WorldWideScience

Sample records for non-lte metal abundances

  1. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  2. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  3. New solar carbon abundance based on non-LTE CN molecular spectra

    International Nuclear Information System (INIS)

    Mount, G.H.; Linsky, J.L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggests a revised carbon abundance for the Sun. A value of log A/subc/=8.35plus-or-minus0.15 which is significantly lower than the presently accepted value of log A/subc/=8.55 is suggested. This revision may have important consequences in astrophysics

  4. The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.; Keenan, Francis P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Lambert, David L. [The University of Texas at Austin, Department of Astronomy, RLM 16.316, Austin, TX 78712 (United States); Schneider, Fabian R. N. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); De Wit, Willem-Jan [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago 19 (Chile)

    2017-06-10

    There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances for a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.

  5. A NON-LTE STUDY OF SILICON ABUNDANCES IN GIANT STARS FROM THE Si i INFRARED LINES IN THE zJ -BAND

    International Nuclear Information System (INIS)

    Tan, Kefeng; Shi, Jianrong; Zhao, Gang; Takada-Hidai, Masahide; Takeda, Yoichi

    2016-01-01

    We investigate the feasibility of Si i infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si i IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13 dex), and are higher than those from the optical lines. However, when non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06 dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about −0.35 dex. Our results demonstrate that the Si i IR lines could be reliable abundance indicators, provided that the non-LTE effects are properly taken into account.

  6. Non-LTE effects in Al I lines

    Science.gov (United States)

    Menzhevitski, V. S.; Shimansky, V. V.; Shimanskaya, N. N.

    2012-07-01

    We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0-4.5, and metallicity [ A] = 0.0;-1.0;-2.0;-3.0;-4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3 p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (Δ X NLTE = log ɛ NLTE - log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.

  7. Non-LTE CO, revisited

    Science.gov (United States)

    Ayres, Thomas R.; Wiedemann, Gunter R.

    1989-01-01

    A more extensive and detailed non-LTE simulation of the Delta v = 1 bands of CO than attempted previously is reported. The equations of statistical equilibrium are formulated for a model molecule containing 10 bound vibrational levels, each split into 121 rotational substates and connected by more than 1000 radiative transitions. Solutions are obtained for self-consistent populations and radiation fields by iterative application of the 'Lambda-operator' to an initial LTE distribution. The formalism is used to illustrate models of the sun and Arcturus. For the sun, negligible departures from LTE are found in either a theoretical radiative-equilibrium photosphere with outwardly falling temperatures in its highest layers or in a semiempirical hot chromosphere that reproduces the spatially averaged emission cores of Ca II H and K. The simulations demonstrate that the puzzling 'cool cores' of the CO Delta V = 1 bands observed in limb spectra of the sun and in flux spectra of Arcturus cannot be explained simply by non-LTE scattering effects.

  8. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    Science.gov (United States)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    2018-01-01

    Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims: Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods: We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results: We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline

  9. NonLTE ANALYSIS OF THE NaI LINES IN THE SOLAR SPECTRUM

    OpenAIRE

    Ivanova, D. V.; Shimansky, V. V.

    2017-01-01

    Solar spectrum of Nal lines by method of the nonLTE analysis is investigated. It shown, that in atmosphere of the Sun the Nal is in moderate ”overrecombination”. The analysis of influence of atomic data, models of atmospheres and damping constants for nonLTE deviation and sodium abundances is made. Observational solar spectrum of strong lines Nal has been synthesized in good approximation. On summary data of 15 lines the sodium abundance is determined:-5.78dex.

  10. Improved non-LTE simulation algorithm

    Science.gov (United States)

    Busquet, Michel; Klapisch, Marcel; Colombant, Denis; Fyfe, David; Gardner, John

    2008-11-01

    The RAdiation Dependent Ionization Model (RADIOM)- a.k.a Busquet's model-[1] has proven its success in simulating non --LTE effects in laser fusion plasmas [2]. This improved algorithm can take into account Auger effect by a new parameter fitted to SCROLL [3] results. It is independent of the photon binning thanks to a projection on a standard grid. It guarantees smoother convergence to LTE. This algorithm has been implemented in a new way in the hydro-code FASTnD. Hydro simulations on the recent subMJ targets[4], with and without non-LTE corrections will be shown. [1] M. Busquet, Phys. Fluids B 5, 4191(1993). [2] D.G. Colombant et al, Phys. Plas. 7,2046 (2000). [3] A. Bar-Shalom, J. Oreg M. Klapisch, J. Quant. Spectr. Rad. Transf. 65 ,43 (2000). [4] S. P. Obenschain, D. G. Colombant, A. J. Schmitt et al., Phys. Plasmas 13, 056320 (2006).

  11. Non-LTE treatment of beryllium lines: Misidentification of the solar Be I feature at 2650 A

    International Nuclear Information System (INIS)

    Shipman, H.L.; Auer, L.H.

    1979-01-01

    We investigated the formation of beryllium lines, with particular reference to the solar Be spectrum, in a non-LTE context with a 25-level model atom in which 15 levels were allowed to depart from LTE. In some transitions, particularly the Be I lambda2650 line, the non-LTE effects can be quite dramatic, changing the deduced abundances by a factor of 4. Based on our non-LTE calculations and Copernicus observations of other stars, we find that a solar spectral feature at 2650 A, previously identified by numerous investigators as a Be I line, cannot be produced by Be I. Non-LTE effects on the Be II lambda3131 A line, used for most Be abundance determinations in the literature, are small by comparison

  12. A non-LTE treatment of beryllium lines - Misidentification of the solar Be I feature at 2650 A

    Science.gov (United States)

    Shipman, H. L.; Auer, L. H.

    1979-01-01

    The formation of beryllium lines, with particular reference to the solar Be spectrum, is investigated in a non-LTE context with a 25-level model atom in which 15 levels are allowed to depart from LTE. In some transitions, particularly the Be I 2650-A line, the non-LTE effects can be quite dramatic, changing the deduced abundances by a factor of 4. Based on the non-LTE calculations and Copernicus observations of other stars, it is found that a solar spectral feature at 2650 A, previously identified by numerous investigators as a Be I line, cannot be produced by Be I. Non-LTE effects on the Be II 3131-A line, used for most Be abundance determinations in the literature, are small by comparison.

  13. Collisional-radiative switching - A powerful technique for converging non-LTE calculations

    Science.gov (United States)

    Hummer, D. G.; Voels, S. A.

    1988-01-01

    A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.

  14. Non LTE Effects in Laser Plasmas

    Science.gov (United States)

    Klapisch, Marcel

    1997-11-01

    Laser produced plasmas are not in Local Thermodynamical Equilibrium(LTE) because of the strong gradients and the escaping radiation. Departure from LTE changes the average charge state Z^*, and through it the electron temperature and other thermodynamical variables. Hydrodynamic simulations using LTE and non LTE modes show that in some cases the temperatures can change by an order of magnitude. Several rad/hydro models have solved the approximate atomic rate equations in-line within the average atom model(W. A. Lokke and W. H. Grasburger, LLNL, Report UCRL-52276 (1977),G. Pollack, LANL, Report LA-UR-90-2423 (1990)), or with global rates(M. Busquet, J. P. Raucourt and J. C. Gauthier, J. Quant. Spectrosc. Radiat. Transfer, 54, 81 (1995)). A new technique developed by Busquet, the Radiation Dependent Ionization Model (RADIOM)(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) has been implemented in the NRL hydro-code. It uses an ionization temperature Tz to obtain the opacities and EOS in table look-ups. A very elaborate LTE atomic physics such as the STA code( A. Bar-Shalom and J. Oreg, Phys. Rev. E, 54, 1850 (1996), and ref. therein), or OPAL, can then be used off-line for generating the tables. The algorithm for Tz is very simple and quick. RADIOM has recently been benchmarked with a new detailed collisional radiative model SCROLL(A. Bar-Shalom, J. Oreg and M. Klapisch, Phys. Rev. E, to appear in July (1997)) on a range of temperatures, densities and atomic numbers. RADIOM has been surprisingly successful in calculations of non-LTE opacities.

  15. Non-LTE model atmosphere analysis of Nova Cygni 1992

    Science.gov (United States)

    Hauschildt, P. H.; Starrfield, S.; Austin, S.; Wagner, R. M.; Shore, S. N.; Sonneborn, G.

    1994-01-01

    We use spherically symmetric non-local thermodynamic equilibrium (non-LTE), line-blanketed, expanding model atmospheres to analyze the International Ultraviolet Explorer (IUE) and optical spectra of Nova Cygni 1992 during the early phases of its outburst. We find that the first IUE spectrum obtained just after discovery on 1992 February 20, is best reproduced by a model atmosphere with a steep density gradient and homologous expansion, whereas the IUE and optical spectra obtained on February 24 show an extended, optically thick, wind structure. Therefore, we distinguish two phases of the early evolution of the nova photosphere: the initial, rapid, 'fireball' phase and the subsequent, much longer, optically thick 'wind' phase. The importance of line-blanketing in nova spectra is demonstrated. Our preliminary abundance analysis implies that hydrogen is depeleted in the ejecta, corresponding to abundance enhancements of Fe by a factor of approximately 2 and of CNO by more than a factor of 10 when compared to solar abundances. The synthetic spectra reproduce both the observed pseudo-continua as well as most of the observed features from the UV to the optical spectral range and demonstrate the importance of obtaining nearly simultaneous UV and optical spectra for performing accurate analyses of expanding stellar atmospheres (for both novae and supernovae).

  16. Non-LTE calculations of Al III line strengths in early-type stars

    International Nuclear Information System (INIS)

    Dufton, P.L.; Brown, P.J.F.; Lennon, D.J.; Lynas-Gray, A.E.

    1986-01-01

    Non-LTE line formation calculations, based on the 'complete linearization method' are presented for the Al III ion in early-type stars. Equivalent widths, together with the corresponding LTE values, are tabulated for 15 ultraviolet and visible region transitions, for effective temperatures from 20 000 to 35 000 K, logarithmic gravities of 3.5, 4.0 and 4.5, microturbulent velocities of 0 and 5 km s -1 and logarithmic aluminium abundances of 6.0, 6.5 and 7.0. The non-LTE line strengths are significantly larger than the LTE values particularly for the visible region transitions and the implications of this are briefly discussed. (author)

  17. Non-LTE model atmospheres for supersoft X-ray sources

    Science.gov (United States)

    Rauch, T.; Werner, K.

    2010-02-01

    In the last decade, X-ray observations of hot stellar objects became available with unprecedented resolution and S/N ratio. For an adequate interpretation, fully metal-line blanketed Non-LTE model-atmospheres are necessary. The Tübingen Non-LTE Model Atmosphere Package (TMAP) can calculate such model atmospheres at a high level of sophistication. Although TMAP is not especially designed for the calculation of spectral energy distributions (SEDs) at extreme photospheric parameters, it can be employed for the spectral analysis of burst spectra of novae like V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  18. Non-LTE effects in inertial confinement fusion target chambers

    International Nuclear Information System (INIS)

    MacFarlane, J.J.; Moses, G.A.; Peterson, R.R.

    1989-01-01

    In previous studies of transport processes in inertial confinement fusion target chambers, the radiative properties of the background plasma were calculated under the assumption of local thermodynamic equilibrium (LTE). In this paper, the authors present a study of the equation of state and the radiative properties of high temperature, low-to-moderate density ( 21 cm -3 ) plasmas for the determination of the conditions under which non-LTE effects become important and for an assessment of the importance of non-LTE processes in target chambers during high yield inertial fusion target explosions. For this purpose, two-body (radiative and dielectronic) and three-body (collisional) recombination and de-excitation processes are considered in calculating the steady state ionization and excitation populations. The results of this study indicate that non-LTE processes generally become important at temperatures of > or approx. 1, 10 and 100 eV for plasma densities of 10 18 , 10 19 and 10 21 cm -3 , respectively. Radiation hydrodynamic simulations utilizing the equation of state and the opacities for a non-LTE argon plasma were performed to study the response of a background gas to an inertial fusion target explosion. These calculations indicate that non-LTE processes are often the dominant atomic processes in the background plasma and that they can strongly affect the radiative and shock properties as energy is transported away from the point of the target explosion. (author). 22 refs, 10 figs, 1 tab

  19. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    Science.gov (United States)

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  20. Some non-LTE diagnostic methods for hydrogen plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.; Cho, K.Y.

    1986-01-01

    This paper shows that if electric and magnetic fields are not negligible, then the 2-T model assumed by many non-LTE plasma diagnostic techniques may lead to serious errors. Significant difference between T e and T ex have been shown to exist with electric field strengths as low as ∼10 V/cm. Multithermal equilibrium (MTE) calculations show significant deviations in line emission coefficients when T e ≠ T ex compared to equivalent T e ≠ T q . A quasi non-dimentional MTE continuum relation is present to assist in diagnostics. Normalized line emission coefficients verses N e are used to indicate the type and extent of non-LTE. The MTE state diagram for hydrogen is used to show why non-LTE plasmas often appear to be in LTE based on N e determinations

  1. Observational restrictions on sodium and aluminium abundance variations in evolution of the galaxy

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Sakhibullin, N. A.

    2013-07-01

    In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([Al/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within -4.07 ≤ [Fe/H] ≤ 0.28. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the Al I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05-0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with [Fe/H] ≥ -2.0, and by 0.05-0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with [Fe/H] ≤ -2.0. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0-0.1 dex for the stars of the thin disk (-0.7 ≤ [Fe/H] ≤ 0.28) to 0.03-0.3 dex for the stars of the thick disk (-1.5 ≤ [Fe/H] ≤ -0.7) and 0.06-1.2 dex for the stars of the halo ([Fe/H] ≤ -2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ[Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ[Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but

  2. Improvements to the RADIOM non-LTE model

    Science.gov (United States)

    Busquet, M.; Colombant, D.; Klapisch, M.; Fyfe, D.; Gardner, J.

    2009-12-01

    In 1993, we proposed the RADIOM model [M. Busquet, Phys. Fluids 85 (1993) 4191] where an ionization temperature T z is used to derive non-LTE properties from LTE data. T z is obtained from an "extended Saha equation" where unbalanced transitions, like radiative decay, give the non-LTE behavior. Since then, major improvements have been made. T z has been shown to be more than a heuristic value, but describes the actual distribution of excited and ionized states and can be understood as an "effective temperature". Therefore we complement the extended Saha equation by introducing explicitly the auto-ionization/dielectronic capture. Also we use the SCROLL model to benchmark the computed values of T z.

  3. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  4. Detailed non-LTE calculations of the iron emission from NGC 1068

    Science.gov (United States)

    Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.

    1989-01-01

    The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.

  5. IUE observations of Si and C lines and comparison with non-LTE models

    Science.gov (United States)

    Kamp, L. W.

    1982-01-01

    Classical model atmosphere techniques are applied to analyze IUE spectra, and to determine abundances, effective temperatures and gravities. Measurements of the equivalent widths and other properties of the line profiles of 24 photospheric lines of Si II, Si III, Si IV, C II, C III and C IV are presented in the range of 1175-1725 A for seven B and two O stars. Observed line profiles are compared with theoretical profiles computed using non-LTE theory and models, and using line-blanketed model atmospheres. Agreement is reasonably good, although strong lines are calculated to be systematically stronger than those observed, while the reverse occurs for weak lines, and empirical profiles have smaller wings than theoretical profiles. It is concluded that the present theory of line formation when used with solar abundances, represents fairly well observed UV photospheric lines of silicon and carbon ions in the atmospheres of main sequence stars of types B5-O9.

  6. Non-LTE radiation in laser-disk target couply

    International Nuclear Information System (INIS)

    Gu Peijun; Fei Weibing; Feng Tinggui; Wu Changshu

    2004-11-01

    The coupling of laser-disk target has been studied by Multi-group radiation transfer code RDMGL. The results show that the X-ray spectra are strongly non-LTE and dependent on the atomic model. The plasma states, laser energy absorption and X-ray conversion rates are almost the same as those simulated by three-temperature model code, which fact shows that the three-temperature model is reasonable to describe the exchange of different kinds of energy and the hydrodynamic phenomena of plasmas in laser-target coupling. (authors)

  7. Non-LTE models of Titan's upper atmosphere

    Science.gov (United States)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  8. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    Science.gov (United States)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  9. Limb-darkening coefficients from line-blanketed non-LTE hot-star model atmospheres

    Science.gov (United States)

    Reeve, D. C.; Howarth, I. D.

    2016-02-01

    We present grids of limb-darkening coefficients computed from non-local thermodynamic equilibrium (non-LTE), line-blanketed TLUSTY model atmospheres, covering effective-temperature and surface-gravity ranges of 15-55 kK and 4.75 dex (cgs) down to the effective Eddington limit, at 2×, 1×, 0.5× (Large Magellanic Cloud), 0.2× (Small Magellanic Cloud), and 0.1× solar. Results are given for the Bessell UBVRICJKHL, Sloan ugriz, Strömgren ubvy, WFCAM ZYJHK, Hipparcos, Kepler, and Tycho passbands, in each case characterized by several different limb-darkening `laws'. We examine the sensitivity of limb darkening to temperature, gravity, metallicity, microturbulent velocity, and wavelength, and make a comparison with LTE models. The dependence on metallicity is very weak, but limb darkening is a moderately strong function of log g in this temperature regime.

  10. Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method

    Science.gov (United States)

    Hubeny, I.; Lanz, T.

    1995-01-01

    A new munerical method for computing non-Local Thermodynamic Equilibrium (non-LTE) model stellar atmospheres is presented. The method, called the hybird complete linearization/accelerated lambda iretation (CL/ALI) method, combines advantages of both its constituents. Its rate of convergence is virtually as high as for the standard CL method, while the computer time per iteration is almost as low as for the standard ALI method. The method is formulated as the standard complete lineariation, the only difference being that the radiation intensity at selected frequency points is not explicity linearized; instead, it is treated by means of the ALI approach. The scheme offers a wide spectrum of options, ranging from the full CL to the full ALI method. We deonstrate that the method works optimally if the majority of frequency points are treated in the ALI mode, while the radiation intensity at a few (typically two to 30) frequency points is explicity linearized. We show how this method can be applied to calculate metal line-blanketed non-LTE model atmospheres, by using the idea of 'superlevels' and 'superlines' introduced originally by Anderson (1989). We calculate several illustrative models taking into accont several tens of thosands of lines of Fe III to Fe IV and show that the hybrid CL/ALI method provides a robust method for calculating non-LTE line-blanketed model atmospheres for a wide range of stellar parameters. The results for individual stellar types will be presented in subsequent papers in this series.

  11. Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations

    Science.gov (United States)

    Tritsis, A.; Yorke, H.; Tassis, K.

    2018-05-01

    We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.

  12. Electron temperature determination in LTE and non-LTE plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  13. The continuous UV flux of alpha lyrae: NON-LTE results

    International Nuclear Information System (INIS)

    Snijders, M.A.J.

    1977-01-01

    Non--LTE calculations for the ultraviolet C I and Si I continuous opacity show that LTE results overestimate the importance of these sources of opacity and underestimate the emergent flux in α Lyr. The largest errors occur between 1100 and 1160 A where the predicted flux in non--LTE is as much as 50 times larger than in LTE, in reasonable accord with Copernicus observations.The discrepancy between LTE models and observations has been interpreted by Praderie et al. to result from the existence of a chromosphere. Until a self--consistent non-LTE model atmosphere becomes available, such an interpretation is premature

  14. The continuous UV flux of Alpha Lyrae - Non-LTE results

    Science.gov (United States)

    Snijders, M. A. J.

    1977-01-01

    Non-LTE calculations for the ultraviolet C I and Si I continuous opacity show that LTE results overestimate the importance of these sources of opacity and underestimate the emergent flux in Alpha Lyr. The largest errors occur between 1100 and 1160 A, where the predicted flux in non-LTE is as much as 50 times larger than in LTE, in reasonable accord with Copernicus observations. The discrepancy between LTE models and observations has been interpreted to result from the existence of a chromosphere. Until a self-consistent non-LTE model atmosphere becomes available, such an interpretation is premature.

  15. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  16. A New Non-LTE Model based on Super Configurations

    Science.gov (United States)

    Bar-Shalom, A.; Klapisch, M.

    1996-11-01

    Non-LTE effects are vital for the simulation of radiation in hot plasmas involving even medium Z materials. However, the exceedingly large number of atomic energy levels forbids using a detailed collisional radiative model on-line in the hydrodynamic simulations. For this purpose, greatly simplified models are required. We implemented recently Busquet's model(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form (M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995), and poster at this meeting.). This model is quick and the results make sense, but in the absence of precisely defined experiments, it is difficult to asses its accuracy. We present here a new collisional radiative model based on superconfigurations( A. Bar-Shalom, J. Oreg, J. F. Seely, U. Feldman, C. M. Brown, B. A. Hammel, R. W. Lee and C. A. Back, Phys. Rev. E, 52, 6686 (1995).), intended to be a benchmark for approximate models used in hydro-codes. It uses accurate rates from the HULLAC Code. Results for various elements will be presented and compared with RADIOM.

  17. The evolution of C and O abundances in stellar populations

    DEFF Research Database (Denmark)

    Nissen, Poul E.; Schuster, William J.

    2014-01-01

    Carbon and oxygen abundances in F and G main-sequence stars ranging in metallicity from [Fe/H] = -1.6 to +0.5 are determined from a non-LTE analysis of C i and O i atomic lines in high-resolution spectra. Both C and O are good tracers of stellar populations; distinct trends of [C/Fe] and [O/Fe] a...

  18. The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    International Nuclear Information System (INIS)

    Osorio, Yeisson; Barklem, Paul; Lind, Karin; Asplund, Martin

    2012-01-01

    The influence of the uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the electron collision data used in previous non-LTE calculations and compare them to our own calculations using the R-matrix with pseudostates (RMPS) method and to other calculations found in the literature.

  19. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    Science.gov (United States)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  20. Photometric metal abundances for twenty clusters

    International Nuclear Information System (INIS)

    Jennens, P.A.; Helfer, H.L.

    1975-01-01

    Metal abundances, colour excesses and distance moduli have been determined for individual giant stars, using UBViyz photometry, in NGC 188, 559, 752, 1245, 1342, 1907, 1912, 2099, 5139 (ω cen), 5316, 5617, 5822, 5823, 6067, IC 4651, 6819, 6940, 7142, 7261 and 7789. All six clusters with ages 3 to 8x10 9 yr have metal abundances agreeing with one another; their average value of [Fe/H]=-0.24+-0.05, agrees with the average found for the bright K-giants near the Sun. All six clusters are at least 140pc from the galactic plane. For the younger clusters less than approximately 10 9 yr old, one-third are metal deficient. The very young cluster, NGC 559, is probably very metal weak. (author)

  1. New computational method for non-LTE, the linear response matrix

    International Nuclear Information System (INIS)

    Fournier, K.B.; Grasiani, F.R.; Harte, J.A.; Libby, S.B.; More, R.M.; Zimmerman, G.B.

    1998-01-01

    My coauthors have done extensive theoretical and computational calculations that lay the ground work for a linear response matrix method to calculate non-LTE (local thermodynamic equilibrium) opacities. I will give briefly review some of their work and list references. Then I will describe what has been done to utilize this theory to create a computational package to rapidly calculate mild non-LTE emission and absorption opacities suitable for use in hydrodynamic calculations. The opacities are obtained by performing table look-ups on data that has been generated with a non-LTE package. This scheme is currently under development. We can see that it offers a significant computational speed advantage. It is suitable for mild non-LTE, quasi-steady conditions. And it offers a new insertion path for high-quality non-LTE data. Currently, the linear response matrix data file is created using XSN. These data files could be generated by more detailed and rigorous calculations without changing any part of the implementation in the hydro code. The scheme is running in Lasnex and is being tested and developed

  2. A non-LTE study of silicon line formation in early-type main-sequence atmospheres.

    Science.gov (United States)

    Kamp, L. W.

    1973-01-01

    We have computed populations of 16 levels of Si III-V and radiation fields in all connecting transitions; in particular the first six Si III triplet levels, including the 4553 line, and the first six Si IV levels including 4089. The computations were done for four non-LTE H-He model atmospheres, provided by Auer and Mihalas. Estimates of corresponding MK types are B1.5 V, B0.5 V, O9 V, and O6. Solutions were obtained by iterating the linearized equations of radiative transfer and statistical equilibrium, except that for less important lines an approximate equivalent two-level atom treatment was used. Continuous opacities of C, N, O, and Ne were included. All abundances were solar values.

  3. Non-LTE profiles of the Al I autoionization lines. [for solar model atmospheres

    Science.gov (United States)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at 1932 and 1936 A through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. The results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  4. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation

    Science.gov (United States)

    Parfenov, S. Yu.; Semenov, D. A.; Sobolev, A. M.; Gray, M. D.

    2016-08-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub)millimetre spectrum of gaseous methanol (CH3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3OH abundances along with the CH3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3OH lines can be lower by factor of >10-100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3OH (sub)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3OH 50 - 40A+ (241.791 GHz) and 5-1 - 4-1E (241.767 GHz) lines, which could possibly be detected with the ˜5σ signal-to-noise ratio after ˜3 h of integration with the full ALMA array.

  5. A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared

    Science.gov (United States)

    Lopez-Valverde, Miguel Angel; García-Comas, Maya; Funke, Bernd; Jimenez-Monferrer, Sergio; Lopez-Puertas, Manuel

    2016-04-01

    Several instruments on board Mars Express have been sounding the upper atmosphere of Mars systematically in a limb geometry in the IR part of the spectrum. Two of them in particular, OMEGA and PFS, performed emission measurements during daytime and detected the strongest IR bands of species like CO2 and CO (Piccialli et al, JGRE, submitted). Similarly on Venus, the instrument VIRTIS carried out observations of CO2 and CO bands at 2.7, 4.3 and 4.7 um at high altitudes (Gilli et al, JGRE, 2009). All these daylight atmospheric emissions respond to fluorescent situations, a case of non-local thermodynamic equilibrum conditions (non-LTE), well understood nowadays using comprehensive non-LTE theoretical models and tools (Lopez-Valverde et al., Planet. Space Sci., 2011). However, extensive exploitation of these emissions has only been done in optically thin conditions to date (Gilli et al, Icarus, 2015) or in a broad range of altitudes if in nadir geometry (Peralta et al, Apj, 2015). Within the H2020 project UPWARDS we aim at performing retrievals under non-LTE conditions including optically thick cases, like those of the CO2 and CO strongest bands during daytime in the upper atmosphere of Mars. Similar effort will also be applied eventually to Venus. We will present the non-LTE scheme used for such retrievals, based on similar efforts performed recently in studies of the Earth's upper atmosphere using data from the MIPAS instrument, on board Envisat (Funke et al., Atmos. Chem. Phys., 2009; Jurado-Navarro, PhD Thesis, Univ. Granada, 2015). Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  6. X-ray emission spectroscopy of well-characterised non-LTE plasmas

    International Nuclear Information System (INIS)

    Bourgaux, A C; Bastiani-Ceccotti, S; Audebert, P; Marquès, J R; Vassura, L; Vinci, T; Jacquemot, S; Dorchies, F; Leguay, P M; Chung, H K; Bowen, C; Dervieux, V; Renaudin, P; Silvert, V

    2016-01-01

    This paper will present an experimental platform developed on LULI2000 to measure x-ray emission of non-LTE plasmas in well-defined hydrodynamic conditions thanks to implementation of a whole set of diagnostics, including time-resolved electronic and ionic Thomson scattering and self-optical pyrometry. K-, L- and M-shell spectra will be presented and the methodology, that has been developed to analyze them, discussed. (paper)

  7. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    Science.gov (United States)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  8. Non-LTE, line-blanketed model atmospheres for late O- and early B-type stars

    Science.gov (United States)

    Grigsby, James A.; Morrison, Nancy D.; Anderson, Lawrence S.

    1992-01-01

    The use of non-LTE line-blanketed model atmospheres to analyze the spectra of hot stars is reported. The stars analyzed are members of clusters and associations, have spectral types in the range O9-B2 and luminosity classes in the range III-IV, have slow to moderate rotation, and are photometrically constant. Sampled line opacities of iron-group elements were incorporated in the radiative transfer solution; solar abundances were assumed. Good to excellent agreement is obtained between the computed profiles and essentially all the line profiles used to fix the model, and reliable stellar parameters are derived. The synthetic M II 5581 equivalent widths agree well with the observed ones at the low end of the temperature range studied, but, above 25,000 K, the synthetic line is generally stronger than the observed line. The behavior of the observed equivalent widths of N II, N III, C II and C III lines as a function of Teff is studied. Most of the lines show much scatter, with no consistent trend that could indicate abundance differences from star to star.

  9. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6–Cu mixture

    International Nuclear Information System (INIS)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-01-01

    SF 6 –Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF 6 –Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1–10 atm), non-equilibrium degrees (1–10), and copper molar proportions (0–50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF 6 –Cu system. This paper provides a more accurate database for computational fluid dynamic calculation. (paper)

  10. Time-dependent ionization balance model for non-LTE plasma

    International Nuclear Information System (INIS)

    Lee, Y.T.; Zimmerman, G.B.; Bailey, D.S.; Dickson, D.; Kim, D.

    1986-01-01

    We have developed a detailed configuration-accounting kinetic model for calculating time-dependent ionization-balance and ion-level populations in non-local thermal-equilibrium (non-LTE) plasmas. We use these population estimates in computing spectral line intensities, line ratios, and synthetic spectra, and in fitting these calculated values to experimental measurements. The model is also used to design laboratory x-ray laser experiments. For this purpose, it is self-consistently coupled to the hydrodynamics code LASNEX. 20 refs., 14 figs

  11. Influence of external radiation on non-LTE opacities of Xe

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2010-11-01

    In Laboratory Astrophysics, where astrophysics phenomena are scaled down to the laboratory, Xenon is commonly used. In most cases, astrophysical plasmas are not dense enough to warrant LTE. However, they are surrounded by radiation fields. Extensive detailed level computations of non-LTE Xe around Te = 100eV were performed with HULLAC [1], with different radiation temperatures and/or dilution factors. Generally, the effects are very important, even with small dilution factors. [4pt] [1] M. Klapisch and M. Busquet, High Ener. Dens. Phys.5, (2009) 105-9; Bull. Am. Phys. Soc.54, (2009) 210.

  12. Non-LTE considerations in spectral diagnostics of thermal transport and implosion experiments

    International Nuclear Information System (INIS)

    Epstein, R.; Skupsky, S.; Delettrez, J.; Yaakobi, B.

    1984-01-01

    Recent thermal-transport and target-implosion experiments have used the emission of radiation from highly-ionized ions to signal the advance of laser-driven heat fronts and to mark the trajectories and stagnation points of imploding shells. We examine the results of such experiments with particular attention given to non-LTE effects of non-Maxwellian electrons and of finite ionization times on the populations of signature-emitting atomic species and on the formation of signature spectra and x-ray images in these experiments

  13. 3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule

    Science.gov (United States)

    Berkner, A.; Schweitzer, A.; Hauschildt, P. H.

