~1 m/s); however, for faster rotating stars the dominant residual signature was due a non-Gaussian in...

  2. Evolution of long-lived globular cluster stars I. Grid of stellar models with helium enhancement at [Fe/H] = -1.75

    CERN Document Server

    Chantereau, William; Decressin, Thibaut

    2015-01-01

    Our understanding of the formation and early evolution of globular clusters (GCs) has been totally overthrown with the discovery of the peculiar chemical properties of their long-lived host stars. As a consequence, the interpretation of the observed color-magnitude diagrams and of the properties of the GC stellar populations requires the use of stellar models computed with relevant chemical compositions. We present a grid of 224 stellar evolution for low-mass stars with initial masses between 0.3 and 1.0 Msun and initial helium mass fraction between 0.248 and 0.8 computed for [Fe/H]=-1.75 with the stellar evolution code STAREVOL. This grid is made available to the community. We explore the implications of the assumed initial chemical distribution for the main properties of the stellar models: evolution paths in the Hertzsprung-Russel diagram (HRD), duration and characteristics of the main evolutionary phases, and the chemical nature of the white dwarf remnants. We also provide the ranges in initial stellar ma...

  3. Gravitational Lensing & Stellar Dynamics

    CERN Document Server

    Koopmans, L V E

    2005-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.

  4. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  5. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and

  6. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  7. Modelling the stellar soft-photon energy density profile of globular clusters

    CERN Document Server

    Prinsloo, P L; Buesching, I; Kopp, A

    2013-01-01

    Recent observations by e.g. Fermi Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) have revealed globular clusters (GC) to be sources of high-energy (HE) and very-high-energy (VHE) gamma rays. It has been suggested that the presence of large numbers of millisecond pulsars (MSPs) within these clusters may be either directly responsible for these gamma-ray fluxes through emission of pulsed curvature radiation, or indirectly through the injection of relativistic leptons into the cluster. These relativistic particles are plausibly re-accelerated in shocks, created by the collision of stellar winds, before interacting with the soft-photon radiation field set up by the stellar population of the host cluster. Inverse Compton (IC) scattering then produces gamma radiation in the TeV band. In order to calculate the IC spectrum, an accurate profile for the energy density of the soft-photon field is required. We construct such a profile by deriving a radially-dependent expression for the stel...

  8. Detailed Opacity Comparison for an Improved Stellar Modeling of the Envelopes of Massive Stars

    Science.gov (United States)

    Turck-Chièze, S.; Le Pennec, M.; Ducret, J. E.; Colgan, J.; Kilcrease, D. P.; Fontes, C. J.; Magee, N.; Gilleron, F.; Pain, J. C.

    2016-06-01

    Seismic observations have led to doubts or ambiguities concerning the opacity calculations used in stellar physics. Here, we concentrate on the iron-group opacity peak, due to iron, nickel, and chromium, located around T = 200,000 K for densities from {10}-8 {to} {10}-4 {{g}} {{cm}}-3, which creates some convective layers in stellar radiative envelopes for masses between 3 and 18 {M}⊙ . These conditions were extensively studied in the 1980s. More recently, inconsistencies between OP and OPAL opacity calculations have complicated the interpretation of seismic observations as the iron-group opacity peak excites acoustic and gravity modes in SPB, β Cephei, and sdB stars. We investigate the reliability of the theoretical opacity calculations using the modern opacity codes ATOMIC and SCO-RCG. We show their temperature and density dependence for conditions that are achievable in the laboratory and equivalent to astrophysical conditions. We also compare new theoretical opacity spectra with OP spectra and quantify how different approximations impact the Rosseland mean calculations.This detailed study estimates new ATOMIC and SCO-RCG Rosseland mean values for astrophysical conditions which we compare to OP values. Some puzzling questions are still under investigation for iron, but we find a strong increase in the Rosseland mean nickel opacity of a factor between 2 and 6 compared to OP. This appears to be due to the use of extrapolated atomic data for the Ni opacity within the OP calculations. A study on chromium is also shown.

  9. Modeling the gravitational potential of a cosmological dark matter halo with stellar streams

    CERN Document Server

    Sanderson, Robyn E; Helmi, Amina

    2016-01-01

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo's gravitational potential. We find that orbits integrated in static spherical and triaxial NFW potentials both reproduce the locations and kinematics of the various streams reasonably well. To quantify this further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically-averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. T...

  10. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    Science.gov (United States)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina

    2017-02-01

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify this further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.

  11. Can we trust elemental abundances derived in late-type giants with the classical 1D stellar atmosphere models?

    CERN Document Server

    Kucinskas, A; Ivanauskas, A; Ludwig, H -G; Caffau, E; Blazevicius, K; Klevas, J; Prakapavicius, D

    2009-01-01

    We compare the abundances of various chemical species as derived with 3D hydrodynamical and classical 1D stellar atmosphere codes in a late-type giant characterized by T_eff=3640K, log g = 1.0, [M/H] = 0.0. For this particular set of atmospheric parameters the 3D-1D abundance differences are generally small for neutral atoms and molecules but they may reach up to 0.3-0.4 dex in case of ions. The 3D-1D differences generally become increasingly more negative at higher excitation potentials and are typically largest in the optical wavelength range. Their sign can be both positive and negative, and depends on the excitation potential and wavelength of a given spectral line. While our results obtained with this particular late-type giant model suggest that 1D stellar atmosphere models may be safe to use with neutral atoms and molecules, care should be taken if they are exploited with ions.

  12. Absolute dimensions of solar-type eclipsing binaries. EF Aquarii: a G0 test for stellar evolution models

    CERN Document Server

    Vos, J; Jørgensen, U G; Østensen, R H; Claret, A; Hillen, M; Exter, K

    2012-01-01

    Recent studies have shown that stellar chromospheric activity, and its effect on convective energy transport in the envelope, is most likely the cause of significant radius and temperature discrepancies between theoretical evolution models and observations. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary EF Aqr, and to perform a detailed comparison with results from recent stellar evolutionary models. uvby-beta standard photometry was obtained with the Stromgren Automatic Telescope. The broadening function formalism was applied on spectra observed with HERMES at the Mercator telescope in La Palma, to obtain radial velocity curves. Masses and radii with a precision of 0.6% and 1.0% respectively have been established for both components of EF Aqr. The active 0.956 M_sol secondary shows star spots and strong Ca II H and K emission lines. The 1.224 M_sol primary shows signs of activity as well, but at a lower level. An [Fe/H] abundance of 0.00+-0.10 is derived w...

  13. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    Science.gov (United States)

    Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.

    2016-04-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.

  14. The Stagger-grid: A grid of 3D stellar atmosphere models - V. Fe line shapes, shifts and asymmetries

    CERN Document Server

    Magic, Zazralt; Asplund, Martin

    2014-01-01

    We present a theoretical study of the effects and signatures of realistic velocity field and atmospheric inhomogeneities associated with convective motions at the surface of cool late-type stars on the emergent profiles of iron spectral lines for a large range in stellar parameters. We compute 3D spectral line flux profiles under the assumption of local thermodynamic equilibrium (LTE) by employing state-of-the-art, time-dependent, 3D, radiative-hydrodynamical atmosphere models from the Stagger-grid. A set of 35 real unblended, optical FeI and FeII lines of varying excitation potential are considered. Additionally, fictitious Fe i and Fe ii lines (5000A and 0, 2, 4 eV) are used to construct general curves of growth and enable comparison of line profiles with the same line strength to illustrate systematical trends stemming from the intrinsic structural differences among 3D model atmospheres with different stellar parameters. Theoretical line shifts and bisectors are derived to analyze the shapes, shifts, and a...

  15. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    CERN Document Server

    Aringer, Bernhard; Nowotny, Walter; Marigo, Paola; Bressan, Alessandro

    2016-01-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high resolution opacity sampling and low resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to one, even strong shifts of the colours. For the usage with stellar evolution calculations they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic Bu...

  16. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  17. Some new Wyman-Adler type static relativistic charged anisotropic fluid spheres compatible to \\emph{self-bound} stellar modeling

    CERN Document Server

    Murad, Mohammad Hassan

    2014-01-01

    In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials, a suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for matter distribution obtained in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). These models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated numerically that the maximum compactness and mass increase in the presence of electric field and anisotropic pressures. Based on the a...

  18. Stellar magnetic cycles

    Science.gov (United States)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  19. Stellar Structure and Evolution

    CERN Document Server

    Kippenhahn, Rudolf; Weiss, Achim

    2013-01-01

    This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its...

  20. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations....../Fe] ratios close to solar even at [Fe/H] ~ -2. This is at variance with results of classical abundance analyses based on local thermodynamic equilibrium (LTE) and 1D model stellar atmospheres, which argue for a constant elevated [Mg/Fe] in metal-poor stars of the Galactic thick disk and halo....

  1. Characterizing simulated galaxy stellar mass histories

    CERN Document Server

    Cohn, J D

    2014-01-01

    Galaxy formation simulations can now predict many galaxy properties and their evolution through time. To go beyond studying average stellar mass history properties, we classified ensembles of simulated stellar mass histories, holding fixed their z=0 stellar mass. We applied principal component analysis (PCA) to stellar mass histories from the dark matter plus semi-analytic Millennium simulation and the hydrodynamical OverWhelmingly Large Simulations (OWLS) project, finding that a large fraction of the total scatter around the average stellar mass history for each sample is due to only one PCA fluctuation. This fluctuation differs between some different models sharing the same z=0 stellar mass and between lower (<=3e10 M_o) and higher final stellar mass Millennium samples. We correlated the PCA characterization with several $z=0$ galaxy observables (in principle observable in a survey) and galaxy halo history properties. We also explored separating galaxy stellar mass histories into classes, using the large...

  2. Towards a Measurement of the Half-Life of {sup 60}Fe for Stellar and Early Solar System Models

    Energy Technology Data Exchange (ETDEWEB)

    Ostdiek, K.; Anderson, T.; Bauder, W.; Bowers, M.; Collon, P.; Dressler, R.; Greene, J.; Kutschera, W.; Lu, W.; Paul, M.

    2015-10-15

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, Fe-60, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the Fe-60/Fe-56 concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in Co-60, which is the decay product of Fe. Preliminary half-life estimates of (2.53 +/- 0.24) x 10(6) years seem to confirm the recent measurement by Rugel et al. (2009). (C) 2015 Elsevier B.V. All rights reserved.

  3. Modeling Stellar Parameters for High Resolution Late-M and Early-L Dwarf SDSS/APOGEE Spectra

    Science.gov (United States)

    Birky, Jessica L.; Aganze, Christian; Burgasser, Adam J.; Theissen, Christopher; Schmidt, Sarah J.; Teske, Johanna K.; Stassun, Keivan G.; Bird, Jonathan C.; UCSD FAST Team

    2017-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of the Sloan Digital Sky Survey IV has measured high resolution (R~22,500), near-infrared (1.51-1.70 µm) spectra for nearly 100,000 stars within the Milky Way Galaxy. While the APOGEE experiment was designed to research Galactic structure by targeting bright stellar populations in the disk, we have focused attention on the lesser-studied subset of faint and low-temperature late-M and early-L dwarfs, with the objective of characterizing their chemical abundances. Using spectral synthesis routines from the Starfish package, we report preliminary determinations of Teff, logg, and [Fe/H] for a small sample of spectra using PHOENIX models ranging in the 2,300 to 3,000K temperature grids.This work is supported by the SDSS Faculty and Student (FAST) initiative, funded by the Alfred P. Sloan Foundation.

  4. Model equation-of-state for any material in conditions relevant to ICF and to stellar interiors

    Energy Technology Data Exchange (ETDEWEB)

    Atzeni, S.; Caruso, A.; Pais, V.A.

    A simple model Equation-of-State (EOS) for matter in conditions of interest to Inertial Confinement Fusion (ICF) and to Stellar Interiors is developed. It yields pressures and specific energies in good agreement with accurate EOS tabulations, for matter in the density range 10/sup -6/ < rho < 10/sup 4/ g cm/sup -3/ and in the temperature range O <= T < 100 KeV, with the only exception being the liquid and gaseous phases of the undissociated molecular substances. This EOS can be used for any element or mixture, requiring, as input data, only the chemical composition (A, Z, and abundancy of each element of the mixture) and three macroscopic constants of the material.

