WorldWideScience

Sample records for non-lte gas temperatures

  1. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    Science.gov (United States)

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  2. Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements

    Science.gov (United States)

    Gilli, G.; López-Valverde, M. A.; Peralta, J.; Bougher, S.; Brecht, A.; Drossart, P.; Piccioni, G.

    2015-03-01

    The upper mesosphere and the lower thermosphere of Venus (from 90 to 150 km altitude) seems to play a transition region in photochemistry, dynamics and radiation, but is still very poorly constrained observationally. Since 2006 VIRTIS on board Venus Express has been obtaining limb observations of CO fluorescent infrared emissions in a systematic manner. This study represents the scientific exploitation of this dataset and reports new information on the composition and temperature at those altitudes. This work is focused on the 4.7 μ m emission of CO as observed by VIRTIS, which contains two emission bands, the fundamental and the first hot of the main CO isotope. A specific scheme for a simultaneous retrieval of CO and temperature is proposed, based on results of a comprehensive non-LTE model of these molecular emissions. A forward model containing such non-LTE model is used at the core of an inversion scheme that consists of two steps: (i) a minimization procedure of model-data differences and (ii) a linear inversion around the solution of the first step. A thorough error analysis is presented, which shows that the retrievals of CO and temperature are very noisy but can be improved by suitable averaging of data. These averages need to be consistent with the non-LTE nature of the emissions. Unfortunately, the data binning process reduced the geographical coverage of the results. The obtained retrieval results indicate a global distribution of the CO in the Venus dayside with a maximum around the sub-solar point, and a decrease of a factor 2 towards high latitudes. Also a gradient from noon to the morning and evening sides is evident in the equator, this being smaller at high latitudes. No morning-afternoon differences in the CO concentration are observed, or are comparable to our retrieval errors. All this argues for a CO distribution controlled by dynamics in the lower thermosphere, with a dominant sub-solar to anti-solar gradient. Similar variations are found

  3. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    Science.gov (United States)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  4. Quantification of non-LTE contributions to OH rotational temperatures based on VLT/X-shooter, VLT/UVES, and TIMED/SABER data

    Science.gov (United States)

    Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Proxauf, Bastian; Unterguggenberger, Stefanie; Jones, Amy M.

    2016-04-01

    The hydroxyl (OH) airglow emission is very valuable for estimating atmospheric temperatures at about 87 km because it is relatively easy to measure. The usual approach is based on intensity ratios of OH lines with low rotational upper levels of a given band and the assumption of a Boltzmann distribution of the level populations consistent with the ambient temperature. However, this assumption can be unrealistic if the frequency of thermalising collisions is too low, which is most likely at the highest emission altitudes. We have investigated the amounts of possible non-LTE contributions to the measured OH rotational temperatures depending on the selected lines, band, and time of observation. For this, we used several hundred spectra from the echelle spectrograph X-shooter at the Very Large Telescope (VLT) at Cerro Paranal in Chile. These data with a very wide wavelength coverage allowed us to simultaneously measure temperatures for 25 OH bands and two O2 bands. The latter were used to obtain reference temperatures, which is possible since the radiative lifetimes of the upper states are sufficiently long for establishing full thermalisation for the populations of the different rotational levels. For a comparison of the resulting temperatures, a correction of the different emission altitudes is required. Hence, we also used CO2-based temperature and OH and O2 emission profile data from the SABER multi-channel radiometer on the TIMED satellite. The altitude-corrected OH rotational temperatures show significant non-LTE effects for higher vibrational levels of the upper state v' and especially even v'. The maximum deviations of more than 10 K were found for v' = 8. The non-LTE effects can vary within a range of a few K. The studied nocturnal variations indicate that the non-LTE contributions increase when the emission layer rises. Finally, we will also present first results for several thousand spectra taken with the VLT high-resolution optical echelle spectrograph UVES

  5. Non-LTE CO, revisited

    Science.gov (United States)

    Ayres, Thomas R.; Wiedemann, Gunter R.

    1989-01-01

    A more extensive and detailed non-LTE simulation of the Delta v = 1 bands of CO than attempted previously is reported. The equations of statistical equilibrium are formulated for a model molecule containing 10 bound vibrational levels, each split into 121 rotational substates and connected by more than 1000 radiative transitions. Solutions are obtained for self-consistent populations and radiation fields by iterative application of the 'Lambda-operator' to an initial LTE distribution. The formalism is used to illustrate models of the sun and Arcturus. For the sun, negligible departures from LTE are found in either a theoretical radiative-equilibrium photosphere with outwardly falling temperatures in its highest layers or in a semiempirical hot chromosphere that reproduces the spatially averaged emission cores of Ca II H and K. The simulations demonstrate that the puzzling 'cool cores' of the CO Delta V = 1 bands observed in limb spectra of the sun and in flux spectra of Arcturus cannot be explained simply by non-LTE scattering effects.

  6. Non-LTE Infrared Emission from Protoplanetary Disk Surfaces

    Science.gov (United States)

    Lockwood, A.; Blake, G.

    2011-05-01

    Accurately characterizing protoplanetary disks (proplyds) is integral to understanding the formation and evolution of planetary systems. The chemical reactions and physical processes within a disk determine the abundances and variety of molecular building blocks available for planet formation. Observations at infrared to millimeter wavelengths confirm a plethora of organic molecules exist in proplyds, including H2O, OH, HCN, C2H2, CO, and CO2 (Carr & Najita, 2008; Pontoppidan et al., 2010). These molecules not only provide the solid material for ice+rock planetary cores, their line emission dominates the thermal balance in the disk and provides robust signatures to examine the dynamical evolution of protoplanetary environments. Thus, it is critical to understand molecular abundance profiles in disks and the processes that affect them. We aim to model molecular excitation in a sample of proplyds and thereby verify certain disk properties. Densities in the warm molecular layers of a disk are insufficient to ensure the conditions for local thermodynamic equilibrium (LTE), so the state of the gas must be computed precisely. We utilize a radiative transfer code to model the radiation field in the disk, coupled with an escape probability code to determine the excitation of a given molecule, to derive the non-LTE level populations. We then utilize a raytracer to generate spectral image cubes covering the entire disk. We will present results for CO, whose relatively stable abundance and strong emission features provide a good foundation from which we can further constrain the parameters of a disk. Using infrared spectra from the NIRSPEC instrument on the Keck Telescope, we constrain column densities, temperatures, and emitting radii for a suite of nearby proplyds.

  7. The non-LTE formation of Li I lines in cool stars

    NARCIS (Netherlands)

    Carlsson, M.; Rutten, R.J.; Bruls, J.H.M.J.; Shchukina, N. G.

    1994-01-01

    We study the non-LTE (non local thermodynamic equilibrium) formation of Li I lines in the spectra of cool stars for a grid of radiative-equilibrium model atmospheres with variation in effective temperature, gravity, metallicity and lithium abundance. We analyze the mechanisms by which departures fro

  8. Non-LTE Radiation Transport in High Radiation Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Scott, H A

    2005-01-07

    A primary goal of numerical radiation transport is obtaining a self-consistent solution for both the radiation field and plasma properties. Obtaining such a solution requires consideration of the coupling between the radiation and the plasma. The different characteristics of this coupling for continuum and line radiation have resulted in two separate sub-disciplines of radiation transport with distinct emphases and computational techniques. LTE radiation transfer focuses on energy transport and exchange through broadband radiation, primarily affecting temperature and ionization balance. Non-LTE line transfer focuses on narrowband radiation and the response of individual level populations, primarily affecting spectral properties. Many high energy density applications, particularly those with high-Z materials, incorporate characteristics of both these regimes. Applications with large radiation fields including strong line components require a non-LTE broadband treatment of energy transport and exchange. We discuss these issues and present a radiation transport treatment which combines features of both types of approaches by explicitly incorporating the dependence of material properties on both temperature and radiation fields. The additional terms generated by the radiation dependence do not change the character of the system of equations and can easily be added to a numerical transport implementation. A numerical example from a Z-pinch application demonstrates that this method improves both the stability and convergence of the calculations. The information needed to characterize the material response to radiation is closely related to that used by the Linear Response Matrix (LRM) approach to near-LTE simulation, and we investigate the use of the LRM for these calculations.