    2015-01-01

    The photospheres of cool stars are both rich in molecules and an environment where the assumption of LTE can not be upheld under all circumstances. Unfortunately, detailed 3D non-LTE calculations involving molecules are hardly feasible with current computers. For this reason, we present our implementation of the super level technique, in which molecular levels are combined into super levels, to reduce the number of unknowns in the rate equations and, thus, the computational effort and memory requirements involved, and show the results of our first tests against the 1D implementation of the same method.

  14. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    International Nuclear Information System (INIS)

    Pandey, Gajendra; Lambert, David L.

    2017-01-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T eff = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s −1 are provided for V652 Her, and T eff = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s −1 are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  15. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    Science.gov (United States)

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  16. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks

    Science.gov (United States)

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.

    1994-01-01

    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  17. Target simulations with SCROLL non-LTE opacity/emissivity databases.

    Science.gov (United States)

    Klapisch, M.; Colombant, D.; Bar-Shalom, A.

    2001-10-01

    SCROLL[1], a collisional radiative model and code based on superconfigurations, is able to compute high Z non-LTE opacities and emissivities accurately and efficiently. It was used to create opacity/emissivity databases for Pd, Lu, Au on a 50 temperatures/80 densities grid. Incident radiation field was shown to have no effect on opacities in the case of interest, and was not taken into account. These databases were introduced in the hydrocode FAST1D[2]. SCROLL also gives an ionization temperature Tz which is used in FAST1D to obtain non-LTE corrections to the equation of state. Results will be compared to those of a previous version using Busquet’s algorithm[3]. Work supported by USDOE under a contract with NRL. [1] A. Bar-Shalom, J. Oreg and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer, 65, 43(2000). [2] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E. Bodner, S. P. Obenschain, V. Serlin and Y. Aglitskiy, Phys. Plasmas, 5, 1935 (1998). [3] M. Busquet, Phys. Fluids B, 5, 4191 (1993).

  18. An arc facility for investigating non-LTE thermodynamic and transport phenomena in low and high pressure plasmas

    International Nuclear Information System (INIS)

    Sedghinisab, A.; Eddy, T.L.; Murray, R.T.

    1986-01-01

    This paper discusses a high pressure arc facility modified for computerized control and data acquisition to simplify measurements of non-LTE plasmas. The non-LTE methods have shown that numerous spectral lines and continuum must be accurately, precisely and quickly measured.The instrumentation uses a 1-m monochrometer with programmed wavelength slews and scans; oplasma scans; and monitoring of chamber pressure, current, voltages, and location. Multiple flows of various gases can be provided simultaneously. Plasma self absorption is determined via a concave back mirror and shutter with final alignment via computer plots. The raw data is corrected for absorption, zeroed, centered and smoothed. The net line intensity is then determined and Abeled prior to feeding into LTE or non-LTE analysis methods. Sample results are presented at 0.1,1 and 10 atm

  19. Subdwarf ultraviolet excesses and metal abundances

    International Nuclear Information System (INIS)

    Carney, B.W.

    1979-01-01

    The relation between stellar ultraviolet excesses and abundances is reexamined with the aid of new data, and an investigation is made of the accuracy of previous abundance analyses. A high-resolution echellogram of the subdwarf HD 201891 is analyzed to illustrate some of the problems. Generally, the earliest and latest analytical techniques yield consistent results for dwarfs. New UBV data yield normalized ultraviolet excesses, delta (U-B)/sub 0.6/, which are compared to abundances to produce a graphical relation that may be used to estimate [Fe/H] to +- 0.2 dex, given UBV colors accurate to +- 0.01 mag. The relation suggests a possible discontinuity between the halo and old-disk stars

  20. Abundances in very metal-poor stars

    Science.gov (United States)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  1. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  2. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  3. A conjugate gradient method for solving the non-LTE line radiation transfer problem

    Science.gov (United States)

    Paletou, F.; Anterrieu, E.

    2009-12-01

    This study concerns the fast and accurate solution of the line radiation transfer problem, under non-LTE conditions. We propose and evaluate an alternative iterative scheme to the classical ALI-Jacobi method, and to the more recently proposed Gauss-Seidel and successive over-relaxation (GS/SOR) schemes. Our study is indeed based on applying a preconditioned bi-conjugate gradient method (BiCG-P). Standard tests, in 1D plane parallel geometry and in the frame of the two-level atom model with monochromatic scattering are discussed. Rates of convergence between the previously mentioned iterative schemes are compared, as are their respective timing properties. The smoothing capability of the BiCG-P method is also demonstrated.

  4. Non-LTE Analysis of Interstellar Line Spectra of SiO

    Science.gov (United States)

    Zhang, Ziwei; Stancil, Phillip C.

    2016-01-01

    SiO emission lines are important probes of chemical processes in diverse astrophysical environments. In circumstellar outflows of AGB stars, the production of silicate grains is preceded by SiO formation, making SiO a useful measure of Si depletion. SiO is also commonly observed in shocks associated with the outflows of young stellar objects, both low- and high-mass. To model SiO emission for non-LTE conditions requires collisional rate coefficients due to H2 impact which are currently unavailable. Unknown collisional rate coefficients are often estimated from known systems. For the case of SiO-H2, rate coefficients have previously been adapted from a different collider, He (Dayau & Balanca 2006), based on a reduced-mass scaling approach. Recently it has been suggested that scaling via the interaction potential well depth and the reduced masses of the collisional systems may be more reliable (Walker et al. 2014). Using the non-LTE spectral modeling package Radex (van der Tak et al. 2007), we construct diagnostic plots of SiO line ratios using SiO-H2 collisional rate coefficients based on (i) reduced-mass scaling from the LAMDA database, (ii) potential well-depth scaling, and (iii) a more comprehensive input with multiple colliders (H2, He and H). Our goal is to give a more rigorous approach to SiO line emission simulations to better understand Si chemistry, dust formation/destruction, and other astrophysical processes.This work was supported by NASA ATP grant NNX15AI61G.

  5. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    Science.gov (United States)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  6. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color-magnitude diagram (CMD) discretization. Johnson-Cousins-Bessel U - B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe I, Ca I, and Ti I, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  7. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    Barklem, Paul S

    2012-01-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X + + H − have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  8. Primordial helium abundance determination using sulphur as metallicity tracer

    Science.gov (United States)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  9. Non-LTE analysis of the Ofpe/WN9 star HDE 269227 (R84)

    Science.gov (United States)

    Schmutz, Werner; Leitherer, Claus; Hubeny, Ivan; Vogel, Manfred; Hamann, Wolf-Rainer

    1991-01-01

    The paper presents the results of a spectral analysis of the Ofpe/WN9 star HD 269227 (R84), which assumes a spherically expanding atmosphere to find solutions for equations of radiative transfer. The spectra of hydrogen and helium were predicted with a non-LTE model. Six stellar parameters were determined for R84. The shape of the velocity law is empirically found, since it can be probed from the terminal velocity of the wind. The six stellar parameters are further employed in a hydrodynamic model where stellar wind is assumed to be directed by radiation pressure, duplicating the mass-loss rate and the terminal wind velocity. The velocity laws found by computation and analysis are found to agree, supporting the theory of radiation-driven stellar wind. R84 is surmised to be a post-red supergiant which lost half of its initial mass, possibly during the red-supergiant phase. This mass loss is also suggested by its spectroscopic similarity to S Doradus.

  10. Non-LTE population probabilities of the excited ionic levels in a steady state plasma

    International Nuclear Information System (INIS)

    Salzmann, D.

    1982-01-01

    A Complete-Staedy-State (CSS) model for the charge state distribution and the ionic levels population probabilities of ions in hot non-LTE plasmas is described. The following properties of this model are described: (i) it is shown that CSS covers LTE and Corona Equilibrium (CE) in the high and low electron density regimes respectively, (ii) an explicit expression is found for the low electron density asymptotic behaviour of the population probabilities, (iii) it is shown that at intermediate density regions the CSS model predicts results similar to that of the Quasi-Steady-State model, (iv) new validity limits are derived for LTE and CE, (v) the population distribution of the excited levels is revised, (vi) an analytical expression is found for the high electron density asymptotic behaviour of the population distribution, (vii) the influence of the radiation reabsorption in a spherically symmetric CSS plasma is briefly described, and (viii) the effect of the inaccuracies in the rate-coefficients on the results of CSS calculations is evaluated. (author)

  11. An approximate method to calculate ionization of LTE and non-LTE plasma

    International Nuclear Information System (INIS)

    Zhang Jun; Gu Peijun

    1987-01-01

    When matter, especially high Z element, is heated to high temperature, it will be ionized many times. The degree of ionization has a strong effect on many plasma properties. So an approximate method to calculate the mean ionization degree is needed for solving many practical problems. An analytical expression which is convenient for the approximate numerical calculation is given by fitting it to the scaling law and numerical results of the ionization potential of Thomas-Fermi statistical model. In LTE case, the ionization degree of Au calculated by using the approximate method is in agreement with that of the average ion model. By extending the approximate method to non-LTE case, the ionization degree of Au is similarly calculated according to Corona model and Collision-Radiatoin model(C-R). The results of Corona model agree with the published data quite well, while the results of C-R approach those of Corona model as the density is reduced and approach those of LTE as the density is increased. Finally, all approximately calculated results of ionization degree of Au and the comparision of them are given in figures and tables

  12. NON-LTE INVERSIONS OF THE Mg ii h and k AND UV TRIPLET LINES

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz Rodríguez, Jaime; Leenaarts, Jorrit [Institute for Solar Physics, Dept. of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm Sweden (Sweden); Ramos, Andrés Asensio [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2016-10-20

    The Mg ii h and k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the Interface Region Imaging Spectrograph ( IRIS ) satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study, we utilize another approach to analyze observations: non-LTE inversions of the Mg ii h and k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmosphere that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg ii h and k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg ii h and k, the Ca ii 854.2 nm, and the Fe i 630.25 lines to recover the full stratification of physical parameters, including the magnetic field vector, from the photosphere to the chromosphere. Finally, we present the first inversions of observed IRIS spectra from quiet-Sun, plage, and sunspot, with very promising results.

  13. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    Science.gov (United States)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-01-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  15. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    International Nuclear Information System (INIS)

    Back, C.A.; Feldman, U.; Weaver, J.L.; Seely, J.F.; Constantin, C.; Holland, G.; Lee, R.W.; Chung, H.-K.; Scott, H.A.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, λ/δλ of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics

  16. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  17. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  18. Dependence of the Rossby number on helium and metal abundances

    International Nuclear Information System (INIS)

    Rucinski, S.M.; Vandenberg, D.A.

    1990-01-01

    Convective turnover times, tau, are calculated for solar-type stars of the zero-age main-sequence models of VandenBerg and Poll (1989) with helium abundances = 0.22, 0.27, and 0.32 and metal abundances = 0.0169, 0.024, and 0.03. Emphasis is given to the possible dependence of turnover times on the chemical composition of a star. It is found that deviations in log tau from a mean dependence on the (B-V) color are less than + or - 0.1. Thus, the predicted shape of the log tau vs. (B-V) relation is quite robust. 15 refs

  19. Size-density relations in dark clouds: Non-LTE effects

    International Nuclear Information System (INIS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH 3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T/sub R/*(13CO)/T/sub R/*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths be seriously in error due to sub-thermal excitation of the 13CO molecule

  20. Oxygen and iron abundances in two metal-poor dwarfs

    Science.gov (United States)

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  1. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  2. Non-LTE analysis of extremely helium-rich stars. The hot sdO stars LSE 153, 259 and 263

    Science.gov (United States)

    Husfeld, D.; Butler, K.; Heber, U.; Drilling, J. S.

    1989-01-01

    Results of a non-LTE fine analysis based mainly on high-resolution CASPEC spectra for three extremely helium-rich sdO stars are discussed in order to explain hydrogen deficiency in single stars. High temperature (Teff = 70,000 to 75,000 K) and a position in the log Teff - log g diagram were found close to the Eddington limit. Various abundance estimates are derived for hydrogen (upper limits only), carbon, nitrogen, and magnesium. Hydrogen is reduced to less than 10 percent by number in LSE 153 and LSE 263, and to less than 5 percent in LSE 259. The hydrogen deficiency is accompanied by nitrogen- and carbon-enrichment in LSE 153 and LSE 259 only. In LSE 263, carbon is depleted by about 1 dex. Stellar masses obtained by assuming that a core mass-luminosity relation holds for these stars, were found to be in the range 0.6-0.9 solar mass, yielding luminosities log L/L:solar = 3.7-4.5. Two of the program stars (LSE 153 and 259) appear to be possible successors of the R CrB and helium B stars, whereas the third star (LSE 263) displays a much lower carbon content in its photosphere making it an exceptional case among the known hydrogen deficient stars.

  3. Size-density relations in dark clouds: Non-LTE effects

    Science.gov (United States)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO

  4. A non-LTE study of neutral calcium in late-type stars with special reference to Pollux

    International Nuclear Information System (INIS)

    Drake, J.J.; Texas Univ., Austin, TX

    1991-01-01

    Detailed simultaneous radiative transfer-statistical equilibrium calculations have been undertaken for neutral calcium using model stellar atmospheres corresponding to a variety of late spectral types. The results are used to investigate non-LTE effects and trends with differing stellar parameters, and to estimate the likely influence of departures from LTE on model atmosphere analyses. The behaviour of individual Ca I atomic levels and lines are discussed in connection with calculations carried out for a model atmosphere corresponding to the KO III giant Pollux (β Gem). (author)

  5. Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS

    International Nuclear Information System (INIS)

    Huegelmeyer, S D; Dreizler, S

    2009-01-01

    For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and eff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs.

  6. METAL ABUNDANCES OF 12 DWARF IRREGULARS FROM THE ADBS SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Haurberg, Nathalie C.; Salzer, John J. [Department of Astronomy, Indiana University, 727 E. Third St., Bloomington, IN 47405 (United States); Rosenberg, Jessica, E-mail: nhaurber@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: jrosenb4@gmu.edu [School of Physics, Astronomy and Computational Science, George Mason University, MS 3F3, Fairfax, VA 22030 (United States)

    2013-03-01

    We have analyzed long-slit spectra of 12 dwarf irregular galaxies from the Arecibo Dual Beam Survey (ADBS). These galaxies represent a heterogeneous sample of objects detected by ADBS, but on average are relatively gas-rich, low-surface-brightness, and low-mass, thus represent a region of the galaxian population that is not commonly included in optical surveys. The metallicity-luminosity relationship for these galaxies is analyzed; the galaxies discussed in this paper appear to be under-abundant at a given luminosity when compared to a sample from the literature. We attempt to identify a 'second parameter' responsible for the intrinsic scatter and apparent under-abundance of our galaxies. We do not find a definitive second parameter but note the possible indication that infall or mixing of pristine gas may be responsible. We derive oxygen abundances for multiple H II regions in many of our galaxies but do not find any strong indications of metallicity variation within the galaxies except in one case where we see variation between an isolated H II region and the rest of the galaxy. Our data set includes the galaxy with the largest known H I-to-optical size ratio, ADBS 113845+2008. Our abundance analysis of this galaxy reveals that it is strongly over-enriched compared to galaxies of similar luminosity, indicating it is not a young object and confirming the result from Cannon et al. that this galaxy appears to be intrinsically rare in the local universe.

  7. Possible relationship between metal abundance and luminosity for disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.; Romanishin, W.; Strom, S.E.; Strom, K.M.

    1984-01-01

    Near-infrared colors have been measured for a sample of 31 late-type galaxies in the Pegasus I and Pisces clusters; system luminosities in the sample cover the range -19< M/sub H/<-23.5. The color index (J-K) correlates strongly with the absolute H magnitude; lower-luminosity systems have bluer colors. These observations are consistent with the assumption that the mean metal abundance of the old disk population decreases systematically with luminosity. The systematic variation of (B-H) with absolute H magnitude reported recently by Tully et al. derives in part from this proposed systematic change of metallicity with luminosity. However, one must still posit a relative increase in the number of newly formed stars and/or a systematic smaller age for lower-luminosity disks in order to fully explain the observed (B-H), H relation

  8. Non-LTE spectral analysis and model constraints on SN 1993J

    Science.gov (United States)

    Baron, E.; Hauschildt, P. H.; Branch, D.; Austin, S.; Garnavich, P.; Ann, Hong Bae; Wagner, R. M.; Filippenko, A. V.; Matheson, T.; Liebert, James

    1995-01-01

    We present non-Local Thermodynamic Equilibrium (LTE) synthetic spectra for a time series of observations of SN 1993J obtained on 1993 March 30-31, April 7, April 13-15, and June 13 UT. The spectra are dominated by hydrogen Balmer lines; neutral helium lines, which have been nonthermally excited; and Fe II features. The density profile evolves from an extremely steep 'brick wall' structure with an equivalent power-law index of about 50 on March 30 to a more typical SN II profile with a power law index of about 10. The early spectra are well fitted by a solar composition of metals, although an enhanced abundance of helium is required in order to fit the neutral helium lines. By June 13, the photosphere has receded deep into the helium layer, although there appears to be a layer of hydrogen at higher velocity. The distance is estimated for each epoch. While consistent results are found for spectra obtained in the month of April, the spread in distances from March to June is quite large. Our value for April is mu = 28.0 +/- 0.3 mag, consistent with the recent Cepheid distance to the host galaxy M81. We also compare our results to other implementations of the expanding photosphere method.

  9. Sulphur abundances in halo giants from the [S ı] line at 1082 nm and the [S ı] triplet around 1045 nm

    DEFF Research Database (Denmark)

    Jönsson, H.; Ryde, N.; Nissen, Poul Erik

    2011-01-01

    to clarify this situation by measuring the sulphur abundance in a sample of halo giants using two diagnostics: the S i triplet around 1045 nm and the [S i] line at 1082 nm. The latter of the two is not believed to be sensitive to non-LTE effects. We can thereby minimize the uncertainties in the diagnostic...... used and estimate the usefulness of the triplet for the sulphur determination in halo K giants. We will also be able to compare our sulphur abundance differences from the two diagnostics with the expected non-LTE effects in the 1045 nm triplet previously calculated by others. Methods. High...... diagnostics using tailored 1D model atmospheres and relying on non-LTE corrections from the litterature. Effects of convective inhomogeneities in the stellar atmospheres are investigated. Results. The sulphur abundances derived from both the [S i] line and the non-LTE corrected 1045 nm triplet favor a flat...

  10. Heavy elements abundances in metal-poor stars

    International Nuclear Information System (INIS)

    Magain, P.; Jehin, E.; Neuforge, C.; Noels, A.

    1998-01-01

    A sample of 21 metal-poor stars have been analysed on the basis of high resolution and high signal-to-noise spectra. Correlations between relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones. This analysis reveals the existence of two sub-populations of field halo stars, namely Pop IIa and Pop IIb. They differ by the behaviour of the s-process elements versus the α and r-process elements. We suggest a scenario of formation of these stars, which closely relates the field halo stars to the evolution of globular clusters. The two sub-populations would have evaporated the clusters during two different stages of their chemical evolution

  11. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajendra [Indian Institute of Astrophysics, Bangalore, 560034 (India); Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu [The W.J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2017-10-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  12. A Novel Iterative Scheme for the Very Fast and Accurate Solution of Non-LTE Radiative Transfer Problems

    Science.gov (United States)

    Trujillo Bueno, J.; Fabiani Bendicho, P.

    1995-12-01

    Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel

  13. Assessing the existence of non-LTE behavior in aluminum K-shell diagnostic lines from dynamic hohlraum driven experiments

    International Nuclear Information System (INIS)

    Sherrill, M E

    2015-01-01

    We describe in this work a study designed to obtain insight into the sensitivity of foil targets driven out of local thermodynamic equilibrium (LTE) by an idealized dynamic hohlraum during its brightest phase. This work is motivated by a perceived over-prediction of the plasma temperature by current LTE spectral modeling of opacity experiments performed by Bailey et al at the Sandia Z facility. Although several aspects of this modeling study parallel the SNL/LANL opacity experiments, this work is primarily intended to gain insight into radiatively over-driven systems. The results from this idealized study suggest that a non-LTE population distribution with qualities similar to an LTE distribution at higher material temperatures are possible, and therefore support a further theoretical investigation with experimental parameters. (special issue paper)

  14. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  15. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    Science.gov (United States)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  16. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  17. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  18. Effects of non-LTE multiplet dynamics on lumped-state modelling in moderate to high atomic number plasmas

    International Nuclear Information System (INIS)

    Whitney, K G; Dasgupta, A; Davis, J; Coverdale, C A

    2007-01-01

    Two atomic models of the population dynamics of substates within the n 4 and n = 3 multiplets of nickel-like tungsten and beryllium-like iron, respectively, are described in this paper. The flexible atomic code (FAC) is used to calculate the collisional and radiative couplings and energy levels of the excited states within these ionization stages. These atomic models are then placed within larger principal-quantum-number-based ionization dynamic models of both tungsten and iron plasmas. Collisional-radiative equilibrium calculations are then carried out using these models that demonstrate how the multiplet substates depart from local thermodynamic equilibrium (LTE) as a function of ion density. The effect of these deviations from LTE on the radiative and collisional deexcitation rates of lumped 3s, 3p, 3d, 4s, 4p, 4d and 4f states is then calculated and least-squares fits to the density dependence of these lumped-state rate coefficients are obtained. The calculations show that, with the use of lumped-state models (which are in common use), one can accurately model the L- and M-shell ionization dynamics occurring in present-day Z-pinch experiments only through the addition of these extra, non-LTE-induced, rate coefficient density dependences. However, the derivation and use of low-order polynomial fits to these density dependences makes lumped-state modelling both viable and of value for post-processing analyses

  19. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    Science.gov (United States)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  20. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Jaime de la Cruz [Institute for Solar Physics, Department of Astronomy, Stockholm University, Albanova University Center, SE-10691 Stockholm (Sweden); Hansteen, Viggo; Ortiz, Ada [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Bellot-Rubio, Luis, E-mail: jaime@astro.su.se [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain)

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  1. Development of a Buried Layer Platform at the OMEGA laser to Study Coronal (nonLTE) Plasmas

    Science.gov (United States)

    Schneider, M. B.; Marley, E. V.; Brown, G. V.; Heeter, R. F.; Barrios, M. A.; Foord, M. E.; Gray, W. J.; Jarrott, L. C.; Liedahl, D. A.; Mauche, C. W.; Widmann, K.

    2016-10-01

    A buried layer platform is being developed at the OMEGA laser to study the radiative properties of coronal (non-LTE) plasmas (ne few 1021 /cm3 , Te 1 - 2 keV) of mid to high Z materials. In the current study, the target was a 200 μm square with equal atomic mixes of gold/iron/vanadium in the center of a 600 μm diameter, 10 μm thick beryllium tamper. The thickness of the buried layer was either 1200 A or 1800 A. Lasers heat the target from both sides for up to 4 ns. The size of the microdot vs time was measured with x-ray imaging (face-on) and x- ray spectroscopy (side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Fe and V helium-beta complexes. The use of these measurements to deduce emissivity of the target in the 2-3 keV x-ray range and improvements for future experiments are discussed. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52-07NA27344.

  2. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    International Nuclear Information System (INIS)

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  3. Experiments on the Scaling of Ionization Balance vs. Electron and Radiation Temperature in Non-LTE Gold Plasmas

    International Nuclear Information System (INIS)

    Heeter, R.F.; Hansen, S.B.; Beiersdorfer, P.; Foord, M.E.; Fournier, K.B.; Froula, D.H.; Mackinnon, A.J.; May, M.J.; Schneider, M.B.; Young, B.K.F.

    2004-01-01

    Understanding and predicting the behavior of high-Z non-LTE plasmas is important for developing indirect-drive inertial confinement fusion. Extending earlier work from the Nova laser, we present results from experiments using the Omega laser to study the ionization balance of gold as a function of electron and radiation temperature. In these experiments, gold samples embedded in Be disks expand under direct laser heating to ne ≅ 1021cm-3, with Te varying from 0.8 to 2.5 keV. An additional finite radiation field with effective temperature Tr up to 150 eV is provided by placing the gold Be disks inside truncated 1.2 mm diameter tungsten-coated cylindrical hohlraums with full laser entrance holes. Densities are measured by imaging of plasma expansion. Electron temperatures are diagnosed with either 2ω or 4ω Thomson scattering, and also K-shell spectroscopy of KCl tracers co-mixed with the gold. Hohlraum flux and effective radiation temperature are measured using an absolutely-calibrated multichannel filtered diode array. Spectroscopic measurements of the M-shell gold emission in the 2.9-4 keV spectral range provide ionization balance and charge state distribution information. The spectra show strong variation with Te, strong variation with the applied Tr, at Te below 1.6 keV, and relatively little variation with Tr at higher Te (upwards of 2 keV). We summarize our most recent spectral analyses and discuss emerging and outstanding issues

  4. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  5. The recent development of efficient Earth-abundant transition-metal nanocatalysts.

    Science.gov (United States)

    Wang, Dong; Astruc, Didier

    2017-02-06

    Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

  6. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  7. New method for metal-abundance determination in late-type stars

    International Nuclear Information System (INIS)

    Campbell, B.

    1978-01-01

    An empirical technique has been developed for deriving heavy-element abundances from near-infrared blends of weak metallic lines. It is applicable to G and K stars of population I and II and is independent of gravity and microturbulence. A feature of the method is that it gives abundances for ''super-metal-rich'' giants consistent with high-dispersion analyses. The technique may be applicable to abundance problems in galaxies. It is also shown that precision colorimetry unaffected by sky transparency changes is possible with a diode array spectrometer

  8. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    Science.gov (United States)

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  9. THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Veyette, Mark J.; Muirhead, Philip S. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Mann, Andrew W. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Allard, France [Centre de Recherche Astrophysique de Lyon, UMR 5574, Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, F-69007, Lyon (France)

    2016-09-10

    We present near-infrared (NIR) synthetic spectra based on PHOENIX stellar atmosphere models of typical early and mid-M dwarfs with varied C and O abundances. We apply multiple recently published methods for determining M dwarf metallicity to our models to determine the effects of C and O abundances on metallicity indicators. We find that the pseudo-continuum level is very sensitive to C/O and that all metallicity indicators show a dependence on C and O abundances, especially in lower T {sub eff} models. In some cases, the inferred metallicity ranges over a full order of magnitude (>1 dex) when [C/Fe] and [O/Fe] are varied independently by ±0.2. We also find that [(O−C)/Fe], the difference in O and C abundances, is a better tracer of the pseudo-continuum level than C/O. Models of mid-M dwarfs with [C/Fe], [O/Fe], and [M/H] that are realistic in the context of galactic chemical evolution suggest that variation in [(O−C)/Fe] is the primary physical mechanism behind the M dwarf metallicity tracers investigated here. Empirically calibrated metallicity indicators are still valid for most nearby M dwarfs due to the tight correlation between [(O−C)/Fe] and [Fe/H] evident in spectroscopic surveys of solar neighborhood FGK stars. Variations in C and O abundances also affect the spectral energy distribution of M dwarfs. Allowing [O/Fe] to be a free parameter provides better agreement between the synthetic spectra and observed spectra of metal-rich M dwarfs. We suggest that flux-calibrated, low-resolution, NIR spectra can provide a path toward measuring C and O abundances in M dwarfs and breaking the degeneracy between C/O and [Fe/H] present in M dwarf metallicity indicators.

  10. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    Science.gov (United States)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  11. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  12. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States)

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  13. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  14. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  15. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  16. Beryllium abundances in Hg-Mn stars

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Heacox, W.D.; Wolff, S.C.; Borsenberger, J.; Praderie, F.

    1982-01-01

    The Hg-Mn stars show anomalous line strengths of many chemical elements including Be. We have observed the Be ii resonance doublet at lambdalambda 3130, 3131 at 6.7 A mm -1 in 43 Hg-Mn stars and 10 normal stars in the same temperature range with the coude spectrograph of the 2.24 m University of Hawaii telescope at Mauna Kea. Measured equivalent widths of the two lines and/or the blend of the doublet have been compared with predictions from (1) LTE model atmospheres and (2) non-LTE line formation on non-LTE model atmospheres. (For strong Be ii lines, the LTE calculations result in more Be by factors of 2 to 4 than do the non-LTE calculations.) Overabundances of factors of 20--2 x 10 4 relative to solar have been found for 75% of the Hg-Mn stars. The 25% with little or no Be are typically among the cooler Hg-Mn stars, but for the stars with Be excesses, there is only marginal evidence for a correlationi of the size of the overabundance and temperature. It is suggested that diffusion driven by radiation pressure is responsible for the observed Be abundance anomalies

  17. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  18. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  19. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    International Nuclear Information System (INIS)

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I.

    2009-01-01

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 ≤ Z ≤ 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  20. Non-LTE line formation of Fe in late-type stars - IV. Modelling of the solar centre-to-limb variation in 3D

    DEFF Research Database (Denmark)

    Lind, K.; Amarsi, A. M.; Asplund, M.

    2017-01-01

    Our ability to model the shapes and strengths of iron lines in the solar spectrum is a critical test of the accuracy of the solar iron abundance, which sets the absolute zero-point of all stellar metallicities. We use an extensive 463-level Fe atom with new photoionization cross-sections for Fe I...

  1. SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan

    2017-07-01

    We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.

  2. Manganese Abundances in the Stars with Metallicities -1 <[Fe/H]< +0.3

    Science.gov (United States)

    Mishenina, T.; Gorbaneva, T.; Pignatari, M.; Thielemann, F.-K.; Korotin, S.

    2018-01-01

    We estimate the Mn abundances in the atmospheres of 247 F-G-K-type dwarf stars belonging to the thin and thick disk populations in the metallicity range -1 LTE approximation; the synthetic spectrum for the Mn lines was computed accounting for the hyperfine structure. Starting from the results obtained, we discuss the evolution of the [Mn/Fe] ratio with respect to [Fe/H] in the galactic disk.

  3. Lithium isotopic abundances in metal-poor stars: a problem for standard big bang nucleosynthesis?

    International Nuclear Information System (INIS)

    Nissen, P.E.; Asplund, M.; Lambert, D.L.; Primas, F.; Smith, V.V.

    2005-01-01

    Spectral obtained with VLT/UVES suggest the existence of the 6 Li isotope in several metal-poor stars at a level that challenges ideas about its synthesis. The 7 Li abundance is, on the other hand, a factor of three lower than predicted by standard Big Bang nucleosynthesis theory. Both problems may be explained if decaying suppersymmetric particles affect the synthesis of light elements in the Big Bang. (orig.)