  5. Towards a measurement of the half-life of {sup 60}Fe for stellar and early Solar System models

    Energy Technology Data Exchange (ETDEWEB)

    Ostdiek, K.; Anderson, T. [University of Notre Dame, Notre Dame, IN 46556 (United States); Bauder, W. [University of Notre Dame, Notre Dame, IN 46556 (United States); Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Bowers, M.; Collon, P. [University of Notre Dame, Notre Dame, IN 46556 (United States); Dressler, R. [Paul Scherrer Institute – Laboratory for Radiochemistry and Environmental Chemistry, 5232 Villigen (Switzerland); Greene, J. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kutschera, W. [Vienna Environmental Research Accelerator Laboratory, Waehringer Strasse 17, 1090 Vienna (Austria); Lu, W. [University of Notre Dame, Notre Dame, IN 46556 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Robertson, D. [University of Notre Dame, Notre Dame, IN 46556 (United States); Schumann, D. [Paul Scherrer Institute – Laboratory for Radiochemistry and Environmental Chemistry, 5232 Villigen (Switzerland); Skulski, M. [University of Notre Dame, Notre Dame, IN 46556 (United States); Wallner, A. [The Australian National University, Canberra, ACT 0200 (Australia)

    2015-10-15

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, {sup 60}Fe, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state {sup 60}Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the {sup 60}Fe/{sup 56}Fe concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in {sup 60}Co, which is the decay product of {sup 60}Fe. Preliminary half-life estimates of (2.53 ± 0.24) × 10{sup 6} years seem to confirm the recent measurement by Rugel et al. (2009).

  6. A New Theoretical Library of High-resolution Stellar Spectra for UV-Optical Population Synthesis Models

    Science.gov (United States)

    Bertone, E.; Rodriguez-Merino, L.; Chavez, M.; Buzzoni, A.

    2003-06-01

    We present a new theoretical library of stellar spectra covering the wavelength interval from 850 to 7000 Å. The library consists of two datasets, one including the far UV-blue spectral region from 850 to 4750 Å at inverse spectral resolution R = 50000, and the latter spanning the range 3500-7000 Å at R = 500000. Both sets are based on the SYNTHE series of codes developed by R.L. Kurucz. For its comprehensive range of physical parameters (i.e. T[eff], logg and [M/H]) and higher spectral resolution, this is the most advanced spectral library currently available in the literature, and could profitably be used for population synthesis models and abundance studies of single stars.

  7. Self-consistent physical parameters for 5 intermediate-age SMC stellar clusters from CMD modelling

    CERN Document Server

    Dias, Bruno; Barbuy, Beatriz; Santiago, Basilio; Ortolani, Sergio; Balbinot, Eduardo

    2013-01-01

    Context. Stellar clusters in the Small Magellanic Cloud (SMC) are useful probes to study the chemical and dynamical evolution of this neighbouring dwarf galaxy, enabling inspection of a large period covering over 10 Gyr. Aims. The main goals of this work are the derivation of age, metallicity, distance modulus, reddening, core radius and central density profile for six sample clusters, in order to place them in the context of the Small Cloud evolution. The studied clusters are: AM 3, HW 1, HW 34, HW 40, Lindsay 2, and Lindsay 3, where HW 1, HW 34, and Lindsay 2 are studied for the first time. Methods. Optical Colour-Magnitude Diagrams (V, B-V CMDs) and radial density profiles were built from images obtained with the 4.1m SOAR telescope, reaching V~23. The determination of structural parameters were carried out applying King profile fitting. The other parameters were derived in a self-consistent way by means of isochrone fitting, which uses the likelihood statistics to identify the synthetic CMDs that best rep...

  8. Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    CERN Document Server

    Huang, W

    2005-01-01

    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) s...

  9. Two bi-stability jumps in theoretical wind models for massive stars and the implications for Luminous Blue Variable supernovae

    CERN Document Server

    Petrov, Blagovest; Gräfener, Götz

    2016-01-01

    Luminous Blue Variables have been suggested to be the direct progenitors of supernova types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass-loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-LTE model atmosphere code over an effective temperature range between 30000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink, de Koter, & Lamers (1999). However, they are found to occur at somewhat lower Teff (20000 and 9000 K, respectively) than found previously, which would imply that stars may ev...

  10. The Milky Way's Stellar Disk

    CERN Document Server

    Rix, Hans-Walter

    2013-01-01

    A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanisms of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up from `mono-abundance populations' (MAPs), both for dynamical modeling and for constraining the Milky Way's evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and lay out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way's dark matter distribution and formation history.

  11. 3D Gray Radiative Properties of Accretion Shocks in Young Stellar Objects

    Directory of Open Access Journals (Sweden)

    Ibgui L.

    2014-01-01

    Full Text Available We address the problem of the contribution of radiation to the structure and dynamics of accretion shocks on Young Stellar Objects. Solving the 3D RTE (radiative transfer equation under our “gray LTE approach”, i.e., using appropriate mean opacities computed in local thermodynamic equilibrium, we post-process the 3D MHD (magnetohydrodynamic structure of an accretion stream impacting the stellar chromosphere. We find a radiation flux of ten orders of magnitude larger than the accreting energy rate, which is due to a large overestimation of the radiative cooling. A gray LTE radiative transfer approximation is therefore not consistent with the given MHD structure of the shock. Further investigations are required to clarify the role of radiation, by relaxing both the gray and LTE approximations in RHD (radiation hydrodynamics simulations. Post-processing the obtained structures through the resolution of the non-LTE monochromatic RTE will provide reference radiation quantities against which RHD approximate solutions will be compared.

  12. Urban Futures - Innovation Engines or Slums? A Stellar Evolution Model of Urban Growth

    Science.gov (United States)

    Shutters, S. T.; Timmes, F.; Desouza, K.

    2015-12-01

    Why, as cities grow in size and density, do some "ignite" into global engines of innovation and prosperity while others grow into dense slums? This is our overarching question as we explore a novel framework for thinking about the evolution of cities and, more specifically, the divergent trajectories they may take. We develop a speculative framework by examining the analogies between the evolution of cities and the evolution of stars. Like cities, stellar gas clouds can grow in mass, eventually reaching temperature and density thresholds at which they ignite the hydrogen fuel in their cores to become full-fledged stars. But not all gas and dust clouds share this fate. Some never achieve the critical conditions and do not unleash the energy we witness emanating from our own star. Some stars, after exhaustion of their initial fuel, evolve to incredible density but lack the temperature to ignite the next fuel needed to maintain the critical interactions that release so much energy. Instead they fade away to an object of intense density, but without the vibrant emission of light and energy associated with non-degenerate stars. The fate of cities, too, depends on the density of interactions - not of gas molecules, but of people. This elevated rate of face-to-face interactions in an urban core is critical for the transition to an innovative and creative economy. Yet, density is not enough, as evidenced both by many megacities in the developing world and degenerate stars. What is this missing element that, along with density, ignites a city and turns it into an innovation engine? With these analogies in mind, we explore whether they are useful for framing future research on cities, what questions they may help pose, and, more broadly, how physical, social, and natural scientists can all contribute to an interdisciplinary endeavor to understand cities more deeply.

  13. DOLPHOT: Stellar photometry

    Science.gov (United States)

    Dolphin, Andrew

    2016-08-01

    DOLPHOT is a stellar photometry package that was adapted from HSTphot for general use. It supports two modes; the first is a generic PSF-fitting package, which uses analytic PSF models and can be used for any camera. The second mode uses ACS PSFs and calibrations, and is effectively an ACS adaptation of HSTphot. A number of utility programs are also included with the DOLPHOT distribution, including basic image reduction routines.

  14. The DEMO Quasisymmetric Stellarator

    OpenAIRE

    McFadden, Geoffrey B.; Garabedian, Paul R.

    2010-01-01

    The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neo...

  15. Rossiter--McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems

    CERN Document Server

    Brown, D J A; Doyle, A P; Gillon, M; Lendl, M; Anderson, D R; Cameron, A Collier; Hébrard, G; Hellier, C; Lovis, C; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Smalley, B

    2016-01-01

    We present new measurements of the projected spin--orbit angle $\\lambda$ for six WASP hot Jupiters, four of which are new to the literature (WASP-61, -62, -76, and -78), and two of which are new analyses of previously measured systems using new data (WASP-71, and -79). We use three different models based on two different techniques: radial velocity measurements of the Rossiter--McLaughlin effect, and Doppler tomography. Our comparison of the different models reveals that they produce projected stellar rotation velocities ($v \\sin I_{\\rm s}$) measurements often in disagreement with each other and with estimates obtained from spectral line broadening. The Bou\\'e model for the Rossiter--McLaughlin effect consistently underestimates the value of $v\\sin I_{\\rm s}$ compared to the Hirano model. Although $v \\sin I_s$ differed, the effect on $\\lambda$ was small for our sample, with all three methods producing values in agreement with each other. Using Doppler tomography, we find that WASP-61\\,b ($\\lambda=4^\\circ.0^{+...

  16. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    Science.gov (United States)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  17. The ILIUM forward modelling algorithm for multivariate parameter estimation and its application to derive stellar parameters from Gaia spectrophotometry

    CERN Document Server

    Bailer-Jones, C A L

    2009-01-01

    I introduce an algorithm for estimating parameters from multidimensional data based on forward modelling. In contrast to many machine learning approaches it avoids fitting an inverse model and the problems associated with this. The algorithm makes explicit use of the sensitivities of the data to the parameters, with the goal of better treating parameters which only have a weak impact on the data. The forward modelling approach provides uncertainty (full covariance) estimates in the predicted parameters as well as a goodness-of-fit for observations. I demonstrate the algorithm, ILIUM, with the estimation of stellar astrophysical parameters (APs) from simulations of the low resolution spectrophotometry to be obtained by Gaia. The AP accuracy is competitive with that obtained by a support vector machine. For example, for zero extinction stars covering a wide range of metallicity, surface gravity and temperature, ILIUM can estimate Teff to an accuracy of 0.3% at G=15 and to 4% for (lower signal-to-noise ratio) sp...

  18. Some new Wyman-Leibovitz-Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling

    Energy Technology Data Exchange (ETDEWEB)

    Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Fatema, Saba [Daffodil International University, Department of Natural Sciences, Dhaka (Bangladesh)

    2015-11-15

    In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving the Einstein-Maxwell field equations with a preferred form of one of the metric potentials, and suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for the matter distribution considered in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g., electrically charged bare strange stars). Furthermore these models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated, numerically, that the maximum compactness and mass increase in the presence of an electric field and anisotropic pressures. Based on the analytic models developed in this present work, the values of some relevant physical quantities have been calculated by assuming the estimated masses and radii of some well-known potential strange star candidates like PSR J1614-2230, PSR J1903+327, Vela X-1, and 4U 1820-30. (orig.)

  19. Stellar activity and magnetic shielding

    CERN Document Server

    Grießmeier, J -M; Lammer, H; Grenfell, J L; Stadelmann, A; Motschmann, U; 10.1017/S1743921309992961

    2010-01-01

    Stellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.

  20. PREFACE: A Stellar Journey A Stellar Journey

    Science.gov (United States)

    Asplund, M.

    2008-10-01

    astronomical talk, student lecture, musical concert or theatre play. Another attribute of Bengt is his boundless optimism, which not the least has helped many of his students overcome the unavoidable moments of despair (this is only true as long as one is aware of the well-known BG factor: multiply any of Bengt's estimates for the time required to complete a task by at least a factor of three). His personal traits make working with Bengt always very enjoyable as well as highly educating. Bengt's work also extends well beyond the domain of astronomy, including music, literature, theatre, religion, research ethics, science policy and science popularization. Bengt is an excellent role model for a successful scientist with a rich and rewarding life outside of academia. The symposium A Stellar Journey was divided into five sessions covering basically the main research areas Bengt has worked on: Stellar atmospheres, Solar/stellar spectroscopy, Stellar parameters, Stellar evolution and nucleosynthesis and Stellar populations. In addition, one afternoon was devoted to a session entitled Anything but astronomy (see the symposium program), which tried to showcase Bengt's diverse interests outside of astronomy with talks ranging from religion and history of science over science popularization and future studies to literature and music. My task, as chair of the Scientific Organizing Committee, to put together an exciting scientific program of invited reviews and talks was made considerably easier thanks to the excellent suggestions by the other SOC members: Ann Boesgaard, Sofia Feltzing, John Lattanzio, Andre Maeder, Bertrand Plez and Monique Spite. I believe in the end we were successful in achieving our charge, an impression corroborated by the many encouraging comments from various participants during and after the conference. I am particularly grateful to Nils Bergvall, Bengt Edvardsson and Bertrand Plez for their time-consuming efforts in arranging the extraordinary and greatly

  1. Magellan/M2FS Spectroscopy of Galaxy Clusters: Stellar Population Model and Application to Abell 267

    Science.gov (United States)

    Tucker, Evan; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Bailey, John I., III; Crane, Jeffrey D.; Shectman, Stephen A.

    2017-09-01

    We report the results of a pilot program to use the Magellan/M2FS spectrograph to survey the galactic populations and internal kinematics of galaxy clusters. For this initial study, we present spectroscopic measurements for 223 quiescent galaxies observed along the line of sight of the galaxy cluster Abell 267 (z∼ 0.23). We develop a Bayesian method for modeling the integrated light from each galaxy as a simple stellar population, with free parameters that specify the redshift ({v}{los}/c) and characteristic age, metallicity ([{Fe}/{{H}}]), alpha-abundance ([α /{Fe}]), and internal velocity dispersion ({σ }{int}) for individual galaxies. Parameter estimates derived from our 1.5 hr observation of A267 have median random errors of {σ }{v{los}}=20 {km} {{{s}}}-1, {σ }{Age}=1.2 {Gyr}, {σ }[{Fe/{{H}}]}=0.11 {dex}, {σ }[α /{Fe]}=0.07 {dex}, and {σ }{σ {int}}=20 {km} {{{s}}}-1. In a companion paper, we use these results to model the structure and internal kinematics of A267.