  9. Non-LTE spectral models for the gaseous debris-disk component of Ton 345

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2014-01-01

    For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca II infrared emission triplet, hallmark of the gas disk. We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared w...

  10. Non-LTE models for the gaseous metal component of circumstellar discs around white dwarfs

    CERN Document Server

    Hartmann, S; Rauch, T; Werner, K

    2011-01-01

    Gaseous metal discs around single white dwarfs have been discovered recently. They are thought to develop from disrupted planetary bodies. Spectroscopic analyses will allow us to study the composition of extrasolar planetary material. We investigate in detail the first object for which a gas disc was discovered (SDSS J122859.93+104032.9). Therefor we perform non-LTE modelling of viscous gas discs by computing the detailed vertical structure and line spectra. The models are composed of carbon, oxygen, magnesium, silicon, calcium, and hydrogen with chemical abundances typical for Solar System asteroids. Line asymmetries are modelled by assuming spiral-arm and eccentric disc structures as suggested by hydrodynamical simulations. The observed infrared Ca II emission triplet can be modelled with a hydrogen-deficient metal gas disc located inside of the tidal disruption radius, with an effective temperature of about 6000 K and a surface mass density of 0.3 g/cm^2. The inner radius is well constrained at about 0.64 ...

  11. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com; Yang, L. B., E-mail: s.duan@163.com; Xie, W. P., E-mail: s.duan@163.com; Duan, S. C., E-mail: s.duan@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  12. Inelastic H+Li and H^-+Li^+ collisions and non-LTE Li I line formation in stellar atmospheres

    CERN Document Server

    Barklem, P S; Asplund, M

    2003-01-01

    Rate coefficients for inelastic collisions between Li and H atoms covering all transitions between the asymptotic states Li(2s,2p,3s,3p,3d,4s,4p,4d,4f)+H(1s) and Li^+ +H^- are presented for the temperature range 2000-8000 K based on recent cross-section calculations. The data are of sufficient completeness for non-LTE modelling of the Li I 670.8 nm and 610.4 nm features in late-type stellar atmospheres. Non-LTE radiative transfer calculations in both 1D and 3D model atmospheres have been carried out for test cases of particular interest. Our detailed calculations show that the classical modified Drawin-formula for collisional excitation and de-excitation (Li*+H Li*'+H) over-estimates the cross-sections by typically several orders of magnitude and consequently that these reactions are negligible for the line formation process. However, the charge transfer reactions collisional ion-pair production and mutual neutralization (Li*+H Li^+ +H^-) are of importance in thermalizing Li. In particular, 3D non-LTE calcu...

  13. Non-LTE analysis of subluminous O-star. V - The binary system HD 128220

    Science.gov (United States)

    Gruschinske, J.; Hamann, W. R.; Kudritzki, R. P.; Simon, K. P.; Kaufmann, J. P.

    1983-05-01

    Spectra of the binary system HD 128220 were taken in the UV and in the visual. The hot component - an O subdwarf - is analysed by means of non-LTE calculations. The cool companion has an effective temperature about 5500 ± 500K (Type G). The discussion of the stellar parameters arrives at results which agree with those derived from the mass function (Wallerstein and Wolff, 1966): if both components have about the same mass, these masses lie above 3 M_sun;. An O subdwarf of such a high mass has not yet been found and may be a supernova candidate. However, within the error margin of the orbital data also a mass ratio of MO/MG = 0.5 cannot be excluded, which would lead to stellar parameters which are more common for sdO's.

  14. Non-LTE modeling of supernova-fallback disks

    CERN Document Server

    Werner, K; Rauch, T

    2006-01-01

    We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the d...

  15. Quantitative spectroscopy of extreme helium stars Model atmospheres and a non-LTE abundance analysis of BD+10°2179

    Science.gov (United States)

    Kupfer, T.; Przybilla, N.; Heber, U.; Jeffery, C. S.; Behara, N. T.; Butler, K.

    2017-10-01

    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper, we present a detailed quantitative non-LTE spectral analysis for BD+10°2179, a prototype of this rare class of stars, using UV-Visual Echelle Spectrograph and Fiber-fed Extended Range Optical Spectrograph spectra covering the range from ∼3100 to 10 000 Å. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the atlas12 code. Additionally, We tested atlas12 against the benchmark code sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Secondly, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give Teff =17 300±300 K and log g = 2.80±0.10, and an evolutionary mass of 0.55±0.05 M⊙. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disc membership, which is consistent with the metallicity [Fe/H] ≈ -1 and α-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.

  16. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    Science.gov (United States)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-08-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves.We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally- and temporally-averaged 3D STAGGER model atmospheres.

  17. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    Science.gov (United States)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-12-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves. We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally and temporally averaged 3D STAGGER model atmospheres.

  18. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.;

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  19. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: The role of non-LTE excitation

    CERN Document Server

    Parfenov, S Yu; Sobolev, A M; Gray, M D

    2016-01-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub-)millimetre spectrum of gaseous methanol (CH$_3$OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH$_3$OH abundances along with the CH$_3$OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH$_3$OH lines can be lower by factor of $>10$--$100$ than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub-)millimetre transitions, it does not lead to the stro...

  20. The influence of electron collisions on non-LTE Li line formation in stellar atmospheres

    CERN Document Server

    Osorio, Y; Lind, K; Asplund, M

    2011-01-01

    The influence of uncertainties in the rate coefficient data for electron-impact excitation and ionization on non-LTE Li line formation in cool stellar atmospheres is investigated. We examine the collision data used in previous non-LTE calculations and compare with recent calculations using convergent close-coupling (CCC) techniques, as well our own calculations using the R-matrix with pseudostates (RMPS) method. We find excellent agreement between rate coefficients from the CCC and RMPS calculations, and reasonable agreement between these data and the semi-empirical data used in non-LTE calculations up till now. The results of non-LTE calculations using the old and new data sets are compared and only small differences are found; of order 0.01 dex (~ 2%) or less in the abundance corrections. We therefore conclude that electron collision data are not a significant source of uncertainty in non-LTE Li line formation calculations. Indeed, together with the collision data for the charge exchange process Li(3s) + H ...

  1. Non-LTE modeling of the near UV band of late-type stars

    CERN Document Server

    Short, C Ian

    2008-01-01

    We investigate the ability of both LTE and Non-LTE models to fit the near UV band absolute flux distribution and individual spectral line profiles of three standard stars for which high quality spectrophotometry and high resolution spectroscopy are available: The Sun (G2 V), Arcturus (K2 III), and Procyon (F5 IV-V). We investigate 1) the effect of the choice of atomic line list on the ability of NLTE models to fit the near UV band flux level, 2) the amount of a hypothesized continuous thermal absorption extinction source required to allow NLTE models to fit the observations, and 3) the semi-empirical temperature structure required to fit the observations with NLTE models and standard continuous near UV extinction. We find that all models that are computed with high quality atomic line lists predict too much flux in the near UV band for Arcturus, but fit the warmer stars well. The variance among independent measurements of the solar irradiance in the near UV is sufficiently large that we cannot definitely conc...