  4. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  5. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  6. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  7. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  8. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  9. Metal Abundances in the Hottest Known DO White Dwarf (KPD 0005+5106)

    Science.gov (United States)

    Wassermann, Daniel; Werner, Klaus; Rauch, Thomas; Kurk, Jeffrey W.

    2010-01-01

    We performed a new analysis of UV and optical spectra of KPD 0005+5106. We find T(sub eff) = 200000 +/- 20000 K, log(g) = 6.7+/-0.3, M =.64 Stellar mass and logL/L = 3.7. The mass fractions of the metals are in the range 0.7 - 4.3 times solar. This abundance pattern is probably unaffected by gravitational settling and radiative levitation, hence, its origin lies in previous evolutionary stages. We speculate about a link of KPD 0005+5106 to the RCrB stars and its possible outcome of a double-degenerate merger event. Keywords: White dwarfs, atmospheres, abundances

  10. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  11. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  12. Development of a Buried Layer Platform at the OMEGA Laser to Study Open L-Shell Spectra from Coronal (non-LTE) Plasmas

    Science.gov (United States)

    Marley, Edward; Jarrot, Charlie; Schneider, Marilyn; Kemp, Elijah; Foord, Mark; Heeter, Robert; Liedahl, Duane; Widmann, Klause; Mauche, Christopher; Brown, Greg; Emig, James

    2017-10-01

    A buried layer platform is being developed at the OMEGA laser to study the open L-shell spectra of coronal (non LTE) plasmas (ne few 1021/cm3, Te 0.8-1.2 keV) of mid Z materials. Studies have been done using a 250 μm diameter dot composed of a layer of 1200 Å thick Zn between two 600 Å thick layers of Ti, in the center of a 1000 μm diameter, 13 μm thick beryllium tamper. Lasers heat the target from both sides for up to 3 ns. The size of the microdot vs time was measured with x-ray imaging (face-on and side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Ti helium-beta complex. The use of this platform for the verification of atomic models is discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. New Non-LTE Model of OH and CO2 Emission in the Mesosphere-Lower Thermosphere and its Application to Retrieving Nighttime Parameters

    Science.gov (United States)

    Panka, Peter A.

    The hydroxyl, OH, and carbon dioxide, CO2, molecules and oxygen atoms, O(3P), are important parameters that characterize the chemistry, energetics, and dynamics of the nighttime mesosphere and lower thermosphere (MLT) region. Hence, there is much interest in obtaining high quality observations of these parameters in order to study the short-term variability as well as the long-term trends in characteristics of the MLT region. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite has been taking global, simultaneous measurements of limb infrared radiance in 10 spectral channels, including the OH 2.0 and 1.6-micron and CO2 4.3-micron emissions channels, continuously since late January 2002. These measurements can be interpreted using sophisticated non-Local Thermodynamic Equilibrium (non-LTE) models of OH and CO2 infrared emissions which can then be applied to obtain densities of these parameters (2.0 and 1.6-micron channel for O(3P)/OH and 4.3-micron channel for CO2). The latest non-LTE models of these molecules, however, do not fully represent all the dominant energy transfer mechanisms which influence their vibrational level distributions and infrared emissions. In particular, non-LTE models of CO2 4.3-micron emissions currently under-predict SABER measurements by up to 80%, and its application for the retrieval of CO2 will result in unrealistic densities. Additionally, current O(3P) retrievals from SABER OH emissions have been reported to be at least 30% higher compared to studies using other instruments. Methods to obtain OH total densities from SABER measurements have yet to be developed. Recent studies, however, have discovered a new energy transfer mechanism which influences both OH and CO2 infrared emissions, OH(v) → O(1D) → N2( v) → CO2(v3). This study focuses on the impact of this new mechanism on OH and CO2 infrared emissions

  14. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    International Nuclear Information System (INIS)

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-01-01

    We present low-resolution (R ≅850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s -1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  15. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

    Science.gov (United States)

    Souto, Diogo; Cunha, Katia; Smith, Verne V.; Allende Prieto, C.; García-Hernández, D. A.; Pinsonneault, Marc; Holzer, Parker; Frinchaboy, Peter; Holtzman, Jon; Johnson, J. A.; Jönsson, Henrik; Majewski, Steven R.; Shetrone, Matthew; Sobeck, Jennifer; Stringfellow, Guy; Teske, Johanna; Zamora, Olga; Zasowski, Gail; Carrera, Ricardo; Stassun, Keivan; Fernandez-Trincado, J. G.; Villanova, Sandro; Minniti, Dante; Santana, Felipe

    2018-04-01

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

  16. Metallicity-Dependent Isotopic Abundances and the Impact of Helium Rate Uncertainties in Massive Stars

    Science.gov (United States)

    West, Christopher

    2013-03-01

    All stellar evolution models for nucleosynthesis require an initial isotopic abundance set to use as a starting point, because nuclear reactions occur between isotopes. Generally, our knowledge of isotopic abundances of stars is fairly incomplete except for the Solar System. We develop a first model for a complete average isotopic decomposition as a function of metallicity. Our model is based on the underlying nuclear astrophysics processes, and is fitted to observational data, rather than traditional forward galactic chemical evolution modeling which integrates stellar yields beginning from big bang nucleosynthesis. We first decompose the isotopic solar abundance pattern into contributions from astrophysical sources. Each contribution is then assumed to scale as a function of metallicity. The resulting total isotopic abundances are summed into elemental abundances and fitted to available halo and disk stellar data to constrain the model's free parameter values. This procedure allows us to use available elemental observational data to reconstruct and constrain both the much needed complete isotopic evolution that is not accessible to current observations, and the underlying astrophysical processes. Our model finds a best fit for Type Ia supernovae contributing ˜0.7 to the solar Fe abundance, and Type Ia onset occurring at [Fe/H]~1.2, in agreement with typical values. The completed model can be used in future nucleosynthesis studies. We also perform a preliminary analysis to assess the impact of our isotopic scaling model on the resulting nucleosynthesis of massive stars, compared to a linear interpolation method. Using these two input methods we compute a limited grid of stellar models, and compare the final nucleosynthesis to observations. The compactness parameter was first used to assess which models would likely explode as successful supernovae, and contribute explosive nucleosynthesis yields. We find a better agreement to solar observations using the scaling

  17. THE ORIGIN AND EVOLUTION OF THE HALO PN BoBn 1: FROM A VIEWPOINT OF CHEMICAL ABUNDANCES BASED ON MULTIWAVELENGTH SPECTRA

    International Nuclear Information System (INIS)

    Otsuka, Masaaki; Tajitsu, Akito; Hyung, Siek; Izumiura, Hideyuki

    2010-01-01

    We have performed a comprehensive chemical abundance analysis of the extremely metal-poor ([Ar/H] -6 M sun . The photoionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 M sun star that would evolve into a white dwarf with an ∼0.62 M sun core mass and ∼0.09 M sun ionized nebula. We have measured a heliocentric radial velocity of +191.6 ±1.3 km s -1 and expansion velocity 2V exp of 40.5 ± 3.3 km s -1 from an average over 300 lines. The derived elemental abundances have been reviewed from the standpoint of theoretical nucleosynthesis models. It is likely that the elemental abundances except N could be explained either by a 1.5 M sun single star model or by a binary model composed of 0.75 M sun + 1.5 M sun stars. Careful examination implies that BoBn 1 has evolved from a 0.75 M sun + 1.5 M sun binary and experienced coalescence during the evolution to become a visible PN, similar to the other extremely metal-poor halo PN, K 648 in M 15.

  18. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Science.gov (United States)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  19. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  20. Simple Analytic Collisional Rates for non-LTE Vibrational Populations in Astrophysical Environments: the Cases of Circumstellar SiO Masers and Shocked H2

    Science.gov (United States)

    Bieniek, Ronald

    2008-05-01

    Rates for collisionally induced transitions between molecular vibrational levels are important in modeling a variety of non-LTE processes in astrophysical environments. Two examples are SiO masering in circumstellar envelopes in certain late-type stars [1] and the vibrational populations of molecular hydrogen in shocked interstellar medium [cf 2]. A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for state-to-state and thermally averaged rates for collisionally induced vibrational-translational (VT) transitions in diatomic molecules [3,4]. The thermally averaged rates predicted by this formula have been shown to be in excellent numerical agreement with absolute experimental and quantum mechanical rates over large temperature ranges and initial vibrational excitation levels in a variety of species, e.g., OH, O2, N2 [3] and even for the rate of H2(v=1)+H2, which changes by five orders of magnitude in the temperature range 50-2000 K [4]. Analogous analytic rates will be reported for vibrational transitions in SiO due to collisions with H2 and compared to the numerical fit of quantum-mechanical rates calculated by Bieniek and Green [5]. [1] Palov, A.P., Gray, M.D., Field, D., & Balint-Kurti, G.G. 2006, ApJ, 639, 204. [2] Flower, D. 2007, Molecular Collisions in the Interstellar Medium (Cambridge: Cambridge Univ. Press) [3] Bieniek, R.J. & Lipson, S.J. 1996, Chem. Phys. Lett. 263, 276. [4] Bieniek, R.J. 2006, Proc. NASA LAW (Lab. Astrophys. Workshop) 2006, 299; http://www.physics.unlv.edu/labastro/nasalaw2006proceedings.pdf. [5] Bieniek, R.J., & Green, S. 1983, ApJ, 265, L29 and 1983, ApJ, 270, L101.

  1. Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia

    Science.gov (United States)

    Brügmann, G. E.; Arndt, N. T.; Hofmann, A. W.; Tobschall, H. J.

    1987-08-01

    The distribution of the chalcophile and siderophile metals Cu, Ni, Au, Pd, Ir, Os and Ru in an Archaean komatiite flow from Alexo, Ontario and in a Phanerozoic komatiitic suite of Gorgona Island, Colombia, provides new information about the geochemical behaviour of these elements. Copper, Au and Pd behave as incompatible elements during the crystallization of these ultramafic magmas. In contrast, Ni, Ir, Os and Ru concentrations systematically decrease with decreasing MgO contents, a pattern characteristic of compatible elements. These trends are most probably controlled by olivine crystallization, which implies that Ir, Os and Ru are compatible in olivine. Calculated partition coefficients for Ir, Os and Ru between olivine and the melt are about 1.8. Compared to primitive mantle, parental komatiitic liquids are enriched in (incompatible) Cu, Au and Pd and depleted in (compatible) Ir, Os and Ru. Within both Archaean and Phanerozoic komatiites, noble metal ratios such as Au/Pd, Ir/Os, Os/Ru and Ru/Ir and ratios of lithophile and siderophile elements such as Ti/Pd, Ti/Au are constant and similar to primitive mantle values. This implies that Au and Pd are moderately incompatible elements and that there has been no significant fractionation of siderophile and lithophile elements since the Archaean. Platinum-group element abundances of normal MORB are highly variable and always much lower than in komatiites, because MORB magma is saturated with sulfur and a variable but minor amount of sulfide segregated during mantle melting or during the ascent of magma to the surface. Sulfide deposits associated with komatiites display similar chalcophile element patterns to those of komatiites. Noble metal ratios such as Pd/Ir, Au/Ir, Pd/Os and Pd/Ru can be used to determine the composition of the host komatiite at the time of sulfide segregation.

  2. Lithium abundances and metallicities in stars near the main-sequence turnoff and a giant in M67

    International Nuclear Information System (INIS)

    Garcia Lopez, R.J.; Rebolo, R.; Beckman, J.E.

    1988-01-01

    The iron abundance of seven stars near the main-sequence (MS) turnoff and a giant in M67 are spectroscopically derived, and the results are discussed. The resulting mean iron abundance of the turnoff stars is (Fe/H) = 0.04 + or - 0.04. Taken together with previous determinations for younger clusters, this shows that there has been relatively little change of the iron abundance in the solar neighborhood during the last 5 Gyr. Lithium was detected in one unevolved star and marginally in the giant, while in the other MS stars only upper limits were found. The considerable differences in Li abundances for stars with similar surface temperature imply that there is at least one parameter affecting Li depletion apart from stellar mass and metallicity. Nonsimultaneous star formation in the cluster cloud explain the scatter in lithium abundances. 50 references

  3. The physical conditions, metallicity and metal abundance ratios in a highly magnified galaxy at z = 3.6252

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Rigby, Jane R. [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sharon, Keren; Johnson, Traci [Department of Astronomy, The University of Michigan, 500 Church Street Ann Arbor, MI 48109 (United States); Wuyts, Eva [Max Plank Institute for Extraterrestrial Physics, Gießenbachstrae, D-85741 Garching bei München (Germany); Florian, Michael; Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Oguri, Masamune, E-mail: mbayliss@cfa.harvard.edu [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2014-08-01

    We present optical and near-IR imaging and spectroscopy of SGAS J105039.6+001730, a strongly lensed galaxy at z = 3.6252 magnified by >30×, and derive its physical properties. We measure a stellar mass of log(M{sub *}/M{sub ☉}) = 9.5 ± 0.35, star formation rates from [O II] λλ3727 and Hβ of 55 ± 25 and 84 ± 24 M{sub ☉} yr{sup –1}, respectively, an electron density of n{sub e} ≤ 10{sup 3} cm{sup –2}, an electron temperature of T{sub e} ≤ 14,000 K, and a metallicity of 12 + log(O/H) = 8.3 ± 0.1. The strong C III] λλ1907,1909 emission and abundance ratios of C, N, O, and Si are consistent with well-studied starbursts at z ∼ 0 with similar metallicities. Strong P Cygni lines and He II λ1640 emission indicate a significant population of Wolf-Rayet stars, but synthetic spectra of individual populations of young, hot stars do not reproduce the observed integrated P Cygni absorption features. The rest-frame UV spectral features are indicative of a young starburst with high ionization, implying either (1) an ionization parameter significantly higher than suggested by rest-frame optical nebular lines, or (2) differences in one or both of the initial mass function and the properties of ionizing spectra of massive stars. We argue that the observed features are likely the result of a superposition of star forming regions with different physical properties. These results demonstrate the complexity of star formation on scales smaller than individual galaxies, and highlight the importance of systematic effects that result from smearing together the signatures of individual star forming regions within galaxies.

  4. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  5. Diagnostics of red-shifted H-alpha line emission from a C-class flare with full non-LTE radiative and hydrodynamic approach

    Science.gov (United States)

    Druett, M. K.; Zharkova, V. V.; Scullion, E.; Zharkov, S.; Matthews, S. A.

    2016-12-01

    We analyse H-alpha line profiles with strong redshifts during the C1.8 flare on 1st July 2012 obtained from the Swedish Solar Telescope (SST) closely resembling the previous observations (Wuelser and Marti, 1989). The flare has a magnetic field configuration with two levels of loop structures. The kernels with red shifts are observed in one of the H-alpha ribbons in the south-west location formed after the main impulse recorded in the north-east. The locations of H-alpha kernels with red shifts reveal close temporal and spatial correlation with weaker HXR signatures and coincide with the locations of coronal jets observed with AIA/SDO. For interpretation we apply a revised 1D hydrodynamic and non-LTE (NLTE) radiative model for 5 level plus continuum model hydrogen atom (Druett & Zharkova, 2016) considering radiative, thermal and non-thermal excitation and ionisation by beam electrons with the updated beam densities (Zharkova & Dobranskis, 2016) and analytical excitation/ionisation rates (Zharkova& Kobylinskijj, 1993). We find the simultaneous solutions of steady state and radiative transfer equations in all optically-thick lines and continua. The electron and ion temperatures, ambient density and macrovelocity of the ambient plasma are derived from a 1D hydrodynamic model with initial condition of the pre-flaring photosphere for the two fluid ambient plasma heated by beam electrons (Zharkova & Zharkov, 2007). We simulate distributions over precipitation depth of ionisation and departure coefficients for all the hydrogen atom transitions including the deviation of ionisation from Saha equation affected by non-thermal electron beams. We show that in the very first seconds after the beam onset Balmer line profiles are sensitive to the effect of beam electrons. The combination of the additional ionisation caused by beam electrons leading to a very strong Stark effect in Balmer lines with the hydrodynamic heating and formation of a low temperature shock in the

  6. Optimization and characterization of a Pilot-psi cascaded arc with non-LTE numerical simulation of Ar, H{sub 2} gases

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zahoor [National Tokamak Fusion Program, PO Box 3329, PAEC Islamabad (Pakistan); Goedheer, W J [FOM Institute for Plasmaphysics ' Rijnhuizen' , Association EURATOM-FOM, POBox 1207, 3430 BE Nieuwegein (Netherlands)

    2009-02-01

    A numerical simulation code, PLASIMO, is used to model non-LTE plasmas in the cascaded arc for hydrogen and argon. The purpose of these simulations is to optimize the cascaded arc plasma source, which is used to produce a high density plasma column in Pilot-psi, a linear device to study plasma surface interaction processes. Results are compared with the experimental findings to validate the model. The effect of a change in the arc channel geometry on the ionization degree is studied. It is found that for the hydrogen arc an increase in length beyond 30 mm will not increase the ionization degree, in contrast to widening the arc. With an increase in radius from 2 mm to 5 mm for a 30 mm long arc the degree of ionization of hydrogen increases from 5.4 to 38. For the argon arc an increase both in the length and in the width increases the ionization degree. With an increase in length from 30 mm to 40 mm for a 2 mm wide arc the degree of ionization of argon increases from 14.5 to 17.1, whereas with an increase in radius from 2 mm to 5 mm for 30 mm long arc the same increases from 14.5 to 37.5. To simulate the influence of the wall material, the effect of hydrogen wall association on the degree of ionization and dissociation is studied. Wall association in the nozzle section, where heating is absent, significantly reduces the degree of dissociation, in agreement with the experimental data. In Pilot-psi, the arc is operated in a high magnetic field, so the effect of a magnetic field on the yield of Ar{sup +} and H{sup +} ions leaving the arc is also studied. It is found that with a 3 T magnetic field the Ar{sup +} yield increases from 1.6 x 10{sup 20} to 2.1 x 10{sup 20} (25% increase) while the H{sup +} yield increases from 1.4 x 10{sup 20} to 2.9 x 10{sup 20} (100% increase)

  7. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  8. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  9. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  10. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    2018-04-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local thermodynamic equilibrium (LTE) spectroscopic analysis of Fe I and Fe II lines gives discrepant results in terms of derived Fe abundance, which we ascribe to non-LTE effects and systematic errors on the stellar parameters. We also determine C, N, and O abundances by simultaneously fitting CH, OH, NH, and CN molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen abundance than from molecular lines (+0.46 dex in 3D and +0.15 dex in 1D). We rule out important OH photodissociation effects as possible explanation for the discrepancy and note that lowering the surface gravity would reduce the oxygen abundance difference between molecular and atomic indicators.

  11. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE FIRST DIRECT METALLICITY DETERMINATION OF NGC 4038 IN THE ANTENNAE

    International Nuclear Information System (INIS)

    Lardo, C.; Davies, B.; Kudritzki, R-P.; Gazak, J. Z.; Evans, C. J.; Patrick, L. R.; Bergemann, M.; Plez, B.

    2015-01-01

    We present a direct determination of the stellar metallicity in the close pair galaxy NGC 4038 (D = 20 Mpc) based on the quantitative analysis of moderate-resolution KMOS/Very Large Telescope spectra of three super star clusters. The method adopted in our analysis has been developed and optimized to measure accurate metallicities from atomic lines in the J-band of single red supergiant (RSG) or RSG-dominated star clusters. Hence, our metallicity measurements are not affected by the biases and poorly understood systematics inherent to strong line H ii methods, which are routinely applied to massive data sets of galaxies. We find [Z] = +0.07 ± 0.03 and compare our measurements to H ii strong line calibrations. Our abundances and literature data suggest the presence of a flat metallicity gradient, which can be explained as redistribution of metal-rich gas following the strong interaction

  12. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Science.gov (United States)

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  13. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    Science.gov (United States)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  16. Atmospheric parameters and magnesium and calcium NLTE abundances for a sample of 16 ultra metal-poor stars

    Science.gov (United States)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Ezzeddine, Rana; Frebel, Anna

    2018-06-01

    The most metal-poor stars provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Accurate atmospheric parameters is a prerequisite of determination of accurate abundances. We present atmospheric parameters and abundances of calcium and magnesium for a sample of 16 ultra-metal poor (UMP) stars. In spectra of UMP stars, iron is represented only by lines of Fe I, while calcium is represented with lines of Ca I and Ca II, which can be used for determination/checking of effective temperature and surface gravity. Accurate calculations of synthetic spectra of UMP stars require non-local thermodynamic equilibrium (NLTE) treatment of line formation, since deviations from LTE grow with metallicity decreasing. The method of atmospheric parameter determination is based on NLTE analysis of lines of Ca I and Ca II, multi-band photometry, and isochrones. The method was tested in advance with the ultra metal-poor giant CD-38 245, where, in addition, trigonometric parallax measurements from Gaia DR1 and lines of Fe I and Fe II are available. Using photometric Teff = 4900 K and distance based log g = 2.0 for CD-38 245, we derived consistent within error bars NLTE abundances from Fe I and Fe II and Ca I and Ca II, while LTE leads to a discrepancy of 0.6 dex between Ca I and Ca II. We determined NLTE and LTE abundances of magnesium and calcium in 16 stars of the sample. For the majority of stars, as expected, [Ca/Mg] NLTE abundance ratios are close to 0, while LTE leads to systematically higher [Ca/Mg], by up to 0.3 dex, and larger spread of [Ca/Mg] for different stars. Three stars of our sample are strongly enhanced in magnesium, with [Mg/Ca] of 1.3 dex. It is worth noting that, for these three stars, we got very similar [Mg/Ca] of 1.30, 1.45, and 1.29, in contrast to the data from the literature, where, for the same stars, [Mg/Ca] vary from 0.7 to 1.4. Very similar [Mg/Ca] abundance ratios of these stars argue that

  17. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Science.gov (United States)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  18. A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs

    Science.gov (United States)

    Veyette, Mark J.; Muirhead, Philip S.; Mann, Andrew W.; Brewer, John M.; Allard, France; Homeier, Derek

    2017-12-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R ˜ 25,000), Y-band (˜1 μm) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in T eff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively, and is calibrated for 3200 K < T eff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.

  19. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  20. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  1. Metal Abundances at z<1.5: Fresh Clues to the Chemical Enrichment History of Damped Lyα Systems

    Science.gov (United States)

    Pettini, Max; Ellison, Sara L.; Steidel, Charles C.; Bowen, David V.

    1999-01-01

    We explore the redshift evolution of the metal content of damped Lyα systems (DLAs) with new observations of four absorbers at zintermediate redshifts for which the abundance of Zn has been measured. The main conclusion is that the column density-weighted mean metallicity, []=-1.03+/-0.23 (on a logarithmic scale), is not significantly higher at zaccounted for, leaves no room for the enhancement of the α elements over iron seen in metal-poor stars in the Milky Way. This is contrary to previous assertions that DLAs have been enriched solely by Type II supernovae, but it can be understood if the rate of star formation in the systems studied proceeded more slowly than in the early history of our Galaxy. These results add to a growing body of data pointing to the conclusion that known DLAs do not trace the galaxy population responsible for the bulk of star formation. Possible reasons are that sight lines through metal-rich gas are systematically underrepresented, because the background QSOs are reddened, and that the most actively star-forming galaxies are also the most compact, presenting too small a cross-section to have been probed yet with the limited statistics of current samples. Most of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Science.gov (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.

    2017-12-01

    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  3. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  4. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  5. Dust Abundance Variations in the Magellanic Clouds: Probing the Life-cycle of Metals with All-sky Surveys

    Science.gov (United States)

    Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl

    2017-06-01

    Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.

  6. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  7. The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances

    Science.gov (United States)

    Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.

    2018-03-01

    Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.

  8. Chemical composition of late-type supergiants. IV. Homogeneous abundances and galactic metallicity trends

    International Nuclear Information System (INIS)

    Luck, R.E.

    1982-01-01

    In a recent series of papers by Luck and by Luck and Bond on the chemical composition of G and K lb supergiants, [Fe/H] ratios were determined from high-dispersion spectroscopic data for 54 stars. The main results were: (1) that supergiants in the solar neighborhood have about twice the iron content of the Sun ( = +0.3); and (2) that supergiants between 7.7 and 10.2 kpc from the galactic center show a steep radial metallicity gradient, d[Fe/H]/dR = -0.24 kpc -1

  9. MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    VandenBerg, Don A.; Dotter, Aaron [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Bergbusch, Peter A. [Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Ferguson, Jason W. [Department of Physics, Wichita State University, Wichita, KS 67260-0032 (United States); Michaud, Georges; Richer, Jacques [Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Proffitt, Charles R., E-mail: vandenbe@uvic.ca, E-mail: Aaron.Dotter@gmail.com, E-mail: pbergbusch@accesscomm.ca, E-mail: proffitt@stsci.edu, E-mail: Jason.Ferguson@wichita.edu, E-mail: michaudg@astro.umontreal.ca, E-mail: jacques.richer@umontreal.ca [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    Recent work has shown that most globular clusters have at least two chemically distinct components, as well as cluster-to-cluster differences in the mean [O/Fe], [Mg/Fe], and [Si/Fe] ratios at similar [Fe/H] values. In order to investigate the implications of variations in the abundances of these and other metals for H-R diagrams and predicted ages, grids of evolutionary sequences have been computed for scaled solar and enhanced {alpha}-element metal abundances, and for mixtures in which the assumed [m/Fe] value for each of the metals C, N, O, Ne, Na, Mg, Si, S, Ca, and Ti has been increased, in turn, by 0.4 dex at constant [Fe/H]. These tracks, together with isochrones for ages from Almost-Equal-To 5 to 14 Gyr, have been computed for -3.0 {<=} [Fe/H] {<=}-0.6, with helium abundances Y = 0.25, 0.29, and 0.33 at each [Fe/H] value, using upgraded versions of the Victoria stellar structure program and the Regina interpolation code, respectively. Turnoff luminosity versus age relations from isochrones are found to depend almost entirely on the importance of the CNO cycle, and thereby mainly on the abundance of oxygen. Since C, N, and O, as well as Ne and S, do not contribute significantly to the opacities at low temperatures and densities, variations in their abundances do not impact the predicted T{sub eff} scale of red giants. The latter is a strong function of the abundances of only Mg and Si (and Fe, possibly to a lesser extent) because they are so abundant and because they are strong sources of opacity at low temperatures. For these reasons, Mg and Si also have important effects on the temperatures of main-sequence stars. Due to their low abundances, Na, Ca, and Ti are of little consequence for stellar models. The effects of varying the adopted solar metals mixture and the helium abundance at a fixed [Fe/H] are also briefly discussed.

  10. Detailed abundances from integrated-light spectroscopy: Milky Way globular clusters

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Strader, J.

    2017-05-01

    Context. Integrated-light spectroscopy at high spectral resolution is rapidly maturing as a powerful way to measure detailed chemical abundances for extragalactic globular clusters (GCs). Aims: We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Methods: Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. Results: The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the α-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Conclusions: Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects

  11. Supergiants and the Galactic metallicity gradient. II. Spectroscopic abundances for 64 distant F- to M-type supergiants

    International Nuclear Information System (INIS)

    Luck, R.E.; Bond, H.E.

    1989-01-01

    The metallicity gradient in the Galactic disk from in situ stars with visual magnitude ranging from 6 to 10 is analyzed. Atmospheric parameters and detailed chemical abundances for 64 Population I supergiants of spectral types F through M and luminosity classes Ia through II have been determined. The derived Fe/H ratios ranging from -0.5 to + 0.7 show a mean value of +0.13 with an estimated uncertainty of + or - 0.2. A subset of 25 supergiants fainter than 7th magnitude lying in the direction of the Galactic center shows a Fe/H mean of +0.18 + or - 0.04, while a similar sample of 15 faint supergiants lying in the direction of the Galactic anticenter shows a lower Fe/H mean of +0.07 + or - 0.06. For a sample of bright supergiants analyzed by Luck and Lambert (1985), the mean abundance pattern for all 64 stars showed the following: deficient C and O along with enhancement of N, indicating mixing of CNO-cycled material to the stellar surfaces; an apparent Sr enhancement attributed to departures from LTE; and an essentially solar pattern of other chemical elements. 50 refs

  12. Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115

    International Nuclear Information System (INIS)

    Mathew, K.J.; Singleton, G.L.; Essex, R.M.; Hasozbek, A.; Orlowicz, G.; Soriano, M.

    2013-01-01

    Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235 U/ 238 U 'major' isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the 'minor' 234 U/ 238 U and 236 U/ 238 U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235 U/ 238 U isotope-amount ratios. Characterized values of the 234 U/ 238 U and 236 U/ 238 U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233 U/ 238 U isotope-amount ratio in CRM 115 is estimated to be -9 . The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed. (author)

  13. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions

    Science.gov (United States)

    Hein, James R.; Spinardi, Francesca; Okamoto, Nobuyuki; Mizell, Kira; Thorburn, Darryl; Tawake, Akuila

    2015-01-01

    The Cook Islands (CIs) Exclusive Economic Zone (EEZ) encompasses 1,977,000 km2 and includes the Penrhyn and Samoa basins abyssal plains where manganese nodules flourish due to the availability of prolific nucleus material, slow sedimentation rates, and strong bottom currents. A group of CIs nodules was analyzed for mineralogical and chemical composition, which include many critical metals not before analyzed for CIs nodules. These nodules have varying sizes and nuclei material; however all are composed predominantly of δ-MnO2 and X-ray amorphous iron oxyhydroxide. The mineralogy, Fe/Mn ratios, rare earth element contents, and slow growth rates (mean 1.9 mm/106 years) reflect formation primarily by hydrogenetic precipitation. The paucity of diagenetic input can be explained by low primary productivity at the surface and resultant low organic matter content in seafloor sediment, producing oxic seafloor and sub-seafloor environments. The nodules contain high mean contents of Co (0.41%), Ni (0.38%), Ti (1.20%), and total rare earth elements plus yttrium (REY; 0.167%), and also high contents of Mo, Nb, V, W, and Zr.

  14. Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions*†

    Science.gov (United States)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration

    2017-08-01

    Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.

  15. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  16. Abundance of boron in Vega and Sirius

    International Nuclear Information System (INIS)

    Praderie, F.; Boesgaard, A.M.; Milliard, B.; Pitois, M.L.