  2. GrayStar: A Web application for pedagogical stellar atmosphere and spectral line modelling and visualisation II: Methods

    CERN Document Server

    Short, C Ian

    2014-01-01

    GrayStar is a stellar atmospheric and spectral line modelling, post-processing, and visualisation code, suitable for classroom demonstrations and laboratory-style assignments, that has been developed in Java and deployed in JavaScript and HTML. The only software needed to compute models and post-processed observables, and to visualise the resulting atmospheric structure and observables, is a common Web browser. Therefore, the code will run on any common PC or related X86 (-64) computer of the type that typically serves classroom data projectors, is found in undergraduate computer laboratories, or that students themselves own, including those with highly portable form-factors such as net-books and tablets. The user requires no experience with compiling source code, reading data files, or using plotting packages. More advanced students can view the JavaScript source code using the developer tools provided by common Web browsers. The code is based on the approximate gray atmospheric solution and runs quickly eno...

  3. A new model for the structure of the DACs and SACs regions in the Oe and Be stellar atmospheres

    CERN Document Server

    Danezis, E; Lyratzi, E; Popović, L Č; Dimitrijević, M S; Antoniou, A; Theodosiou, E

    2007-01-01

    In this paper we present a new mathematical model for the density regions where a specific spectral line and its SACs/DACs are created in the Oe and Be stellar atmospheres. In the calculations of final spectral line function we consider that the main reasons of the line broadening are the rotation of the density regions creating the spectral line and its DACs/SACs, as well as the random motions of the ions. This line function is able to reproduce the spectral feature and it enables us to calculate some important physical parameters, such as the rotational, the radial and the random velocities, the Full Width at Half Maximum, the Gaussian deviation, the optical depth, the column density and the absorbed or emitted energy. Additionally, we can calculate the percentage of the contribution of the rotational velocity and the ions' random motions of the DACs/SACs regions to the line broadening. Finally, we present two tests and three short applications of the proposed model.

  4. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images

    CERN Document Server

    Diego, Jose M; Broadhurst, Tom; Lam, Daniel; Vega-Ferrero, Jesus; Zheng, Wei; Lee, Slanger; Morishita, Takahiro; Bernstein, Gary; Lim, Jeremy; Silk, Joseph; Ford, Holland

    2016-01-01

    We derive a free-form mass distribution for the unrelaxed cluster A370 (z=0.375), using the latest Hubble Frontier Fields images and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems we produce a free-form lens model that identifies ~ 80 multiple-images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent Brightest Cluster Galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r<100 kpc of each BCG. This conclusion may favour a cooled cluster gas origin for BCGs, rather than via mergers of normal galaxies for which dark matter should dominate ove...

  5. The Jeans modeling of the Milky Way galaxy: implications of the kinematics of the stellar halo

    Science.gov (United States)

    Samurović, S.; Lalović, A.

    2011-07-01

    Aims: We investigate the predictions of Newtonian dynamics and the MOND theory related to the Milky Way galaxy using the Jeans equation. Methods: We used the measurements of the radial velocities of the blue horizontal branch (BHB) halo stars to test the predictions of Newtonian gravity and to also extend our study to different MOND models, taking orbital anisotropies that we calculate into account. Results: The halo stars of the Galaxy were used as a tracer of the Galaxy's gravitational potential. The Jeans equation was calculated for both the Newtonian and the MOND approaches. We assumed spherical symmetry and calculated the Jeans equation by taking orbital anisotropies into account. Circular velocities for both approaches were also analyzed. Conclusions: We solved the Jeans equation in spherical approximation and confirm that the Newtonian model without dark matter cannot fit the observed velocity dispersion profile and that the truncated flat model with dark matter can provide a good fit to the observed velocity dispersion. For the MOND models, from the Jeans modeling and the models of the circular velocity curves, we found that two models can provide a fit to the data without significant anisotropies whereas two other tested models need various anisotropies to obtain the same result.

  6. Stellar population synthesis based modelling of the Milky Way using asteroseismology of 13000 Kepler red giants

    CERN Document Server

    Sharma, Sanjib; Bland-Hawthorn, Joss; Huber, Daniel; Bedding, Timothy R

    2016-01-01

    With current space-based missions it is now possible to obtain age-sensitive asteroseismic information for tens of thousands of red giants. This provides a promising opportunity to study the Galactic structure and evolution. We use asteroseismic data of red giants, observed by Kepler, to test the current theoretical framework of modelling the Galaxy based on population synthesis modeling and the use of asteroseismic scaling relations for giants. We use the open source code Galaxia to model the Milky Way and find the distribution of the masses predicted by Galaxia to be systematically offset with respect to the seismically-inferred observed masses. The Galactic model overestimates the number of low mass stars, and these stars are predominantly old and of low metallicity. Using corrections to the $\\Delta \

  7. Ultraviolet, Optical, and Infrared Constraints on Models of Stellar Populations and Dust Attenuation

    CERN Document Server

    Johnson, Benjamin D; Seibert, Mark; Treyer, Marie; Martin, D Christopher; Barlow, Tom A; Forster, Karl; Friedman, Peter G; Morrissey, Patrick; Neff, Susan G; Small, Todd; Wyder, Ted K; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M; Lee, Young-Wook; Madore, Barry F; Milliard, Bruno; Rich, R Michael; Szalay, A S; Welsh, Barry Y; Yi, Sukyoung K

    2007-01-01

    The color of galaxies is a fundamental property, easily measured, that constrains models of galaxies and their evolution. Dust attenuation and star formation history (SFH) are the dominant factors affecting the color of galaxies. Here we explore the empirical relation between SFH, attenuation, and color for a wide range of galaxies, including early types. These galaxies have been observed by GALEX, SDSS, and Spitzer, allowing the construction of measures of dust attenuation from the ratio of infrared (IR) to ultraviolet (UV) flux and measures of SFH from the strength of the 4000A break. The empirical relation between these three quantities is compared to models that separately predict the effects of dust and SFH on color. This comparison demonstrates the quantitative consistency of these simple models with the data and hints at the power of multiwavelength data for constraining these models. The UV color is a strong constraint; we find that a Milky Way extinction curve is disfavored, and that the UV emission ...

  8. Broad-band colors and overall photometric properties of template galaxy models from stellar population synthesis

    OpenAIRE

    Buzzoni, Alberto

    2005-01-01

    We present here a new set of evolutionary population synthesis models for template galaxies along the Hubble morphological sequence. The models, that account for the individual evolution of the bulge, disk, and halo components, provide basic morphological features, along with bolometric luminosity and color evolution (including Johnson/Cousins "UBVRcIcJHK", Gunn "gri", and Washington "CMT1T2" photometric systems) between 1 and 15 Gyr. Luminosity contribution from residual gas is also evaluate...

  9. Galactic globular clusters as a test for very-low-mass stellar models

    Science.gov (United States)

    Cassisi, S.; Castellani, V.; Ciarcelluti, P.; Piotto, G.; Zoccali, M.

    2000-07-01

    We make use of the `Next Generation' model atmospheres of Allard et al. and Hauschildt, Allard & Baron to compute theoretical models for low- and very-low-mass stars for selected metallicities in the range Z=0.0002 to 0.002. On this basis, we present theoretical predictions covering the sequence of H-burning stars as observed in Galactic globulars from the faint end of the main sequence up to, and beyond, the cluster turn-off. The role played by the new model atmospheres is discussed, showing that present models appear in excellent agreement with models by Baraffe et al. as computed on a quite similar physical basis. One finds that the theoretical mass-luminosity relations based on this updated set of models are in good agreement with the empirical data provided by Henry & McCarthy. Comparison with HST observation discloses that the location on the colour-magnitude diagram of the lower main sequence in Galactic globular clusters appears again in good agreement with the predicted sensitive dependence of these sequences on the cluster metallicity.

  10. A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps

    Science.gov (United States)

    Reina-Campos, Marta; Kruijssen, J. M. Diederik

    2017-08-01

    We present a simple, self-consistent model to predict the maximum masses of giant molecular clouds (GMCs), stellar clusters and high-redshift clumps as a function of the galactic environment. Recent works have proposed that these maximum masses are set by shearing motions and centrifugal forces, but we show that this idea is inconsistent with the low masses observed across an important range of local-Universe environments, such as low-surface density galaxies and galaxy outskirts. Instead, we propose that feedback from young stars can disrupt clouds before the global collapse of the shear-limited area is completed. We develop a shear-feedback hybrid model that depends on three observable quantities: the gas surface density, the epicylic frequency and the Toomre parameter. The model is tested in four galactic environments: the Milky Way, the Local Group galaxy M31, the spiral galaxy M83 and the high-redshift galaxy zC406690. We demonstrate that our model simultaneously reproduces the observed maximum masses of GMCs, clumps and clusters in each of these environments. We find that clouds and clusters in M31 and in the Milky Way are feedback-limited beyond radii of 8.4 and 4 kpc, respectively, whereas the masses in M83 and zC406690 are shear-limited at all radii. In zC406690, the maximum cluster masses decrease further due to their inspiral by dynamical friction. These results illustrate that the maximum masses change from being shear-limited to being feedback-limited as galaxies become less gas rich and evolve towards low shear. This explains why high-redshift clumps are more massive than GMCs in the local Universe.

  11. Rossiter-McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems

    Science.gov (United States)

    Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Cameron, A. Collier; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B.

    2016-09-01

    We present new measurements of the projected spin-orbit angle λ for six WASP hot Jupiters, four of which are new to the literature (WASP-61, -62, -76, and -78), and two of which are new analyses of previously measured systems using new data (WASP-71, and -79). We use three different models based on two different techniques: radial velocity measurements of the Rossiter-McLaughlin effect, and Doppler tomography. Our comparison of the different models reveals that they produce projected stellar rotation velocities (vsin Is) measurements often in disagreement with each other and with estimates obtained from spectral line broadening. The Boué model for the Rossiter-McLaughlin effect consistently underestimates the value of vsin Is compared to the Hirano model. Although vsin Is differed, the effect on λ was small for our sample, with all three methods producing values in agreement with each other. Using Doppler tomography, we find that WASP-61 b (λ =4.0°+17.1-18.4), WASP-71 b (λ =-1.9°+7.1-7.5), and WASP-78 b (λ = -6.4° ± 5.9) are aligned. WASP-62 b (λ =19.4°+5.1-4.9) is found to be slightly misaligned, while WASP-79 b (λ =-95.2°+0.9-1.0) is confirmed to be strongly misaligned and has a retrograde orbit. We explore a range of possibilities for the orbit of WASP-76 b, finding that the orbit is likely to be strongly misaligned in the positive λ direction.

  12. Role of f(R,T,R{sub μν}T{sup μν}) model on the stability of cylindrical stellar model

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Z.; Bhatti, M.Z.; Farwa, Ume [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2017-06-15

    The aim of this paper is to investigate the stable/unstable regimes of the non-static anisotropic filamentary stellar models in the framework of f(R,T,R{sub μν}T{sup μν}) gravity. We construct the field equations and conservation laws in the perspective of this model of gravity. The perturbation scheme is applied to the analysis of the behavior of a particular f(R,T,R{sub μν}T{sup μν}) cosmological model on the evolution of cylindrical system. The role of the adiabatic index is also checked in the formulations of the instability regions. We have explored the instability constraints in the Newtonian and post-Newtonian limits. Our results reinforce the significance of the adiabatic index and dark source terms in the stability analysis of celestial objects in modified gravity. (orig.)

  13. Determination of the position angle of stellar spin axes

    CERN Document Server

    Lesage, Anna-Lea

    2014-01-01

    Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the t...

  14. An interferometric-spectroscopic orbit for the binary HD 195987 Testing models of stellar evolution for metal-poor stars

    CERN Document Server

    Torres, G; Latham, D W; Pan, M; Stefanik, R P; Torres, Guillermo; Boden, Andrew F.; Latham, David W.; Pan, Margaret; Stefanik, Robert P.

    2002-01-01

    We report spectroscopic and interferometric observations of the moderately metal-poor double-lined binary system HD 195987, with an orbital period of 57.3 days. By combining our radial-velocity and visibility measurements we determine the orbital elements and derive absolute masses for the components of M(A) = 0.844 +/- 0.018 Msun and M(B) = 0.6650 +/- 0.0079 Msun, with relative errors of 2% and 1%, respectively. We also determine the orbital parallax, pi(orb) = 46.08 +/- 0.27 mas, corresponding to a distance of 21.70 +/- 0.13 pc. The parallax and the measured brightness difference between the stars in V, H, and K yield the component absolute magnitudes in those bands. We also estimate the effective temperatures of the stars as Teff(A) = 5200 +/- 100 K and Teff(B) = 4200 +/- 200 K. Together with detailed chemical abundance analyses from the literature giving [Fe/H] approximately -0.5 (corrected for binarity) and [alpha/Fe] = +0.36, we use these physical properties to test current models of stellar evolution f...