  2. The solar silicon abundance based on 3D non-LTE calculations

    Science.gov (United States)

    Amarsi, A. M.; Asplund, M.

    2017-01-01

    We present 3D non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations for silicon in the solar photosphere, using an extensive model atom that includes recent, realistic neutral hydrogen collisional cross-sections. We find that photon losses in the Si I lines give rise to slightly negative non-LTE abundance corrections of the order of -0.01 dex. We infer a 3D non-LTE-based solar silicon abundance of lg ɛ_{Si{⊙}}=7.51 dex. With silicon commonly chosen to be the anchor between the photospheric and meteoritic abundances, we find that the meteoritic abundance scale remains unchanged compared with the Asplund et al. and Lodders et al. results.

  3. The solar silicon abundance based on 3D non-LTE calculations

    CERN Document Server

    Amarsi, A M

    2016-01-01

    We present three-dimensional (3D) non-local thermodynamic equilibrium (non-LTE) radiative transfer calculations for silicon in the solar photosphere, using an extensive model atom that includes recent, realistic neutral hydrogen collisional cross-sections. We find that photon losses in the SiI lines give rise to slightly negative non-LTE abundance corrections of the order -0.01 dex. We infer a 3D non-LTE based solar silicon abundance of 7.51 dex. With silicon commonly chosen to be the anchor between the photospheric and meteoritic abundances, we find that the meteoritic abundance scale remains unchanged compared with the Asplund et al. (2009) and Lodders et al. (2009) results.

  4. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    CERN Document Server

    Amarsi, A M; Asplund, M; Barklem, P S; Collet, R

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic Stagger model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe i/Fe ii excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is over-estimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmos...

  5. Formation of Zr I and II lines under non-LTE conditions of stellar atmospheres

    CERN Document Server

    Velichko, A; Nilsson, H

    2011-01-01

    The non-local thermodynaic equilibrium (non-LTE) line formation for the two ions of zirconium is considered through a range of spectral types when the Zr abundance varies from the solar value down to [Zr/H] = -3. The model atom was built using 148 energy levels of Zr I, 772 levels of Zr II, and the ground state of Zr III. It was shown that the main non-LTE mechnism for the minority species Zr I is ultraviolet overionization. Non-LTE leads to systematically depleted total absorption in the Zr I lines and positive abundance corrections, reaching to 0.33 dex for the solar metallicity models. The excited levels of Zr II are overpopulated relative to their thermodynamic equilibrium populations in the line formation layers due to radiative pumping from the low-excitation levels. As a result, the line source function exceeds the Planck function leading to weakening the Zr II lines and positive non-LTE abundance corrections. Such corrections grow towards lower metallicity and lower surface gravity and reach to 0.34 d...

  6. Exact vs. Gauss-Seidel numerical solutions of the non-LTE radiation transfer problem

    Science.gov (United States)

    Quang, Carine; Paletou, Frédéric; Chevallier, Loïc

    2004-12-01

    Although published in 1995 (Trujillo Bueno & Fabiani Bendicho, ApJ 455, 646), the Gauss-Seidel method for solving the non-LTE radiative transfer problem has deserved too little attention in the astrophysical community yet. Further tests of the performances and of the accuracy of the numerical scheme are provided.

  7. Non-LTE Line Blanketing in Stars With Extended Outflowing Atmospheres.

    Science.gov (United States)

    Hillier, D. J.; Miller, D. L.

    1995-05-01

    With continuing advances in radiative transfer techniques, increases in computing power, and the availability of at least some of the necessary atomic data, it is now possible to consider the computation of detailed non-LTE model atmospheres in which the full effects of non-LTE line blanketing are taken into account. We discuss our own implementation of non-LTE line blanketing in a spherical non-LTE code developed for the investigation of objects with extended outflows. A partial linearization technique is used to simultaneously solve the radiative transfer equation in conjunction with the equations of statistical equilibrium. Convergence properties are similar to that obtained with an ``Optimal'' Approximate-Lambda Operator. CNO line blanketing has been incorporated without major difficulty, while Fe blanketing is currently being installed. Comparisons of model spectra with recent HST observations of an LMC WC star will be presented. When completed we anticipate the code will be applicable to the study of a wide range of phenomena exhibiting outflows including Luminous-Blue variables, Supernovae, Wold-Rayet stars and Novae. Partial support for this work was provided by NASA through grant Nos GO-5460.01-93A and GO-4550.01-92A from the Space Science Institute which is operated under the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support from NASA award NAGW-3828 is also gratefully acknowledged.

  8. A new solar carbon abundance based on non-LTE CN molecular spectra

    Science.gov (United States)

    Mount, G. H.; Linsky, J. L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggest a revised carbon abundance for the sun. We recommend a value of log carbon abundance = 8.35 plus or minus 0.15 which is significantly lower than the presently accepted value of log carbon abundance = 8.55. This revision may have important consequences in astrophysics.

  9. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation

    Science.gov (United States)

    Parfenov, S. Yu.; Semenov, D. A.; Sobolev, A. M.; Gray, M. D.

    2016-08-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub)millimetre spectrum of gaseous methanol (CH3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3OH abundances along with the CH3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3OH lines can be lower by factor of >10-100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3OH (sub)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3OH 50 - 40A+ (241.791 GHz) and 5-1 - 4-1E (241.767 GHz) lines, which could possibly be detected with the ˜5σ signal-to-noise ratio after ˜3 h of integration with the full ALMA array.

  10. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    Science.gov (United States)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  11. The role of hydrogen collisions in non-LTE abundance analyses of aluminium

    Science.gov (United States)

    Nordlander, Thomas; Lind, Karin

    2015-08-01

    The abundance patterns of metal-poor stars contain crucial information on the early evolution of the Galaxy. Stellar abundances must however be inferred from spectrum synthesis, which hinges on the input physics. Stellar atmospheres are typically assumed to be one-dimensional, with the equation of state fully determined only by local properties (in LTE, local thermodynamic equilibrium). Although non-LTE has been studied for decades, there are still unsolved problems related primarily to collisional rates. Due to a lack of laboratory data at the low collisional energies typical of stellar atmospheres, Drawin's order-of-magnitude estimates based on Thomson electron scattering are typically applied to inelastic hydrogen collisions.We critically evaluate the influence of uncertainties in input data on non-LTE abundance determinations of aluminium in metal-poor stars. We execute these analyses using different sources for the atomic data, and update the classical collisional rates with modern, physically appropriate estimates.

  12. Accurate Collisional Cross-Sections: Important Non-Lte Input Data

    Science.gov (United States)

    Mashonkina, L.

    2010-11-01

    Non-LTE modelling for a particular atom requires accurate collisional excitation and ionization cross-sections for the entire system of transitions in the atom. This review concerns with inelastic collisions with electrons and neutral hydrogen atoms. For the selected atoms, H i and Ca ii, comparisons are made between electron impact excitation rates from ab initio calculations and various theoretical approximations. The effect of the use of modern data on non-LTE modelling is shown. For most transitions and most atoms, hydrogen collisional rates are calculated using a semi-empirical modification of the classical Thomson formula for ionization by electrons. Approaches used to estimate empirically the efficiency of hydrogenic collisions in the statistical equilibrium of atoms are reviewed. This research was supported by the Deutsche Forschungsgemeinschaft with grant 436 RUS 17/13/07.