    1977-01-01

    High-resolution (0.05 A) observations of the region of the B II resonance line (1362 A) have been made of Vega (AO V) and Sirius (Al V) with the Copernicus satellite. A strong B II feature is present in Vega, but only a weak line, due primarily to V III, is present is Sirius. An upper limit of B/H -12 is derived for Sirius from line-profile fitting. A local thermodynamic equilibrium (LTE) synthesis of the B II blend in Vega results in an abundance ratio B/H=1 x 10 -10 . Calculations of the effects of non--LTE on the line profile show that the LTE abundance would not be increased by more than 50% (B.H=1.5 x 10 -10 ) to account for departures from LTE. The B content of Vega probably represents the cosmic B abundance. The B deficiency in Sirius could result from interaction with the white-dwarf companion at an earlier stage in its evolution or from diffusion processes in the Sirius atmosphere.Difficult observations at 0.10 A resolution of subordinate lines from multiplet (3) of B II at 1624 A show that those lines are not present in Sirius; but the identification of B in Vega appears to be confirmed by the presence of weak lines at 1624 A in this star

  17. Metal Abundances, Radial Velocities, and Other Physical Characteristics for the RR Lyrae Stars in The Kepler Field

    Science.gov (United States)

    Nemec, James M.; Cohen, Judith G.; Ripepi, Vincenzo; Derekas, Aliz; Moskalik, Pawel; Sesar, Branimir; Chadid, Merieme; Bruntt, Hans

    2013-08-01

    Spectroscopic iron-to-hydrogen ratios, radial velocities, atmospheric parameters, and new photometric analyses are presented for 41 RR Lyrae stars (and one probable high-amplitude δ Sct star) located in the field-of-view of the Kepler space telescope. Thirty-seven of the RR Lyrae stars are fundamental-mode pulsators (i.e., RRab stars) of which sixteen exhibit the Blazhko effect. Four of the stars are multiperiodic RRc pulsators oscillating primarily in the first-overtone mode. Spectroscopic [Fe/H] values for the 34 stars for which we were able to derive estimates range from -2.54 ± 0.13 (NR Lyr) to -0.05 ± 0.13 dex (V784 Cyg), and for the 19 Kepler-field non-Blazhko stars studied by Nemec et al. the abundances agree will with their photometric [Fe/H] values. Four non-Blazhko RR Lyrae stars that they identified as metal-rich (KIC 6100702, V2470 Cyg, V782 Cyg and V784 Cyg) are confirmed as such, and four additional stars (V839 Cyg, KIC 5520878, KIC 8832417, KIC 3868420) are also shown here to be metal-rich. Five of the non-Blazhko RRab stars are found to be more metal-rich than [Fe/H] ~-0.9 dex while all of the 16 Blazhko stars are more metal-poor than this value. New P-\\phi _31^s-[Fe/H] relationships are derived based on ~970 days of quasi-continuous high-precision Q0-Q11 long- and short-cadence Kepler photometry. With the exception of some Blazhko stars, the spectroscopic and photometric [Fe/H] values are in good agreement. Several stars with unique photometric characteristics are identified, including a Blazhko variable with the smallest known amplitude and frequency modulations (V838 Cyg). Based in part on observations made at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Also, based in part on

  18. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    Science.gov (United States)

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?

    International Nuclear Information System (INIS)

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R.

    2011-01-01

    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey and identified by Peeples et al. as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples showed that these four objects (with metallicity estimates of 8.5 ≤ 12 + log(O/H) ≤ 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M B luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [O II] λλ3726, 3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra are low excitation, with relatively high N/O ratios (N/O ∼> 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the 'standard' strong-line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 ≤ 12 + log (O/H) ≤ 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the 'Wolf-Rayet galaxy' phase. We compare our results to the 'main' sample of Peeples and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen and not due to unusually high oxygen abundances for their masses or luminosities.

  20. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  1. EXAMINATION OF THE MASS-DEPENDENT Li DEPLETION HYPOTHESIS BY THE Li ABUNDANCES OF THE VERY METAL-POOR DOUBLE-LINED SPECTROSCOPIC BINARY G166-45

    International Nuclear Information System (INIS)

    Aoki, Wako; Ito, Hiroko; Tajitsu, Akito

    2012-01-01

    The Li abundances of the two components of the very metal-poor ([Fe/H] –2.5) double-lined spectroscopic binary G166-45 (BD+26°2606) are determined separately based on high-resolution spectra obtained with the Subaru Telescope High Dispersion Spectrograph and its image slicer. From the photometric colors and the mass ratio, the effective temperatures of the primary and secondary components are estimated to be 6350 ± 100 K and 5830 ± 170 K, respectively. The Li abundance of the primary (A(Li) = 2.23) agrees well with the Spite plateau value, while that of the secondary is slightly lower (A(Li) = 2.11). Such a discrepancy of the Li abundances between the two components is previously found in the extremely metal-poor, double-lined spectroscopic binary CS 22876-032; however, the discrepancy in G166-45 is much smaller. The results agree with the trends found for Li abundance as a function of effective temperature (and of stellar mass) of main-sequence stars with –3.0 eff ∼ 5800 K is not particularly large in this metallicity range. The significant Li depletion found in CS 22876-032B is a phenomenon only found in the lowest metallicity range ([Fe/H] < –3).

  2. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [NMSU, Las Cruces; Beers, Timothy C. [Michigan State U., JINA; Masseron, Thomas [Brussels U.; Plez, Bertrand [U. Montpellier 2, LUPM; Rockosi, Constance M. [Lick Observ.; Sobeck, Jennifer [Chicago U.; Yanny, Brian [Fermilab; Lucatello, Sara [Padua Observ.; Sivarani, Thirupathi [Bangalore, Indian Inst. Astrophys.; Placco, Vinicius M. [Sao Paulo U., IAG; Carollo, Daniela [Macquarie U.

    2013-10-17

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged

  3. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  4. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  5. Chemical Abundance Analysis of Three α -poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-10

    We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of several$\\alpha$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $\\sim -2.6$ and are not $\\alpha$-enhanced([$\\alpha$/Fe] $\\sim 0.0$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.

  6. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    Science.gov (United States)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  7. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Merchant Boesgaard, Ann; Lum, Michael G. [Institute for Astronomy, University of Hawai' i at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deliyannis, Constantine P., E-mail: boes@ifa.hawaii.edu, E-mail: mikelum@ifa.hawaii.edu, E-mail: cdeliyan@indiana.edu [Department of Astronomy, Indiana University 727 East 3rd Street, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  8. Abundances in the Galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Barbuy, B; Alves-Brito, A [Universidade de Sao Paulo, IAG, Rua do Matao 1226, Sao Paulo 05508-900 (Brazil); Ortolani, S; Zoccali, M [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Hill, V; Gomez, A [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Melendez, J [Centro de AstrofIsica da Universidade de Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Asplund, M [Max Planck Institute for Astrophysics, Postfach 1317, 85741 Garching (Germany); Bica, E [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, CP 15051, Porto Alegre 91501-970 (Brazil); Renzini, A [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Minniti, D [Department of Astronomy and Astrophysics, Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)], E-mail: barbuy@astro.iag.usp.br

    2008-12-15

    The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of {alpha}-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.

  9. HEAVY METALS ABUNDANCE IN THE SOILS OF THE PANTELIMON – BRĂNEŞTI AREA, ILFOV COUNTY a CADMIUM, COBALT, CHROMIUM, COPPER

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2011-12-01

    Full Text Available More than 20 years later, a new research on heavy metals (cadmium, cobalt, chromium, copper contents in the soil cover of the Pantelimon – Brăneşti area located East of the Bucharest Municipality and exposed for several decades to the influence of industrial emissions from two non-ferrous metallurgy plants is presented. A 5,912.72 ha area was investigated, 544 samples taken by geometric horizons (0-20; 20-40; 40-60 cm from 215 points have been analyzed.The dominant soils are: Preluvosols, Chernozems, Phaeozems. The analytical data showed that all the heavy metals contents are below the maximum allowable limits and of the alarm thresholds. Higher cadmium and copper concentrations have been registered in the 40-60 cm layer and higher chromium and copper concentrations in the 0-20 cm layer. Cadmium and cobalt distributions are non-central, with a right asymmetry, and the chromium and copper ones are slightly symmetric. The surface distribution of the heavy metals shows the presence of some high contents areas distributed insularly, with a higher frequency around the industrial units. The geochemical abundance indexes are higher than 1 for cadmium and lower for cobalt, chromium, and copper, and the pedo-geochemical abundance indexes are lower than 1 only for chromium.

  10. Metal-poor dwarf galaxies in the SIGRID galaxy sample. II. The electron temperature-abundance calibration and the parameters that affect it

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J., E-mail: David.Nicholls@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)

    2014-07-20

    In this paper, we use the Mappings photoionization code to explore the physical parameters that impact on the measurement of electron temperature and abundance in H II regions. In our previous paper, we presented observations and measurements of physical properties from the spectra of 17 H II regions in 14 isolated dwarf irregular galaxies from the SIGRID sample. Here, we analyze these observations further, together with three additional published data sets. We explore the effects of optical thickness, electron density, ionization parameter, ionization source, and non-equilibrium effects on the relation between electron temperature and metallicity. We present a standard model that fits the observed data remarkably well at metallicities between one-tenth and 1 solar. We investigate the effects of optically thin H II regions, and show that they can have a considerable effect on the measured electron temperature, and that there is evidence that some of the observed objects are optically thin. We look at the role of the ionization parameter and find that lower ionization parameter values give better fits at higher oxygen abundance. We show that higher pressures combined with low optical depth, and also κ electron energy distributions at low κ values, can generate the apparent high electron temperatures in low-metallicity H II regions, and that the former provides the better fit to observations. We examine the effects of these parameters on the strong line diagnostic methods. We extend this to three-dimensional diagnostic grids to confirm how well the observations are described by the grids.

  11. Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I

    Science.gov (United States)

    Feltzing, S.; Eriksson, K.; Kleyna, J.; Wilkinson, M. I.

    2009-12-01

    Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods: We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results: We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be -2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at -2.9 dex, and one is more metal-rich at, -1.9 dex. Additionally, we find that one of the stars, Boo-127, shows an atypically high [Mg/Ca] ratio, indicative of stochastic enrichment processes within the dSph galaxy. Similar results have previously only been found in the Hercules and Draco dSph galaxies and appear, so far, to be unique to this type of galaxy. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Calibrating the metallicity of M dwarfs in wide physical binaries with F-, G-, and K- primaries - I: High-resolution spectroscopy with HERMES: stellar parameters, abundances, and kinematics

    Science.gov (United States)

    Montes, D.; González-Peinado, R.; Tabernero, H. M.; Caballero, J. A.; Marfil, E.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González Hernández, J. I.; Klutsch, A.; Moreno-Jódar, C.

    2018-05-01

    We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, log g, ξ, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.

  13. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  14. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri

    International Nuclear Information System (INIS)

    Teske, Johanna K.; Cunha, Katia; Schuler, Simon C.; Griffith, Caitlin A.; Smith, Verne V.

    2013-01-01

    The super-Earth exoplanet 55 Cnc e, the smallest member of a five-planet system, has recently been observed to transit its host star. The radius estimates from transit observations, coupled with spectroscopic determinations of mass, provide constraints on its interior composition. The composition of exoplanetary interiors and atmospheres are particularly sensitive to elemental C/O ratio, which to first order can be estimated from the host stars. Results from a recent spectroscopic study analyzing the 6300 Å [O I] line and two C I lines suggest that 55 Cnc has a carbon-rich composition (C/O = 1.12 ± 0.09). However, oxygen abundances derived using the 6300 Å [O I] line are highly sensitive to a Ni I blend, particularly in metal-rich stars such as 55 Cnc ([Fe/H] =0.34 ± 0.18). Here, we further investigate 55 Cnc's composition by deriving the carbon and oxygen abundances from these and additional C and O absorption features. We find that the measured C/O ratio depends on the oxygen lines used. The C/O ratio that we derive based on the 6300 Å [O I] line alone is consistent with the previous value. Yet, our investigation of additional abundance indicators results in a mean C/O ratio of 0.78 ± 0.08. The lower C/O ratio of 55 Cnc determined here may place this system at the sensitive boundary between protoplanetary disk compositions giving rise to planets with high (>0.8) versus low (<0.8) C/O ratios. This study illustrates the caution that must applied when determining planet host star C/O ratios, particularly in cool, metal-rich stars.

  15. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    Science.gov (United States)

    Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten

    2013-01-01

    We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  16. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations

    Directory of Open Access Journals (Sweden)

    Maria eFabisch

    2013-12-01

    Full Text Available We identified and quantified abundant iron-oxidizing bacteria (FeOB at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7, to moderately acidic (R2, pH 4.4, to slightly acidic (R3, pH 6.3 in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic ‘Ferrovum myxofaciens’ was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and ‘Ferrovum myxofaciens’ revealed that approximately 72% (R2 sediment and 37% (R3 sediment of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.

  17. Abundances of the elements in sharp-lined early-type stars from IUE high-dispersion spectrograms; 2, the nitrogen deficiency in mercury- manganese stars

    CERN Document Server

    Roby, S W; Adelman, S J

    1999-01-01

    For pt.I see ibid., vol.419, no.1, p.276-85 (1993). The authors determine nitrogen abundances from co-added IUE high-dispersion SWP spectrograms of four HgMn stars and five normal or superficially normal main-sequence B and A stars. They find N deficiencies in the HgMn stars greater than previously reported (depletion factors of 135-400 relative to the Sun). N abundance discrepancies from UV and IR studies of normal stars are discussed in light of possible non-LTE effects. Their data set for their sample of HgMn stars (observed with a consistent strategy to maximize the benefits of co-additions) is an improvement over the single or few images previously used to derive N abundances for most of these stars. (37 refs).

  18. IMPACT OF HEAVY METALS CONTAMINATION ON SPRING ABUNDANCE OF AQUATIC MACRO-INVERTEBRATES INHABITING LAKE TIMSAH, EGYPT

    Directory of Open Access Journals (Sweden)

    Marwa Ibrahim Saad El-Din

    2017-04-01

    Full Text Available Lake Timsah, Egypt receives several kinds of pollutants coming from domestic sewage of unconnected areas adjoining the shore and possibly marine pollution. During the last decades heavy metals have become common contaminants of aquatic and wetland environments throughout the world because of human activity and technological development. Increasing attention has been given during the last decade to the protection of marine and freshwater aquatic environment against pollution, both nationally and internationally. Macro-benthoses are the most commonly organisms used as bio-indicators water quality assessment. All of the aquatic macro-invertebrates that were collected from El-Taween station, Lake Timsah, Egypt fell into three major groups that were fairly easy to identify. They were annelids (Polychaeta and Oligochaeta, molluscs (Bivalvia and Gastropoda and arthropods (Crustacea. The small sized crustacean Sphaeroma. serratum are considered suitable species for aquatic bio-monitoring because they hold an important position in the aquatic food chain responds to many pollutants, easy to culture and has short life cycles. Iron was most important determinant; it appears in high concentrations in both water sample and the tissue of crustacean sample (S. serratum.

  19. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Science.gov (United States)

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  20. Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode

    Science.gov (United States)

    Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge

    2018-03-01

    The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.

  1. Molecular Abundances in the Circumstellar Envelope of Oxygen-Rich Supergiant VY Canis Majoris

    Science.gov (United States)

    Edwards, Jessica L.; Ziurys, Lucy

    2014-06-01

    A complete set of molecular abundances have been established for the Oxygen-rich circumstellar envelope (CSE) surrounding the supergiant star VY Canis Majoris (VY CMa). These data were obtained from The Arizona Radio Observatory (ARO) 1-mm spectral line survey of this object using the ARO Sub-millimeter Telescope (SMT), as well as complimentary transitions taken with the ARO 12-meter. The non-LTE radiative transfer code ESCAPADE has been used to obtain the molecular abundances and distributions in VY CMa, including modeling of the various asymmetric outflow geometries in this source. For example, SO and SO2 were determined to arise from five distinct outflows, four of which are asymmetric with respect to the central star. Abundances of these two sulfur-bearing molecules range from 3 x 10-8 - 2.5 x 10-7 for the various outflows. Similar results will be presented for molecules like CS, SiS, HCN, and SiO, as well as more exotic species like NS, PO, AlO, and AlOH. The molecular abundances between the various outflows will be compared and implications for supergiant chemistry will be discussed.

  2. Oxygen abundances in halo stars

    Science.gov (United States)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  3. Abundances in galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7 Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9 Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  4. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  5. Non-LTE profiles of strong solar lines

    Science.gov (United States)

    Schneeberger, T. J.; Beebe, H. A.

    1976-01-01

    The complete linearization method is applied to the formation of strong lines in the solar atmosphere. Transitions in Na(I), Mg(I), Ca(I), Mg(II), and Ca(II) are computed with a standard atmosphere and microturbulent velocity model. The computed profiles are compared to observations at disk center.

  6. Non-LTE hydrogen-line formation in moving prominences

    Science.gov (United States)

    Heinzel, P.; Rompolt, B.

    1986-01-01

    The behavior of hydrogen-line brightness variations, depending on the prominence-velocity changes were investigated. By solving the NON-Local thermodynamic equilibrium (LTE) problem for hydrogen researchers determine quantitatively the effect of Doppler brightening and/or Doppler dimming (DBE, DDE) in the lines of Lyman and Balmer series. It is demonstrated that in low-density prominence plasmas, DBE in H alpha and H beta lines can reach a factor of three for velocities around 160 km/sec, while the L alpha line exhibits typical DDE. L beta brightness variations follow from a combined DBE in the H alpha and DDE in L alpha and L beta itself, providing that all relevant multilevel interlocking processes are taken into account.

  7. Simulation of non LTE opacity with incoming radiation

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2009-11-01

    Simulation of radiative properties of hot plasmas is important for ICF, other laboratory plasmas, and astrophysics. When mid-Z or high-Z elements are involved, the spectra are so complex that one commonly uses LTE approximation. This was recently done in interpreting a carefully calibrated experiment on Fe at 160 eV [1]. However some disagreement remains concerning the ion charge distribution. The newest version of HULLAC [2] has the capability to take into account an incoming radiation field in solving the rate equations of the coronal radiative model (CRM). We will show results with different representation of the radiation field.[4pt] [1] J.E. Bailey, G.A. Rochau, C.A. Iglesias, et al., Phys. Rev. Lett. 99, (2007) 265002-4.[0pt] [2] M. Klapisch and M. Busquet, High Ener. Dens. Phys. 5, (2009) 105-9.

  8. Non-LTE Equation of State for ICF simulations

    Science.gov (United States)

    Klapisch, Marcel; Bar-Shalom, Avraham; Colombant, Denis

    2002-11-01

    SCROLL is a collisional radiative model able to deal with complex spectra[1]. It is used to generate opacity/emissivity databases [2] compatible with the hydrocode FAST[3] for all elements of interest in the simulation of ICF targets, including high-Z. It is now modified to yield tables of EOS data for FAST, in the whole range of interest (T=1 to 25000eV, rho=10-6 to 100g/cc). SCROLL contributes the electronic -free and bound- part of the EOS, replacing Busquet's model of an ionization temperature. Ionization energies include contributions of all excited states. Energies and Z* go smoothly to the high density regime, where a "jellium" model is assumed. The free electrons are self consistent with the bound electrons. Examples of runs will be shown. Supported by USDOE through a contract with the Naval Research Laboratory. [1] A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer 65, 43 (2000). [2] A. Bar-shalom, M. Klapisch, J. Oreg, and D. Colombant, Bull. Am. Phys. Soc. 46, 295 (2001). [3] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, et al, Phys. Plasmas 5, 1935 (1998).

  9. Abundance and Charge State of Implanted Solar Wind Transition Metals in Individual Apollo 16 and 17 Lunar Soil Plagioclase Grains Determined In Situ Using Synchrotron X-ray Fluorescence

    International Nuclear Information System (INIS)

    Kitts, K.; Sutton, S.; Newville, M.

    2007-01-01

    We report (1) a new method for determining the relative abundances in situ of Cr, Mn, Fe and Ni in implanted solar wind in individual Apollo 16 and 17 lunar plagioclases via synchrotron X-ray fluorescence and (2) the charge states of these metals. By virture of its mass alone, the Sun provides a representative composition of the solar system and can be used as a background against which to gauge excesses or deficiencies of specific components. One way of sampling the Sun is by measuring solar wind implanted ions in lunar soil grains. Such measurements are valuable because of their long exposure ages which compliment shorter time scale collections, such as those obtained by the Genesis spacecraft. Kitts et al. sought to determine the isotopic composition of solar Cr by analyzing the solar wind implanted into plagioclase grains from Apollo 16 lunar soils. The isotopic composition of the solar wind bearing fraction was anomalous and did not match any other known Cr isotopic signature. This could only be explained by either (1) an enrichment in the solar wind of heavy Cr due to spallation in the solar atmosphere or (2) that the Earth and the various parent bodies of the meteorites are distinct from the Sun and must have formed from slightly different mixes of presolar materials. To help resolve this issue, we have developed a wholly independent method for determining the relative abundances of transition metals in the solar wind implanted in individual lunar soil grains. This method is based on in situ abundance measurements by microbeam x-ray fluorescence in both the implantation zone and bulk grains using the synchrotron x-ray microprobe at the Advanced Photon Source (GSECARS sector 13) at Argonne National Laboratory. Here, we report results for Apollo 16 and 17 plagioclase grains. Additionally, a micro-XANES technique was used to determine charge states of the implanted Cr, Mn, Fe and Ni.

  10. Effect of heavy metals from soils amended with bio solids and sowed with forages on the abundance and biodiversity of edaphic arthropods

    International Nuclear Information System (INIS)

    Flores-Pardave, L.; Flores-Tena, F. J.; Hernandez-Sanchez, A. J.

    2009-01-01

    There are many studies about positive effects of bio solids application to ameliorate grain and forage production. However it is necessary to know more about the effects of this by-product on edaphic biota. Therefore the goal of this study was to know the effects of heavy metals from bio solids if the wastewater treatment plant of Aguascalientes city (Mexico) on adaphic arthropods in soils sowed with lucerne and corn amended with bio solids at 200 (low), 400 middle) and 800 (high) ton/ha wet weight. (Author)

  11. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production.

    Science.gov (United States)

    Uddin, Md T; Nicolas, Y; Olivier, C; Jaegermann, W; Rockstroh, N; Junge, H; Toupance, T

    2017-07-26

    Earth-abundant NiO/anatase TiO 2 heteronanostructures were prepared by a straightforward one-pot sol-gel synthetic route followed by a suitable thermal post-treatment. The resulting 0.1-4 wt% NiO-decorated anatase TiO 2 nanoparticles were characterized by X-ray diffraction, electron microscopy, Raman and UV-visible spectroscopy and N 2 sorption analysis, and showed both nanocrystallinity and mesoporosity. The careful determination of the energy band alignment diagram by a suitable combination of XPS/UPS and absorption spectroscopy data revealed significant band bending at the interface of the p-n NiO/anatase TiO 2 heterojunction nanoparticles. Furthermore, these heterojunction photocatalysts exhibited an improved photocatalytic activity in H 2 production by methanol photoreforming compared to pure anatase TiO 2 and commercial P25. Thus, an average H 2 production rate of 2693 μmol h -1 g -1 was obtained for the heterojunction of a 1 wt% NiO/anatase photocatalyst, which is one of the most efficient NiO/anatase TiO 2 systems ever reported. An enhanced dissociation efficiency of the photogenerated electron-hole pairs resulting from an internal electric field developed at the interface of the NiO/anatase TiO 2 p-n heterojunctions is suggested to be the reason of this enhanced photocatalytic activity.

  12. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  13. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  14. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and Models. I. Methods and Application to Magnesium Abundances in Standard Stars

    Science.gov (United States)

    Bergemann, Maria; Collet, Remo; Amarsi, Anish M.; Kovalev, Mikhail; Ruchti, Greg; Magic, Zazralt

    2017-09-01

    We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional () model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe/H] from -3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56+/- 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 Å line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.

  15. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  16. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    International Nuclear Information System (INIS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-01-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ∼6 to 25 solar masses and a range in effective temperature from ∼8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ∼0.05–0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  17. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.B.

    1985-02-15

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in (Fe/H) of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to (Fe/H)roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities.

  18. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    International Nuclear Information System (INIS)

    Laird, J.B.

    1985-01-01

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in [Fe/H] of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to [Fe/H]roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities

  19. CHLORINE ABUNDANCES IN COOL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Z. G.; Pilachowski, C. A. [Indiana University Bloomington, Astronomy Department, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  20. Chemical Abundances in SFG and DLA

    OpenAIRE

    Schulte-Ladbeck, Regina E.; König, Brigitte; Cherinka, Brian

    2005-01-01

    We investigate the chemical abundances of local star-forming galaxies which cause Damped Lyman Alpha lines. A metallicity versus redshift diagram is constructed, on which the chemical abundances of low-redshift star-forming galaxy populations are compared with those of high-redshift Damped Lyman Alpha systems. We disucss two types of experiments on individual star-forming galaxies. In the first, the Damped Lyman Alpha line is created against an internal ultraviolet light source generated by a...

  1. Quasar Elemental Abundances at High Redshifts

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Shields, J. C.

    2003-01-01

    the framework of the most recent photoionization models to estimate the metallicity of the gas associated with the high-z quasars. Standard photoionization parameters and the assumption of secondary nitrogen enrichment indicate an average abundance of Z/Z_sol = 4 to 5 in the line emitting gas. Assuming a time...

  2. OXYGEN ABUNDANCES IN CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V.

    2013-01-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  3. Abundance analyses of thirty cool carbon stars

    International Nuclear Information System (INIS)

    Utsumi, Kazuhiko

    1985-01-01

    The results were previously obtained by use of the absolute gf-values and the cosmic abundance as a standard. These gf-values were found to contain large systematic errors, and as a result, the solar photospheric abundances were revised. Our previous results, therefore, must be revised by using new gf-values, and abundance analyses are extended for as many carbon stars as possible. In conclusion, in normal cool carbon stars heavy metals are overabundant by factors of 10 - 100 and rare-earth elements are overabundant by a factor of about 10, and in J-type cool carbon stars, C 12 /C 13 ratio is smaller, C 2 and CN bands and Li 6708 are stronger than in normal cool carbon stars, and the abundances of s-process elements with respect to Fe are nearly normal. (Mori, K.)

  4. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  5. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  6. Barium and iron abundances in red giants

    International Nuclear Information System (INIS)

    Fernandez-Villacanas, J.L.; Rego, M.; Cornide, M.

    1990-01-01

    An intermediate-dispersion abundance analysis has been carried out on a sample of 21 barium and 14 comparison stars. The excess of barium over iron has been used as the most representative indicator of peculiarity. These excesses are higher in the peculiar stars than in the nonpeculiar stars. Particularly interesting is the case of HD 67447, included in the comparison stars, with an excess Ba/Fe abundance = 1.61, probably a new barium star. A trend indicating a possible anticorrelation between barium overabundance and metallicity favors the suggestion that the barium strong group is older than the barium weak one. 36 refs

  7. Elemental abundances in the Galactic bulge from microlensed dwarf stars

    NARCIS (Netherlands)

    Bensby, T.; Feltzing, S.; Johnson, J.A.; Gould, A.; Sana, H.; Gal-Yam, A.; Asplund, M.; Lucatello, S.; Melendez, J.; Udalski, A.; Kubas, D.; James, G.; Adén, D.; Simmerer, J.

    2010-01-01

    We present elemental abundances of 13 microlensed dwarf and subgiant stars in the Galactic bulge, which constitute the largest sample to date. We show that these stars span the full range of metallicity from Fe/H= −0.8 to +0.4, and that they follow well-defined abundance trends, coincident with

  8. Measuring molecular abundances in comet C/2014 Q2 (Lovejoy) using the APEX telescope

    Science.gov (United States)

    de Val-Borro, M.; Milam, S. N.; Cordiner, M. A.; Charnley, S. B.; Coulson, I. M.; Remijan, A. J.; Villanueva, G. L.

    2018-02-01

    Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejoy) using the Atacama Pathfinder Experiment (APEX) band 1 receiver between 2015 January UT 16.948 and 18.120, when the comet was at heliocentric distance of 1.30 au and geocentric distance of 0.53 au. Bright comets allow for sensitive observations of gaseous volatiles that sublimate in their coma. These observations allowed us to detect HCN, CH3OH (multiple transitions), H2CO and CO, and to measure precise molecular production rates. Additionally, sensitive upper limits were derived on the complex molecules acetaldehyde (CH3CHO) and formamide (NH2CHO) based on the average of the strongest lines in the targeted spectral range to improve the signal-to-noise ratio. Gas production rates are derived using a non-LTE molecular excitation calculation involving collisions with H2O and radiative pumping that becomes important in the outer coma due to solar radiation. We find a depletion of CO in C/2014 Q2 (Lovejoy) with a production rate relative to water of 2.0 per cent, and relatively low abundances of Q(HCN)/Q(H2O), 0.1 per cent, and Q(H2CO)/Q(H2O), 0.2 per cent. In contrast, the CH3OH relative abundance Q(CH3OH)/Q(H2O), 2.2 per cent, is close to the mean value observed in other comets. The measured production rates are consistent with values derived for this object from other facilities at similar wavelengths taking into account the difference in the fields of view. Based on the observed mixing ratios of organic molecules in four bright comets including C/2014 Q2, we find some support for atom addition reactions on cold dust being the origin of some of the molecules.

  9. Good abundances from bad spectra - I. Techniques

    Science.gov (United States)

    Jones, J. Bryn; Gilmore, Gerard; Wyse, Rosemary F. G.

    1996-01-01

    Stellar spectra derived from multiple-object fibre-fed spectroscopic radial-velocity surveys, of the type feasible with, among other examples, AUTOFIB, 2dF, HYDRA, NESSIE, and the Sloan survey, differ significantly from those traditionally used for determination of stellar abundances. The spectra tend to be of moderate resolution (around 1A) and signal-to-noise ratio (around 10-20 per resolution element), and cannot usually have reliable continuum shapes determined over wavelength ranges in excess of a few tens of Angstroms. None the less, with care and a calibration of stellar effective temperature from photometry, independent of the spectroscopy, reliable iron abundances can be derived. We have developed techniques to extract true iron abundances and surface gravities from low-signal-to-noise ratio, intermediate-resolution spectra of G-type stars in the 4000-5000A wavelength region. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few-several A wide) wavelength intervals. The indices are calibrated theoretically using synthetic spectra. Given adequate data and a photometrically determined effective temperature, one can derive estimates of the stellar iron abundance and surface gravity. We have also defined a single abundance indicator for the analysis of very low-signal-to-noise ratio spectra; with the further assumption of a value for the stellar surface gravity, this is able to provide useful iron abundance information from spectra having signal-to-noise ratios as low as 10 (1-A elements). The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in a separate paper (Jones, Wyse & Gilmore). The technique provides precise iron abundances, with zero-point correct to ~0.1 dex, and is reliable, with typical uncertainties being <~0.2 dex. A derivation of the in situ thick disc metallicity

  10. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  11. Compilation of solar abundance data

    International Nuclear Information System (INIS)

    Hauge, Oe.; Engvold, O.