  15. Absolute properties of the eclipsing binary system AQ Serpentis: A stringent test of convective core overshooting in stellar evolution models

    CERN Document Server

    Torres, Guillermo; Lacy, Claud H Sandberg; Claret, Antonio

    2013-01-01

    We report differential photometric observations and radial-velocity measurements of the detached, 1.69-day period, double-lined eclipsing binary AQ Ser. Accurate masses and radii for the components are determined to better than 1.8% and 1.1%, respectively, and are M1 = 1.417 +/- 0.021 MSun, M2 = 1.346 +/- 0.024 MSun, R1 = 2.451 +/- 0.027 RSun, and R2 = 2.281 +/- 0.014 RSun. The temperatures are 6340 +/- 100 K (spectral type F6) and 6430 +/- 100 K (F5), respectively. Both stars are considerably evolved, such that predictions from stellar evolution theory are particularly sensitive to the degree of extra mixing above the convective core (overshoot). The component masses are different enough to exclude a location in the H-R diagram past the point of central hydrogen exhaustion, which implies the need for extra mixing. Moreover, we find that current main-sequence models are unable to match the observed properties at a single age even when allowing the unknown metallicity, mixing length parameter, and convective o...

  16. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer

    CERN Document Server

    Khan, S A

    2006-01-01

    The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...

  17. The Probabilities of Orbital-Companion Models for Stellar Radial Velocity Data

    CERN Document Server

    Hou, Fengji; Hogg, David W

    2014-01-01

    The fully marginalized likelihood, or Bayesian evidence, is of great importance in probabilistic data analysis, because it is involved in calculating the posterior probability of a model or re-weighting a mixture of models conditioned on data. It is, however, extremely challenging to compute. This paper presents a geometric-path Monte Carlo method, inspired by multi-canonical Monte Carlo to evaluate the fully marginalized likelihood. We show that the algorithm is very fast and easy to implement and produces a justified uncertainty estimate on the fully marginalized likelihood. The algorithm performs efficiently on a trial problem and multi-companion model fitting for radial velocity data. For the trial problem, the algorithm returns the correct fully marginalized likelihood, and the estimated uncertainty is also consistent with the standard deviation of results from multiple runs. We apply the algorithm to the problem of fitting radial velocity data from HIP 88048 ($\

  18. Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  19. Abundance Analysis of the Halo Giant HD122563 with Three-Dimensional Model Stellar Atmospheres

    CERN Document Server

    Collet, R; Asplund, M; Hayek, W; Trampedach, R

    2009-01-01

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  20. Broad-band colors and overall photometric properties of template galaxy models from stellar population synthesis

    CERN Document Server

    Buzzoni, A

    2005-01-01

    We present here a new set of evolutionary population synthesis models for template galaxies along the Hubble morphological sequence. The models, that account for the individual evolution of the bulge, disk, and halo components, provide basic morphological features, along with bolometric luminosity and color evolution (including Johnson/Cousins "UBVRcIcJHK", Gunn "gri", and Washington "CMT1T2" photometric systems) between 1 and 15 Gyr. Luminosity contribution from residual gas is also evaluated, both in terms of nebular continuum and Balmer-line enhancement.

  1. Astronomical performance of the engineering model Ørsted Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Eisenman, Allan R.; Liebe, Carl Christian; Jørgensen, John Leif

    1996-01-01

    large star data bases which enable the computer to recognize star patterns in the field-of-view, to quickly solve the lost-in-space acquisition problem and to derive the attitude of the ASC camera head. The flight model of the camera head has a mass and a power consumption of 127 grams (without baffle...

  2. Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres

    CERN Document Server

    Kowalski, Piotr M

    2010-01-01

    Over the last decade {\\it ab initio} modeling of material properties has become widespread in diverse fields of research. It has proved to be a powerful tool for predicting various properties of matter under extreme conditions. We apply modern computational chemistry and materials science methods, including density functional theory (DFT), to solve lingering problems in the modeling of the dense atmospheres of cool white dwarfs ($T_{\\rm eff}\\rm <7000 \\, K$). Our work on the revision and improvements of the absorption mechanisms in the hydrogen and helium dominated atmospheres resulted in a new set of atmosphere models. By inclusion of the Ly-$\\rm \\alpha$ red wing opacity we successfully fitted the entire spectral energy distributions of known cool DA stars. In the subsequent work we fitted the majority of the coolest stars with hydrogen-rich models. This finding challenges our understanding of the spectral evolution of cool white dwarfs. We discuss a few examples, including the cool companion to the pulsar...

  3. Stellar atmospheres, atmospheric extension and fundamental parameters: weighing stars using the stellar mass index

    CERN Document Server

    Neilson, Hilding R; Norris, Ryan; Kloppenborg, Brian; Lester, John B

    2016-01-01

    One of the great challenges in understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stel...

  4. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    Science.gov (United States)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  5. Why Simple Stellar Population models do not fit the colours of Galactic open clusters

    CERN Document Server

    Piskunov, A E; Schilbach, E; Röser, S; Scholz, R -D; Zinnecker, H

    2009-01-01

    (...) We have found a disagreement between the observed integrated colours of 650 local Galactic clusters and theoretical colours of present-day SSP models and seek an explanation for this discrepancy. We check the hypothesis that the systematic offset between observed and theoretical colours, which is $(B$$-$$V)\\approx 0.3$ \\textbf{and $(J$$-$$K_s)\\approx 0.8$}, is due to neglecting the discrete nature of the underlying mass function. Using Monte Carlo simulations we construct artificial clusters of coeval stars drawn from a mass distribution according to the Salpeter IMF and compare them with corresponding "continuous-IMF" SSP models. If the discreteness of the IMF is taken into account, the model fits the observations perfectly and is able to explain naturally a number of red "outliers" observed in the empirical colour-age relation. We find that the \\textit{systematic} offset between the continuous- and discrete-IMF colours reaches its maximum of about 0.5 in $(B$$-$$V)$ for a cluster mass $M_c=10^2 m_\\odo...

  6. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  7. Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2010-02-01

    Full Text Available In this paper, we discuss the development of the inversion algorithm for the GOMOS (Global Ozone Monitoring by Occultation of Star instrument on board the Envisat satellite. The proposed algorithm takes accurately into account the wavelength-dependent modeling errors, which are mainly due to the incomplete scintillation correction in the stratosphere. The special attention is paid to numerical efficiency of the algorithm. The developed method is tested on a large data set and its advantages are demonstrated. Its main advantage is a proper characterization of the uncertainties of the retrieved profiles of atmospheric constituents, which is of high importance for data assimilation, trend analyses and validation.

  8. Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2010-08-01

    Full Text Available In this paper, we discuss the development of the inversion algorithm for the GOMOS (Global Ozone Monitoring by Occultation of Star instrument on board the Envisat satellite. The proposed algorithm takes accurately into account the wavelength-dependent modeling errors, which are mainly due to the incomplete scintillation correction in the stratosphere. The special attention is paid to numerical efficiency of the algorithm. The developed method is tested on a large data set and its advantages are demonstrated. Its main advantage is a proper characterization of the uncertainties of the retrieved profiles of atmospheric constituents, which is of high importance for data assimilation, trend analyses and validation.

  9. Asteroseismology of solar-type stars with Kepler: II. Stellar modeling

    DEFF Research Database (Denmark)

    Metcalfe , T.S.; Karoff, Christoffer

    2010-01-01

    Observations from the Kepler satellite were recently published for three bright G-type stars, which were monitored during the first 33.5 days of science operations. One of these stars, KIC 11026764, exhibits a characteristic pattern of oscillation frequencies suggesting that the star has evolved...... significantly. We have derived initial estimates of the properties of KIC 11026764 from the oscillation frequencies observed by Kepler, combined with ground-based spectroscopic data. We present preliminary results from detailed modeling of this star, employing a variety of independent codes and analyses...

  10. An Exact Equilibrium Model of an Unbound Stellar System in a Tidal Field

    CERN Document Server

    Fellhauer, M

    2005-01-01

    Star clusters and dwarf galaxies gradually dissolve as they move in the potential of their host galaxy. Once their density falls below a certain critical density (which is comparable with the background density of the galaxy) it is often assumed that their evolution is completed. In fact the remnant of such a system forms a distribution of stars which are unbound to each other and which move on similar orbits in their host potential. With this motivation we study the evolution of an idealised unbound system and follow its expansion and dissolution in the tidal field of a model galaxy. Initially the stars are uniformly distributed (with a density below the critical density) within an ellipsoidal volume. The system itself travels on a circular orbit within a galaxy modelled as an isothermal sphere. The initial velocities of the stars are chosen by assuming that they move on (three-dimensional) epicycles with guiding centre at the centre of the ellipsoid, though the usual epicyclic theory is altered to account f...

  11. Testing Stellar Models With An Improved Physical Orbit for 12 Bootis

    CERN Document Server

    Boden, A F; Hummel, C A; Boden, Andrew F.; Torres, Guillermo; Hummel, Christian A.

    2005-01-01

    We report on a significantly improved determination of the physical orbit of the double-lined spectroscopic binary system 12 Boo. We have a 12 Boo interferometry dataset spanning six years with the Palomar Testbed Interferometer, a smaller amount of data from the Navy Prototype Optical Interferometer, and a radial velocity dataset spanning 14 years from the Harvard-Smithsonian Center for Astrophysics. We have updated the 12 Boo physical orbit model with our expanded interferometric and radial velocity datasets. The revised orbit is in good agreement with previous results, and the physical parameters implied by a combined fit to our visibility and radial velocity data result in precise component masses and luminosities. In particular, the orbital parallax of the system is determined to be 27.719 $\\pm$ 0.015 mas, and masses of the two components are determined to be 1.4160 $\\pm$ 0.0049 M$_{\\sun}$ and 1.3740 $\\pm$ 0.0045 M$_{\\sun}$, respectively. Based on theoretical models we can estimate a system age of approx...

  12. Modelling of mercury isotope separation in CP stellar atmospheres: results and problems

    CERN Document Server

    Sapar, A; Sapar, L; Poolamäe, R; 10.1016/j.newar.2009.08.010

    2009-01-01

    Formation of anomalous isotope abundances in the atmospheres of chemically peculiar (CP) stars can be explained by light-induced drift (LID). This effect is additional to the radiative acceleration and appears due to systematic asymmetry of radiative flux in partly overlapping isotopic spectral line profiles. LID causes levitation of an isotope with a red-shifted spectral line and sinking of an isotope with a blue-shifted line, generating thus diffusive separation of isotopes. We have studied diffusion of mercury as a typical well-studied isotope-rich heavy metal. Our model computations show that in mercury-rich quiescent atmospheres of CP stars LID causes levitation of the heavier mercury isotopes and sinking of the lighter ones. Precise quantitative modelling of the process of isotope separation demands very high-resolution computations and the high-precision input data, including data on hyperfine and isotopic splitting of spectral lines, adequate line profiles and impact cross-sections. Presence of microt...

  13. Predicting Intrinsic mid-IR to optical flux ratios for galaxies of different types using Spectral Synthesis Models of Composite Stellar Populations

    Science.gov (United States)

    Kim, Duho; Jansen, Rolf A.; Windhorst, Rogier A.

    2016-01-01

    We analyze the intrinsic flux ratios of simple and composite stellar populations for various visible--near-infrared filters with respect to ˜3.5μm (L-band), and their dependence on metallicity, star-formation history, and effective mean age. This study is motivated by the fact that light from galaxies is reddened and attenuated by dust via scattering and absorption, where different sightlines across the face of a galaxy suffer various amounts of extinction. Ignoring the effects of this extinction could lead one to infer lower stellar mass, and SFR, or higher metallicity. Tamura et al. (2009) developed an approximate method, dubbed the "βV" method, which corrects for dust-extinction on a pixel-by-pixel basis, by comparing the observed flux ratio and empirical estimate of the intrinsic flux ratio of optical and ˜3.5μm broadband data. Here, we aim to validate and test the limits of the βV method for various filters spanning the visible through near-infrared wavelength range. Through extensive modeling, we test their assumptions for the intrinsic flux ratios for a wide variety of simple and composite stellar populations. We build spectral energy distributions (SEDs) of simple stellar populations (SSPs), by adopting Starburst99 and BC03 models for young (100Myr) stellar populations, respectively, and linear combinations of these for intermediate ages. We then construct composite stellar population (CSP) SEDs by combining SSP SEDs for various realistic star-formation histories (SFHs). We convolve filter response curves of visible--near-infrared filters for HST imaging surveys and mid-infrared filters in current (WISE, Spitzer/IRAC) and near-future use (JWST/NIRCam) with each model SED, to obtain intrinsic flux ratios (βλ,0). We find that βNIR,0 is only varying slightly as a function of metallicity but is insensitive to SFH or redshift (z≤2). We also find a narrow range of βV,0 (0.7+0.05-0.08) for early Hubble type galaxies (E and S0) using SEDs of randomly

  14. H2O in stellar atmospheres. II. ISO spectra of cool red giants and hydrostatic models

    Science.gov (United States)

    Aringer, B.; Kerschbaum, F.; Jörgensen, U. G.