  13. A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared

    Science.gov (United States)

    Lopez-Valverde, Miguel Angel; García-Comas, Maya; Funke, Bernd; Jimenez-Monferrer, Sergio; Lopez-Puertas, Manuel

    2016-04-01

    Several instruments on board Mars Express have been sounding the upper atmosphere of Mars systematically in a limb geometry in the IR part of the spectrum. Two of them in particular, OMEGA and PFS, performed emission measurements during daytime and detected the strongest IR bands of species like CO2 and CO (Piccialli et al, JGRE, submitted). Similarly on Venus, the instrument VIRTIS carried out observations of CO2 and CO bands at 2.7, 4.3 and 4.7 um at high altitudes (Gilli et al, JGRE, 2009). All these daylight atmospheric emissions respond to fluorescent situations, a case of non-local thermodynamic equilibrum conditions (non-LTE), well understood nowadays using comprehensive non-LTE theoretical models and tools (Lopez-Valverde et al., Planet. Space Sci., 2011). However, extensive exploitation of these emissions has only been done in optically thin conditions to date (Gilli et al, Icarus, 2015) or in a broad range of altitudes if in nadir geometry (Peralta et al, Apj, 2015). Within the H2020 project UPWARDS we aim at performing retrievals under non-LTE conditions including optically thick cases, like those of the CO2 and CO strongest bands during daytime in the upper atmosphere of Mars. Similar effort will also be applied eventually to Venus. We will present the non-LTE scheme used for such retrievals, based on similar efforts performed recently in studies of the Earth's upper atmosphere using data from the MIPAS instrument, on board Envisat (Funke et al., Atmos. Chem. Phys., 2009; Jurado-Navarro, PhD Thesis, Univ. Granada, 2015). Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  14. Non-LTE Line Formation in the Near-IR: Hot Stars

    CERN Document Server

    Przybilla, Norbert

    2010-01-01

    Line-formation calculations in the Rayleigh-Jeans tail of the spectral energy distribution are complicated by an amplification of non-LTE effects. For hot stars this can make quantitative modelling of spectral lines in the near-IR challenging. An introduction to the modelling problems is given and several examples in the context of near-IR line formation for hydrogen and helium are discussed.

  15. Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    CERN Document Server

    Yan, H L; Nissen, P E; Zhao, G

    2016-01-01

    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obt...

  16. Three-dimensional non-LTE radiative transfer computation of the Ca 8542 infrared line from a radiation-MHD simulation

    CERN Document Server

    Leenaarts, J; Hansteen, V; van der Voort, L Rouppe

    2009-01-01

    Interpretation of imagery of the solar chromosphere in the widely used \\CaIIIR infrared line is hampered by its complex, three-dimensional and non-LTE formation. Forward modelling is required to aid understanding. We use a 3D non-LTE radiative transfer code to compute synthetic \\CaIIIR images from a radiation-MHD simulation of the solar atmosphere spanning from the convection zone to the corona. We compare the simulation with observations obtained with the CRISP filter at the Swedish 1--m Solar Telescope. We find that the simulation reproduces dark patches in the blue line wing caused by Doppler shifts, brightenings in the line core caused by upward-propagating shocks and thin dark elongated structures in the line core that form the interface between upward and downward gas motion in the chromosphere. The synthetic line core is narrower than the observed one, indicating that the sun exhibits both more vigorous large-scale dynamics as well as small scale motions that are not resolved within the simulation, pre...

  17. Non-LTE iron abundances in cool stars: The role of hydrogen collisions

    CERN Document Server

    Ezzeddine, Rana; Plez, Bertrand

    2015-01-01

    In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed, which includes hydrogen collisions for excitation, ionization and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star {\\alpha} Cen A and the metal-poor star HD140283.

  18. Non-LTE iron abundances in cool stars: The role of hydrogen collisions

    Science.gov (United States)

    Ezzeddine, R.; Merle, Th.; Plez, B.

    2016-09-01

    In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed which includes hydrogen collisions for excitation, ionization, and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star α Cen A, and the metal-poor star HD 140283.

  19. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  20. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  1. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  2. Non-LTE Spectral Analysis of Extremely Hot Post-AGB Stars: Constraints for Evolutionary Theory

    CERN Document Server

    Rauch, Thomas; Ziegler, Marc; Koesterke, Lars; Kruk, Jeffrey W

    2008-01-01

    Spectral analysis by means of Non-LTE model-atmosphere techniques has arrived at a high level of sophistication: fully line-blanketed model atmospheres which consider opacities of all elements from H to Ni allow the reliable determination of photospheric parameters of hot, compact stars. Such models provide a crucial test of stellar evolutionary theory: recent abundance determinations of trace elements like, e.g., F, Ne, Mg, P, S, Ar, Fe, and Ni are suited to investigate on AGB nucleosynthesis. E.g., the strong Fe depletion found in hydrogen-deficient post-AGB stars is a clear indication of an efficient s-process on the AGB where Fe is transformed into Ni or even heavier trans iron-group elements. We present results of recent spectral analyses based on high-resolution UV observations of hot stars.

  3. Characterization of OMEGA/MEx CO2 non-LTE limb observations on the dayside of Mars

    Science.gov (United States)

    Piccialli, A.; Drossart, P.; Lopez-Valverde, M. A.; Altieri, F.; Määttänen, A.; Gondet, B.; Witasse, O.; Bibring, J. P.

    2012-09-01

    The upper atmosphere of a terrestrial planet is a region difficult to sound, both by in-situ and remote sounding [1]. This atmospheric region is characterized by non-local thermodynamic equilibrium (non-LTE) that occurs when collisions between atmospheric species are not enough efficient in transferring energy. The CO2 non-LTE emission at 4.3 μm originates in the upper layers of the atmosphere and is a feature common to the three terrestrial planets with an atmosphere (Venus, Earth, and Mars). It provides a useful tool to gain insight into the atmospheric processes at these altitudes [2]. Non-LTE fluorescent emissions were first observed in the Earth's upper atmosphere in CO2 bands at 15 and 4.3 μm [3] and were later observed on several planets in different spectral bands. Ground-based observations of CO2 laser bands at 10 μm in the atmospheres of Venus and Mars [4] were interpreted as non-LTE emissions by several atmospheric models developed in the 1980s [5]. On Jupiter, Saturn and Titan non-LTE emissions were identified in the CH4 band at 3.3 μm [6]. More recently, CO2 non-LTE emission at 4.3 μm was detected in the upper atmosphere of Mars and Venus by the PFS (Planetary Fourier Spectrometer) and OMEGA (Visible and Infrared Mapping Spectrometer) experiments on board the European spacecraft Mars Express [7, 8, 9] and by VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) on board the European Venus Express [10]. These observations led to the development of a more comprehensive non-LTE model for the upper atmosphere [9, 11]. According to these models, during daytime the solar radiation in several near-IR bands from 1 to 5 μm produce enhanced state populations of many CO2 vibrational levels which cascade down to lower states emitting photons in diverse 4.3 μm bands. These emissions produce what is observed.

  4. Partial redistribution in 3D non-LTE radiative transfer in solar atmosphere models

    CERN Document Server

    Sukhorukov, Andrii V

    2016-01-01

    Resonance spectral lines such as H I Ly {\\alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {\\alpha} line treated in PRD. A typical...