    1977-01-01

    Interest in the previous compilations of solar abundance data by the same authors (ITA--31 and ITA--39) has led to this third, revised edition. Solar abundance data of 67 elements are tabulated and in addition upper limits for the abundances of 5 elements are listed. References are made to 167 papers. A recommended abundance value is given for each element. (JIW)

  12. Cosmological evolution of the nitrogen abundance

    Science.gov (United States)

    Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun

    2018-06-01

    The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.

  13. BOND: A quantum of solace for nebular abundance determinations

    Science.gov (United States)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2017-11-01

    The abundances of chemical elements other than hydrogen and helium in a galaxy are the fossil record of its star formation history. Empirical relations such as mass-metallicity relation are thus seen as guides for studies on the history and chemical evolution of galaxies. Those relations usually rely on nebular metallicities measured with strong-line methods, which assume that H II regions are a one- (or at most two-) parameter family where the oxygen abundance is the driving quantity. Nature is however much more complex than that, and metallicities from strong lines may be strongly biased. We have developed the method BOND (Bayesian Oxygen and Nitrogen abundance Determinations) to simultaneously derive oxygen and nitrogen abundances in giant H II regions by comparing strong and semi-strong observed emission lines to a carefully-defined, finely-meshed grid of photoionization models. Our code and results are public and available at http://bond.ufsc.br.

  14. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  15. Origin of Stellar Abundances in the early Galaxy

    International Nuclear Information System (INIS)

    Montes, F.; Beers, T. C.; Cowan, J.; Elliot, T.; Schatz, H.; Farouqi, K.; Gallino, R.; Heil, M.; Kratz, K.-L.; Pfeiffer, B.; Pignatari, M.

    2007-01-01

    Observations of metal-poor stars in the last decade have revealed an abundance pattern that have recently been explained as the result of two nucleosynthesis processes, a strong r-process that creates most of the Z≥56 and some 38≤Z≤47 abundances and a light element primary process (LEPP) responsible for creating the remaining 38≤Z≤47 abundances and some small contribution to heavier elements. We review some of the current literature on the LEPP and show a derived abundance pattern as a function of mass number

  16. Anomalous behavior of tellurium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1984-01-01

    The cosmic abundance of Te is larger than for any element with atomic number greater than 40, but it is one of the least abundant elements in the earth's lithosphere and it is one of the five elements never reported in sea water. On the other hand, it is the fourth most abundant element in the human body (after Fe, Zn and Rb), and is unusually abundant in human food. It is shown that the high abundance in human food combined with the low abundance in soil requires that it be picked up by plant roots very much more efficiently than any other trace element.

  17. Abundance, Excess, Waste

    Directory of Open Access Journals (Sweden)

    Rox De Luca

    2016-02-01

    Her recent work focuses on the concepts of abundance, excess and waste. These concerns translate directly into vibrant and colourful garlands that she constructs from discarded plastics collected on Bondi Beach where she lives. The process of collecting is fastidious, as is the process of sorting and grading the plastics by colour and size. This initial gathering and sorting process is followed by threading the components onto strings of wire. When completed, these assemblages stand in stark contrast to the ease of disposability associated with the materials that arrive on the shoreline as evidence of our collective human neglect and destruction of the environment around us. The contrast is heightened by the fact that the constructed garlands embody the paradoxical beauty of our plastic waste byproducts, while also evoking the ways by which those byproducts similarly accumulate in randomly assorted patterns across the oceans and beaches of the planet.

  18. Elemental abundances of solar sibling candidates

    International Nuclear Information System (INIS)

    Ramírez, I.; Lambert, D. L.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Bajkova, A. T.; Bobylev, V. V.; Roederer, I. U.; Wittenmyer, R. A.

    2014-01-01

    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high-resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD 162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible but instead from identifying and carefully measuring the abundances of those elements that show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.

  19. The primordial helium abundance from updated emissivities

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L.

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y p . The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y p . In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y p = 0.2465 ± 0.0097, in good agreement with the BBN result, Y p = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  20. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    International Nuclear Information System (INIS)

    Valencic, Lynne A.; Smith, Randall K.

    2013-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO 3 (enstatite) and Mg 1.6 Fe 0.4 SiO 4 (olivine) provided the best fit to the O K edge, with N(MgSiO 3 )/N(Mg 1.6 Fe 0.4 SiO 4 ) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  1. Twilight of Abundance

    Science.gov (United States)

    Archibald, David

    2014-03-01

    Baby boomers enjoyed the most benign period in human history: fifty years of relative peace, cheap energy, plentiful grain supply, and a warming climate due to the highest solar activity for 8,000 years. The party is over - prepare for the twilight of abundance. David Archibald reveals the grim future the world faces on its current trajectory: massive fuel shortages, the bloodiest warfare in human history, a global starvation crisis, and a rapidly cooling planet. Archibald combines pioneering science with keen economic knowledge to predict the global disasters that could destroy civilization as we know it - disasters that are waiting just around the corner. But there's good news, too: We can have a good future if we prepare for it. Advanced, civilized countries can have a permanently high standard of living if they choose to invest in the technologies that will get them there. Archibald, a climate scientist as well as an inventor and a financial specialist, explains which scientific breakthroughs can save civilization in the coming crisis - if we can cut through the special interest opposition to these innovations and allow free markets to flourish.

  2. Abundance ratios in dwarf elliptical galaxies

    Science.gov (United States)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  3. Chemical abundances of globular clusters in NGC 5128 (Centaurus A)

    Science.gov (United States)

    Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul

    2018-06-01

    We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.

  4. Stellar oxygen abundances. I - A resolution to the 7774 A O I abundance discrepancy

    Science.gov (United States)

    King, Jeremy R.

    1993-09-01

    We investigate the discrepancy between O/Fe abundance ratios of metal-poor stars derived from the 7774 A O I triplet and O/Fe ratios determined from other oxygen lines. We propose a possible resolution to this discrepancy which also eliminates the correlation of O/Fe and T(eff) found in a recent 7774 A O I analysis. The equivalent widths of Abia & Rebolo (1989) are found to be systematically too high by 25 percent. Arguments are presented that current temperature estimates for halo stars are 150-200 K too low. Using the guidance of both model atmospheres and other empirical color-T(eff) relations, we construct new color temperature relations for metal-poor stars. These relations are tied to the temperature scale of Saxner & Hammarback (1985) for metal-rich stars. We use (b-y) and (V-K) indices to redetermine values of T(eff) for a handful of halo stars. (B-V)-T(eff) relations which do not take into account the effects of metallicity are found to be inadequate. Revised O/Fe ratios are determined using the new temperature scale. The mean abundance ratio of the reanalyzed halo dwarfs is about +0.52. There is no trend of O/Fe with Fe/H or T(eff).

  5. Energy abundance and economic progress

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1983-01-01

    A discussion is presented on the benefits of energy abundance and on the links between energy supply, economic growth and human welfare in the United States. It is argued that the restoration of energy abundance with dependable sources of supply should be a major national objective. (U.K.)

  6. Influence of Coronal Abundance Variations

    Science.gov (United States)

    Scargle, Jeffrey D. (Technical Monitor); Kashyap, Vinay

    2005-01-01

    The PI of this project was Jeff Scargle of NASA/Ames. Co-I's were Alma Connors of Eureka Scientific/Wellesley, and myself. Part of the work was subcontracted to Eureka Scientific via SAO, with Vinay Kashyap as PI. This project was originally assigned grant number NCC2-1206, and was later changed to NCC2-1350 for administrative reasons. The goal of the project was to obtain, derive, and develop statistical and data analysis tools that would be of use in the analyses of high-resolution, high-sensitivity data that are becoming available with new instruments. This is envisioned as a cross-disciplinary effort with a number of "collaborators" including some at SA0 (Aneta Siemiginowska, Peter Freeman) and at the Harvard Statistics department (David van Dyk, Rostislav Protassov, Xiao-li Meng, Epaminondas Sourlas, et al). We have developed a new tool to reliably measure the metallicities of thermal plasma. It is unfeasible to obtain high-resolution grating spectra for most stars, and one must make the best possible determination based on lower-resolution, CCD-type spectra. It has been noticed that most analyses of such spectra have resulted in measured metallicities that were significantly lower than when compared with analyses of high- resolution grating data where available (see, e.g., Brickhouse et al., 2000, ApJ 530,387). Such results have led to the proposal of the existence of so-called Metal Abundance Deficient, or "MAD" stars (e.g., Drake, J.J., 1996, Cool Stars 9, ASP Conf.Ser. 109, 203). We however find that much of these analyses may be systematically underestimating the metallicities, and using a newly developed method to correctly treat the low-counts regime at the high-energy tail of the stellar spectra (van Dyk et al. 2001, ApJ 548,224), have found that the metallicities of these stars are generally comparable to their photospheric values. The results were reported at the AAS (Sourlas, Yu, van Dyk, Kashyap, and Drake, 2000, BAAS 196, v32, #54.02), and at the

  7. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Bai, Zhuanling; Wang, Yanlong; Yang, Zaixing; Zhang, Linjuan; Xu, Lin; Chen, Lanhua; Li, Yuxiang; Gui, Daxiang; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2017-04-04

    Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.

  8. Non-LTE modelling of prominence fine structures using hydrogen Lyman-line profiles

    Czech Academy of Sciences Publication Activity Database

    Schwartz, Pavol; Gunár, S.; Curdt, W.

    2015-01-01

    Roč. 577, May (2015), A92/1-A92/10 ISSN 0004-6361 R&D Projects: GA ČR GAP209/12/0906 Grant - others:SAV(SK) VEGA 2/0108/12 Institutional support: RVO:67985815 Keywords : Sun * filaments * prominences Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  9. Non-LTE H2+ as the source of missing opacity in the solar atmosphere

    Science.gov (United States)

    Swamy, K. S. K.; Stecher, T. P.

    1974-01-01

    The population of the various vibrational levels of the H2+ molecule has been calculated from the consideration of formation and destruction mechanisms. The resulting population is used in calculating the total absorption due to H2+ and is compared with the other known sources of opacity at several optical depths of the solar atmosphere. It is shown that the absorption due to H2+ can probably account for the missing ultraviolet opacity in the solar atmosphere.

  10. Non-LTE model calculations for SN 1987A and the extragalactic distance scale

    Science.gov (United States)

    Schmutz, W.; Abbott, D. C.; Russell, R. S.; Hamann, W.-R.; Wessolowski, U.

    1990-01-01

    This paper presents model atmospheres for the first week of SN 1987A, based on the luminosity and density/velocity structure from hydrodynamic models of Woosley (1988). The models account for line blanketing, expansion, sphericity, and departures from LTE in hydrogen and helium and differ from previously published efforts because they represent ab initio calculations, i.e., they contain essentially no free parameters. The formation of the UV spectrum is dominated by the effects of line blanketing. In the absorption troughs, the Balmer line profiles were fit well by these models, but the observed emissions are significantly stronger than predicted, perhaps due to clumping. The generally good agreement between the present synthetic spectra and observations provides independent support for the overall accuracy of the hydrodynamic models of Woosley. The question of the accuracy of the Baade-Wesselink method is addressed in a detailed discussion of its approximations. While the application of the standard method produces a distance within an uncertainty of 20 percent in the case of SN 1987A, systematic errors up to a factor of 2 are possible, particularly if the precursor was a red supergiant.

  11. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    Science.gov (United States)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  12. X-ray emission from hydrodynamical simulations in non-LTE wind models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Feldmeier, A.; Oskinova, L.M.; Kubát, Jiří; Hamann, W.-R.

    2009-01-01

    Roč. 508, č. 2 (2009), s. 841-848 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  13. Non-LTE diagnostics of velocity fields during the gradual phase of a solar flare

    Czech Academy of Sciences Publication Activity Database

    Berlicki, A.; Heinzel, Petr; Schmieder, B.; Mein, P.; Mein, N.

    2005-01-01

    Roč. 430, č. 2 (2005), s. 679-689 ISSN 0004-6361 R&D Projects: GA AV ČR IAA3003203 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun * flares * chromosphere – Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.223, year: 2005

  14. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    Science.gov (United States)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  15. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    Science.gov (United States)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  16. Influence of non-LTE radiation ablation on imploding neutron yield

    International Nuclear Information System (INIS)

    Sheng Jiatian; Li Yunsheng; Gao Yaomin; Li Meng; Feng Tinggui; Zhang Lifa; Zeng Xiancai; Mou Wenyong; Feng Jie; Chen Jiabin

    2005-01-01

    The process of radiative ablation and neutron yields of DD-capsule with CH shell implosion driven by Plank spectrum and nonequilibrium spectrum radiation fields was numerically studied using 1-D RDMG code of multigroup-nonequilibrium radiation hydrodynamics. The simulation results were compared with the experimental results. The results of the simulation show that the nonequilibrium of energy spectrum distribution of the hohlraum radiation source, especially the M-band of it, will preheat DD in the capsule obviously, decrease the compressing ratio, electron and ion temperatures of DD gas, and therefore decrease the neutron yields markedly. The simulation results also show that the law of decreasing of neutron yields with increasing of the CH-sell thickness is in agreement with the experiment basically. (authors)

  17. Testing the reliability of non-LTE spectroscopic models for complexions

    Czech Academy of Sciences Publication Activity Database

    Hansen, s.; Armstrong, G.S.J.; Bastiani-Ceccotti, S.; Bowen, C.; Chung, H.-K.; Colgan, J.P.; de Gaufridy de Dortan, Francois; Fontes, C.J.; Gilleron, F.; Marquès, J.-R.; Piron, R.; Peyrusse, O.; Poirier, M.; Ralchenko, Yu.; Sasaki, A.; Stambulchik, E.; Thais, F.

    2013-01-01

    Roč. 9, č. 3 (2013), 523-527 ISSN 1574-1818 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : X-ray spectroscopy * atomic kinetics * plasma diagnostics Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.519, year: 2013

  18. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Czech Academy of Sciences Publication Activity Database

    Labrosse, N.; Heinzel, Petr; Vial, J. C.; Kucera, T.; Parenti, S.; Gunár, Stanislav; Schmieder, B.; Kilper, G.

    2010-01-01

    Roč. 151, č. 4 (2010), s. 243-332 ISSN 0038-6308 R&D Projects: GA ČR GA205/07/1100 Grant - others:ESA(XE) ESA- PECS project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar prominences * spectroscopy * radiative transfer Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.433, year: 2010

  19. Non-LTE equivalent widths for Si II, III and IV

    International Nuclear Information System (INIS)

    Becker, S.R.; Butler, K.

    1990-01-01

    Equivalent widths for a set of Si II, III and IV lines reliable for the determination of temperatures in the B star parameter range are given. They are calculated on a fine grid of LTE line blanketed model atmospheres and lie in the wavelength region from 4070 A to 5070 A

  20. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  1. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  2. Magellanic Clouds Cepheids: Thorium Abundances

    Directory of Open Access Journals (Sweden)

    Yeuncheol Jeong

    2018-03-01

    Full Text Available The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC and the Small Magellanic Cloud (SMC, namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

  3. NEFSC Survey Indices of Abundance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeast Fisheries Survey Bottom trawl survey indices of abundance such as stratified mean number per tow or mean weight per tow by species stock. Includes indices...

  4. Pregalactic helium abundance and abundance gradients across our galaxy from planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    D' Odorico, S; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Instituto de Astronomia; Sabbadin, F [Padua Univ. (Italy). Istituto di Astronomia

    1976-03-01

    From the observations of planetary nebulae by Peimbert and Torres-Peimbert we have studied the radial gradients across our galaxy of the helium, oxygen and nitrogen abundance relative to hydrogen. The increase of the oxygen to hydrogen abundance ratio from a radial distance to the galactic center of 14 to 8 kpc is about a factor of 3 while that of the nitrogen to hydrogen ratio is about twice as large. By adopting oxygen as representative of the heavy elements it is found that the helium enrichment is coupled to the heavy metal enrichment by ..delta..Y/..delta..Zapproximately2.9 in close agreement with the value derived from H II regions. The pregalactic N(He)/N(H) value derived from planetary nebulae is 0.073+-0.008 also in agreement with the value derived from H II regions.

  5. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  6. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  7. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    Science.gov (United States)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  8. Chinook Abundance - Point Features [ds180

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  9. Steelhead Abundance - Linear Features [ds185

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  10. Steelhead Abundance - Point Features [ds184

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  11. Coho Abundance - Linear Features [ds183

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  12. Coho Abundance - Point Features [ds182

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  13. Abundance estimation and conservation biology

    Science.gov (United States)

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  14. Abundance estimation and Conservation Biology

    Directory of Open Access Journals (Sweden)

    Nichols, J. D.

    2004-06-01

    Full Text Available Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001. The initial capture–recapture models developed for partially (Darroch, 1959 and completely (Jolly, 1965; Seber, 1965 open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992, and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993. However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001. The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004 is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004 emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004 also suggest that

  15. DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN

    International Nuclear Information System (INIS)

    Serenelli, Aldo M.; Basu, Sarbani

    2010-01-01

    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (Y ini and Y surf , respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models (SSMs) to compute the power-law coefficients of the dependence of Y ini and Y surf on the input parameters. We use these dependencies to determine the correlation between Y ini and Y surf and use this correlation to eliminate uncertainties in Y ini from all solar model input parameters except the microscopic diffusion rate. We find an expression for Y ini that depends only on Y surf and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, Y surf sun = 0.2485 ± 0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, Y ini sun , is 0.278 ± 0.006 independently of the reference SSMs (and particularly on the adopted solar abundances) used in the derivation of the correlation between Y ini and Y surf . When non-SSMs with extra mixing are used, then we derive Y ini sun = 0.273 ± 0.006. In both cases, the derived Y ini sun value is higher than that directly derived from solar model calibrations when the low-metallicity solar abundances (e.g., by Asplund et al.) are adopted in the models.

  16. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  17. Dielectrophoretic capture of low abundance cell population using thick electrodes

    OpenAIRE

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particle...

  18. Elemental abundances of the field horizontal-branch stars HD 86986, 130095 and 202759

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1990-01-01

    Fine analyses of limited spectral regions of the field horizontal-branch A Stars HD86986, 130095 and 202759 confirm that these stars have abundances typical of Population II stars. HD 86986 has a metallicity of about 1/200 solar while HD 130095 and 202759 are even more metal poor. (author)

  19. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  20. Direct method gas-phase oxygen abundances of four Lyman break analogs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jonathan S.; Croxall, Kevin V.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, Columbus, OH 43201 (United States)

    2014-09-10

    We measure the gas-phase oxygen abundances in four Lyman break analogs using auroral emission lines to derive direct abundances. The direct method oxygen abundances of these objects are generally consistent with the empirically derived strong-line method values, confirming that these objects are low oxygen abundance outliers from the mass-metallicity (MZ) relation defined by star forming Sloan Digital Sky Survey galaxies. We find slightly anomalous excitation conditions (Wolf-Rayet features) that could potentially bias the empirical estimates toward high values if caution is not exercised in the selection of the strong-line calibration. The high rate of star formation and low oxygen abundance of these objects is consistent with the predictions of the fundamental metallicity relation, in which the infall of relatively unenriched gas simultaneously triggers an episode of star formation and dilutes the interstellar medium of the host galaxy.

  1. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    Science.gov (United States)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  2. The RRc Stars: Chemical Abundances and Envelope Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sneden, Christopher; Adamów, Monika [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Chadid, Merieme, E-mail: chris@verdi.as.utexas.edu, E-mail: astromysz@gmail.com, E-mail: gwp@obs.carnegiescience.edu, E-mail: chadid@unice.fr [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France)

    2017-10-10

    We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. We used radial velocity (RV) measurements of metal lines and H α to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H α velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygieł and Fabrycky to falsify the Blazhko oblique rotator hypothesis.

  3. The Ital-FLAMES survey of the Sagittarius dwarf Spheroidal galaxy. I. Chemical abundances of bright RGB stars

    OpenAIRE

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Ferraro, F. R.; Marconi, G.; Pancino, E.; Sbordone, L.; Zaggia, S.

    2005-01-01

    We present iron and $\\alpha$ element (Mg, Ca, Ti) abundances for a sample of 15 Red Giant Branch stars belonging to the main body of the Sagittarius dwarf Spheroidal galaxy. Abundances have been obtained from spectra collected using the high resolution spectrograph FLAMES-UVES mounted at the VLT. Stars of our sample have a mean metallicity of [Fe/H]=-0.41$\\pm$0.20 with a metal poor tail extending to [Fe/H]=-1.52. The $\\alpha$ element abundance ratios are slightly subsolar for metallicities hi...

  4. Chemical abundances and physical parameters of RR Lyrae stars

    International Nuclear Information System (INIS)

    Manduca, A.

    1980-01-01

    A grid of model stellar atmospheres has been calculated with a range of physical parameters which effectively cover RR Lyrae stars over all phases of their pulsation cycle. The models, calculated with the computer program MARCS, are flux-constant and include the effects of convection and line blanketing. Synthetic spectra were calculated for these models from 3000 A to 9600 A at 0.1 A resolution using the computer program SSG. These spectra were used directly in the applications below and were also used to computer theoretical colors on the UBVR, Stromgren uvby, and Walraven systems for the models. The uvby colors were used in determinations of effective temperature and surface gravity from photometry by various observers. The models, synthetic spectra, and colors were then applied to the problems detailed below. The data collected by Freeman and Rodgers (1975) for 25 RR Lyrae stars in ω Cen was reanalyzed with an alternative, synthetic spectrum approach to the calibration of their theoretical relations. The results confirm a wide range in calcium abundance for the stars in the cluster but at much lower values than reported by Freeman and Rodgers: a range of [Ca/H] = -1.0 to -1.9 was found. A theoretical calibration was performed for the ΔS system of determining metal abundances for RR Lyrae stars. The results support the existing empirical calibration of Butler in the range [Fe/H] = -0.6 to -2.2 and indicate how the calibration should be extrapolated to even lower metal abundances. For higher metal abundances, however, our calibration yields [Fe/H] values lower than Butler by as much as 0.4. Possible explanations of this discrepancy are investigated and the implications are discussed

  5. CHEMICAL ABUNDANCE PATTERNS AND THE EARLY ENVIRONMENT OF DWARF GALAXIES

    International Nuclear Information System (INIS)

    Corlies, Lauren; Johnston, Kathryn V.; Bryan, Greg; Tumlinson, Jason

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z = 10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can help to explain observed differences in abundance patterns today. Conversely, these differences are a signature of the inhomogeneity of metal enrichment at early times

  6. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ......A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 ... that the ``high-alpha '' stars were formed in situ in the inner parts of the Galaxy, whereas the ``low-alpha '' ones have been accreted from satellite galaxies. In order to see if there is any systematic difference in the lithium abundances of high- and low-alpha stars, equivalent widths of the iLi 6707.8 Å line...... have been measured from VLT/UVES and NOT/FIES spectra and used to derive Li abundances. Furthermore, stellar masses are determined from evolutionary tracks in the log T_eff - log g diagram. For stars with masses 0.7 lithium abundance...

  7. One Percent Determination of the Primordial Deuterium Abundance

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.

    2018-03-01

    We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  8. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Marble, Andrew R.; Engelbracht, Charles W. [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Van Zee, Liese [Astronomy Department, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Lee, Janice C. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Johnson, Benjamin D., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: cengelbracht@as.arizona.edu, E-mail: amarble@nso.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jlee@stsci.edu, E-mail: calzetti@astro.umass.edu, E-mail: ddale@uwyo.edu, E-mail: johnson@iap.fr [Institut d' Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris (France)

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available

  9. Carbon Abundances in Starburst Galaxies of the Local Universe

    International Nuclear Information System (INIS)

    Peña-Guerrero, María A.; Leitherer, Claus; Mink, Selma de; Wofford, Aida; Kewley, Lisa

    2017-01-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  10. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  11. Carbon Abundances in Starburst Galaxies of the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Guerrero, María A.; Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mink, Selma de [Anton Pannekoek Institute for Astronomy, Science Park 904, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Wofford, Aida [Instituto de Astronomía, UNAM, Ensenada, CP 22860, Baja California (Mexico); Kewley, Lisa, E-mail: pena@stsci.edu, E-mail: leitherer@stsci.edu, E-mail: S.E.deMink@uva.nl, E-mail: awofford@astrosen.unam.mx, E-mail: lisa.kewley@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia)

    2017-10-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  12. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    Science.gov (United States)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  13. Significant biases affecting abundance determinations

    Science.gov (United States)

    Wesson, Roger

    2015-08-01

    I have developed two highly efficient codes to automate analyses of emission line nebulae. The tools place particular emphasis on the propagation of uncertainties. The first tool, ALFA, uses a genetic algorithm to rapidly optimise the parameters of gaussian fits to line profiles. It can fit emission line spectra of arbitrary resolution, wavelength range and depth, with no user input at all. It is well suited to highly multiplexed spectroscopy such as that now being carried out with instruments such as MUSE at the VLT. The second tool, NEAT, carries out a full analysis of emission line fluxes, robustly propagating uncertainties using a Monte Carlo technique.Using these tools, I have found that considerable biases can be introduced into abundance determinations if the uncertainty distribution of emission lines is not well characterised. For weak lines, normally distributed uncertainties are generally assumed, though it is incorrect to do so, and significant biases can result. I discuss observational evidence of these biases. The two new codes contain routines to correctly characterise the probability distributions, giving more reliable results in analyses of emission line nebulae.

  14. Lithium abundances in samples of dwarf stars of population II and very old population I

    International Nuclear Information System (INIS)

    Molaro, P.; Beckman, J.; Rebolo, R.

    1986-01-01

    We have used the CCD camera and Intermediate Dispersion Spectrograph of the 2.5m Isaac Newton Telescope to obtain high quality spectra of the 6708 A 7 Li resonance doublet in 22 dwarfs with metallicities ≤ -0.7. We find a mean constant value of Log N(Li)= 2.07 (±0.1) for highly metal deficient dwarfs ([Fe/H] ≤ -1.5) with atmospheric temperatures T eff > 5500 K, and a larger spread with values of Log N(Li) up to 2.4 for the warmer dwarfs with metallicities between -0.7 and -1.2. Our results agree with previous findings showing a highly uniform Li abundance near the inception of the galaxy. Li depletion appears to set in at higher temperatures for the moderately metal deficient stars than for the extremely metal deficient, consistent with metallicity-dependent depletion rates (low metals, low depletion)

  15. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  16. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  17. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  18. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    Science.gov (United States)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  19. Abundance patterns in the interstellar medium of early-type galaxies observed with Suzaku

    International Nuclear Information System (INIS)

    Konami, Saori; Matsushita, Kyoko; Tamagawa, Toru; Nagino, Ryo

    2014-01-01

    We have analyzed 17 early-type galaxies, 13 ellipticals and 4 S0 galaxies, observed with Suzaku, and investigated metal abundances (O, Mg, Si, and Fe) and abundance ratios (O/Fe, Mg/Fe, and Si/Fe) in the interstellar medium (ISM). The emission from each on-source region, which is four times the effective radius, r e , is reproduced with one-temperature (1T) or two-temperature (2T) thermal plasma models as well as a multi-temperature model, using APEC plasma code version 2.0.1. The multi-temperature model gave almost the same abundances and abundance ratios with the 1T or 2T models. The weighted averages of the O, Mg, Si, and Fe abundances of all the sample galaxies derived from the multi-temperature model fits are 0.83 ± 0.04, 0.93 ± 0.03, 0.80 ± 0.02, and 0.80 ± 0.02 solar, respectively, in solar units according to the solar abundance table by Lodders in 2003. These abundances show no significant dependence on the morphology and environment. The systematic differences in the derived metal abundances between versions 2.0.1 and 1.3.1 of the APEC plasma codes were investigated. The derived O and Mg abundances in the ISM agree with the stellar metallicity within an aperture with a radius of one r e derived from optical spectroscopy. From these results, we discuss the past and present Type Ia supernova rates and star formation histories in early-type galaxies.

  20. Metal-metal-hofteproteser

    DEFF Research Database (Denmark)

    Ulrich, Michael; Overgaard, Søren; Penny, Jeannette

    2014-01-01

    In Denmark 4,456 metal-on-metal (MoM) hip prostheses have been implanted. Evidence demonstrates that some patients develope adverse biological reactions causing failures of MoM hip arthroplasty. Some reactions might be systemic. Failure rates are associated with the type and the design of the Mo...

  1. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  2. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  3. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    International Nuclear Information System (INIS)

    Hart, Alister J; Sandison, Ann; Quinn, Paul; Mosselmans, J Frederick W; Sampson, Barry; Atkinson, Kirk D; Skinner, John A; Goode, Angela; Powell, Jonathan J

    2009-01-01

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  4. Microfocus study of metal distribution and speciation in tissue extracted from revised metal on metal hip implants

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Alister J [Department of Orthopaedic Surgery, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Sandison, Ann [Department of Histopathology, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Quinn, Paul; Mosselmans, J Frederick W [Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (United Kingdom); Sampson, Barry [Department of Clinical Biochemistry, Imperial College and Imperial College Healthcare NHS Trust, Charing Cross Hospital Campus, Fulham Palace Rd, London W6 8RF (United Kingdom); Atkinson, Kirk D [8 Nuclear Department Defence Academy College of Management and Technology HMS Sultan Military Road Gosport PO12 3BY (United Kingdom); Skinner, John A [Department of Orthopaedics, Royal National Orthopaedic Hospital, HA7 4LP (United Kingdom); Goode, Angela [Dept of Materials, Imperial College London, SW7 2AZ (United Kingdom); Powell, Jonathan J, E-mail: Paul.Quinn@diamond.ac.u [Medical Research Council Human Nutrition Research Centre, Cambridge CB1 9NL (United Kingdom)

    2009-11-15

    Unexplained tissue inflammation in metal-on-metal hip replacements is suspected to be caused by implant-derived nanoparticles. The aim of this study was to investigate the nature of the metal particles in tissue surrounding metal-on-metal (MOM) hips that has been extracted during revision. Mapping of tissue surrounding the failed MOM hips was performed using microfocus X-ray Fluorescence (XRF). This revealed mainly Cr which was localized to the cellular regions. There was co-localisation of Co, were present, to areas of high Cr abundance. XANES of the tissue and appropriate standards revealed that the most common species were Cr(III) and Co(II). EXAFS analysis of the tissue and various metal standards revealed that the most abundant implant-related species was Cr(III) phosphate. Different tissue preparation methods, including frozen sectioning, were examined but were found not to affect the distribution or speciation of the metals in the tissue.

  5. ON USING THE COLOR-MAGNITUDE DIAGRAM MORPHOLOGY OF M67 TO TEST SOLAR ABUNDANCES

    International Nuclear Information System (INIS)

    Magic, Z.; Serenelli, A.; Weiss, A.; Chaboyer, B.