    2002-12-01

    We present 26 ISO-SWS spectra taken from a sample of 13 M-type Semiregular, Lb and Mira variables and covering the wavelength range between 2.36 and 5 mu m at a medium resolution. All of the studied objects show intense water bands producing a deep absorption dip around 2.5 mu m. Features of CO, OH, SiO and CO2 are also visible. Using the new H2O linelist published in the first paper of this series and available opacity data for the other important molecules, we calculated a grid of hydrostatic MARCS atmospheres and the corresponding synthetic ISO-SWS spectra. Based on the comparison with these theoretical results the ISO observations can be divided into four classes. The first two groups include the spectra of the Semiregular (SRb) and Lb variables in our sample. For all of them the region between 2.36 and 4.2 mu m can be quite well reproduced by our hydrostatic models. Only the predicted SiO bands above 4 mu m are in some cases too strong which is due to known dynamical effects. Depending on the temperature (above or below 3000 K) of the atmosphere, which mainly determines the intensity of the water depression at 2.5 mu m, the spectra of the Semiregular and Lb variables fall into the first or second class. The third group consists of observations of Mira stars obtained around maximum light where the range between 2.36 and 4.2 mu m can be fitted with our MARCS models except for a strong emission bump appearing in the ISO-SWS data in the region of the SiO features and the slope very close to the short wavelength border. Finally, the last type of spectra corresponds to Mira variables during the phases around the minimum of their visual light curve. For this class the observed water absorption at 2.5 mu m is much more intense than in any hydrostatic atmosphere with a realistic choice of effective temperature and surface gravity. Thus, we conclude that dynamical models are needed to explain the ISO-SWS data of Mira stars. For all of the cooler objects from our sample

  15. Modeling Multi-Wavelength Stellar Astrometry. I. SIM Lite Observations of Interacting Binaries

    CERN Document Server

    Coughlin, Jeffrey L; Harrison, Thomas E; Hoard, D W; Ciardi, David R; Benedict, G Fritz; Howell, Steve B; McArthur, Barbara E; Wachter, Stefanie

    2010-01-01

    Interacting binaries consist of a secondary star which fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code (Orosz & Hauschildt 2000) to allow us to model the flux-weighted reflex motions of interacting binaries, in a code we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of interacting binary. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright interacting binaries where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the op...

  16. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  17. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  18. On plasma radiative properties in stellar conditions

    CERN Document Server

    Turck-Chièze, S; Gilles, D; Loisel, G; Piau, L; 10.1016/j.hedp.2009.06.007

    2012-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative inte...

  19. STAR CLUSTER PROPERTIES IN TWO LEGUS GALAXIES COMPUTED WITH STOCHASTIC STELLAR POPULATION SYNTHESIS MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Adamo, Angela [Department of Astronomy, Oskar Klein Centre, Stockholm University, SE-10691 Stockholm (Sweden); Fumagalli, Michele [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Wofford, Aida [Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Calzetti, Daniela; Grasha, Kathryn [Department of Astronomy, University of Massachusetts–Amherst, Amherst, MA (United States); Lee, Janice C.; Whitmore, Bradley C.; Bright, Stacey N.; Ubeda, Leonardo [Space Telescope Science Institute, Baltimore, MD (United States); Gouliermis, Dimitrios A. [Centre for Astronomy, Institute for Theoretical Astrophysics, University of Heidelberg, Heidelberg (Germany); Kim, Hwihyun [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of); Nair, Preethi [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Ryon, Jenna E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Smith, Linda J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, David [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, Erik, E-mail: mkrumhol@ucsc.edu, E-mail: adamo@astro.su.se [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden)

    2015-10-20

    We investigate a novel Bayesian analysis method, based on the Stochastically Lighting Up Galaxies (slug) code, to derive the masses, ages, and extinctions of star clusters from integrated light photometry. Unlike many analysis methods, slug correctly accounts for incomplete initial mass function (IMF) sampling, and returns full posterior probability distributions rather than simply probability maxima. We apply our technique to 621 visually confirmed clusters in two nearby galaxies, NGC 628 and NGC 7793, that are part of the Legacy Extragalactic UV Survey (LEGUS). LEGUS provides Hubble Space Telescope photometry in the NUV, U, B, V, and I bands. We analyze the sensitivity of the derived cluster properties to choices of prior probability distribution, evolutionary tracks, IMF, metallicity, treatment of nebular emission, and extinction curve. We find that slug's results for individual clusters are insensitive to most of these choices, but that the posterior probability distributions we derive are often quite broad, and sometimes multi-peaked and quite sensitive to the choice of priors. In contrast, the properties of the cluster population as a whole are relatively robust against all of these choices. We also compare our results from slug to those derived with a conventional non-stochastic fitting code, Yggdrasil. We show that slug's stochastic models are generally a better fit to the observations than the deterministic ones used by Yggdrasil. However, the overall properties of the cluster populations recovered by both codes are qualitatively similar.

  20. A self-consistent linear-mode model of stellar convection

    Science.gov (United States)

    Macauslan, J.

    1985-01-01

    A normal-mode expansion of the linearized fluid equations in terms of small subset of spherical harmonics can provide a foundation for a physically motivated, self-consistent description of a solar-type convection zone. In the absence of dissipation, a second-order differential equation governs the radial dependence of the modes, so that interpretation of the effects on convection quantities of the normal-form 'potential well' is straightforward. The philosophy is quite different from the more recent work of Narasimha and Antia (1982): all envelopes presented here differ substantially from MLT envelopes, and therefore, from theirs, which are constructed to be consistent with MLT. The amplitude of all modes is set by a Kelvin-Helmholtz-('shear'-) instability argument unrelated to solar observations, with the result that the convection description may be considered to arise from 'first-hueristic-principles'. The thermodynamics modelled vaguely resemble the sun's, and more vigorously convective envelopes show some phenomena qualitatively like solar observations (e.g., atmospheric velocity spectra).

  1. {sup 26}Al production: The Allende meteorite (Chihuahua) stellar nucleosynthesis and solar models

    Energy Technology Data Exchange (ETDEWEB)

    Araujo-Escalona, V.; Andrade, E.; Barrón-Palos, L.; Canto, C.; Favela, F.; Huerta, A.; Lucio, O. de; Ortiz, M. E.; Solís, C.; Chávez, E., E-mail: chavez@fisica.unam.mx [Instituto de Física, UNAM (Mexico)

    2015-07-23

    In 1969 a meteorite fell near the small town of Allende, state of Chihuahua in the north of Mexico. Its study yielded information that changed the current understanding of the solar model. In particular traces of {sup 26}Al were found. Abundances of that isotope had been seen in the universe and were related to regions of active heavy nucleosynthesis. Its presence on the solar system was unexpected. It is now understood that cosmic rays induce nuclear reactions on materials to produce {sup 26}Al, on Earth this is well known and it is the basis of many environmental studies, so it is not only the product of some high metalicity star collapse. Taking advantage of the recently reinforced laboratory infrastructure of the Instituto de Física, at UNAM in Mexico City, we proposed to measure the cross section for {sup 26}Al production via some of the most likely reactions, from the nuclear physics point of view (highest Q-values). In this paper the study of the {sup 28}Si(d,α){sup 26} Al nuclear reaction is shown. A target is prepared by a mixture of silicon and aluminum powders. It is irradiated with a deuteron beam (≈1 µA current) at the MV CN-Van de Graaff accelerator laboratory. The number of projectiles is deduced by Rutherford Backscattering Spectrometry (RBS). The produced {sup 26}Al nuclei are then counted at the Accelerator Mass Spectrometry Laboratory.

  2. 26Al production: The Allende meteorite (Chihuahua) stellar nucleosynthesis and solar models

    Science.gov (United States)

    Araujo-Escalona, V.; Andrade, E.; Barrón-Palos, L.; Canto, C.; Favela, F.; Huerta, A.; de Lucio, O.; Ortiz, M. E.; Solís, C.; Chávez, E.

    2015-07-01

    In 1969 a meteorite fell near the small town of Allende, state of Chihuahua in the north of Mexico. Its study yielded information that changed the current understanding of the solar model. In particular traces of 26Al were found. Abundances of that isotope had been seen in the universe and were related to regions of active heavy nucleosynthesis. Its presence on the solar system was unexpected. It is now understood that cosmic rays induce nuclear reactions on materials to produce 26Al, on Earth this is well known and it is the basis of many environmental studies, so it is not only the product of some high metalicity star collapse. Taking advantage of the recently reinforced laboratory infrastructure of the Instituto de Física, at UNAM in Mexico City, we proposed to measure the cross section for 26Al production via some of the most likely reactions, from the nuclear physics point of view (highest Q-values). In this paper the study of the 28Si(d,α)26 Al nuclear reaction is shown. A target is prepared by a mixture of silicon and aluminum powders. It is irradiated with a deuteron beam (≈1 µA current) at the MV CN-Van de Graaff accelerator laboratory. The number of projectiles is deduced by Rutherford Backscattering Spectrometry (RBS). The produced 26Al nuclei are then counted at the Accelerator Mass Spectrometry Laboratory.

  3. Stellarator status, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, J.F. (Oak Ridge National Lab., TN (USA)); Grieger, G.; Rau, F. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)); Iiyoshi, A. (National Inst. for Fusion Science, Nagoya (Japan)); Navarro, A.P. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)); Kovrizhnykh, L.M. (AN SSSR, Moscow (USSR). Inst. Obshchey Fiziki); Pavlichenko, O.S. (AN Ukrain

    1990-07-01

    The present status of stellarator experiments and recent progress in stellarator research (both experimental and theoretical) are reported by groups in the United States, the USSR, Japan, Australia, and the European Community (the Federal Republic of Germany and Spain). Experiments under construction and studies of large, next-generation stellarators are also described. 73 refs., 11 figs., 4 tabs.

  4. Accelerated Fitting of Stellar Spectra

    CERN Document Server

    Ting, Yuan-Sen; Rix, Hans-Walter

    2016-01-01

    Stellar spectra are often modeled and fit by interpolating within a rectilinear grid of synthetic spectra to derive the stars' labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of parameters separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach -- CHAT (Convex Hull Adaptive Tessellation) -- which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock datasets demonstrate that CHAT can reduce the number of required synthetic model calculations by...

  5. The ILIUM forward modelling algorithm for multivariate parameter estimation and its application to derive stellar parameters from Gaia spectrophotometry

    Science.gov (United States)

    Bailer-Jones, C. A. L.

    2010-03-01

    I introduce an algorithm for estimating parameters from multidimensional data based on forward modelling. It performs an iterative local search to effectively achieve a non-linear interpolation of a template grid. In contrast to many machine-learning approaches, it avoids fitting an inverse model and the problems associated with this. The algorithm makes explicit use of the sensitivities of the data to the parameters, with the goal of better treating parameters which only have a weak impact on the data. The forward modelling approach provides uncertainty (full covariance) estimates in the predicted parameters as well as a goodness-of-fit for observations, thus providing a simple means of identifying outliers. I demonstrate the algorithm, ILIUM, with the estimation of stellar astrophysical parameters (APs) from simulations of the low-resolution spectrophotometry to be obtained by Gaia. The AP accuracy is competitive with that obtained by a support vector machine. For zero extinction stars covering a wide range of metallicity, surface gravity and temperature, ILIUM can estimate Teff to an accuracy of 0.3 per cent at G = 15 and to 4 per cent for (lower signal-to-noise ratio) spectra at G = 20, the Gaia limiting magnitude (mean absolute errors are quoted). [Fe/H] and logg can be estimated to accuracies of 0.1-0.4dex for stars with G <= 18.5, depending on the magnitude and what priors we can place on the APs. If extinction varies a priori over a wide range (0-10mag) - which will be the case with Gaia because it is an all-sky survey - then logg and [Fe/H] can still be estimated to 0.3 and 0.5dex, respectively, at G = 15, but much poorer at G = 18.5. Teff and AV can be estimated quite accurately (3-4 per cent and 0.1-0.2mag, respectively, at G = 15), but there is a strong and ubiquitous degeneracy in these parameters which limits our ability to estimate either accurately at faint magnitudes. Using the forward model, we can map these degeneracies (in advance) and thus

  6. Analysis of the Intrinsic Mid-Infrared L-band to Visible--Near-Infrared Flux Ratios in Spectral Synthesis Models of Composite Stellar Populations

    CERN Document Server

    Kim, Duho; Windhorst, Rogier A

    2016-01-01

    We analyze the intrinsic flux ratios of various visible--near-infrared filters with respect to 3.5micron for simple and composite stellar populations, and their dependence on age, metallicity and star formation history. UV/optical light from stars is reddened and attenuated by dust, where different sightlines across a galaxy suffer varying amounts of extinction. Tamura et al. (2009) developed an approximate method to correct for dust extinction on a pixel-by-pixel basis, dubbed the "beta_V" method, by comparing the observed flux ratio to an empirical estimate of the intrinsic ratio of visible and ~3.5micron data. Through extensive modeling, we aim to validate the "beta_V" method for various filters spanning the visible through near-infrared wavelength range, for a wide variety of simple and composite stellar populations. Combining Starburst99 and BC03 models, we built spectral energy distributions (SEDs) of simple (SSP) and composite (CSP) stellar populations for various realistic star formation histories (SF...