  5. Strontium: To LTE or non-LTE that is the question

    CERN Document Server

    Hansen, Camilla J; Cescutti, Gabriele; Francois, Patrick; Arcones, Almudena; Karakas, Amanda I; Lind, Karin; Chiappini, Cristina

    2012-01-01

    Strontium has proven itself to be one of the most important neutron-capture elements in the study of metal-poor stars. Thanks to the strong absorption lines of Sr, they can be detected even in the most metal-poor stars and also in low-resolution spectra. However, we still cannot explain the large star-to-star abundance scatter we derive for metal-poor stars. Here we confront Galactic chemical evolution (GCE) with improved abundances for SrI+II including updated atomic data, to evaluate possible explanations for the large star-to-star scatter at low metallicities. We derive abundances under both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) for stars spanning a large interval of stellar parameters. Gravities and metallicities are also determined in NLTE. We confirm that the ionisation equilibrium between SrI and SrII is satisfied under NLTE but not LTE, where the difference between SrI and SrII is on average ~0.3dex. We show that the NLTE corrections are of increasing importance as the metallicity d...

  6. New non-LTE model of OH(v) in the mesopshere/lower thermosphere

    Science.gov (United States)

    Panka, Peter; Kutepov, Alexander; Kalogerakis, Konstantinos; Janches, Diego; Feofilov, Artem; Rezac, Ladi; Marsh, Daniel; Yigit, Erdal

    2017-04-01

    We present a new detailed non-LTE model of OH(v) for the nighttime mesosphere/lower thermosphere. The model accounts for chemical production of vibrationally excited OH and for various vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges with main atmospheric constituents. The new feature was added to account for the "indirect" vibrational-electronic (VE) mechanism OH(v)→O(1D)→N2(v) of the OH vibrational energy transfer to N2, recently suggested by Sharma et al. [2015] and confirmed through laboratory studies by Kalogerakis et al. [2016]. We study the impact of this mechanism on the OH(v) populations and emissions in the two SABER channels at 1.6 and 2.0 μm. We also discuss the implications this mechanism will have on the retrieval of OH and O densities, as well as its effects on the nighttime CO2 density retrievals from the SABER 4.3 μm channel.

  7. Neon and CNO Abundances for Extreme Helium Stars -- A Non-LTE Analysis

    CERN Document Server

    Pandey, Gajendra

    2010-01-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10 2179, BD-9 4395, and LS IV+6 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of a He white dwarf with a C-O white dwarf.

  8. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres

    CERN Document Server

    Prakapavicius, D; Kucinskas, A; Ludwig, H -G; Freytag, B; Caffau, E; Cayrel, R

    2013-01-01

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor 3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps ...

  9. Neon and CNO Abundances for Extreme Helium Stars—A Non-LTE Analysis

    Science.gov (United States)

    Pandey, Gajendra; Lambert, David L.

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10° 2179, BD-9° 4395, and LS IV+6° 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  10. Non-LTE inversions of the Mg II h&k and UV triplet lines

    CERN Document Server

    Rodríguez, Jaime de la Cruz; Ramos, Andrés Asensio

    2016-01-01

    The Mg II h&k lines are powerful diagnostics for studying the solar chromosphere. They have become particularly popular with the launch of the IRIS satellite, and a number of studies that include these lines have lead to great progress in understanding chromospheric heating, in many cases thanks to the support from 3D MHD simulations. In this study we utilize another approach to analyze observations: non-LTE inversions of the Mg II h&k and UV triplet lines including the effects of partial redistribution. Our inversion code attempts to construct a model atmosphere that is compatible with the observed spectra. We have assessed the capabilities and limitations of the inversions using the FALC atmosphere and a snapshot from a 3D radiation-MHD simulation. We find that Mg II h&k allow reconstructing a model atmosphere from the middle photosphere to the transition region. We have also explored the capabilities of a multi-line/multi-atom setup, including the Mg II h&k, the Ca II 854.2 nm and the Fe I ...

  11. Absolute Time-Resolved Emission of Non-LTE L-Shell Spectra from Ti-Doped Aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Back,C.; Feldman, U.; Weaver, J.; Seely, J.; Constantin, C.; Holland, G.; Lee, R.; Chung, H.; Scott, H.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2 mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3 keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {gamma}/{delta}{gamma} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  12. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  13. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    Science.gov (United States)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents

  14. A non-LTE study of neutral and singly-ionized iron line spectra in 1D models of the Sun and selected late-type stars

    CERN Document Server

    Mashonkina, L; Shi, J -R; Korn, A J; Grupp, F

    2011-01-01

    A comprehensive model atom for Fe with more than 3000 energy levels is presented. As a test and first application of this model atom, Fe abundances are determined for the Sun and five stars with well determined stellar parameters and high-quality observed spectra. Non-LTE leads to systematically depleted total absorption in the Fe I lines and to positive abundance corrections in agreement with the previous studies, however, the magnitude of non-LTE effect is smaller compared to the earlier results. Non-LTE corrections do not exceed 0.1 dex for the solar metallicity and mildly metal-deficient stars, and they vary within 0.21 dex and 0.35 dex in the very metal-poor stars HD 84937 and HD 122563, respectively, depending on the assumed efficiency of collisions with hydrogen atoms. Based on the analysis of the Fe I/Fe II ionization equilibrium in these two stars, we recommend to apply the Drawin formalism in non-LTE studies of Fe with a scaling factor of 0.1. For the Fe II lines, non-LTE corrections do not exceed 0...

  15. Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo

    Institute of Scientific and Technical Information of China (English)

    Yoichi Takeda; Gang Zhao; Masahide Takada-Hidai; Yu-Qin Chen; Yu-ji Saito; Hua-Wei Zhang

    2003-01-01

    We performed an extensive non-LTE analysis of the neutral sodiumlines of Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halo starsof types F-K covering a wide metallicity range (-4 [Fe/H] +0.4), using ourown data as well as data collected from the literature. For comparatively metal-rich disk stars (-1 [Fe/H] +0.4) where the weaker 6154/6161 lines are thebest abundance indicators, we confirmed [Na/Fe] ~ 0 with an "upturn" (i.e., ashallow/broad dip around -0.5 [Fe/H] 0) as already reported in previousstudies. For the metal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE corrections amountingto 0.5 dex have to be used, our analysis suggests mildly "subsolar" [Na/Fe] valuesdown to ~ -0.4 (with a somewhat large scatter of ~±0.2 dex) on the average at thetypical halo metallicity of [Fe/H] ~ -2, followed by a rise again to a near-solar ratioof [Na/Fe] ~ 0 at the very metal-poor regime [Fe/H] ~ -3 to -4. These resultsare discussed in comparison with the previous observational studies along with thetheoretical predictions from the available chemical evolution models.

  16. Temperature and the Ideal Gas

    Science.gov (United States)

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  17. A non-LTE study of silicon abundances in giant stars from the Si I infrared lines in the zJ-band

    CERN Document Server

    Tan, Kefeng; Takada-Hidai, Masahide; Takeda, Yoichi; Zhao, Gang

    2016-01-01

    We investigate the feasibility of the Si I infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si I IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13dex), and are higher than those from the optical lines. However, when the non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about $-$0.35dex. Our results demonstrate that the Si I IR lines could be reliable abundance indicators provided that the non-LTE effects are properly taken into account.

  18. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-02-01

    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1–C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock than at 350°C by thermal cracking (12 μg C1–C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  19. Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics

    OpenAIRE

    Zadelhoff, van, G.-J.; Dullemond, C.P.; Tak, van der, C.; Yates, J. A.; Doty, S. D.; Ossenkopf, V.; Hogerheijde, M. R.; Juvela, M.; Wiesemeyer, H.; Schöier, F.L.