    2010-01-01

    The open cluster M67 has solar metallicity and an age of about 4 Gyr. The turnoff (TO) mass is close to the minimum mass for which solar metallicity stars develop a convective core during main sequence evolution as a result of the development of hydrogen burning through the CNO cycle. The morphology of the color-magnitude diagram (CMD) of M67 around the TO shows a clear hook-like feature, a direct sign that stars close to the TO have convective cores. VandenBerg et al. investigated the possibility of using the morphology of the M67 TO to put constraints on the solar metallicity, particularly CNO elements, for which solar abundances have been revised downward by more than 30% over the last few years. Here, we extend their work, filling the gaps in their analysis. To this aim, we compute isochrones appropriate for M67 using new (low metallicity) and old (high metallicity) solar abundances and study whether the characteristic TO in the CMD of M67 can be reproduced or not. We also study the importance of other constitutive physics on determining the presence of such a hook, particularly element diffusion, overshooting and nuclear reaction rates. We find that using the new solar abundance determinations, with low CNO abundances, makes it more difficult to reproduce the characteristic CMD of M67. This result is in agreement with results by VandenBerg et al. However, changes in the constitutive physics of the models, particularly overshooting, can influence and alter this result to the extent that isochrones constructed with models using low CNO solar abundances can also reproduce the TO morphology in M67. We conclude that only if all factors affecting the TO morphology are completely under control (and this is not the case), M67 could be used to put constraints on solar abundances.

  6. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  7. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  8. Diversity, composition and abundance of macroinvertebrates ...

    African Journals Online (AJOL)

    user

    these genera were found at all sampling stations as shown in Table 2. Out of the orders sampled, Hemiptera, Pulmonata and. Coleoptera had the highest number of genera with 5, 4 and 4, respectively. In terms of relative abundance, dipterans and Pulmonata were the most abundant while. Hydracarina (water mites) were ...

  9. Resource Abundance and Resource Dependence in China

    NARCIS (Netherlands)

    Ji, K.; Magnus, J.R.; Wang, W.

    2010-01-01

    This paper reconsiders the ‘curse of resources’ hypothesis for the case of China, and distinguishes between resource abundance, resource rents, and resource dependence. Resource abundance and resource rents are shown to be approximately equivalent, and their association with resource dependence

  10. Determinants of distribution, abundance and reproductive success ...

    African Journals Online (AJOL)

    ... while local vegetation structure determines the abundance of locally established populations. The abundance of trees affects nest site availability and breeding success, based on observations at two oases. Blackbird nests were usually situated on pomegranate trees and olive trees. The Common Blackbird is a successful ...

  11. Diversity and abundance of ammonia-oxidizing

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van Bleijswijk, J.D.L.; Witte, H.; van Duyl, F.C.

    2013-01-01

    We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was analysed using catalyzed reporter

  12. Stellar pulsation and the abundance of helium

    International Nuclear Information System (INIS)

    Schmidt, E.G.

    1978-01-01

    It has been suggested that the appearance of nonvariable stars within the Cepheid strip could be explained by a range in the helium abundance of Population I stars. In order to study this possibility, spectra were obtained of the main-sequence B stars in the galactic cluster NGC 129, which contains a nonvariable Cepheid-strip star, and M25, which contains a relatively hot Cepheid. Unfortunately, several of the stars in these clusters turn out to be helium-weak stars. In NGC 129 two stars which appear normal give a normal abundance, while in M25 all of the observed stars have abnormally low abundances. The significance of the low abundance in M25 is not clear. The abundance in NGC 129 is not low enough to support the above suggestion. 4 figures, 2 tables

  13. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    Energy Technology Data Exchange (ETDEWEB)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville; Sobeck, Jennifer; Troup, Nicholas [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Prieto, Carlos Allende; Carrera, Ricardo; García-Hernández, D. A.; Zamora, Olga [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Holtzman, Jon A. [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Mészáros, Szabolcs [ELTE Gothard Astrophysical Observatory, H-9704 Szombathely, Szent Imre Herceg St. 112 (Hungary); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão, Rio de Janeiro (Brazil); Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Smith, Verne V. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bovy, Jo, E-mail: agp@iac.es [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); and others

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  14. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    Science.gov (United States)

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O'Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  15. Indigenous abundances of siderophile elements in the lunar highlands: implications for the origin of the Moon

    International Nuclear Information System (INIS)

    Delano, J.W.; Ringwood, A.E.

    1978-01-01

    Substantial indigeneous abundances of siderophile elements have been found to be present in the lunar highlands. The abundances of 13 siderophile elements in the parental magma were estimated by using a simple model. It is shown that metal/silicate fractionation within the Moon cannot have been the cause of the siderophile element abundances in the parental highlands magma and primitive, low-Ti mare basalts. The relative abundances of the indigenous siderophile elements in highlands and mare samples seem, instead, to be the result of complex processes which operated prior to the Moon's accretion. The abundances of the relatively involatile, siderophile elements in the parental highlands magma are strikingly similar to the abundances observed in terrestrial oceanic tholeiites. Furthermore, the abundances of the relatively volatile, siderophile elements in the parental highlands magma are also systematically related to the corresponding abundances in terrestrial oceanic tholeiites. In fact, the parental magma of the lunar highlands can be essentially regarded as having been a volatile-depleted terrestrial oceanic tholeite. The origin of the moon is discussed in the context of the results. The probability that depletion of siderophile elements occurred in an earlier generation of differentiated planetesimals similar to those which formed the basaltic achondrites, stony-irons, and irons is examined but can be dismissed on several grounds. It seems that the uniquely terrestrial 'siderophile signature' within the Moon can be explained only if the Moon was derived from the Earth's mantle subsequent to core-formation. (Auth.)

  16. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  17. VLT/UVES abundances of individual stars in the Fornax dwarf spheroidal globular clusters

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Jablonka, P.; Tolstoy, E.; Randich, S; Pasquini, L

    2006-01-01

    We present high resolution abundance analysis of nine stars belonging to three of the five globular clusters (GCs) of the Fornax dwarf galaxy. The spectra were taken with UVES at a resolution of 43 000. We find them to be slightly more metal-poor than what was previously calculated with other

  18. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials

    NARCIS (Netherlands)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-01-01

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive

  19. The Oxygen and Nitrogen Abundance of Leo A and GR 8

    Science.gov (United States)

    van Zee, L.; Skillman, E. D.; Haynes, M. P.

    1999-05-01

    Gas phase abundances are one of the best measures of the intrinsic metallicity of low mass galaxies. We recently obtained low resolution long slit optical spectra of several HII regions in Leo A and GR 8 with the Palomar 5m telescope. Previous studies of the resolved stellar population of Leo A indicated that the stars have metallicities approximately 2% of solar (Tolstoy et al. 1998). Preliminary analysis of the HII region spectra, and that of a planetary nebula, indicates that the gas phase oxygen abundance of Leo A is approximately 3% of solar. This confirms the result of Skillman et al. (1989), who also derived an oxygen abundance for Leo A from a planetary nebula. Similarly, for GR 8 we find a mean oxygen abundance of 5% of solar. For all the HII regions, the derived log(N/O) is -1.5 +/- 0.1, as has been found for other low metallicity systems. These new observations of multiple HII regions in Leo A and GR 8 confirm that metals in low mass galaxies are well mixed.

  20. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    Science.gov (United States)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  1. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  2. ABUNDANCES IN THE LOCAL REGION. II. F, G, AND K DWARFS AND SUBGIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. Earle, E-mail: rel2@case.edu [Department of Astronomy, Case Western Reserve University 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States)

    2017-01-01

    Parameters and abundances have been derived for 1002 stars of spectral types F, G, and K, and luminosity classes IV and V. After culling the sample for rotational velocity and effective temperature, 867 stars remain for discussion. Twenty-eight elements are considered in the analysis. The α , iron-peak, and Period 5 transition metal abundances for these stars show a modest enhancement over solar averaging about 0.05 dex. The lanthanides are more abundant, averaging about +0.2 dex over solar. The question is: Are these stars enhanced, or is the Sun somewhat metal-poor relative to these stars? The consistency of the abundances derived here supports an argument for the latter view. Lithium, carbon, and oxygen abundances have been derived. The stars show the usual lithium astration as a function of mass/temperature. There are more than 100 planet-hosts in the sample, and there is no discernible difference in their lithium content, relative to the remaining stars. The carbon and oxygen abundances show the well-known trend of decreasing [x/Fe] ratio with increasing [Fe/H].

  3. Interstellar Abundances Toward X Per, Revisited

    Science.gov (United States)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  4. Abundance variations in solar active regions

    Science.gov (United States)

    Strong, K. T.; Lemen, J. R.; Linford, G. A.

    1991-01-01

    The diversity in the published values of coronal abundances is unsettling, especially as the range of results seems to be beyond the quoted uncertainties. Measurements of the relative abundance of iron and neon derived from soft X-ray spectra of active regions are presented. From a data base of over 200 spectra taken by the Solar Maximum Mission Flat Crystal Spectrometer, it is found that the relative abundance can vary by as much as a factor of about 7 and can change on timescales of less than 1 h.

  5. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  6. LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths

    DEFF Research Database (Denmark)

    Brinch, Christian; Hogerheijde, Michiel

    2010-01-01

    We present a new code for solving the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting emergent spectra. This code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of photons. Various physical model...

  7. Non-LTE calculation of HCL earthlimb emission and implication for detection of HCl in the atmosphere

    Science.gov (United States)

    Kumer, J. B.; James, T. C.

    1982-01-01

    Calculation results are presented for the contribution of the non-Local Thermodynamic Equilibrium process of resonant scattering of sunlight in the 1-0 band of HCl to the earthlimb radiance, for the case of tangent altitudes from 20 to 90 km. It is established that the mechanism in question is a significant contributor to radiance at altitudes as low as 20 km, and that it becomes greater than the Local Thermodynamic Equilibrium contribution above 40 km. Attention is given to the prospects for detection of HCl at altitudes approaching 80 km, by means of the Cryogenic Limb Array Etalon Spectrometer scheduled for deployment by the NASA Upper Atmospheric Research Satellite.

  8. Dynamics of quiescent prominence fine structures analyzed by 2D non-LTE modelling of the Hα line

    Czech Academy of Sciences Publication Activity Database

    Gunár, Stanislav; Mein, P.; Schmieder, B.; Heinzel, Petr; Mein, N.

    2012-01-01

    Roč. 543, July (2012), A93/1-A93/15 ISSN 0004-6361 R&D Projects: GA ČR GP205/09/P554; GA ČR GAP209/12/0906 Institutional support: RVO:67985815 Keywords : Sun * filaments * prominences Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  9. Circumnuclear Multi-phase Gas in the Circinus Galaxy. I. Non-LTE Calculations of CO Lines

    Science.gov (United States)

    Wada, Keiichi; Fukushige, Ryosuke; Izumi, Takuma; Tomisaka, Kohji

    2018-01-01

    In this study, we investigate the line emissions from cold molecular gas based on our previous “radiation-driven fountain model,” which reliably explains the spectral energy distribution of the nearest type 2 Seyfert galaxy, the Circinus galaxy. Using a snapshot of the best-fit radiation-hydrodynamic model for the central r≤slant 16 pc, in which non-equilibrium X-ray-dominated region chemistry is solved, we conduct post-processed non-local thermodynamic equilibrium radiation transfer simulations for the CO lines. We obtain a spectral line energy distribution with a peak around J≃ 6, and its distribution suggests that the lines are not thermalized. However, for a given line of sight, the optical depth distribution is highly non-uniform between {τ }ν \\ll 1 and {τ }ν \\gg 1. The CO-to-H2 conversion factor ({X}{CO}), which can be directly obtained from the results and is not a constant, depends strongly on the integrated intensity and differs from the fiducial value for local objects. {X}{CO} exhibits a large dispersion of more than one order of magnitude, reflecting the non-uniform internal structure of a “torus.” In addition, we found that the physical conditions differ between grid cells on a scale of a few parsecs along the observed lines of sight; therefore, a specific observed line ratio does not necessarily represent a single physical state of the interstellar medium.

  10. Non-LTE modeling of the radiative properties of high-Z plasma using linear response methodology

    Science.gov (United States)

    Foord, Mark; Harte, Judy; Scott, Howard

    2017-10-01

    Non-local thermodynamic equilibrium (NLTE) atomic processes play a key role in the radiation flow and energetics in highly ionized high temperature plasma encountered in inertial confinement fusion (ICF) and astrophysical applications. Modeling complex high-Z atomic systems, such as gold used in ICF hohlraums, is particularly challenging given the complexity and intractable number of atomic states involved. Practical considerations, i.e. speed and memory, in large radiation-hydrodynamic simulations further limit model complexity. We present here a methodology for utilizing tabulated NLTE radiative and EOS properties for use in our radiation-hydrodynamic codes. This approach uses tabulated data, previously calculated with complex atomic models, modified to include a general non-Planckian radiation field using a linear response methodology. This approach extends near-LTE response method to conditions far from LTE. Comparisons of this tabular method with in-line NLTE simulations of a laser heated 1-D hohlraum will be presented, which show good agreement in the time-evolution of the plasma conditions. This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Non-LTE Calculations of the Fe I 6173 Å Line in a Flaring Atmosphere

    Science.gov (United States)

    Hong, Jie; Ding, M. D.; Li, Ying; Carlsson, Mats

    2018-04-01

    The Fe I 6173 Å line is widely used in the measurements of vector magnetic fields by instruments including the Helioseismic and Magnetic Imager (HMI). We perform non-local thermodynamic equilibrium calculations of this line based on radiative hydrodynamic simulations in a flaring atmosphere. We employ both a quiet-Sun atmosphere and a penumbral atmosphere as the initial one in our simulations. We find that, in the quiet-Sun atmosphere, the line center is obviously enhanced during an intermediate flare. The enhanced emission is contributed from both radiative backwarming in the photosphere and particle beam heating in the lower chromosphere. A blue asymmetry of the line profile also appears due to an upward mass motion in the lower chromosphere. If we take a penumbral atmosphere as the initial atmosphere, the line has a more significant response to the flare heating, showing a central emission and an obvious asymmetry. The low spectral resolution of HMI would indicate some loss of information, but the enhancement and line asymmetry are still kept. By calculating polarized line profiles, we find that the Stokes I and V profiles can be altered as a result of flare heating. Thus the distortion of this line has a crucial influence on the magnetic field measured from this line, and one should be cautious in interpreting the magnetic transients observed frequently in solar flares.

  12. Palaeoceanographic implications of abundance and mean ...

    Indian Academy of Sciences (India)

    Temporal variation in abundance and mean proloculus diameter of the benthic foraminiferal species. Epistominella ... sediments, ice cores, tree rings, corals, etc. are used. ..... Deep-sea foraminifera in the South Atlantic Ocean: Eco- logy and ...

  13. Chinook Abundance - Linear Features [ds181

    Data.gov (United States)

    California Natural Resource Agency — The dataset 'ds181_Chinook_ln' is a product of the CalFish Adult Salmonid Abundance Database. Data in this shapefile are collected from stream sections or reaches...

  14. SWFSC/MMTD: Vaquita Abundance Survey 1997

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1997, the Southwest Fisheries Science Center (SWFSC) conducted a survey designed to estimate the abundance of vaquita, the Gulf of California harbor porpoise...

  15. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  16. Heavy element abundances of Nova Cygni 1975

    International Nuclear Information System (INIS)

    Ferland, G.J.; Shields, G.A.

    1978-01-01

    McDonald observations of the nebular phase of the outburst of Nova Cygni 1975 are analyzed to measure the abundances of several heavy elements. A new analytical procedure is used to derive the electron density and temperature from the emission line intensities of [O III], [Ne III], and He I observed between days 40 and 120. These physical conditions are used to derive the abundances. We find that Fe has approximately a solar abundance, whereas C, N, O, and Ne are enhanced by factors approx.20 to 100. The enhanced abundance of neon was theoretically unexpected.The derived physical conditions and line intensities are compared with predictions of an equilibrium photoionization model. The model successfully predicts the intensities of He I, [O III], and [Ne III]; but it underestimates the strength of [Ne V] and [Fe VII], which may originate in a mechanically heated ''subcoronal'' line region

  17. Composition and abundance of tree regeneration

    Science.gov (United States)

    Todd F. Hutchinson; Elaine Kennedy Sutherland; Charles T. Scott

    2003-01-01

    The composition and abundance of tree seedlings and saplings in the four study areas in southern Ohio were related to soil moisture via a GIS-derived integrated moisture index and to soil texture and fertility. For seedlings, the total abundance of small stems (less than 30 cm tall) was significantly greater on xeric plots (81,987/ha) than on intermediate (54,531/ha)...

  18. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  19. Understanding Galactic planetary nebulae with precise/reliable nebular abundances

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; di Criscienzo, M.; Yagüe, A.

    2017-10-01

    We compare recent precise/reliable nebular abundances - as derived from high-quality optical spectra and the most recent ICFs - in a sample of Galactic planetary nebulae (PNe) with nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) ATON models in the metallicity range Z ⊙/4 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios can be obtained. Two DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 M⊙). Their actual C/O ratios, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  20. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  1. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  2. Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

    DEFF Research Database (Denmark)

    Fishlock, Cherie K.; Yong, D.; Karakas, Amanda I.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with -1.5 stars separate into three populations (low-and high-a halo and thick-disc stars) based......-alpha stars have a lower abundance compared to the high-alpha stars. The low-alpha stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-alpha stars. These distinct...... chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-alpha population. By comparing the low-alpha population with AGB stellar models, we place constraints...

  3. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    Science.gov (United States)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  4. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    Science.gov (United States)

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  6. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  7. Bracken: estimating species abundance in metagenomics data

    Directory of Open Access Journals (Sweden)

    Jennifer Lu

    2017-01-01

    Full Text Available Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.

  8. Abundance of sea kraits correlates with precipitation.

    Directory of Open Access Journals (Sweden)

    Harvey B Lillywhite

    Full Text Available Recent studies have shown that sea kraits (Laticauda spp.--amphibious sea snakes--dehydrate without a source of fresh water, drink only fresh water or very dilute brackish water, and have a spatial distribution of abundance that correlates with freshwater sites in Taiwan. The spatial distribution correlates with sites where there is a source of fresh water in addition to local precipitation. Here we report six years of longitudinal data on the abundance of sea kraits related to precipitation at sites where these snakes are normally abundant in the coastal waters of Lanyu (Orchid Island, Taiwan. The number of observed sea kraits varies from year-to-year and correlates positively with previous 6-mo cumulative rainfall, which serves as an inverse index of drought. Grouped data for snake counts indicate that mean abundance in wet years is nearly 3-fold greater than in dry years, and this difference is significant. These data corroborate previous findings and suggest that freshwater dependence influences the abundance or activity of sea kraits on both spatial and temporal scales. The increasing evidence for freshwater dependence in these and other marine species have important implications for the possible impact of climate change on sea snake distributions.

  9. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  10. Deuterium abundance, from ultraviolet to visible

    International Nuclear Information System (INIS)

    Hebrard, Guillaume

    2000-01-01

    In the frame of the standard Big Bang model, the primordial abundance of deuterium is the most sensitive to the baryonic density of the Universe. It was synthesized only during the primordial nucleosynthesis few minutes after the Big Bang and no other standard mechanism is able to produce any further significant amount. On the contrary, since deuterium is burned up within stars, its abundance D/H decreases along cosmic evolution. Thus, D/H measurements constrain Big Bang and galactic chemical evolution models. There are three samples of deuterium abundances: primordial, proto-solar and interstellar. Each of them is representative of a given epoch, respectively about 15 Gyrs past, 4.5 Gyrs past and present epoch. Although the evolution of the deuterium abundance seems to be qualitatively understood, the measurements show some dispersion. Present thesis works are linked to deuterium interstellar abundance measurements. Such measurements are classically obtained from spectroscopic observations of the hydrogen and deuterium Lyman series in absorption in the ultraviolet spectral range, using space observatories. Results presented here were obtained with the Hubble Space Telescope and FUSE, which has recently been launched. Simultaneously, a new way to observe deuterium has been proposed, in the visible spectral range from ground-based telescopes. This has led to the first detections and the identification of the deuterium Balmer series, in emission in HII regions, using CFHT and VLT telescopes. (author) [fr

  11. Metallicity in the GC

    International Nuclear Information System (INIS)

    Najarro, Francisco

    2006-01-01

    We review quantitative spectroscopic studies of massive stars in the three Galactic Center clusters: Quintuplet, Arches and Central cluster. Thanks to the impressive evolution of IR detectors and the new generation of line blanketed models for the extended atmospheres of hot stars we are able to accurately derive the physical properties and metallicity estimates of the massive stars in these clusters. For the Quintuplet cluster our analysis of the LBVs provides a direct estimate of a-elements and Fe chemical abundances in these objects. For the Arches cluster, we introduce a method based on the N abundance of WNL stars and the theory of evolution of massive stars. For the Central cluster, new observations reveal IRS 8 as an outsider with respect to the rest of massive stars in the cluster both in terms of age and location. Using the derived properties of IR.S 8, a new method is presented to derive metallicity from the OIII feature at 2.115 μm. Our results indicate solar metallicity in the three clusters

  12. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  13. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John F. [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-19

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M2(ligand)4, where M = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.

  14. Stellar Abundances for Galactic Archaeology Database. IV. Compilation of stars in dwarf galaxies

    Science.gov (United States)

    Suda, Takuma; Hidaka, Jun; Aoki, Wako; Katsuta, Yutaka; Yamada, Shimako; Fujimoto, Masayuki Y.; Ohtani, Yukari; Masuyama, Miyu; Noda, Kazuhiro; Wada, Kentaro

    2017-10-01

    We have constructed a database of stars in Local Group galaxies using the extended version of the SAGA (Stellar Abundances for Galactic Archaeology) database that contains stars in 24 dwarf spheroidal galaxies and ultra-faint dwarfs. The new version of the database includes more than 4500 stars in the Milky Way, by removing the previous metallicity criterion of [Fe/H] ≤ -2.5, and more than 6000 stars in the Local Group galaxies. We examined the validity of using a combined data set for elemental abundances. We also checked the consistency between the derived distances to individual stars and those to galaxies as given in the literature. Using the updated database, the characteristics of stars in dwarf galaxies are discussed. Our statistical analyses of α-element abundances show that the change of the slope of the [α/Fe] relative to [Fe/H] (so-called "knee") occurs at [Fe/H] = -1.0 ± 0.1 for the Milky Way. The knee positions for selected galaxies are derived by applying the same method. The star formation history of individual galaxies is explored using the slope of the cumulative metallicity distribution function. Radial gradients along the four directions are inspected in six galaxies where we find no direction-dependence of metallicity gradients along the major and minor axes. The compilation of all the available data shows a lack of CEMP-s population in dwarf galaxies, while there may be some CEMP-no stars at [Fe/H] ≲ -3 even in the very small sample. The inspection of the relationship between Eu and Ba abundances confirms an anomalously Ba-rich population in Fornax, which indicates a pre-enrichment of interstellar gas with r-process elements. We do not find any evidence of anti-correlations in O-Na and Mg-Al abundances, which characterizes the abundance trends in the Galactic globular clusters.

  15. A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks

    Science.gov (United States)

    Draper, Zachary H.; Matthews, Brenda; Venn, Kim; Lambert, David; Kennedy, Grant; Sitnova, Tatyana

    2018-04-01

    In order to assess the relationship between metallicity and exoplanetary systems, we compare the abundances of AF-type main-sequence stars with debris disk properties assessed using Herschel observations of an unbiased survey of nearby stars. Hot stars are not as commonly observed, given their unique constraints in data reduction, lack of metal lines, and “astrophysical noise” from rotation speed. Here, we address that deficiency using new and archival spectra of 83 AF-type stars. We measure the abundances of a few species in addition to Fe in order to classify the stars with Ap/Am or Lambda Boo signatures. Lambda Boo stars have a chemical signature of solar-abundant volatile species and sub-solar refractory abundances that is hypothesized to be altered by the pollution of volatiles. Overall, we see no correlation between debris disks and metallicity, primarily because the sample size is cut significantly when using only reliable fits to the spectroscopic data. The abundance measured from the Mg II 4481 blend is a useful diagnostic because it can be reliably measured at large v·sin(i) and is found to be lower around stars with bright debris disks. We find that Lambda Boo stars have brighter debris disks compared to a bias-free sample of AF stars. The trend with disk brightness and Mg abundances suggests pollution effects can be significant and used as a marker for the stability of planetary systems. We explore trends with other species, such as with the C/O ratios, but are significantly limited by the low number of reliable detections.

  16. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    Science.gov (United States)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  17. Spectral Analysis of the sdO Standard Star Feige 34

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  18. An elemental abundance analysis of the superficially normal A star Vega

    International Nuclear Information System (INIS)

    Adelman, S.J.; Gulliver, A.F.

    1990-01-01

    An elemental abundance analysis of Vega has been performed using high-signal-to-noise 2.4 A/mm Reticon observations of the region 4313-4809 A. Vega is found to be a metal-poor star with a mean underabundance of 0.60 dex. The He/H ratio of 0.03 as derived from He I 4472 A suggests that the superficial helium convection zone has disappeared and that radiative diffusion is producing the photospheric abundance anomalies. 45 refs

  19. Constraints from stellar models on mixing as a viable explanation of abundance anomalies in globular clusters

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Smith, G.H.

    1988-01-01

    Published observational data on changes in the surface abundances of evolving stars in globular clusters are compiled and compared with the predictions of theoretical evolutionary sequences (for stars of mass 0.8 solar mass and metallicity Z = 0.0001 or mass 0.9 solar mass and Z = 0.006) and of models incorporating enhanced envelope-interior mixing at various evolutionary phases. The results are presented in graphs and characterized in detail. It is found that mixing models of CN bimodality in globular-cluster stars can encounter difficulties when abundance anomalies appear early in the evolution of the star. 63 references

  20. Properties of the outer regions of spiral disks: abundances, colors and ages

    Science.gov (United States)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  1. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  2. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W.; Hentschel, Ute T E; Ravasi, Timothy; Schmitt, Susanne

    2012-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated

  3. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  4. ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

    International Nuclear Information System (INIS)

    RamIrez, I.; Roederer, I. U.; Fish, J. R.; Melendez, J.; Cornejo, D.

    2011-01-01

    The atmospheric parameters of the components of the 16 Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high-quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of σ([X/H]) = 0.023 dex. The fact that 16 Cyg A has about four times more lithium than 16 Cyg B is normal considering the slightly different masses of the stars. The abundance patterns of 16 Cyg A and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z > 30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (σ(Δ[X/H]) = 0.018 dex, on average). We find that 16 Cyg A is more metal-rich than 16 Cyg B by Δ[M/H] = +0.041 ± 0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (T C ) is detected. Based on these results, we conclude that if the process of planet formation around 16 Cyg B is responsible for the observed abundance pattern, the formation of gas giants produces a constant downward shift in the photospheric abundance of metals, without a T C correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of ≅ 1 M sun stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.

  5. Photometric abundances of cepheid variables in the galaxy and the small magellanic cloud

    International Nuclear Information System (INIS)

    Harris, H.C.

    1980-01-01

    Washington system colors and V magnitudes are described for classical and Type II cepheids. The sample includes 102 classical cepheids and 63 Type II cepheids with a wide range of positions in the Galaxy and 45 classical cepheids in the Small Magellanic Cloud. Period-color relations are derived of each type of cepheid and, with period-magnitude relations, are used to determine reddenings and distances. The colors are interpreted in terms of abundances of heavy elements, with a calibration based on observed stars with known abundances and on model-atmosphere colors. The classical cepheids in the Galaxy show a gradient in the Galactic disk of d[A/H]/dR = -0.07 kpc -1 , approximately linear over 10 kpc, small scatter in the abundances of most stars at a given galactocentric radius, and a few stars indicating peculiar abundances. The Type II cepheids show a wide range of abundances with only a small fraction representing a true halo population, a gradient in the abundance distribution with distance from the galactic plane, and at most a weak gradient with distance from the galactic center outside of 2 kpc. Their origin and relation to the metal-rich RR Lyraes is discussed. The cepheids in the SMC show a mean value relative to the Sun of [A/H] = -0.54, with weak evidence that short-period stars are more metal-poor, but with no correlation with projected position in the SMC. The consistency of their colors, temperatures, abundances, and reddenings is discussed

  6. Abundances in planetary nebulae near the galactic centre .1. Abundance determinations

    NARCIS (Netherlands)

    Ratag, MA; Pottasch, [No Value; Dennefeld, M; Menzies, J

    1997-01-01

    Abundance determinations of about 110 planetary nebulae, which are likely to be in the Galactic Bulge are presented. Plasma diagnostics have been performed by making use of the available forbidden line ratios combined with radio continuum measurements. Chemical abundances of He, O, N, Ne, S, Ar, and

  7. The Carina Project. VIII. The α-element abundances

    Science.gov (United States)

    Fabrizio, M.; Nonino, M.; Bono, G.; Primas, F.; Thévenin, F.; Stetson, P. B.; Cassisi, S.; Buonanno, R.; Coppola, G.; da Silva, R. O.; Dall'Ora, M.; Ferraro, I.; Genovali, K.; Gilmozzi, R.; Iannicola, G.; Marconi, M.; Monelli, M.; Romaniello, M.; Walker, A. R.

    2015-08-01

    We have performed a new abundance analysis of Carina red giant (RG) stars from spectroscopic data collected with UVES (high spectral resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high-resolution) and ~800 (medium-resolution) RGs, covering a significant fraction of the galaxy's RG branch, and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity and temperature bin were stacked. This approach allowed us to increase the signal-to-noise ratio in the faint magnitude limit (V≥ 20.5 mag) by at least a factor of five. We took advantage of the new photometry index cU,B,I introduced recently as an age and probably a metallicity indicator to split stars along the red giant branch. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean iron abundances are -2.15 ± 0.06 dex (σ = 0.28), and -1.75 ± 0.03 dex (σ = 0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results. Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91 ± 0.05 dex (σ = 0.22) and -1.35 ± 0.03 dex (σ = 0.22); these differ at the 83% level. Carina's α-element abundances agree, within 1σ, with similar abundances for field halo stars and for cluster (Galactic and Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carina's chemical enrichment history is quite different from that in the globular clusters. Based on spectra retrieved from the ESO/ST-ECF Science Archive Facility and collected either with UVES at

  8. An MCMC determination of the primordial helium abundance

    Science.gov (United States)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-04-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement

  9. An MCMC determination of the primordial helium abundance

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-01-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, and Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ 2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Y p = 0.2534 ± 0.0083, in broad

  10. Correlation between some environmental variables and abundance ...

    African Journals Online (AJOL)

    Correlation between some environmental variables and abundance of Almophrya mediovacuolata (Ciliophora: Anoplophryidae) endocommensal ciliate of an ... The survey primarily involved soil samples collection from the same spots of EW collection and preparation for physico-chemical analysis; evaluation in situ of the ...