  7. Physical Properties of Spectroscopically-Confirmed Galaxies at $z\\ge6$. III. Stellar Populations from SED Modeling with Secure Ly$\\alpha$ Emission and Redshifts

    CERN Document Server

    Jiang, Linhua; Cohen, Seth H; Egami, Eiichi; Windhorst, Rogier A; Fan, Xiaohui; Dave, Romeel; Kashikawa, Nobunari; Mechtley, Matthew; Ouchi, Masami; Shimasaku, Kazuhiro; Clement, Benjamin

    2015-01-01

    We present a study of stellar populations in a sample of spectroscopically-confirmed Lyman-break galaxies (LBGs) and Ly$\\alpha$ emitters (LAEs) at $5.7stellar populations utilizing galaxy synthesis models based on the multi-band data and secure redshifts. By incorporating nebular emission estimated from the observed Ly$\\alpha$ flux, we are able to break the strong degeneracy of model spectra between young galaxies with prominent nebular emission and older galaxies with strong Balmer breaks. The results show that our galaxies cover a wide range of ages from several to a few hundred million years (Myr), and a wide range of stellar masses from $\\sim10^8$ to $\\sim10^{11}$ $M_{\\odot}$. These galaxies can be roughly divided into an `old' subsample and a `young' subsample. The `old' subsample consists of galaxies older than 100 Myr,...

  8. The Stellar IMF from turbulent fragmentation

    Science.gov (United States)

    Padoan, P.; Nordlund, A.

    2001-01-01

    In this paper they conclude that turbulent fragmentation is unavoidable in super-sonically turbulent molecular clouds, and given the success of the present model to predict the observed shape of the Stellar IMF, they conclude that turbulent fragmentation is essential to the origin of the stellar IMF.

  9. Stark broadening data for stellar plasma research.

    Science.gov (United States)

    Dimitrijević, M. S.

    Results of an effort to provide to astrophysicists and physicists an as much as possible complete set of Stark broadening parameters needed for stellar opacity calculations, stellar atmosphere modelling, abundance determinations and diagnostics of different plasmas in astrophysics, physics and plasma technology, are presented. Stark broadening has been considered within the semiclassical perturbation, and the modified semiempirical approaches.

  10. Seismological challenges for stellar structure

    CERN Document Server

    Christensen-Dalsgaard, J

    2010-01-01

    Helioseismology has provided very detailed information about the solar interior, and extensive data on a large number of stars, although at less detail, are promised by the ongoing and upcoming asteroseismic projects. In the solar case there remain serious challenges in understanding the inferred solar structure, particularly in the light of the revised determinations of the solar surface composition. Also, a secure understanding of the origins of solar rotation as inferred from helioseismology, both in the radiative interior and in the convection zone, is still missing. In the stellar case challenges are certain to appear as the data allow more detailed inferences of the properties of stellar cores. Large remaining uncertainties in modelling concerns the properties of convective cores and other processes that may cause mixing. As a result of developing asteroseismic signatures addressing these and other issues, we can look forward to a highly challenging, and hence exciting, era of stellar astrophysics.

  11. Modeling the Structure of Hot Star Disks: a Critical Evaluation of the Viscous Decretion Scenario

    OpenAIRE

    Carciofi, A. C.; Bjorkman, J. E.; Miroshnichenko, A. S.; Magalhães, A.M.; Bjorkman, K. S.

    2006-01-01

    We present self-consistent solutions for the disk structure of classical Be stars. Our disk model is hydrostatically supported in the vertical direction and the radial structure is governed by viscosity ($\\alpha$-disks). We perform three-dimensional non-LTE Monte Carlo simulations to calculate simultaneously both the equilibrium temperature and Hydrogen level populations and to solve self-consistently for the density structure of the disk. We discuss the general properties of the solution for...

  12. The DEMO Quasisymmetric Stellarator

    Directory of Open Access Journals (Sweden)

    Geoffrey B. McFadden

    2010-02-01

    Full Text Available The NSTAB nonlinear stability code solves differential equations in conservation form, and the TRAN Monte Carlo test particle code tracks guiding center orbits in a fixed background, to provide simulations of equilibrium, stability, and transport in tokamaks and stellarators. These codes are well correlated with experimental observations and have been validated by convergence studies. Bifurcated 3D solutions of the 2D tokamak problem have been calculated that model persistent disruptions, neoclassical tearing modes (NTMs and edge localized modes (ELMs occurring in the International Thermonuclear Experimental Reactor (ITER, which does not pass the NSTAB simulation test for nonlinear stability. So we have designed a quasiaxially symmetric (QAS stellarator with similar proportions as a candidate for the demonstration (DEMO fusion reactor that does pass the test [1]. The configuration has two field periods and an exceptionally accurate 2D symmetry that furnishes excellent thermal confinement and good control of the prompt loss of alpha particles. Robust coils are found from a filtered form of the Biot-Savart law based on a distribution of current over a control surface for the coils and the current in the plasma defined by the equilibrium calculation. Computational science has addressed the issues of equilibrium, stability, and transport, so it remains to develop an effective plan to construct the coils and build a diverter.

  13. Measurement of Flows in the HSX Stellarator Demonstrating the Importance of Momentum-Conservation in Neoclassical Flow Modeling

    Science.gov (United States)

    Briesemeister, A.; Lore, J.; Zhai, K.; Anderson, D. T.; Anderson, F. S. B.; Talmadge, J. N.

    2010-11-01

    The flow velocity of carbon ions is measured using a Charge Exchange Recombination Spectroscopy (CHERS) system on the Helically Symmetric Experiment (HSX), a quasi-helically symmetric stellarator. Intrinsic parallel flow speeds of up to 20km/s have been measured. The parallel velocity is compared to the predictions of the PENTA code [1-2]. Multiple ion species, including the species used for the CHERS measurements, are included in the calculations. PENTA is a neoclassical code that includes the effects of momentum-conservation, which are often neglected for nonsymmetric stellarators. Without momentum conservation the parallel flow velocity in HSX is under-predicted by approximately an order of magnitude. Agreement is seen between the measured and calculated parallel flows when momentum conservation is included.[4pt] [1] D.A. Spong, Phys. Plasmas 12 (2005) 056114.[0pt] [2] J. Lore et al, Phys. Plasmas 17 (2010) 056101.

  14. Estimation of distances to stars with stellar parameters from LAMOST

    CERN Document Server

    Carlin, Jeffrey L; Newberg, Heidi Jo; Beers, Timothy C; Chen, Li; Deng, Licai; Guhathakurta, Puragra; Hou, Jinliang; Hou, Yonghui; Lepine, Sebastien; Li, Guangwei; Luo, A-Li; Smith, Martin C; Wu, Yue; Yang, Ming; Yanny, Brian; Zhang, Haotong; Zheng, Zheng

    2015-01-01

    We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show ...

  15. The Stellar Activity - Rotation Relationship

    CERN Document Server

    Wright, Nicholas J; Mamajek, Eric E; Henry, Gregory W

    2012-01-01

    Using a new catalog of 824 solar and late-type stars with X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity. From an unbiased subset of this sample the power law slope of the unsaturated regime, $L_X/L_{bol}\\propto Ro^\\beta$, is fit as $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta=-2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory being supported by other observations. We also present a new X-ray population synthesis model of the mature stellar component of our Galaxy and use it to reproduce deep observations of a high Galactic latitude field. The model, XStar, can be used to test models of stellar spin-down and dynamo decay, as well as for estimating stellar X-ray contamin...

  16. Modelling of advanced three-ion ICRF heating and fast ion generation scheme for tokamaks and stellarators

    Science.gov (United States)

    Faustin, J. M.; Graves, J. P.; Cooper, W. A.; Lanthaler, S.; Villard, L.; Pfefferlé, D.; Geiger, J.; Kazakov, Ye O.; Van Eester, D.

    2017-08-01

    Absorption of ion-cyclotron range of frequencies waves at the fundamental resonance is an efficient source of plasma heating and fast ion generation in tokamaks and stellarators. This heating method is planned to be exploited as a fast ion source in the Wendelstein 7-X stellarator. The work presented here assesses the possibility of using the newly developed three-ion species scheme (Kazakov et al (2015) Nucl. Fusion 55 032001) in tokamak and stellarator plasmas, which could offer the capability of generating more energetic ions than the traditional minority heating scheme with moderate input power. Using the SCENIC code, it is found that fast ions in the MeV range of energy can be produced in JET-like plasmas. The RF-induced particle pinch is seen to strongly impact the fast ion pressure profile in particular. Our results show that in typical high-density W7-X plasmas, the three-ion species scheme generates more energetic ions than the more traditional minority heating scheme, which makes three-ion scenario promising for fast-ion confinement studies in W7-X.

  17. F stars: A challenge to stellar evolution

    CERN Document Server

    Suchkov, A A

    2014-01-01

    Many main-sequence F and early G stars are too luminous for their effective temperature, surface gravity, and chemical composition. These {\\it overluminous stars} have two curious properties. First, their kinematics as a function of age from stellar evolution modeling (isochrone fitting) is very different from that of normal stars. Second, while X-ray luminosity of normal stars declines with age, the X-ray luminosity of overluminous F stars changes in the opposite direction, being on average higher for older stars. These properties imply that, in defiance of standard models of stellar evolution, F stars of a given mass and chemical composition can evolve very differently. Assuming that the models correctly describe normal stars, for overluminous F stars they predict too young age and the X-ray emission evolving in the direction opposite to the actually observed trend. This discrepancy between modeling results and observational data suggests that standard stellar evolution models and models of stellar activity...

  18. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    Science.gov (United States)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  19. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    Energy Technology Data Exchange (ETDEWEB)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn (Germany); Haud, U., E-mail: pkalberla@astro.uni-bonn.de [Tartu Observatory, 61602 Tõravere (Estonia)

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  20. Does the Stellar Distribution Flare? A Comparison of Stellar Scale Heights with LAB H I Data

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Dedes, L.; Haud, U.

    2014-10-01

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  1. Does the stellar distribution flare? A comparison of stellar scale heights with LAB HI data

    CERN Document Server

    Kalberla, P M W; Dedes, L; Haud, U

    2014-01-01

    The question, whether the stellar populations in the Milky Way take part in flaring of the scale heights as observed for the HI gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach at large galactocentric distances high altitudes that are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with HI data from the Leiden/Argentine/Bonn (LAB) survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  2. Synthetic stellar mass-to-light ratios for stellar populations

    CERN Document Server

    Maraston, C

    1998-01-01

    Evolutionary synthesis models for stellar populations of various ages and chemical compositions are constructed with the approach described in Maraston (1998), in which the Fuel Consumption Theorem is used to evaluate the energetics of Post Main Sequence stars. We present here the synthetic `stellar' mass-to-light ratios (M*/L) in the U,B,V,R,I,J,H,K photometric bands, as functions of age and chemical composition, for single burst populations. Taking into account the contribution by stellar dead remnants, the computed M*/L ratios can be directly compared to those measured in early-type galaxies. The dependence of M*/L ratios on the IMF slope is also explored. The most interesting result is that the M*/L_B ratio of a 15 Gyr stellar population is found to increase by nearly a factor of three, when the chemical composition rises from [Fe/H] \\sim -0.5 to [Fe/H] \\sim +0.3. This impacts on the interpretation of the tilt of the Fundamental Plane of cluster ellipticals in the B band.

  3. From stellar nebula to planetesimals

    CERN Document Server

    Marboeuf, Ulysse; Alibert, Yann; Cabral, Nahuel; Benz, Willy

    2014-01-01

    Solar and extrasolar comets and extrasolar planets are the subject of numerous studies in order to determine their chemical composition and internal structure. In the case of planetesimals, their compositions are important as they govern in part the composition of future planets. The present works aims at determining the chemical composition of icy planetesimals, believed to be similar to present day comets, formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data on chemical composition for models of planetesimals and comets, and models of planet formation and evolution. We have developed a model that calculates the composition of ices formed during the cooling of the stellar nebula. Coupled with a model of refractory element formation, it allows us to determine the chemical composition and mass ratio of ices to rocks in icy planetesimals throughout in the protoplanetary disc. We provide relationships for ice line positions (for differen...

  4. Asteroseismology's new constraints on stellar models and Galactic Archaeology: Where are we now and where are we going ?