    2002-01-01

    Comparison is made between a number of independent computer programs for radiative transfer in molecular rotational lines. The test models are spherically symmetric circumstellar envelopes with a given density and temperature profile. The first two test models have a simple power law density distribution, constant temperature and a fictive 2-level molecule, while the other two test models consist of an inside-out collapsing envelope observed in rotational transitions of HCO+. For the 2-level ...

  20. Three-dimensional non-LTE radiative transfer effects in Fe I lines I. Flux sheet and flux tube geometries

    CERN Document Server

    Holzreuter, R

    2012-01-01

    In network and active region plages, the magnetic field is concentrated into structures often described as flux tubes (FTs) and sheets (FSs). 3-D radiative transfer (RT) is important for energy transport in these concentrations. It is also expected to be important for diagnostic purposes but has rarely been applied for that purpose. Using true 3-D, non-LTE (NLTE) RT in FT/FS models, we compute Fe line profiles commonly used to diagnose the Sun's magnetic field by comparing the results with those obtained from LTE/1-D (1.5-D) NLTE calculations. Employing a multilevel iron atom, we study the influence of basic parameters such as Wilson depression, wall thickness, radius/width, thermal stratification or magnetic field strength on all Stokes $I$ parameters in the thin-tube approximation. The use of different levels of approximations of RT may lead to considerable differences in profile shapes, intensity contrasts, equivalent widths, and the determination of magnetic field strengths. In particular, LTE, which ofte...

  1. A computer program for fast non-LTE analysis of interstellar line spectra

    NARCIS (Netherlands)

    Tak, Floris van der; Black, John; Schoeier, Fredrik; Jansen, David; Dishoeck, Ewine van

    2007-01-01

    Abstract: The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. We present a computer program to calculate the intensities of atomic

  2. A Non-LTE Study of Silicon Abundances in Giant Stars from the Si I Infrared Lines in the zJ-Band

    Science.gov (United States)

    Tan, Kefeng; Shi, Jianrong; Takada-Hidai, Masahide; Takeda, Yoichi; Zhao, Gang

    2016-05-01

    We investigate the feasibility of Si i infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si i IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13 dex), and are higher than those from the optical lines. However, when non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06 dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about -0.35 dex. Our results demonstrate that the Si i IR lines could be reliable abundance indicators, provided that the non-LTE effects are properly taken into account. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 266.D-5655(A) and 084.D-0912(A); based on observations carried out at the National Astronomical Observatories (Xinglong, China).

  3. Some Thoughts on the Role of non-LTE Physics in ICF

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-07

    An effort to develop sub-critical-density high-Z metal-doped and pure metal foams as laser-driven x-ray sources is described. The main idea is that the laser beams preferentially heat the electrons, and if the plasma is sufficiently low density so that the heating rate is greater than the equilibration rate via electron-ion collisions, then the electron temperature in the plasma is much greater than the ion temperature as long as the laser is on. In such a situation the plasma is not in local thermal equilibrium (LTE), it heats supersonically and volumetrically, and the conversion efficiency of laser beam energy to multi-keV L-shell and K-shell radiation is much higher than what it would be in LTE plasma.

  4. STUDYING THE PHYSICAL CONDITIONS IN BE STAR DISKS USING NON-LTE RADIATIVE TRANSFER CODES

    Directory of Open Access Journals (Sweden)

    R. J. Halonen

    2010-01-01

    Full Text Available Las estrellas Be Clasicas son rotadores rÁpidos, estrellas masivas que exhiben varias caracterÍsticas observacionales distintas debido a la presencia de discos delgados de gas concentrados en el plano ecuatorial de la estrella. Para entender el mecanismo que gobierna el desarrollo de estos discos circunestelares, utilizamos códigos computacionales para crear modelos teóricos para estos objetos y su entorno y los comparamos con las observaciones de estrellas Be. El primer objetivo de este trabajo es la comparación de diferentes acercamientos usados en la creación de modelos teóricos de estrellas Be. Examinamos desarrollos independientes de códigos de equilibrio termodinámico no-local (N-ETL dise~nados para modelar ambientes circunestelares que resuelven simultáneamente los problemas de transporte radiativo, equilibrio térmico y equilibrio estadístico. Un análisis detallado de las diferencias y similitudes entre diferentes técnicas de transferencia radiativa puede proporcionar una valiosa comprensión acerca de los fenómenos físicos que gobiernan el desarrollo de los discos circunestelares de estrellas Be.

  5. Time dependent non-LTE calculations of ionisation in the early universe

    CERN Document Server

    Wehrse, R; Davé, R; Dav\\'e, Romeel

    2005-01-01

    We present a new implicit numerical algorithm for the calculation of the time dependent non-Local Thermodynamic Equilibrium of a gas in an external radiation field that is accurate, fast and unconditionally stable for all spatial and temporal increments. The method is presented as a backward difference scheme in 1-D but can be readily generalised to 3-D. We apply the method for calculating the evolution of ionisation domains in a hydrogen plasma with plane-parallel Gaussian density enhancements illuminated by sources of UV radiation. We calculate the speed of propagation of ionising fronts through different ambient densities and the interaction of such ionising fronts with density enhancements. We show that for a typical UV source that may be present in the early universe, the introduction of a density enhancement of a factor ~10 above an ambient density 10^{-4} atoms/cm^3 could delay the outward propagation of an ionisation front by millions of years. Our calculations show that within the lifetime of a singl...

  6. A spherical, non-LTE, blanketed model stellar atmosphere for Phi CAS (FOIa)

    Science.gov (United States)

    Rosenzweig, Patricia

    By constructing a model atmosphere, the theoretical energy distribution of the emergent radiation that best matches the observed energy distribution of the star Phi Cassiopeiae is calculated; its effective temperature and surface gravity are thus derived. In order to use the pair method to derive the extinction curve for NGC 457 of which Phi Cas is a member, a new method is developed for choosing a lightly reddened comparison star, which consists of matching the equivalent widths of spectral features that are particularly strong and sensitive to temperature and luminosity. The intrinsic energy distribution of Phi Cas was determined from 1500 to 5800 A. A detailed new spherical model atmosphere was constructed. The equation of transfer was solved with the constraints of hydrostatic and pure radiative equilibrium. The statistical equilibrium of 10 to the 6th transitions was treated. Several tests have demonstrated this model to be reliable. Results imply a mass of 6.3 + or - 3.6 solar masses, which agrees with the mass of the main-sequence turnoff of NGC 457.

  7. Non-LTE Stellar Population Synthesis of Globular Clusters Using Synthetic Integrated Light Spectra. I. Constructing the IL Spectra

    Science.gov (United States)

    Young, Mitchell. E.; Short, C. Ian

    2017-02-01

    We present an investigation of the globular cluster population synthesis method of McWilliam & Bernstein, focusing on the impact of non-LTE (NLTE) modeling effects and color–magnitude diagram (CMD) discretization. Johnson–Cousins–Bessel U – B, B-V, V-I, and J-K colors are produced for 96 synthetic integrated light (IL) spectra with two different discretization prescriptions and three degrees of NLTE treatment. These color values are used to compare NLTE- and LTE-derived population ages. Relative contributions of different spectral types to the IL spectra for different wavebands are measured. IL NLTE spectra are shown to be more luminous in the UV and optical than LTE spectra, but show stronger absorption features in the IR. The main features showing discrepancies between NLTE and LTE IL spectra may be attributed to light metals, primarily Fe i, Ca i, and Ti i, as well as TiO molecular bands. Main-sequence stars are shown to have negligible NLTE effects at IR wavelengths compared to more evolved stars. Photometric color values are shown to vary at the millimagnitude level as a function of CMD discretization. Finer CMD sampling for the upper main sequence and turnoff, base of the red giant branch, and the horizontal branch minimizes this variation. Differences in ages derived from LTE and NLTE IL spectra are found to range from 0.55 to 2.54 Gyr, comparable to the uncertainty in GC ages derived from color indices with observational uncertainties of 0.01 mag, the limiting precision of the Harris catalog.