  11. Abundances and morphology in planetary nebulae

    NARCIS (Netherlands)

    Pottasch, [No Value; Kastner, JH; Soker, N; Rappaport, SA

    2000-01-01

    The abundances of 16 well studied have been determined. New ISO measurements have been combined with optical and ultraviolet data from the literature, in an attempt to obtain accurate values. Only He, O, C, N, Ne, Ar, and S are considered. High values of N/O are sometimes, but not always, found in

  12. Securing abundance : The politics of energy security

    NARCIS (Netherlands)

    Kester, Johannes

    2016-01-01

    Energy Security is a concept that is known in the literature for its ‘slippery’ nature and subsequent wide range of definitions. Instead of another attempt at grasping the essence of this concept, Securing Abundance reformulates the problem and moves away from a definitional problem to a theoretical

  13. Photoelectric absorption cross sections with variable abundances

    Science.gov (United States)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  14. Estimating the relationship between abundance and distribution

    DEFF Research Database (Denmark)

    Rindorf, Anna; Lewy, Peter

    2012-01-01

    based on Euclidean distance to the centre of gravity of the spatial distribution. Only the proportion of structurally empty areas, Lloyds index, and indices of the distance to the centre of gravity of the spatial distribution are unbiased at all levels of abundance. The remaining indices generate...

  15. Species identification, distribution and abundance of Gerreidae ...

    African Journals Online (AJOL)

    the distribution and abundance of Gerres in estuaries wa'S collected from July 1978 to ..... the channel area between the W.L.R. and the mouth (not the tidal basin) during ..... overwhelming importance in the kelp beds of Britain. Recently Blaber ...

  16. Abundances in planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Sales, JB; Feibelman, WA; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    The far infrared nebular spectrum provides a valuable complement to the observed lines in other spectral regions. There are several reasons for this, the most important being the large increase in the number of ions observed, and the fact that the abundances found from these lines are relatively

  17. Distribution And Seasonal Abundance Of Anopheline Mosquito ...

    African Journals Online (AJOL)

    The essence of this study was to identify Anopheles mosquito species in Nguru, Yobe State and to determine their distribution and relative abundance in the months of the year. Insecticide and aspirator were used to collect mosqutoes in human dwellngs and preserved in 2% formalin for identcation using dissectng ...

  18. Abundance Ratios in Dwarf Elliptical Galaxies

    NARCIS (Netherlands)

    Sen, Seyda; Peletier, Reynier F.; Toloba, Elisa; Mentz, Jaco J.

    The aim of this study is to determine abundance ratios and star formation histories (SFH) of dwarf ellipticals in the nearby Virgo cluster. We perform a stellar population analysis of 39 dEs and study them using index-index and scaling relations. We find an unusual behaviour where [Na/Fe] is

  19. Abundance, composition and distribution of simple sequence ...

    Indian Academy of Sciences (India)

    δ∗(W-29, W-70) = 1.25; δ∗(W-93, W-70 = 0.75)) even though they originate from different geographical regions. We can, therefore, infer that the WSSV sequences are closely related by ancestry. Table 3. Dinucleotide relative abundance in the ...

  20. The Abundance of Large Arcs From CLASH

    Science.gov (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  1. Abundance and guild structure of grasshoppers (Orthoptera ...

    African Journals Online (AJOL)

    1995-01-18

    Jan 18, 1995 ... April, 1994, we compared the abundance and guild structure .... was placed in a functional group on the basis of taxonomic ... hypothesis that they would be unaffected by changes in the ..... spatial separation from the heavily grazed area. the lightly ..... found to increase (Morris 1967, 1969, 1979; Morris &.

  2. Clonal growth and plant species abundance.

    Science.gov (United States)

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  3. CHEMICAL ABUNDANCES OF SEVEN IRREGULAR AND THREE TIDAL DWARF GALAXIES IN THE M81 GROUP

    International Nuclear Information System (INIS)

    Croxall, Kevin V.; Van Zee, Liese; Lee, Henry; Miller, Bryan W.; Skillman, Evan D.; Lee, Janice C.; Cote, Stephanie; Kennicutt, Robert C.

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H II regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H II region had a detection of the temperature sensitive [O III] λ4363 line, allowing a 'direct' determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies, and the observed oxygen abundances are typically in agreement with the well-known metallicity-luminosity relation. However, three candidate 'tidal dwarf' galaxies lie well off this relation: UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sight as the M81 tidal debris field. We propose that these H II regions formed from previously enriched gas which was stripped from nearby massive galaxies (e.g., NGC 3077 and M81) during a recent tidal interaction.

  4. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  5. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  6. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; Dominguez, I.; Cunha, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Straniero, O.

    2011-01-01

    Fluorine ( 19 F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 μm in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  7. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: KMOS OBSERVATIONS IN NGC 6822

    International Nuclear Information System (INIS)

    Patrick, L. R.; Evans, C. J.; Ferguson, A. M. N.; Davies, B.; Kudritzki, R-P.; Gazak, J. Z.; Bergemann, M.; Plez, B.

    2015-01-01

    We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new K-band Multi-Object Spectrograph Very Large Telescope, Chile. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = −0.52 ± 0.21, which agrees well with previous abundance studies of young stars and H ii regions. We also find an indication for a low-significance abundance gradient within the central 1 kpc. We compare our results with those derived from older stellar populations and investigate the difference using a simple chemical evolution model. By comparing the physical properties determined for RSGs in NGC 6822 with those derived using the same technique in the Galaxy and the Magellanic Clouds, we show that there appears to be no significant temperature variation of RSGs with respect to metallicity, in contrast to recent evolutionary models

  8. Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium

    Science.gov (United States)

    Chen, Y. Q.; Nissen, P. E.; Benoni, T.; Zhao, G.

    2001-06-01

    We present a survey of lithium abundances in 185 main-sequence field stars with 5600 interesting result from this study is the presence of a large gap in the log varepsilon (Li) - Teff plane, which distinguishes ``Li-dip'' stars like those first identified in the Hyades cluster by Boesgaard & Tripicco (\\cite{Boesgaard86}) from other stars with a much higher Li abundance. The Li-dip stars concentrate on a certain mass, which decreases with metallicity from about 1.4 Msun at solar metallicity to 1.1 Msun at [Fe/H] =~ -1.0. Excluding the Li-dip stars and a small group of lower mass stars with Teff rate of angular momentum loss. It cannot be excluded, however, that a cosmic scatter of the Li abundance in the Galaxy at a given metallicity contributes to the dispersion in Li abundance. These problems make it difficult to determine the Galactic evolution of Li from the data, but a comparison of the upper envelope of the distribution of stars in the log varepsilon (Li) - [Fe/H] plane with recent Galactic evolutionary models by Romano et al. (\\cite{Romano99}) suggests that novae are a major source for the Li production in the Galactic disk; their occurrence seems to be the explanation for the steep increase of Li abundance at [Fe/H] =~ -0.4. Based on observations carried out at Beijing Astronomical Observatory (Xinglong, PR China) and European Southern Observatory, La Silla, Chile. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and at http://www.edpsciences.org

  9. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  10. An upper limit on the sulphur abundance in HE 1327-2326

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L.

    2012-08-01

    Context. Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing. Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios. Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045 nm. Results: We do not detect the S i line. A 3σ upper limit on the equivalent width (EW) of any line in our spectrum is EW winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution. Based on spectra obtained with CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095.

  11. Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds

    Science.gov (United States)

    Reyes, R. E. C.

    The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.

  12. A biogeographical perspective on species abundance distributions

    DEFF Research Database (Denmark)

    Matthews, Thomas J.; Borges, Paulo A. V.; de Azevedo, Eduardo Brito

    2017-01-01

    It has become increasingly recognized that multiple processes can generate similar shapes of species abundance distributions (SADs), with the result that the fit of a given SAD model cannot unambiguously provide evidence in support of a given theory or model. An alternative approach to comparing...... the fit of different SAD models to data from a single site is to collect abundance data from a variety of sites, and then build models to analyse how different SAD properties (e.g. form, skewness) vary with different predictor variables. Such a biogeographical approach to SAD research is potentially very...... revealing, yet there has been a general lack of interest in SADs in the biogeographical literature. In this Perspective, we address this issue by highlighting findings of recent analyses of SADs that we consider to be of intrinsic biogeographical interest. We use arthropod data drawn from the Azorean...

  13. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    of the short-term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. On a large scale, gut denitrification in, for instance, Chironomus plumosus larvae can increase the overall nitrous oxide emission of lake sediment by a factor of eight. We...... screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  14. Abundances in the diffuse interstellar medium

    International Nuclear Information System (INIS)

    Harris, A.W.

    1988-04-01

    The wealth of interstellar absorption line data obtained with the Copernicus and IUE satellites has opened up a new era in studies of the interstellar gas. It is now well established that certain elements, generally those with high condensation temperatures, are substantially under-abundant in the gas-phase relative to total solar or cosmic abundances. This depletion of elements is due to the existence of solid material in the form of dust grains in the interstellar medium. Surprisingly, however, recent surveys indicate that even volatile elements such as Zn and S are significantly depleted in many sight lines. Developments in this field which have been made possible by the large base of UV interstellar absorption line data built up over recent years are reviewed and the implications of the results for our understanding of the physical processes governing depletion are discussed. (author)

  15. Chemical element abundance in K giant atmospheres

    International Nuclear Information System (INIS)

    Komarov, N.S.; Shcherbak, A.N.

    1980-01-01

    With the help of modified method of differential curves of growth studied are physical parameters of atmospheres of giant stars of KO111 spectral class of the NGC 752, M25 and UMa cluster. Observations have been made on reflector of Crimea astrophysical observatory of Academy of Sciences of the USSR in the period from February to May, 1978. Spectograms are obtained for the wave length range from 5000-5500 A. It is shown that the change of chemical content in the wide range in heavy element composition does not influence the star atmosphere structUre. It follows from the results of the investigation that the abundance of chemical elements in stars of various scattered clusters, is the same in the range of errors of measurements and is similar to the abundance of chemical elements in the Sun atmosphere

  16. Attenuation of species abundance distributions by sampling

    Science.gov (United States)

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  17. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    Science.gov (United States)

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  18. Investigation of plutonium abundance and age analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huailong, Wu; Jian, Gong; Fanhua, Hao [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2007-06-15

    Based on spectra analysis software, all of the plutonium material peak counts are analyzed. Relatively efficiency calibration is done by the non-coupling peaks of {sup 239}Pu. By using the known isotopes half life and yield, the coupling peaks counts are allocated by non-coupling peaks, consequently the atom ratios of each isotope are gotten. The formula between atom ratio and abundance or age is deduced by plutonium material isotopes decay characteristic. And so the abundance and age of plutonium material is gotten. After some re- peat measurements for a plutonium equipment are completed, a comparison between our analysis results and PC-FRAM and the owner's reference results are done. (authors)

  19. Big-Bang nucleosynthesis and lithium abundance

    International Nuclear Information System (INIS)

    Singh, Vinay; Lahiri, Joydev; Bhowmick, Debasis; Basu, D.N.

    2017-01-01

    The predictions of the standard big-bang nucleosynthesis (BBN) theory depend on the astrophysical nuclear reaction rates and on additional three parameters, the number of flavours of light neutrinos, the neutron lifetime and the baryon-to-photon ratio in the uni- verse. The effect of the modification of thirty-five reaction rates on light element abundance yields in BBN was investigated earlier by us. In the present work we have replaced the neutron lifetime, baryon-to-photon ratio by the most recent values and further modified 3 He( 4 He,γ) 7 Be reaction rate which is used directly for estimating the formation of 7 Li as a result of β + decay by the most recent equation. We find that these modifications reduce the calculated abundance of 7 Li by ∼ 12%

  20. A global database of ant species abundances

    Czech Academy of Sciences Publication Activity Database

    Gibb, H.; Dunn, R. R.; Sanders, N. J.; Grossman, B. F.; Photakis, M.; Abril, S.; Agosti, D.; Andersen, A. N.; Angulo, E.; Armbrecht, I.; Arnan, X.; Baccaro, F. B.; Bishop, T. R.; Boulay, R.; Brühl, C.; Castracani, C.; Cerdá, X.; Del Toro, I.; Delsinne, T.; Diaz, M.; Donoso, D. A.; Ellison, A. M.; Enríquez, M. L.; Fayle, Tom Maurice; Feener, D. H.; Fisher, B. L.; Fisher, R. N.; Fitzpatrick, M. C.; Gómez, C.; Gotelli, N. J.; Gove, A.; Grasso, D. A.; Groc, S.; Guenard, B.; Gunawardene, N.; Heterick, B.; Hoffmann, B.; Janda, Milan; Jenkins, C.; Kaspari, M.; Klimeš, Petr; Lach, L.; Laeger, T.; Lattke, J.; Leponce, M.; Lessard, J.-P.; Longino, J.; Lucky, A.; Luke, S. H.; Majer, J.; McGlynn, T. P.; Menke, S.; Mezger, D.; Mori, A.; Moses, Jimmy; Munyai, T. C.; Pacheco, R.; Paknia, O.; Pearce-Duvet, J.; Pfeiffer, M.; Philpott, S. M.; Resasco, J.; Retana, J.; Silva, R. R.; Sorger, M. D.; Souza, J.; Suarez, A.; Tista, M.; Vasconcelos, H. L.; Vonshak, M.; Weisser, M. D.; Yates, M.; Parr, C. L.

    2017-01-01

    Roč. 98, č. 3 (2017), s. 883-884 ISSN 0012-9658 R&D Projects: GA ČR GB14-36098G; GA ČR GAP505/12/2467; GA ČR GPP505/12/P875 Institutional support: RVO:60077344 Keywords : abundance * ants * database Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.809, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/ecy.1682/abstract

  1. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  2. Liquidity Hoarding and Inefficient Abundant Funding

    OpenAIRE

    Enisse Kharroubi

    2015-01-01

    This paper studies banks’ choice between building liquidity buffers and raising funding ex post to deal with reinvestment shocks. We uncover the possibility of an inefficient liquidity squeeze equilibrium when ex post funding is abundant. In the model, banks typically build larger liquidity buffers when they expect funding to be expensive. However, when banks hold larger liquidity buffers, pledgeable income is larger and they hence can raise more funding, which in the aggregate raises the fun...

  3. 2015-2016 Palila abundance estimates

    Science.gov (United States)

    Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.

    2016-01-01

    The palila (Loxioides bailleui) population was surveyed annually during 1998−2016 on Mauna Kea Volcano to determine abundance, population trend, and spatial distribution. In the latest surveys, the 2015 population was estimated at 852−1,406 birds (point estimate: 1,116) and the 2016 population was estimated at 1,494−2,385 (point estimate: 1,934). Similar numbers of palila were detected during the first and subsequent counts within each year during 2012−2016; the proportion of the total annual detections in each count ranged from 46% to 56%; and there was no difference in the detection probability due to count sequence. Furthermore, conducting repeat counts improved the abundance estimates by reducing the width of the confidence intervals between 9% and 32% annually. This suggests that multiple counts do not affect bird or observer behavior and can be continued in the future to improve the precision of abundance estimates. Five palila were detected on supplemental survey stations in the Ka‘ohe restoration area, outside the core survey area but still within Palila Critical Habitat (one in 2015 and four in 2016), suggesting that palila are present in habitat that is recovering from cattle grazing on the southwest slope. The average rate of decline during 1998−2016 was 150 birds per year. Over the 18-year monitoring period, the estimated rate of change equated to a 58% decline in the population.

  4. Absolute isotopic abundances of Ti in meteorites

    International Nuclear Information System (INIS)

    Niederer, F.R.; Papanastassiou, D.A.; Wasserburg, G.J.

    1985-01-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46 Ti/ 48 Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. We provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components. The absolute Ti and Ca isotopic compositions still support the correlation of 50 Ti and 48 Ca effects in the FUN inclusions and imply contributions from neutron-rich equilibrium or quasi-equilibrium nucleosynthesis. The present identification of endemic effects at 46 Ti, for the absolute composition, implies a shortfall of an explosive-oxygen component or reflects significant isotope fractionation. Additional nucleosynthetic components are required by 47 Ti and 49 Ti effects. Components are also defined in which 48 Ti is enhanced. Results are given and discussed. (author)

  5. The shape of terrestrial abundance distributions

    Science.gov (United States)

    Alroy, John

    2015-01-01

    Ecologists widely accept that the distribution of abundances in most communities is fairly flat but heavily dominated by a few species. The reason for this is that species abundances are thought to follow certain theoretical distributions that predict such a pattern. However, previous studies have focused on either a few theoretical distributions or a few empirical distributions. I illustrate abundance patterns in 1055 samples of trees, bats, small terrestrial mammals, birds, lizards, frogs, ants, dung beetles, butterflies, and odonates. Five existing theoretical distributions make inaccurate predictions about the frequencies of the most common species and of the average species, and most of them fit the overall patterns poorly, according to the maximum likelihood–related Kullback-Leibler divergence statistic. Instead, the data support a low-dominance distribution here called the “double geometric.” Depending on the value of its two governing parameters, it may resemble either the geometric series distribution or the lognormal series distribution. However, unlike any other model, it assumes both that richness is finite and that species compete unequally for resources in a two-dimensional niche landscape, which implies that niche breadths are variable and that trait distributions are neither arrayed along a single dimension nor randomly associated. The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. PMID:26601249

  6. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  7. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  8. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  9. A global database of ant species abundances

    Science.gov (United States)

    Gibb, Heloise; Dunn, Rob R.; Sanders, Nathan J.; Grossman, Blair F.; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N.; Angulo, Elena; Armbrecht, Ingre; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Bruhl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Ellison, Aaron M.; Enriquez, Martha L.; Fayle, Tom M.; Feener Jr., Donald H.; Fisher, Brian L.; Fisher, Robert N.; Fitpatrick, Matthew C.; Gomez, Cristanto; Gotelli, Nicholas J.; Gove, Aaron; Grasso, Donato A.; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H.; Majer, Jonathan; McGlynn, Terrence P.; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; Resasco, Julian; Retana, Javier; Silva, Rogerio R.; Sorger, Magdalena D.; Souza, Jorge; Suarez, Andrew V.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Weiser, Michael D.; Yates, Michelle; Parr, Catherine L.

    2017-01-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51,388 ant abundance and occurrence records of more than 2693 species and 7953 morphospecies from local assemblages collected at 4212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type and degree of disturbance. The aim of compiling this dataset was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardised methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing dataset.

  10. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  13. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos

    International Nuclear Information System (INIS)

    Rainbow, Philip S.; Hildrew, Alan G.; Smith, Brian D.; Geatches, Tim; Luoma, Samuel N.

    2012-01-01

    It has been proposed that bioaccumulated concentrations of toxic metals in tolerant biomonitors be used as indicators of metal bioavailability that could be calibrated against the ecological response to metals of sensitive biotic assemblages. Our hypothesis was that metal concentrations in caddisfly larvae Hydropsyche siltalai and Plectrocnemia conspersa, as tolerant biomonitors, indicate metal bioavailability in contaminated streams, and can be calibrated against metal-specific ecological responses of mayflies. Bioaccumulated concentrations of Cu, As, Zn and Pb in H. siltalai from SW English streams were related to the mayfly assemblage. Mayflies were always sparse where bioavailabilities were high and were abundant and diverse where bioavailabilities of all metals were low, a pattern particularly evident when the combined abundance of heptageniid and ephemerellid mayflies was the response variable. The results offer promise that bioaccumulated concentrations of metals in tolerant biomonitors can be used to diagnose ecological impacts on stream benthos from metal stressors. - Highlights: ► Metal concentrations in caddisfly larvae can be calibrated against mayfly ecological responses. ► Cu, As, Zn and Pb concentrations in Hydropsyche siltalai were related to stream mayfly assemblages. ► Mayflies were sparse in high metal bioavailabilities, and abundant in low bioavailabilities. ► Joint heptageniid and ephemerellid mayfly abundance was the most sensitive response variable. ► Copper, arsenic and, in one catchment, lead were the primary stressors limiting mayfly abundance. - Accumulated metal concentrations in tolerant biomonitors can be used to detect and diagnose ecological impacts on freshwater stream benthos from metal stressors.

  14. Metallic nanomesh

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng; Sun, Tianyi; Guo, Chuanfei

    2018-02-20

    A transparent flexible nanomesh having at least one conductive element and sheet resistance less than 300.OMEGA./.quadrature. when stretched to a strain of 200% in at least one direction. The nanomesh is formed by depositing a sacrificial film, depositing, etching, and oxidizing a first metal layer on the film, etching the sacrificial film, depositing a second metal layer, and removing the first metal layer to form a nanomesh on the substrate.

  15. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    Science.gov (United States)

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  16. Can occupancy-abundance models be used to monitor wolf abundance?

    Directory of Open Access Journals (Sweden)

    M Cecilia Latham

    Full Text Available Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy-abundance curves derived from "virtual" surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy-abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2 were more robust to changes in these factors than smaller survey units (36 and 144 km2. However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2. Virtually-derived occupancy-abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its

  17. Elemental abundance analyses with coadded Dominion Astrophysical Observatory spectrograms: Pt. 3

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1988-01-01

    Elemental abundance analyses were performed for three superficially normal main-sequence stars θ Leonis (A2V), τ Herculus (B5IV) and ο Pegasi (AlIV). These studies used coadded spectrograms produced from at least 12 2.4 A mm -1 IIaO Dominion Astrophysical Observatory spectrograms and show a greater degree of internal consistency and smaller microturbulent velocities than previous studies of these stars which used lower signal-to-noise data. Many lines not previously seen were identified including some of new atomic species whose analysis provide a more complete picture of the elemental abundances. The identification and analysis of La II lines in ο Peg link this star more closely with the classical metallic-lined (Am) stars, although there are considerable differences in abundances. Some of θ Leo's elemental abundances, particularly those of vanadium, strontium, and zirconium, are significantly different from solar in confirmation of previous analyses. τ Her's elemental abundances are typically a factor of 2 less than solar. (author)

  18. Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    Science.gov (United States)

    Travaglio, C.; Rauscher, T.; Heger, A.; Pignatari, M.; West, C.

    2018-02-01

    The production of the heavy stable proton-rich isotopes between 74Se and 196Hg—the p nuclides—is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M ⊙–25 M ⊙) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is

  19. The UCSD HIRES/Keck I Damped Lyα Abundance Database. II. The Implications

    Science.gov (United States)

    Prochaska, Jason X.; Wolfe, Arthur M.

    2002-02-01

    We present a comprehensive analysis of the damped Lyα (DLA) abundance database presented in the first paper of this series. This database provides a homogeneous set of abundance measurements for many elements including Si, Cr, Ni, Zn, Fe, Al, S, Co, O, and Ar from 38 DLA systems with zabs>1.5. With little exception, these DLA systems exhibit very similar relative abundances. There is no significant correlation in X/Fe with [Fe/H] metallicity, and the dispersion in X/Fe is small at all metallicity. We search the database for trends indicative of dust depletion and in a few cases find strong evidence. Specifically, we identify a correlation between [Si/Ti] and [Zn/Fe] which is unambiguous evidence for depletion. Following Hou and colleagues, we present [X/Si] abundances against [Si/H]+logN(HI) and note trends of decreasing X/Si with increasing [Si/H]+logN(HI) which argue for dust depletion. Similarly, comparisons of [Si/Fe] and [Si/Cr] against [Si/H] indicate significant depletion at [Si/H]>-1 but suggest essentially dust-free damped systems at [Si/H]0.25 dex as [Zn/Fe]-->0 and that the [Si/Fe] values exhibit a plateau of ~0.3 dex at [Si/H]good agreement with our previous work, but we emphasize two differences: (1) the unweighted and N(H I)-weighted [Fe/H] mean metallicities now have similar values at all epochs except z>3.5, where small number statistics dominate the N(H I)-weighted mean; and (2) there is no evolution in the mean [Fe/H] metallicity from z=1.7 to 3.5 but possibly a marked drop at higher redshift. We conclude with a general discussion on the physical nature of the DLA systems. We stress the uniformity of the DLA chemical abundances which indicates that the protogalaxies identified with DLA systems have very similar enrichment histories, i.e., a nearly constant relative contribution from Type Ia and Type II supernovae. The DLA systems also show constant relative abundances within a given system, which places strict constraints on the mixing timescales

  20. Detecting significant changes in protein abundance

    Directory of Open Access Journals (Sweden)

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  1. Spectral analysis of the He-enriched sdO-star HD 127493

    Science.gov (United States)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  2. CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS

    International Nuclear Information System (INIS)

    Davies, Ben; Origlia, Livia; Kudritzki, Rolf-Peter; Figer, Don F.; Rich, R. Michael; Najarro, Francisco; Negueruela, Ignacio; Clark, J. Simon

    2009-01-01

    The location of the Scutum Red Supergiant (RSG) clusters at the end of the Galactic Bar makes them an excellent probe of the Galaxy's secular evolution, while the clusters themselves are ideal testbeds in which to study the predictions of stellar evolutionary theory. To this end, we present a study of the RSG's surface abundances using a combination of high-resolution Keck/NIRSPEC H-band spectroscopy and spectral synthesis analysis. We provide abundance measurements for elements C, O, Si, Mg, Ti, and Fe. We find that the surface abundances of the stars studied are consistent with CNO burning and deep, rotationally enhanced mixing. The average α/Fe ratios of the clusters are solar, consistent with a thin-disk population. However, we find significantly subsolar Fe/H ratios for each cluster, a result which strongly contradicts a simple extrapolation of the Galactic metallicity gradient to lower Galactocentric distances. We suggest that a simple one-dimensional parameterization of the Galaxy's abundance patterns is insufficient at low Galactocentric distances, as large azimuthal variations may be present. Indeed, we show that the abundances of O, Si, and Mg are consistent with independent measurements of objects in similar locations in the Galaxy. In combining our results with other data in the literature, we present evidence for large-scale (∼ kpc) azimuthal variations in abundances at Galactocentric distances of 3-5 kpc. While we cannot rule out that this observed behavior is due to systematic offsets between different measurement techniques, we do find evidence for similar behavior in a study of the barred spiral galaxy NGC 4736 which uses homogeneous methodology. We suggest that these azimuthal abundance variations could result from the intense but patchy star formation driven by the potential of the central bar.

  3. The galaxy clustering crisis in abundance matching

    Science.gov (United States)

    Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio

    2018-06-01

    Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.

  4. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  5. Parameters and abundances in luminous stars

    International Nuclear Information System (INIS)

    Earle Luck, R.

    2014-01-01

    Parameters and abundances for 451 stars of spectral types F, G, and K of luminosity classes I and II have been derived. Absolute magnitudes and E(B – V) have been derived for the warmer stars in order to investigate the galactic abundance gradient. The value found here: d[Fe/H]/dR ∼ –0.06 dex kpc –1 , agrees well with previous determinations. Stellar evolution indicators have also been investigated with the derived C/O ratios indicating that standard CN processing has been operating. Perhaps the most surprising result found in these supposedly relatively young intermediate-mass stars is that both [O/Fe] and [C/Fe] show a correlation with [Fe/H] much the same as found in older populations. While the stars were selected based on luminosity class, there does exist a significant [Fe/H] range in the sample. The likely explanation of this is that there is a significant range in age in the sample; that is, some of the sample are low-mass red-giant stars with types that place them within the selection criteria.

  6. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  7. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  8. Optical region elemental abundance analyses of B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1984-01-01

    Abundance analyses using optical region data and fully line blanketed model atmospheres have been performed for six moderately sharplined middle to late B-type stars. The derived abundances have values similar to those of the Sun. (author)

  9. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  10. DAWN GRAND MAP VESTA HYDROGEN ABUNDANCE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A global map of the abundance of hydrogen in micrograms/g within the regolith of asteroid 4 Vesta is provided for two-degree equal-angle pixels. Hydrogen abundances...

  11. Relation between grade and abundance of manganese nodules

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, M.

    Data from more than 1000 locations in the Central Indian Ocean Basin (CIOB) where both bulk nodule chemistry and abundance were determined and utilized to study the relationship between grade and abundance of manganese nodule deposits. Grade...

  12. Relative Abundance of Adult Mosquitoes in University of Abuja Main ...

    African Journals Online (AJOL)

    Relative Abundance of Adult Mosquitoes in University of Abuja Main ... relative abundance of adult mosquitoes in four selected sites in University of Abuja ... These results indicated that vectors of mosquito-borne diseases are breeding in the ...

  13. Tungsten abundances in some volcanic rocks

    International Nuclear Information System (INIS)

    Helsen, J.N.; Shaw, D.M.; Crocket, J.H.

    1978-01-01

    A radiochemical N.A.A. method was used to obtain new values on W distribution in some 125 volcanic rocks, mainly basalts and andesites, from different petrotectonic environments. These W data are below previously reported abundances. New median values in various types of rocks are suggested (ppm W). Basalts: ocean floor, 0.15; ocean islands subalkaline, 0.28; ocean islands alkaline, 0.60; island arc, 0.19; continental margin, 0.40; continental subalkaline, 0.30; continental alkaline, 1.35. Andesites: island arc, 0.23; continental margin, 1.05. Median values for all 91 basalts and all 20 andesites are 0.36 and 0.29 ppm respectively. (author)

  14. Forms and genesis of species abundance distributions

    Directory of Open Access Journals (Sweden)

    Evans O. Ochiaga

    2015-12-01

    Full Text Available Species abundance distribution (SAD is one of the most important metrics in community ecology. SAD curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of proportionate effect.

  15. Elemental abundance analyses with coadded DAO spectrograms: Pt. 5

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1988-01-01

    Elemental abundance analyses of three mercury-manganese stars were performed in a manner consistent with previous analyses of this series. A few correlations are found between the derived abundances and with the effective temperature in accordance with the expectations of radiative diffusion explanations of the derived abundances. The helium abundances are smaller than the value required to sustain the superficial helium convection zone in the atmospheres of these stars. (author)

  16. Cosmological implications of light element abundances: theory.

    Science.gov (United States)

    Schramm, D N

    1993-06-01

    Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics.

  17. Use of abundance of one species as a surrogate for abundance of others

    Science.gov (United States)

    Samuel A. Cushman; Kevin S. McKelvey; Barry R. Noon; Kevin McGarigal

    2010-01-01

    Indicator species concepts have a long history in conservation biology. Arguments in favor of these approaches generally stress expediency and assume efficacy. We tested the premise that the abundance patterns of one species can be used to infer those of other species. Our data consisted of 72,495 bird observations on 55 species across 1046 plots distributed across 30...