    Science.gov (United States)

    Noels, A.; Montalbán, J.; Chiappini, C.

    2016-09-01

    After a short introduction describing the whys and wherefores of the recent and growing interaction between Milky Way physicists, stellar evolution physicists, chemical abundances physicists, and asteroseismologists, which forms the ground of this workshop, we address some important points affecting the levels of accuracy on global stellar parameters, such as mass, radius, and age, which were raised during the final discussion of the workshop. We recall how asteroseismic parameters, especially when coupled with spectroscopy and photometry, greatly help to reduce uncertainties. We show how poorly known physical aspects, such as diffusion, rotation, and outer physical conditions, must however be kept in mind when assessing these uncertainties. We then summarise the huge advance in terms of spectroscopic follow-up of seismic targets that took place in the last couple of years opening the doors for the first results in Galactic Archaeology making use of seismic distances, masses, radii, and ages. We conclude by presenting two tables: (1) an update of the table of uncertainties built at the Sesto workshop in 2013, and (2) a similar table with what should be reached for Galactic Archaeology purposes.

  5. Evolution of the habitable zone of low-mass stars. Detailed stellar models and analytical relationships for different masses and chemical compositions

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2014-01-01

    We study the temporal evolution of the habitable zone (HZ) of low-mass stars - only due to stellar evolution - and evaluate the related uncertainties. These uncertainties are then compared with those due to the adoption of different climate models. We computed stellar evolutionary tracks from the pre-main sequence phase to the helium flash at the red-giant branch tip for stars with masses in the range [0.70 - 1.10] Msun, metallicity Z in the range [0.005 - 0.04], and various initial helium contents. We evaluated several characteristics of the HZ, such as the distance from the host star at which the habitability is longest, the duration of this habitability, the width of the zone for which the habitability lasts one half of the maximum, and the boundaries of the continuously habitable zone (CHZ) for which the habitability lasts at least 4 Gyr. We developed analytical models, accurate to the percent level or lower, which allowed to obtain these characteristics in dependence on the mass and the chemical composit...

  6. Gamow-Teller strength distributions and stellar weak-interaction rates for ^{76}Ge and ^{82}Se using the deformed pn-QRPA model

    Science.gov (United States)

    Nabi, Jameel-Un; Ishfaq, Mavra

    2016-07-01

    We calculate Gamow-Teller strength distributions for β β-decay nuclei ^{76}Ge and ^{82}Se using the deformed pn-QRPA model. We use a deformed Nilsson basis and consider pairing correlations within the deformed BCS theory. Ground state correlations and two-particle and two-hole mixing states were included in our pn-QRPA model. Our calculated strength distributions were compared with experimental data and previous calculation. The total Gamow-Teller strength and centroid placement calculated in our model compares well with the measured value. We calculate β-decay and positron capture rates on ^{76}Ge and ^{82}Se in supernovae environments and compare them to those obtained from experimental data and previous calculation. Our study shows that positron capture rates command the total weak rates at high stellar temperatures. We also calculate energy rates of β-delayed neutrons and their emission probabilities.

  7. Non-LTE abundances of Mg and K in extremely metal-poor stars and the evolution of [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Milky Way

    CERN Document Server

    Andrievsky, S M; Korotin, S A; Spite, F; Bonifacio, P; Cayrel, R; François, P; Hill, V

    2010-01-01

    LTE abundances of light elements in extremely metal-poor (EMP) stars have been previously derived from high quality spectra. New derivations, free from the NLTE effects, will better constrain the models of the Galactic chemical evolution and the yields of the very first supernovae. The NLTE profiles of the magnesium and potassium lines have been computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI and adjusted to the observed lines in order to derive the abundances of these elements. The NLTE corrections for magnesium and potassium are in good agreement with the works found in the literature. The abundances are slightly changed, reaching a better precision: the scatter around the mean of the abundance ratios has decreased. Magnesium may be used with confidence as reference element. Together with previously determined NLTE abundances of sodium and aluminum, the new ratios are displayed, for comparison, along the theoretical trends proposed by some models of the che...

  8. The VLT-FLAMES Tarantula Survey . XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus

    Science.gov (United States)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N. J.; Schneider, F. R. N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J. M.; Castro, N.; Crowther, P. A.; Evans, C. J.; García, M.; Gräfener, G.; Herrero, A.; van Kempen, B.; Lennon, D. J.; Maíz Apellániz, J.; Najarro, F.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Taylor, W. D.; Vink, J. S.

    2017-04-01

    Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Aims: Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. Methods: We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. Results: We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not

  9. A Technique for Incorporating Large-scale Magnetic Fields Within Stellar Models: Implications for the Variability of the Solar Radius, Luminosity, and Pulsation Frequencies

    Science.gov (United States)

    Lydon, T. J.; Sofia, S.

    1994-12-01

    A set of physically consistent approximations are employed to include the effects of magnetic fields within the equations of stellar structure. A series of solar models are then constructed with large-scale (~0.1R_sun), intense (~10(6) gauss) magnetic fields. The results of such models are then compared to measurements of changes in the solar radius (from the Solar Disk Sextant Experiment) and changes in the solar p-mode frequencies in order to determine if such fields are associated with the solar cycle. This work was supported in part by an appointment to the Global Change Distinguished Postdoctoral Fellowships sponsored by the U.S. Department of Energy, Office of Health and Enviromental Research, and administered by the Oak Ridge Institute for Science and Education.

  10. Double-helix stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  11. Ubiquitous time variability of integrated stellar populations.

    Science.gov (United States)

    Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun

    2015-11-26

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  12. Trends of Stellar Entropy along Stellar Evolution

    CERN Document Server

    de Avellar, Marcio G B; Horvath, Jorge E

    2015-01-01

    This paper is devoted to discuss the difference in the thermodynamic entropy budget {\\it per baryon} in each type of stellar object found in Universe. We track and discuss the actual {\\it decrease} of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in the black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars of different masses throughout their {\\it evolution}, clarifying the role of virial equilibrium condition for the decrease of the entropy and related issues. Finally, we discuss how gravity ultimately drives composition, hence structural changes along the stellar evolution all the way until the ultimate collapse to black holes, which may increase dramatically their entropy because of the gravitational contribution itself.

  13. Stellar Chromospheric Activity

    Directory of Open Access Journals (Sweden)

    Hall Jeffrey C.

    2008-03-01

    Full Text Available The Sun, stars similar to it, and many rather dissimilar to it, have chromospheres, regions classically viewed as lying above the brilliant photosphere and characterized by a positive temperature gradient and a marked departure from radiative equilibrium. Stellar chromospheres exhibit a wide range of phenomena collectively called activity, stemming largely from the time evolution of their magnetic fields and the mass flux and transfer of radiation through the complex magnetic topology and the increasingly optically thin plasma of the outer stellar atmosphere. In this review, I will (1 outline the development of our understanding of chromospheric structure from 1960 to the present, (2 discuss the major observational programs and theoretical lines of inquiry, (3 review the origin and nature of both solar and stellar chromospheric activity and its relationship to, and effect on, stellar parameters including total energy output, and (4 summarize the outstanding problems today.

  14. Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    CERN Document Server

    Lagarde, N; Charbonnel, C; Eggenberger, P; Ekström, S; Palacios, A

    2012-01-01

    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corre...

  15. Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    This document describes all interface properties for the Advanced Stellar Compass, developed for the German Research Satellite "CHAMP". Basic operations, modes, software protocol, calibration methods and closed loop test strategies are described.......This document describes all interface properties for the Advanced Stellar Compass, developed for the German Research Satellite "CHAMP". Basic operations, modes, software protocol, calibration methods and closed loop test strategies are described....

  16. Characterizing stellar and exoplanetary environments

    CERN Document Server

    Khodachenko, Maxim

    2015-01-01

    In this book an international group of specialists discusses studies of exoplanets subjected to extreme stellar radiation and plasma conditions. It is shown that such studies will help us to understand how terrestrial planets and their atmospheres, including the early Venus, Earth and Mars, evolved during the host star’s active early phase. The book presents an analysis of findings from Hubble Space Telescope observations of transiting exoplanets, as well as applications of advanced numerical models for characterizing the upper atmosphere structure and stellar environments of exoplanets. The authors also address detections of atoms and molecules in the atmosphere of “hot Jupiters” by NASA’s Spitzer telescope. The observational and theoretical investigations and discoveries presented are both timely and important in the context of the next generation of space telescopes. 
 The book is divided into four main parts, grouping chapters on exoplanet host star radiation and plasma environments, exoplanet u...

  17. Stellar Populations of Shell Galaxies

    CERN Document Server

    Carlsten, S; Zenteno, A

    2016-01-01

    We present a study of the inner (out to $\\sim$1 R$_{\\mathrm{eff}}$) stellar populations of 9 shell galaxies. We derive stellar population parameters from long slit spectra by both analyzing the Lick indices of the galaxies and by fitting Single Stellar Population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. Many of the shell galaxies in our sample appear to have lower central $\\mathrm{Mg}_{2}$ index values than non-shell galaxies of the same central velocity dispersion, which is likely due to a past interaction event. Our shell galaxy sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analyzing the metallicity gradients in our sample, we find an average metallicity gradient of -0.16$\\pm$0.10 dex per decade in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers in...

  18. Semi-empirical Modeling of the Photosphere, Chromosphere, Transition Region, and Corona of the M-dwarf Host Star GJ 832

    Science.gov (United States)

    Fontenla, J. M.; Linsky, Jeffrey L.; Witbrod, Jesse; France, Kevin; Buccino, A.; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M.

    2016-10-01

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10-91.2 nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2 V star GJ 832 as the first of a series of models for stars with different activity levels. We construct a one-dimensional simple model for the physical structure of the star’s chromosphere, chromosphere-corona transition region, and corona using non-LTE radiative transfer techniques and many molecular lines. The synthesized spectrum for this model fits the continuum and lines across the UV-to-optical spectrum. Particular emphasis is given to the emission lines at wavelengths that are shorter than 300 nm observed with the Hubble Space Telescope, which have important effects on the photochemistry of the exoplanet atmospheres. The FUV line ratios indicate that the transition region of GJ 832 is more biased to hotter material than that of the quiet Sun. The excellent agreement of our computed EUV luminosity with that obtained by two other techniques indicates that our model predicts reliable EUV emission from GJ 832. We find that the unobserved EUV flux of GJ 832, which heats the outer atmospheres of exoplanets and drives their mass loss, is comparable to the active Sun. Based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations

  19. The Stagnation of Contemporary Stellar Astronomy

    CERN Document Server

    Škoda, Petr

    2011-01-01

    The stellar astronomy has always been considered the fundamental source of knowledge about the basic building blocks of the universe - the stars. It has proved correctness of many physical theories - like e.g. the idea of nuclear fusion in stellar cores, the exchange of mass in interacting binaries or models of stellar evolution towards white dwarfs or neutron stars. Despite its well acknowledged importance it seems to be loosing its interestingness for students, for telescope allocation committees at large observatories, as well as for granting agencies. In the domain of big telescopes it has been gradually overtaken by the extra-galactic research and cosmology, surviving however at smaller observatories and among most advanced amateur astronomers. We try to analyse the main obstacles lowering the efficiency of research in contemporary stellar astronomy. We will shortly tackle several problems induced by paradigmatic changes in handling the extraordinary amount of data provided by current instruments as well...

  20. CH in stellar atmospheres: an extensive linelist

    CERN Document Server

    Masseron, T; Van Eck, S; Colin, R; Daoutidis, I; Godefroid, M; Coheur, P F; Bernath, P; Jorissen, A; Christlieb, N

    2014-01-01

    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 magnitudes in the $\\lambda=$3000 -- 5500 \\AA\\ range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data.

  1. Modeling the exchange of comets between the Sun and passing stars in a low stellar density environment

    Science.gov (United States)

    Levine, Stephen; Gosmeyer, Catherine

    2016-10-01

    We investigated the importance of close encounters between our Sun and its Oort cloud and passing stars with similar Oort clouds in the low stellar density environment of the outer portion of our Galaxy. By constructing a set of interaction cross-sections that describe the interchange of material between the two passing Oort clouds, and then randomly computing sets of encounters that a star would have during its orbit in the Galaxy over a period of time equivalent to the life of the Sun after the dissolution of its birth cluster, we have examined how the ensemble of passing encounters could impact the evolution of our Oort cloud. From the set of 1,000 possible realizations of the interactions over a solar lifetime, we find that the resulting solar Oort cloud is likely to be significantly eroded as a result of the set of encounters, and is also likely today to contain a significant amount of material that was formed in passing extra-solar systems.