  8. How Do Type Ia Supernova Nebular Spectra Depend on Explosion Properties? Insights from Systematic Non-LTE Modeling

    Science.gov (United States)

    Botyánszki, János; Kasen, Daniel

    2017-08-01

    We present a radiative transfer code to model the nebular phase spectra of supernovae (SNe) in non-LTE (NLTE). We apply it to a systematic study of SNe Ia using parameterized 1D models and show how nebular spectral features depend on key physical parameters, such as the time since explosion, total ejecta mass, kinetic energy, radial density profile, and the masses of 56Ni, intermediate-mass elements, and stable iron-group elements. We also quantify the impact of uncertainties in atomic data inputs. We find the following. (1) The main features of SN Ia nebular spectra are relatively insensitive to most physical parameters. Degeneracy among parameters precludes a unique determination of the ejecta properties from spectral fitting. In particular, features can be equally well fit with generic Chandrasekhar mass ({M}{ch}), sub-{M}{Ch}, and super-{M}{Ch} models. (2) A sizable (≳0.1 {M}⊙ ) central region of stable iron-group elements, often claimed as evidence for {M}{Ch} models, is not essential to fit the optical spectra and may produce an unusual flat-top [Co iii] profile. (3) The strength of [S iii] emission near 9500 Å can provide a useful diagnostic of explosion nucleosynthesis. (4) Substantial amounts (≳0.1 {M}⊙ ) of unburned C/O mixed throughout the ejecta produce [O iii] emission not seen in observations. (5) Shifts in the wavelength of line peaks can arise from line-blending effects. (6) The steepness of the ejecta density profile affects the line shapes, offering a constraint on explosion models. (7) Uncertainties in atomic data limit the ability to infer physical parameters.

  9. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  10. Temperature Controlled Filamentation in Argon Gas

    Institute of Scientific and Technical Information of China (English)

    CAO Shi-Ying; KONG Wei-Peng; SONG Zhen-Ming; QIN Yu; LI Ru-Xin; WANG Qing-Yue; ZHANG Zhi-Gang

    2008-01-01

    Temperature controlled filamentation is experimentally demonstrated in a temperature gradient gas-filled tube.The proper position of the tube is heated by a furnace and two ends of the tube are cooled by air. The experimental results show that multiple filaments are shrunken into a single fila.ment or no filament only by increasing the temperature at the beginning of the filament. This technique offers another degree of freedom of controlling the filamentation and opens a new way for intense monocycle pulse generation through gradient temperature in a noble gas.

  11. Temperature modulation of a catalytic gas sensor.

    Science.gov (United States)

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-10-29

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal.

  12. Design trends in low temperature gas processing

    Energy Technology Data Exchange (ETDEWEB)

    White, W.E.; Battershell, D.D.

    1966-01-01

    The following basic trends reflected in recent design of low-temperature gas processing are discussed: (1) higher recovery levels of light hydrocarbon products; (2) lower process temperatures and lighter absorption oils; (3) increased thermodynamic efficiencies; (4) automation; (5) single rather than multiple units; and (6) prefabrication and preassembly of the operating unit.

  13. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  14. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2009-11-01

    Full Text Available Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1 to predominantly light hydrocarbons (56% C1, 8% C5, the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  15. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  16. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  17. Breakdown Study in terms of Gas Temperature

    Science.gov (United States)

    Jung, S. J.; Uhm, H. S.

    2001-10-01

    This paper accounts for the corona discharge which is applied in air pollution purification. It will show elimination of the air pollution produced by the energy use and the optimization of the energy efficiency. The corona discharge forms the plasma state from the gas. Consequently, molecules and atoms in a weakly ionized plasma turn into the excited states, producing active chemical radicals and activating strong chemical reactions. Unburned particles may be generated in imperfect combustion. These particles will convert into harmless gases by activation of these chemical radicals. Outer electrode is composed of stainless steel or copper pipe, and inner electrode is composed of stainless steel stick. Direct current is used as power source. At an atmospheric pressure we measured breakdown voltage for the gases (i.e. nitrogen, air, oxygen) in terms of the radius ratio of two coaxial electrodes at gas temperature ranged from 300K to 1000K. The experimental data are compared with theoretical breakdown voltage.

  18. Effects of temperature conditions in a gas collector on operation of primary and secondary gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Chuishchev, V.M.; Selivanova, Z.G.; Vasyuta, V.I.

    1988-04-01

    Discusses composition of coal gas leaving coke ovens and temperature effects on its composition in a gas collector and cooling systems. Effects of coal gas temperature ranging from 78 to 90 C on operation of cooling systems are analyzed: cooling intensity, naphthalene buildup, etc. Analyses show that coal gas temperature fluctuations from 80 to 90 C do not influence gas collector operation, whereas operation of primary gas coolers is influenced by gas collector operation. When coal gas temperature is reduced from 88 to 80 C intensity of coal tar accumulation increases 2 times and that of naphthalene increases 5 to 6 times. Temperature of coal gas leaving the primary coolers ranges from 35 to 40 C. Types of primary coal gas coolers, their operation and performance are comparatively evaluated. Effects of gas cooler design on efficiency of coal tar separation from coal gas are discussed. 5 refs.

  19. Gas velocity and temperature near a liquid rocket injector face

    Science.gov (United States)

    Boylan, D. M.; Ohara, J.

    1973-01-01

    The gas flow near the injector of a liquid propellant rocket was investigated by rapidly inserting butt-welded platinum-platinum rhodium thermocouples through the injector into the chamber. The transient responses of the thermocouples were analyzed to determine average gas temperatures and velocities. A method of fitting exponential curves to repeated measurements of the transient temperature at several positions near the injector face produced consistent results. Preliminary tests yielded gas flow directions and gas compositions at the injector face. Average gas temperatures were found to be between 3100 (1700) and 3500 F (1950 C) and the average gas velocities between 550 (170) and 840 feet/second (260 m/sec).

  20. Evidence of a significant rotational non-LTE effect in the CO2 4.3 µm PFS-MEX limb spectra

    Science.gov (United States)

    Kutepov, Alexander A.; Rezac, Ladislav; Feofilov, Artem G.

    2017-01-01

    Since January 2004, the planetary Fourier spectrometer (PFS) on board the Mars Express satellite has been recording near-infrared limb spectra of high quality up to the tangent altitudes ≈ 150 km, with potential information on density and thermal structure of the upper Martian atmosphere. We present first results of our modeling of the PFS short wavelength channel (SWC) daytime limb spectra for the altitude region above 90 km. We applied a ro-vibrational non-LTE model based on the stellar astrophysics technique of accelerated lambda iteration (ALI) to solve the multi-species and multi-level CO2 problem in the Martian atmosphere. We show that the long-standing discrepancy between observed and calculated spectra in the cores and wings of 4.3 µm region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states 10011 and 10012 of the CO2 main isotope second hot (SH) bands above 90 km altitude. The redistribution of SH band intensities from band branch cores into their wings is caused (a) by intensive production of the CO2 molecules in rotational states with j > 30 due to the absorption of solar radiation in optically thin wings of 2.7 µm bands and (b) by a short radiative lifetime of excited molecules, which is insufficient at altitudes above 90 km for collisions to maintain rotation of excited molecules thermalized. Implications for developing operational algorithms for massive processing of PFS and other instrument limb observations are discussed.