  18. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    J. Firn; J.L. Moore; A.S. MacDougall; E.T. Borer; E.W. Seabloom; J. HilleRisLambers; S. Harpole; E.E. Cleland; C.S. Brown; J.M.H. Knops; S.M. Prober; D.A. Pyke; K.A. Farrell; J.D. Bakker; L.R. O’Halloran; P.B. Adler; S.L. Collins; C.M. D’Antonio; M.J. Crawley; E.M. Wolkovich; K.J. La Pierre; B.A. Melbourne; Y. Hautier; J.W. Morgan; A.D.B. Leakey; A.D. Kay; R.L. McCulley; K.F. Davies; C.J. Stevens; C.J. Chu

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at...

  19. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  20. Composition, Abundance and Distribution of Brachyuran Larvae in ...

    African Journals Online (AJOL)

    ... Ocypodidae, Grapsidae and Xanthidae. Abundance of brachyuran larvae was significantly positively correlated with total zooplankton abundance (r2 = 0.8) and salinity (r2 = 0.71). Keywords: Brachyuran larvae, abundance, composition, Mida creek, Kenya West Indian Ocean Journal of Marine Science Vol. 3 (2) 2004: pp.

  1. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  2. A new approach to systematic uncertainties and self-consistency in helium abundance determinations

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2010-01-01

    Tests of big bang nucleosynthesis and early universe cosmology require precision measurements for helium abundance determinations. However, efforts to determine the primordial helium abundance via observations of metal poor H II regions have been limited by significant uncertainties (compared with the value inferred from BBN theory using the CMB determined value of the baryon density). This work builds upon previous work by providing an updated and extended program in evaluating these uncertainties. Procedural consistency is achieved by integrating the hydrogen based reddening correction with the helium based abundance calculation, i.e., all physical parameters are solved for simultaneously. We include new atomic data for helium recombination and collisional emission based upon recent work by Porter \\etal and wavelength dependent corrections to underlying absorption are investigated. The set of physical parameters has been expanded here to include the effects of neutral hydrogen collisional emission. It is noted that Hγ and Hδ allow better isolation of the collisional effects from the reddening. Because of a degeneracy between the solutions for density and temperature, the precision of the helium abundance determinations is limited. Also, at lower temperatures (T ∼ p as 0.2561 ± 0.0108, in broad agreement with the WMAP result. Alternatively, a simple average of the data yields Y p 0.2566 ± 0.0028. Tests with synthetic data show a potential for distinct improvement, via removal of underlying absorption, using higher resolution spectra. A small bias in the abundance determination can be reduced significantly and the calculated helium abundance error can be reduced by ∼ 25%

  3. Globular cluster metallicity scale: evidence from stellar models

    International Nuclear Information System (INIS)

    Demarque, P.; King, C.R.; Diaz, A.

    1982-01-01

    Theoretical giant branches have been constructed to determine their relative positions for metallicities in the range -2.3 0 )/sub 0,g/ based on these models is presented which yields good agreement over the observed range of metallicities for galactic globular clusters and old disk clusters. The metallicity of 47 Tuc and M71 given by this calibration is about -0.8 dex. Subject headings: clusters, globular: stars: abundances: stars: interiors

  4. Challenges of transferring models of fish abundance between coral reefs.

    Science.gov (United States)

    Sequeira, Ana M M; Mellin, Camille; Lozano-Montes, Hector M; Meeuwig, Jessica J; Vanderklift, Mathew A; Haywood, Michael D E; Babcock, Russell C; Caley, M Julian

    2018-01-01

    Reliable abundance estimates for species are fundamental in ecology, fisheries, and conservation. Consequently, predictive models able to provide reliable estimates for un- or poorly-surveyed locations would prove a valuable tool for management. Based on commonly used environmental and physical predictors, we developed predictive models of total fish abundance and of abundance by fish family for ten representative taxonomic families for the Great Barrier Reef (GBR) using multiple temporal scenarios. We then tested if models developed for the GBR (reference system) could predict fish abundances at Ningaloo Reef (NR; target system), i.e., if these GBR models could be successfully transferred to NR. Models of abundance by fish family resulted in improved performance (e.g., 44.1% fish abundance (9% fish species richness from the GBR to NR, transferability for these fish abundance models was poor. When compared with observations of fish abundance collected in NR, our transferability results had low validation scores ( R 2   0.05). High spatio-temporal variability of patterns in fish abundance at the family and population levels in both reef systems likely affected the transferability of these models. Inclusion of additional predictors with potential direct effects on abundance, such as local fishing effort or topographic complexity, may improve transferability of fish abundance models. However, observations of these local-scale predictors are often not available, and might thereby hinder studies on model transferability and its usefulness for conservation planning and management.

  5. Revisiting the radial abundance gradients of nitrogen and oxygen of the Milky Way

    Science.gov (United States)

    Esteban, C.; García-Rojas, J.

    2018-05-01

    We present spectra obtained with the 10.4 m Gran Telescopio Canarias telescope of 13 Galactic H II regions, most of them of very low ionisation degree. The objects are located along the Galactic disc, with RG from 5.7 to 16.1 kpc. We determine Te([N II]) for all of them. We obtain - for the first time - a radial abundance gradient of N that is independent on the ionisation correction factor. The radial distribution of the N/O ratio is almost flat, indicating that the bulk of N is not formed by standard secondary processes. We have made a reassessment of the radial O abundance gradient combining our results with previous similar ones by Esteban et al. (2017); producing a homogeneous dataset of 35 H II regions with direct determinations of the electron temperature. We report the possible presence of a flattening or drop of the O abundance in the inner part of the Galactic disc. This result confirms previous findings from metallicity distributions based on Cepheids and red giants. Finally, we find that the scatter of the N and O abundances of H II regions with respect to the gradient fittings is not substantially larger than the observational uncertainties, indicating that both chemical elements seem to be well mixed in the interstellar gas at a given distance along the Galactic disc

  6. Na-O abundances in M53: A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch (RGB) stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the WIYN 3.5- meter telescope. M53 is of interest because previous studies based on the morphology of the cluster's horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs withmultiple populations, which have been found to be dominated by second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previouslypublished results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find thatthe Na-O anti-correlation is not as extended as other GCs with similarly high masses. The fraction of SG to FG stars in our sample is approximately 1:3 and the SG is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  7. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    Science.gov (United States)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  8. Ecotype diversification of an abundant Roseobacter lineage.

    Science.gov (United States)

    Sun, Ying; Zhang, Yao; Hollibaugh, James T; Luo, Haiwei

    2017-04-01

    The Roseobacter DC5-80-3 cluster (also known as the RCA clade) is among the most abundant bacterial lineages in temperate and polar oceans. Previous studies revealed two phylotypes within this cluster that are distinctly distributed in the Antarctic and other ocean provinces. Here, we report a nearly complete genome co-assembly of three closely related single cells co-occurring in the Antarctic, and compare it to the available genomes of the other phylotype from ocean regions where iron is more accessible but phosphorus and nitrogen are less. The Antarctic phylotype exclusively contains an operon structure consisting of a dicitrate transporter fecBCDE and an upstream regulator likely for iron uptake, whereas the other phylotype consistently carry a high-affinity phosphate pst transporter and the phoB-phoR regulatory system, a high-affinity ammonium amtB transporter, urea and taurine utilization systems. Moreover, the Antarctic phylotype uses proteorhodopsin to acquire light, whereas the other uses bacteriochlorophyll-a and the sulfur-oxidizing sox cluster for energy acquisition. This is potentially an iron-saving strategy for the Antarctic phylotype because only the latter two pathways have iron-requiring cytochromes. Therefore, the two DC5-80-3 phylotypes, while diverging by only 1.1% in their 16S rRNA genes, have evolved systematic differences in metabolism to support their distinct ecologies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Radiogenic lead-208 abundance 88.34 %

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Abrao, Alcidio; Dias, Mauro S.; Kakazu, Mauricio H.; Salvador, Vera L.R.; Queiroz, Carlos A.S.; Rocha, Soraya M.R. da; Sato, Key

    2009-01-01

    Brazil has a long tradition in thorium technology, from the monazite ores mining until the production of the nuclear grade thorium compounds. Early in 1969 the Institute of Energy and Nuclear Research (IPEN) designed a project for a pilot plant installation to purify the thorium compounds, based on the solvent extraction technique. Thorium compounds used came from monazite's industrialization. During the course of the operation of this plant, a crude sludge were formed containing thorium not extracted and the whole rare earths, plus minor impurities like sodium, titanium, zirconium, hafnium, iron, silicon, phosphate and the thorium daughters were accumulated. Included is the radiogenic lead-208. This sludge, hereafter named 'RETOTER', was treated with hydrochloric acid and the lead was separated and recovered by anion exchange technology. The lead-208 was analyzed by mass spectrometry (HR-ICPMS) technique. The lead-208 abundance measure was 88.34%, this allowed the calculation of the thermal neutron capture cross section of σ 0 γ = 14,6 +/- 0.7 mb, considerably lower than the σ 0 γ = 174.2 +/- 0.7 mb value of the natural lead. (author)

  10. The population of planetary nebulae near the Galactic Centre: chemical abundances

    Science.gov (United States)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  11. Diets and abundances of aquatic and semi-aquatic reptiles in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Shine, R.

    1986-01-01

    The mining and milling of uranium in the Alligator River Region in the Northern Territory has raised the possibility that heavy metals and radionuclides might escape into the aquatic system and be accumulated by the reptilian fauna. Aquatic and semi-aquatic reptiles are regularly eaten by Aboriginal people of the region, and data on diets and reproduction of these species, as well as on their dispersion and abundance, are essential before the possibility that reptiles might act as pathways for these contaminants to Aboriginals can be assessed. The objectives of this study were to provide quantitative data on the diets of filesnakes, sand goannas and water goannas, to provide information on seasonal changes in their abundance and distribution within the Magela Creek system; and to describe their reproductive cycles

  12. Carbon Abundances In The Light Of 3D Model Stellar Atmospheres

    DEFF Research Database (Denmark)

    Collet, Remo

    Classical spectroscopic analyses of late-type stars generally rely on the interpretation of observations with the use of stationary, one-dimensional (1D), hydrostatic model stellar atmospheres. In recent years, however, there has been significant development in the field of three-dimensional (3D......) hydrodynamic modelling of stellar atmospheres and stellar spectra. In this contribution, I describe quantitatively the impact of realistic, time-dependent, 3D hydrodynamic model atmospheres on the spectroscopic determination of carbon abundances from CH molecular lines for stars with a wide range of stellar...... parameters and compositions. I show that the differences with respect to classical analyses based on 1D models can be significant in very metal-poor stars and of the order of -0.5 to -1 dex in terms of logarithmic abundances of these important elements. I also examine the dependence of differential 3D-1D...

  13. Carbon and oxygen abundances of field RR Lyrae stars. I. Carbon abundances

    International Nuclear Information System (INIS)

    Butler, D.; Manduca, A.; Deming, D.; Bell, R.A.

    1982-01-01

    From an analysis of KPNO 4-m echelle plates and simultaneous uvbyβ photometry, we have determined carbon abundances and carbon-to-iron ratios for a large number of field RR Lyrae stars having [Fe/H]> or approx. =-1.2. It is found that these field RR Lyrae stars: stars which are known to be in an advanced evolutionary state: have carbon-to-iron ratios which are similar to those of unevolved stars

  14. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack of information about detailed abundances in field stars of the corresponding metallicities. We suggest that correlations such as [Na/Fe] versus [Ni/Fe] may prove useful for this purpose if an accuracy of 0.1 dex or better can be reached for integrated-light measurements. Tables A.1-A.15

  15. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  16. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  17. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2016-06-10

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  18. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    Science.gov (United States)

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  19. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    Science.gov (United States)

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  20. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  1. Metal cyanides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the biewpoint of general crystal T chemistry principles and on the basis of modern data the structural chemistry of metal cyanites is presented. The features of the structure of the following compounds are considered: simple ionic alkali cyanides (Li-Cs) containing CN - ions; molybdenum (4,5), tungsten (4,5), rhenium (5,6) complexes etc, where-CN group is only connected with one metal atom; covalent cyanides of cadmium and other elements in which the CN-group serves as a bridge

  2. Evolution of heavy-element abundances in the galactic halo and disk

    International Nuclear Information System (INIS)

    Mathews, G.J.; Cowan, J.J.; Schramm, D.N.

    1988-05-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  3. The interacting binary β Lyr. III

    International Nuclear Information System (INIS)

    Dimitrov, D.L.; Kubat, J.

    1988-01-01

    The results are presented of a non-LTE treatment of 24 He I lines based on a model atmosphere for β Lyr primary. The effects of an increased helium abundance on the departure coefficients (b-factors) and equivalent widths of the He I lines as well as on the equivalent widths of the Balmer lines are discussed. Apart from the already established fact that departures from LTE upon equivalent widths become increasingly important for longer wavelengths, it was also found that an increase in He abundance leads to a decrease in the non-LTE to LTE widths ratio, i.e. a reduction in the non-LTE effects upon equivalent widths of He I lines in a helium-rich atmosphere (although the b-factors are increasing). The influence of circumstellar matter on some spectral features is clearly evident, suggesting their origin in layers with lower densities and temperatures. (author). 19 figs., 3 tabs., 14 refs

  4. Exploring the Nature of Galaxies with Abundance Gradient Anomalies in the SDSS-IV/MaNGA Survey

    Science.gov (United States)

    Keith, Celeste; Tremonti, Christy; Pace, Zach; Schaefer, Adam

    2018-01-01

    Disk galaxies are known to have radial oxygen abundance gradients with their centers being more chemically enriched than their outskirts. The steepness of the abundance gradient has recently been shown to correlate with galaxy stellar mass, on average. However, individual galaxies sometimes show pronounced deviations from the expected trends, such as flatter or steeper slopes than expected for their mass, abrupt changes in slope, or azimuthal asymmetries. Here we report on a systematic search for galaxies with abundance gradient anomalies using 2-D spectroscopy from the Sloan Digital Sky Survey IV MaNGA. We construct nebular oxygen and nitrogen abundance maps for 300 moderately inclined non-interacting disk galaxies and use visual inspection to identify the most interesting cases. We use this training set to develop an automated pipeline to flag galaxies with abundance anomalies from the larger MaNGA dataset for visual inspection. We combine the metallicity maps with kinematic data and measurements of the galaxies' local environments to better understand the processes that shape the radial abundance gradients of disk galaxies.

  5. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  6. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  7. Internal Variations in Empirical Oxygen Abundances for Giant H II Regions in the Galaxy NGC 2403

    Science.gov (United States)

    Mao, Ye-Wei; Lin, Lin; Kong, Xu

    2018-02-01

    This paper presents a spectroscopic investigation of 11 {{H}} {{II}} regions in the nearby galaxy NGC 2403. The {{H}} {{II}} regions are observed with a long-slit spectrograph mounted on the 2.16 m telescope at XingLong station of National Astronomical Observatories of China. For each of the {{H}} {{II}} regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels, which inherently decline at larger radii within individual {{H}} {{II}} regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor {{H}} {{II}} regions with measurable T e, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.

  8. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  9. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  10. Ca II TRIPLET SPECTROSCOPY OF SMALL MAGELLANIC CLOUD RED GIANTS. I. ABUNDANCES AND VELOCITIES FOR A SAMPLE OF CLUSTERS

    International Nuclear Information System (INIS)

    Parisi, M. C.; Claria, J. J.; Grocholski, A. J.; Geisler, D.; Sarajedini, A.

    2009-01-01

    We have obtained near-infrared spectra covering the Ca II triplet lines for a large number of stars associated with 16 Small Magellanic Cloud (SMC) clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their location in the color-magnitude diagram, abundances, and radial velocities (RVs). We determine mean cluster velocities to typically 2.7 km s -1 and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. By combining our clusters with previously published results, we compile a sample of 25 clusters on a homogeneous metallicity scale and with relatively small metallicity errors, and thereby investigate the metallicity distribution, metallicity gradient, and age-metallicity relation (AMR) of the SMC cluster system. For all 25 clusters in our expanded sample, the mean metallicity [Fe/H] = -0.96 with σ = 0.19. The metallicity distribution may possibly be bimodal, with peaks at ∼-0.9 dex and -1.15 dex. Similar to the Large Magellanic Cloud (LMC), the SMC cluster system gives no indication of a radial metallicity gradient. However, intermediate age SMC clusters are both significantly more metal-poor and have a larger metallicity spread than their LMC counterparts. Our AMR shows evidence for three phases: a very early (>11 Gyr) phase in which the metallicity reached ∼-1.2 dex, a long intermediate phase from ∼10 to 3 Gyr in which the metallicity only slightly increased, and a final phase from 3 to 1 Gyr ago in which the rate of enrichment was substantially faster. We find good overall agreement with the model of Pagel and Tautvaisiene, which assumes a burst of star formation at 4 Gyr. Finally, we find that the mean RV of the cluster system

  11. Distributions and natural levels of related metals in a trophic pathway

    International Nuclear Information System (INIS)

    Lemons, J.D.

    1976-06-01

    The first objective was to test the hypothesis that metal distributions and trends in organisms are, in part, a function of metal positions in the periodic table in unpolluted ecosystems. The data have shown that large soil crustal abundance differences of related elements (e.g. alkali metals) are proportionately approximated in higher organisms. Concentration factors for related nutritious and nonessential and toxic metals were determined along a trophic pathway. When the concentration factors were reported as the concentration of a particular metal by itself, all metal concentrations increased along the trophic pathway. The second objective of this study was to test the hypothesis that distributions and natural levels of chemically related nonessential and toxic metals can better be known when the metals are reported as a ratio, in ash, of the nonessential or toxic metal to its chemically related nutritious metal (e.g. strontium/calcium) as the metals are transferred through trophic pathways. The data have shown that when this method of reporting metal abundances in trophic levels is used, nonessential and toxic metals are discriminated against, relative to their chemically related nutritious metal, as the metals are transferred through the trophic pathway levels. The third objective was designed to test the hypothesis that surface deposition of toxic metals upon plants influences the trends of metal abundances through trophic pathways. This study indicates that metal pollution in the form of deposition upon plant surfaces bypasses the discrimination mechanisms in plants, and consequently elevates the total body burden in herbivores. It is likely that there is no herbivore defense for this type of metal exposure, because herbivores have probably come to rely, in part, upon the discriminatory mechanism of plants throughout the course of evolutionary history to keep toxic metal burdens low

  12. THE METALLICITY OF THE PLEIADES

    International Nuclear Information System (INIS)

    Soderblom, David R.; Laskar, Tanmoy; Valenti, Jeff A.; Stauffer, John R.; Rebull, Luisa M.

    2009-01-01

    We have measured the abundances of Fe, Si, Ni, Ti, and Na in 20 Pleiades stars with T eff values near solar and with low vsin i using high-resolution, high signal-to-noise echelle spectra. We have validated our procedures by also analyzing 10 field stars of a range of temperatures and metallicities that were observed by Valenti and Fischer. Our result for the Pleiades is [Fe/H] = +0.03 ± 0.02 ± 0.05 (statistical and systematic). The average of published measurements for the Pleiades is +0.042 ± 0.021.

  13. The Metallicity of the Pleiades

    OpenAIRE

    Soderblom, David R.; Laskar, Tanmoy; Valenti, Jeff A.; Stauffer, John R.; Rebull, Luisa M.

    2009-01-01

    We have measured the abundances of Fe, Si, Ni, Ti, and Na in 20 Pleiades stars with T_(eff) values near solar and with low v sin i using high-resolution, high signal-to-noise echelle spectra. We have validated our procedures by also analyzing 10 field stars of a range of temperatures and metallicities that were observed by Valenti and Fischer. Our result for the Pleiades is [Fe/H] = +0.03 ± 0.02 ± 0.05 (statistical and systematic). The average of published measurements for the Pleiades is +0....

  14. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Ramirez, Ivan [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bergemann, Maria [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Lind, Karin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Castro, Matthieu; Do Nascimento, Jose-Dias [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael, E-mail: tmonroe@usp.br [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  15. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  16. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    International Nuclear Information System (INIS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-01-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  17. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    Science.gov (United States)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  18. Validity of abundances derived from spaxel spectra of the MaNGA survey

    Science.gov (United States)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Nefedyev, Y. A.; Shulga, V. M.; Wei, H.; Berczik, P. P.

    2018-05-01

    We measured the emission lines in the spaxel spectra of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) galaxies in order to determine the abundance distributions therein. It has been suggested that the strength of the low-ionization lines, R2, N2, and S2, may be increased (relative to Balmer lines) in (some) spaxel spectra of the MaNGA survey due to a contribution of the radiation of the diffuse ionized gas. Consequently, the abundances derived from the spaxel spectra through strong-line methods may suffer from large errors. We examined this expectation by comparing the behaviour of the line intensities and the abundances estimated through different calibrations for slit spectra of H II regions in nearby galaxies, for fibre spectra from the Sloan Digital Sky Survey, and for spaxel spectra of the MaNGA survey. We found that the S2 strength is increased significantly in the fibre and spaxel spectra. The mean enhancement changes with metallicity and can be as large as a factor of 2. The mean distortion of R2 and N2 is less than a factor of 1.3. This suggests that Kaufmann et al.'s (2003, MNRAS, 346, 1055) demarcation line between active galactic nuclei and H II regions in the Baldwin, Phillips, & Terlevich (BPT, 1981, PASP, 93, 5) diagram is a useful criterion to reject spectra with significantly distorted strengths of the N2 and R2 lines. We find that the three-dimensional R calibration, which uses the N2 and R2 lines, produces reliable abundances in the MaNGA galaxies. The one-dimensional N2 calibration produces either reliable or wrong abundances depending on whether excitation and N/O abundance ratio in the target region (spaxel) are close to or differ from those parameters in the calibrating points located close to the calibration relation. We then determined abundance distributions within the optical radii in the discs of 47 MaNGA galaxies. The optical radii of the galaxies were estimated from the surface brightness profiles constructed based on the

  19. Trace and major metal abundances in the shale and coal of various ...

    African Journals Online (AJOL)

    The distribution of a number of trace and major elements in the shale and coal of differing seams in Okaba, Kogi State, Nigeria, was studied using energy dispersive x-ray fluorescence spectrometer. The study was necessary to compare the quality of Okaba coal to world standards of coal quality. Major elements of Al, K, Ca ...

  20. A new photometric metal abundance and luminosity calibration for field G and K giants

    International Nuclear Information System (INIS)

    Jennens, P.A.; Helfer, H.L.

    1975-01-01

    Photometry of 260 G and K giants, using a fast broad-intermediate band photometric system (UBViyz system) is used to calibrate chemical composition, Fe/H], luminosity, Mv and colour excess, E(B-V). A single S-20 surface photomultiplier is used. The UBVi photometry is transformed to be on the Johnson UBVRI system. Calibrations applicable to the ranges 0.40< R-I<0.65 (G2-K3), 0.65< R-I<0.90 (K3-K5) are given. A photometric luminosity index, Mv(yz), is derived for which rms errors are +-1 mag. Several indices are calibrated for chemical composition, [Fe/H], and typical rms errors of +-0.15 in [Fe/H] are obtained for stars of known colour excess, E(B-V). For stars of unknown colour excess, E(B-V) is determined with an rms error of +-0.06 and [Fe/H] with an rms error of approximately +-0.4. For stars with Mv-1, the errors are larger. (author)

  1. Spatio-temporal Variations of Abundance, Biomass, and ...

    African Journals Online (AJOL)

    The spatio-seasonal variations of Pseudodiaptomus hessei abundance, biomass and reproductive parameters were investigated in the Grand-Lahou lagoon at five stations during the dry and wet (or rainy) seasons from September 2005 to August 2006. In all sampling stations, abundance and biomass of P. hessei in the dry ...

  2. Optical region elemental abundance analyses of B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; Young, J.M.; Baldwin, H.E.

    1984-01-01

    Abundance analyses using optical region data and fully line blanketed model atmospheres have been performed for two sharp-lined hot Am stars o Pegasi and σ Aquarii and for the sharp-lined marginally peculiar A star v Cancri. The derived abundances exhibit definite anomalies compared with those of normal B-type stars and the Sun. (author)

  3. Mechanisms driving postfire abundance of a generalist mammal

    Science.gov (United States)

    R. Zwolak; D. E. Pearson; Y. K. Ortega; E. E. Crone

    2012-01-01

    Changes in vertebrate abundance following disturbance are commonly attributed to shifts in food resources or predation pressure, but underlying mechanisms have rarely been tested. We examined four hypotheses for the commonly reported increase in abundance of deer mouse (Peromyscus maniculatus (Wagner, 1845)) following forest fires: source-sink dynamics, decreased...

  4. Spatial and temporal patterns of phytoplankton abundance and ...

    African Journals Online (AJOL)

    Bacillariophyta was the most abundant group (48.17% of total phytoplankton) and was uniformly distributed in all waters, followed by Cyanobacteria (33.33%), which decreased with distance offshore. Chlorophyta, the third highest in abundance (15.5%), increased with distance offshore. A total of 92 phytoplankton species ...

  5. The Paradox of Water Abundance in Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Christopher Schulz

    2017-10-01

    Full Text Available While much effort has gone into studying the causes and consequences of water scarcity, the concept of water abundance has received considerably less attention in academic literature. Here, we aim to address this gap by providing a case study on the perceptions and political implications of water abundance in the Brazilian state of Mato Grosso. Combining a political ecology perspective on contemporary water governance (empirically based on stakeholder interviews with members of the state’s water sector with an overview of the environmental history of this hydrosocial territory, we argue, first, that water abundance has become a foundational element of Mato Grosso’s identity, situated in the wider context of natural resource abundance more generally and second, that water abundance today is a contested concept witnessing discursive struggles around its political implications and meaning. More specifically, there is a clash between the dominant conceptualisation of water abundance as a foundation for rich economic, ecological, social, and cultural values and benefits, often espoused by members of the political and economic elite, e.g., for marketing purposes, and a more critical but less widespread conceptualisation of water abundance as a source of carelessness, lack of awareness, and poor water governance, typically put forth by more informed technical staff of the public sector and civil society activists. By providing a distinct treatment and discussion of the concept of water abundance, our research has relevance for other water-rich regions beyond the immediate regional context.

  6. Abundance of birds in Fukushima as judged from Chernobyl

    International Nuclear Information System (INIS)

    Møller, Anders Pape; Hagiwara, Atsushi; Matsui, Shin; Kasahara, Satoe; Kawatsu, Kencho; Nishiumi, Isao; Suzuki, Hiroyuki; Ueda, Keisuke; Mousseau, Timothy A.

    2012-01-01

    The effects of radiation on abundance of common birds in Fukushima can be assessed from the effects of radiation in Chernobyl. Abundance of birds was negatively related to radiation, with a significant difference between Fukushima and Chernobyl. Analysis of 14 species common to the two areas revealed a negative effect of radiation on abundance, differing between areas and species. The relationship between abundance and radiation was more strongly negative in Fukushima than in Chernobyl for the same 14 species, demonstrating a negative consequence of radiation for birds immediately after the accident on 11 March 2011 during the main breeding season in March–July, when individuals work close to their maximum sustainable level. - Highlights: ► Abundance of birds was negatively related to radiation in Chernobyl and Fukushima. ► Effects of radiation on abundance differed between Chernobyl and Fukushima and among species. ► For 14 species common to the two areas the effects of radiation on abundance were stronger in Fukushima than in Chernobyl. - The negative effect of radiation on abundance of birds in Fukushima exceeded that for the same species in Chernobyl.

  7. Abundances of neon, sulfur, and argon in planetary nebulae

    International Nuclear Information System (INIS)

    Beck, S.C.; Lacy, J.H.; Townes, C.H.; Geballe, T.R.; Baas, F.

    1981-01-01

    Infrared observations of [Ne II], [S IV], and [Ar III] are used with optical observations to discuss the abundances of Ne, S, and Ar in 18 planetary nebulae. In addition, infrared observations of 18 other nebulae are presented. The derived abundances of S and Ar are each slightly enhanced relative to previous studies

  8. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    NARCIS (Netherlands)

    Marigo, P; Bernard-Salas, J; Pottasch, S. R.; Tielens, A. G. G. M.; Wesselius, P. R.

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. The accuracy on the observed abundances is essential in order to make a reliable comparison with the models.

  9. The end of abundance. Economic solutions to water scarcity

    NARCIS (Netherlands)

    Zetland, D.J.

    2011-01-01

    In a past of abundance, we had clean water to meet our demands for showers, pools, farms and rivers. Our laws and customs did not need to regulate or ration demand. Over time, our demand has grown, and scarcity has replaced abundance. We don't have as much clean water as we want. We can respond to

  10. Variation in rank abundance replicate samples and impact of clustering

    NARCIS (Netherlands)

    Neuteboom, J.H.; Struik, P.C.

    2005-01-01

    Calculating a single-sample rank abundance curve by using the negative-binomial distribution provides a way to investigate the variability within rank abundance replicate samples and yields a measure of the degree of heterogeneity of the sampled community. The calculation of the single-sample rank

  11. Inferring recent historic abundance from current genetic diversity

    NARCIS (Netherlands)

    Palsboll, Per J.; Peery, M. Zachariah; Olsen, Morten T.; Beissinger, Steven R.; Berube, Martine

    Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre-anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of

  12. Influence of summer biogeography on wood warbler stopover abundance

    Science.gov (United States)

    Jeffrey F. Kelly; Rob Smith; Deborah M. Finch; Frank R. Moore; Wang Yong

    1999-01-01

    We evaluated the effect of summer biogeography of migrant wood warblers (Parulidae) on their stopover abundance. To characterize abundance patterns, we used mist-net capture data from spring and fall migration in the Middle Rio Grande Valley, New Mexico, spring migration on the Gulf Coast of Louisiana, and fall migration on the Gulf Coast of Alabama. To describe the...

  13. Abundances and Habitat Sensitivities of Some River Fishes in ...

    African Journals Online (AJOL)

    Freshwater fishes from a diverse array of 11 families, some dominated by marine species and others containing only a few species, were collected by electrofishing from 84 locations on small rivers in central Thailand and their abundances related to habitat characteristics. Abundances were largest for Channa gachua, ...

  14. The implicit assumption of symmetry and the species abundance distribution

    NARCIS (Netherlands)

    Alonso, D.; Ostling, A.; Etienne, R.S.

    2008-01-01

    Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to

  15. The implicit assumption of symmetry and the species abundance distribution

    NARCIS (Netherlands)

    Alonso, David; Ostling, Annette; Etienne, Rampal S.

    Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to

  16. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  17. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  18. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  19. Three-dimensional models of metal-poor stars

    OpenAIRE

    Collet, R.

    2008-01-01

    I present here the main results of recent realistic, 3D, hydrodynamical simulations of convection at the surface of metal-poor red giant stars. I discuss the application of these convection simulations as time-dependent, 3D, hydrodynamical model atmospheres to spectral line formation calculations and abundance analyses. The impact of 3D models on derived elemental abundances is investigated by means of a differential comparison of the line strengths predicted in 3D under the assumption of loc...

  20. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    Science.gov (United States)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.