  2. Stellar Properties of Embedded Protostars

    CERN Document Server

    White, R J; Doppmann, G W; Covey, Kevin R; Hillenbrand, L A

    2006-01-01

    (Abridged) High dispersion spectrographs on large aperture telescopes have recently allowed observers to study the stellar and accretion properties of deeply embedded young stars, commonly referred to as Class I stars. We summarize these newly determined properties and compare them with observations of more optically revealed Class II (T Tauri) stars. Class I stars have spectral types and stellar luminosities similar to those of Class II stars, suggesting similar masses and ages. Estimates of stellar luminosity and age, however, are especially uncertain given the large extinctions, scattered light emission and continuum excesses typical of Class I stars. Several candidate Class I brown dwarfs are identified. Class I stars appear to rotate more rapidly than T Tauri stars, by roughly a factor of 2. Likewise, Class I disk accretion rates are only a factor of two larger than those of T Tauri stars, less than the mass infall rates predicted by envelope models by 1-2 orders of magnitude. In at least a few cases the...

  3. Stellar Echo Imaging of Exoplanets

    Science.gov (United States)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  4. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code

    CERN Document Server

    Bressan, A; Girardi, L; Salasnich, B; Cero, C Dal; Rubele, S; Nanni, A

    2012-01-01

    We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major input physics, together with the inclusion of the pre-main sequence phase, not present in our previous releases of stellar models. Another innovative aspect is the possibility of promptly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other sets with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Sun's metallicity Z=0.0152. From all computed sets of stellar t...

  5. Featured Image: A Looping Stellar Stream

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    This negative image of NGC 5907 (originally published inMartinez-Delgadoet al. 2008; click for the full view!) reveals the faint stellar stream that encircles the galaxy, forming loops around it a fossil of a recent merger. Mergers between galaxies come in several different flavors: major mergers, in which the merging galaxies are within a 1:5 ratio in stellar mass; satellite cannibalism, in which a large galaxy destroys a small satellite less than a 50th of its size; and the in-between case of minor mergers, in which the merging galaxieshave stellar mass ratios between 1:5 and 1:50. These minor mergers are thought to be relatively common, and they can have a significant effect on the dynamics and structure of the primary galaxy. A team of scientists led by Seppo Laine (Spitzer Science Center Caltech) has recently analyzed the metallicity and age of the stellar population in the stream around NGC 5907. By fitting these observations with a stellar population synthesis model, they conclude that this stream is an example of a massive minor merger, with a stellar mass ratio of at least 1:8. For more information, check out the paper below!CitationSeppo Laine et al 2016 AJ 152 72. doi:10.3847/0004-6256/152/3/72

  6. On stellar limb darkening and exoplanetary transits

    CERN Document Server

    Howarth, Ian D

    2011-01-01

    This paper examines how to compare stellar limb-darkening coefficients evaluated from model atmospheres with those estimated from photometry. Limb-darkening coefficients derived from light-curve analyses using approximate limb-darkening `laws' are shown to be dependent on system geometry, while different characterizations of a given model atmosphere can give quite different numerical results. These issues are examined in the context of exoplanetary transits, which offer significant advantages over traditional binary-star eclipsing systems in the investigation of stellar limb darkening. `Like for like' comparisons between light-curve analyses and new model-atmosphere results, mediated by synthetic photometry, are conducted for a small sample of stars. Agreement between the resulting synthetic-photometry/atmosphere-model (SPAM) limb-darkening coefficients and empirical values ranges from very good to quite poor, even though there is only a small dispersion in fundamental stellar parameters.

  7. Origins of Stellar Halos

    Science.gov (United States)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  8. Las Campanas Stellar Library

    Science.gov (United States)

    Chilingarian, Igor; Zolotukhin, Ivan; Beletsky, Yuri; Worthey, Guy

    2015-08-01

    Stellar libraries are fundamental tools required to understand stellar populations in star clusters and galaxies as well as properties of individual stars. Comprehensive libraries exist in the optical domain, but the near-infrared (NIR) domain stays a couple of decades behind. Here we present the Las Campanas Stellar Library project aiming at obtaining high signal-to-noise intermediate-resolution (R=8000) NIR spectra (0.83libraries, INDO-US and UVES-POP and followed up about 400 non-variable stars in the NIR in order to get complete optical-NIR coverage. Worth mentioning that our current sample includes about 80 AGB stars and a few dozens of bulge/LMC/SMC stars.

  9. Introduction to stellar structure

    CERN Document Server

    Maciel, Walter J

    2016-01-01

    In the first part of this book, the author presents the basic properties of the stellar interior and describes them thoroughly, along with deriving the main stellar structure equations of temperature, density, pressure and luminosity, among others. The process and application of solving these equations is explained, as well as linking these results with actual observations.  The second part of the text describes what happens to a star over time, and how to determine this by solving the same equations at different points during a star’s lifetime. The fate of various stars is quite different depending on their masses, and this is described in the final parts of the book. This text can be used for an upper level undergraduate course or an introductory graduate course on stellar physics.

  10. Sparse field stellar photometry.

    Science.gov (United States)

    Reid, N.

    The past few years have seen substantial developments in the capability of high speed measuring machines in the field of automated stellar photometry. In this review, after describing some of the limitations on photometric precision, empirical results are used to demonstrate the sort of accuracies that are possible with the UK Schmidt plate plus COSMOS/APM images-scan combination. The astronomical results obtained to date from these machines are discussed, and some consideration is given to the future role of measuring machines in stellar astronomy.

  11. The SL2S Galaxy-scale Lens Sample. III. Lens Models, Surface Photometry and Stellar Masses for the final sample

    CERN Document Server

    Sonnenfeld, Alessandro; Suyu, Sherry H; Treu, Tommaso; Marshall, Philip J

    2013-01-01

    We present Hubble Space Telescope (HST) imaging data and CFHT Near IR ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey (SL2S) project. The new images are used to perform lens modeling, measure surface photometry, and estimate stellar masses of the deflector early-type galaxies. Lens modeling is performed on the HST images (or CFHT when HST is not available) by fitting the spatially extended light distribution of the lensed features assuming a singular isothermal ellipsoid mass profile and by reconstructing the intrinsic source light distribution on a pixelized grid. Based on the analysis of systematic uncertainties and comparison with inference based on different methods we estimate that our Einstein Radii are accurate to \\sim3%. HST imaging provides a much higher success rate in confirming gravitational lenses and measuring their Einstein radii than CFHT imaging does. Lens modeling with ground-b...

  12. Determination of the position angle of stellar spin axes

    Science.gov (United States)

    Lesage, A.-L.; Wiedemann, G.

    2014-03-01

    Context. Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. Aims: We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. Methods: The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the tilt or a cross-correlation analysis. Results: For stars with large apparent diameter and using a spectrograph with a small plate scale, we show that it is possible to determine the stellar position angle directly within 10° with a signal-to-noise ratio of the order of 6. Under less favourable conditions, i.e. larger plate scale or smaller stellar diameter, the cross-correlation method yields comparable results. Conclusions: We show that with the currently existing instruments, it is possible to determine the stellar position angle of at least 50 stars precisely, mostly K-type giants with apparent diameter down to 5 milliarcseconds. If we consider errors of around 10° still acceptable, we may include stars with apparent diameter down to 2 mas in the sample that then comprises also some main sequence stars.

  13. Few period quasisymmetric stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, M.Y.; Mikhailov, M.I.; Shafranov, V.D.; Subbotin, A.A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Cooper, W.A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Medvedev, S.Y. [Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow (Russian Federation)

    1997-06-01

    The results of plasma equilibrium and local stability investigations in two and four-period quasisymmetric stellarators are presented. A near-axis approximation is used for 2-period systems and the 3D codes VMEC and TERPSICHORE are used for four-periods devices to optimise the configurations. (author) 4 figs., 8 refs.

  14. Evolution and seismic tools for stellar astrophysics

    CERN Document Server

    Monteiro, Mario JPFG

    2008-01-01

    A collection of articles published by the journal "Astrophysics and Space Science, Volume 316, Number 1-4", August 2008. This work covers 10 evolution codes and 9 oscillation codes. It is suitable for researchers and research students working on the modeling of stars and on the implementation of seismic test of stellar models.

  15. New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling

    CERN Document Server

    Brinchmann, Jarle; Charlot, Stephane

    2008-01-01

    We have used extensive libraries of model and empirical galaxy spectra (assembled respectively from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey) to interpret some puzzling features seen in the spectra of high redshift star-forming galaxies. We show that a stellar He II 1640 emission line, produced in the expanding atmospheres of Of and Wolf-Rayet stars, should be detectable with an equivalent width of 0.5-1.5AA in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He II 1640 line measured in the spectra of Lyman break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low, redshifts. We also uncover a relationship in SDSS galaxies between their location in the [O III]/Hb vs. ...

  16. Hint of star exoplanet interaction by modelling the stellar auroral radio emission of the M8.5 dwarf TVLM 513-46546

    CERN Document Server

    Leto, P; Buemi, C S; Umana, G; Ingallinera, A; Cerrigone, L

    2016-01-01

    The stellar auroral radio emission has been recognized in some early-type magnetic stars and in many ultra-cool dwarfs. The typical features are the highly polarized pulses explained in terms of Electron Cyclotron Maser emission mechanism. The A0 type star CU Virginis is the prototype of the stars showing this coherent emission; the repeatability and stability of its auroral radio emission allow us to well study this elusive phenomenon. Taking advantage of the CU Vir insights, we built a 3D-model able to reproduce the timing and pulse profile of the auroral radio emission from a dipolar magnetosphere. This model can be applied to stars with an overall symmetric magnetic field topology and showing auroral radio emission, like the ultra-cool dwarfs. In this paper, we simulate the cyclic circularly-polarized pulses of the ultra-cool dwarf TVLM 513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006. The auroral radio emission originates in polar rings located at different elevations as a function of th...

  17. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    CERN Document Server

    Grassitelli, Luca; Langer, Norbert; Simon-Diaz, Sergio; Castro, Norberto; Sanyal, Debashis

    2016-01-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 Msun based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the ...

  18. Stellar Tidal Streams in External Galaxies

    CERN Document Server

    Carlin, Jeffrey L; Martinez-Delgado, David; Gabany, R Jay

    2016-01-01

    To place the highly substructured stellar halos of the Milky Way and M31 in a larger context of hierarchical galaxy formation, it is necessary to understand the prevalence and properties of tidal substructure around external galaxies. This chapter details the current state of our observational knowledge of streams in galaxies in and beyond the Local Group, which are studied both in resolved stellar populations and in integrated light. Modeling of individual streams in extragalactic systems is hampered by our inability to obtain resolved stellar kinematics in the streams, though many streams contain alternate luminous kinematic tracers, such as globular clusters or planetary nebulae. We compare the observed structures to the predictions of models of galactic halo formation, which provide insight in the number and properties of streams expected around Milky Way like galaxies. More specifically, we discuss the inferences that can be made about stream progenitors based only on observed morphologies. We expand our...

  19. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    Energy Technology Data Exchange (ETDEWEB)

    Shaikhislamov, I. F. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G. [Space Research Institute, Austrian Acad. Sci., Graz (Austria); Erkaev, N. V., E-mail: maxim.khodachenko@oeaw.ac.at [Institute of Computational Modelling, SB RAS, Krasnoyarsk (Russian Federation)

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  20. Detection of Solar-like Oscillations, Observational Constraints, and Stellar Models for θ Cyg, the Brightest Star Observed By the Kepler Mission

    Science.gov (United States)

    Guzik, J. A.; Houdek, G.; Chaplin, W. J.; Smalley, B.; Kurtz, D. W.; Gilliland, R. L.; Mullally, F.; Rowe, J. F.; Bryson, S. T.; Still, M. D.; Antoci, V.; Appourchaux, T.; Basu, S.; Bedding, T. R.; Benomar, O.; Garcia, R. A.; Huber, D.; Kjeldsen, H.; Latham, D. W.; Metcalfe, T. S.; Pápics, P. I.; White, T. R.; Aerts, C.; Ballot, J.; Boyajian, T. S.; Briquet, M.; Bruntt, H.; Buchhave, L. A.; Campante, T. L.; Catanzaro, G.; Christensen-Dalsgaard, J.; Davies, G. R.; Doğan, G.; Dragomir, D.; Doyle, A. P.; Elsworth, Y.; Frasca, A.; Gaulme, P.; Gruberbauer, M.; Handberg, R.; Hekker, S.; Karoff, C.; Lehmann, H.; Mathias, P.; Mathur, S.; Miglio, A.; Molenda-Żakowicz, J.; Mosser, B.; Murphy, S. J.; Régulo, C.; Ripepi, V.; Salabert, D.; Sousa, S. G.; Stello, D.; Uytterhoeven, K.

    2016-11-01

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June-September) and subsequently in Quarters 8 and 12-17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000-2700 μHz, a large frequency separation of 83.9 ± 0.4 μHz, and maximum oscillation amplitude at frequency ν max = 1829 ± 54 μHz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T eff = 6697 ± 78 K, radius 1.49 ± 0.03 R ⊙, [Fe/H] = -0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35-1.39 M ⊙ and ages of 1.0-1.6 Gyr. θ Cyg’s T eff and log g place it cooler than the red edge of the γ Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1-3 cycles per day (11 to 33 μHz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μHz) may be attributable to a faint, possibly background, binary.