  1. VLT spectroscopy and non-LTE modeling of the C/O-dominated accretion disks in two ultracompact X-ray binaries

    CERN Document Server

    Werner, K; Hammer, N J; Nagel, T; Rauch, T

    2006-01-01

    We present new medium-resolution high-S/N optical spectra of the ultracompact low-mass X-ray binaries 4U0614+091 and 4U1626-67, taken with the ESO Very Large Telescope. They are pure emission line spectra and the lines are identified as due to C II-IV and O II-III Line identification is corroborated by first results from modeling the disk spectra with detailed non-LTE radiation transfer calculations. Hydrogen and helium lines are lacking in the observed spectra. Our models confirm the deficiency of H and He in the disks. The lack of neon lines suggests an Ne abundance of less than about 10 percent (by mass), however, this result is uncertain due to possible shortcomings in the model atom. These findings suggest that the donor stars are eroded cores of C/O white dwarfs with no excessive neon overabundance. This would contradict earlier claims of Ne enrichment concluded from X-ray observations of circumbinary material, which was explained by crystallization and fractionation of the white dwarf core.

  2. A coordinated X-ray and Optical Campaign of the Nearest Massive Eclipsing Binary, $\\delta$ Orionis Aa: IV. A multiwavelength, non-LTE spectroscopic analysis

    CERN Document Server

    Shenar, T; Hamann, W -R; Corcoran, M F; Moffat, A F J; Pablo, H; Richardson, N D; Waldron, W L; Huenemoerder, D P; Apellániz, J Maíz; Nichols, J S; Todt, H; Nazé, Y; Hoffman, J L; Pollock, A M T; Negueruela, I

    2015-01-01

    Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system $\\delta$ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the ${\\rm \\it Hipparcos}$ parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if $\\delta$ Ori lies at about twice the ${\\rm \\it Hipparcos}$ distance, in the vicinity of the $\\sigma$-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be $\\Delta V \\approx 2.\\!\\!^{\\rm m}8$. The inferred parameters suggest the secondary is an early B-type dwarf ($\\approx$ B1 V), while the te...

  3. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  4. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    CERN Document Server

    Malygin, M G; Klahr, H; Dullemond, C P; Henning, Th

    2014-01-01

    In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. We prod...

  5. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    OpenAIRE

    Khan, M N; K.P.Tyagi

    2010-01-01

    The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbi...

  6. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  7. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis

    Science.gov (United States)

    Shenar, T.; Oskinova, L.; Hamann, W.-R.; Corcoran, M. F.; Moffat, A. F. J.; Pablo, H.; Richardson, N. D.; Waldron, W. L.; Huenemoerder, D. P.; Maíz Apellániz, J.; Nichols, J. S.; Todt, H.; Nazé, Y.; Hoffman, J. L.; Pollock, A. M. T.; Negueruela, I.

    2015-08-01

    Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system δ Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary’s distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if δ Ori lies at about twice the Hipparcos distance, in the vicinity of the σ-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be {{Δ }}V≈ 2\\buildrel{{m}}\\over{.} 8. The inferred parameters suggest that the secondary is an early B-type dwarf (≈B1 V), while the tertiary is an early B-type subgiant (≈B0 IV). We find evidence for rapid turbulent velocities (˜200 km s-1) and wind inhomogeneities, partially optically thick, in the primary’s wind. The bulk of the X-ray emission likely emerges from the primary’s stellar wind ({log}{L}{{X}}/{L}{Bol}≈ -6.85), initiating close to the stellar surface at {R}0˜ 1.1 {R}*. Accounting for clumping, the mass-loss rate of the primary is found to be {log}\\dot{M}≈ -6.4 ({M}⊙ {{yr}}-1), which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains.

  8. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  9. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in t....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m.......The absorption spectrum of the NO A(2)Sigma(+) gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...... in the range from 23 degrees C to 1,500 degrees C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution gamma-absorption bands and (2) from the analysis of vibrational distribution in the NO gamma-absorption system in the (211-238) nm spectral range...

  10. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in t....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m.......The absorption spectrum of the NO A(2)Sigma(+) gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path...... in the range from 23 degrees C to 1,500 degrees C. The gas temperature was evaluated (1) from the analysis of the structure of selected NO high-resolution gamma-absorption bands and (2) from the analysis of vibrational distribution in the NO gamma-absorption system in the (211-238) nm spectral range...

  11. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  12. Reflection error correction of gas turbine blade temperature

    Science.gov (United States)

    Kipngetich, Ketui Daniel; Feng, Chi; Gao, Shan

    2016-03-01

    Accurate measurement of gas turbine blades' temperature is one of the greatest challenges encountered in gas turbine temperature measurements. Within an enclosed gas turbine environment with surfaces of varying temperature and low emissivities, a new challenge is introduced into the use of radiation thermometers due to the problem of reflection error. A method for correcting this error has been proposed and demonstrated in this work through computer simulation and experiment. The method assumed that emissivities of all surfaces exchanging thermal radiation are known. Simulations were carried out considering targets with low and high emissivities of 0.3 and 0.8 respectively while experimental measurements were carried out on blades with emissivity of 0.76. Simulated results showed possibility of achieving error less than 1% while experimental result corrected the error to 1.1%. It was thus concluded that the method is appropriate for correcting reflection error commonly encountered in temperature measurement of gas turbine blades.

  13. Investigation of relationship between plasma gas temperature and reactive species

    Science.gov (United States)

    Doyama, Hideyuki; Kawano, Hiroaki; Takamatsu, Toshihiro; Matsumura, Yuriko; Miyahara, Hidekazu; Iwasawa, Atsuo; Azuma, Takeshi; Okino, Akitoshi

    2016-09-01

    In recent years, atmospheric non-thermal plasmas have attracted attention as a new sterilization device. In conventional plasma source, since the plasma gas temperature depends on the discharge power, influence of the plasma gas temperature on bactericidal ability by constant power has not been investigated. Therefore, we developed a new plasma source that can control the plasma gas temperature independently of the power, and it was shown that the bactericidal ability is increased with the plasma gas temperature. However, this factor has not been revealed. In this study, we investigated relationship between the bactericidal ability and the concentration of reactive species at each plasma gas temperature. Because reactive species generated by plasma are thought to affect sterilization. So, to investigate lifetime of the sterilizing factor bactericidal ability of Plasma Treated Water made by each gas temperature plasma was investigated. In both experiments, the correlation (R2 = 0.999) was observed between the concentration of singlet oxygen (1O2) and the bactericidal ability. These results show long-lifetime reactive species generated by 1O2 affects the bactericidal ability.

  14. Two-temperature transport coefficients of SF{sub 6}–N{sub 2} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Chen, Zhexin; Wu, Yi, E-mail: wuyic51@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Chunlin [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Guo, Anxiang; Liu, Zirui [Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xian (China)

    2015-10-15

    Sulfur hexafluoride (SF{sub 6}) is widely adopted in electric power industry, especially in high-voltage circuit breakers and gas-insulated switchgear. However, the use of SF{sub 6} is limited by its high liquidation temperature and high global warming potential. Recently, research shows SF{sub 6}–N{sub 2} mixture, which shows environmental friendliness and good electrical properties, may be a feasible substitute for pure SF{sub 6}. This paper is devoted to the calculation of and transport coefficients of SF{sub 6}–N{sub 2} mixture under both LTE (local thermodynamic equilibrium) and non-LTE condition. The two–temperature mass action law was used to determine the composition. The transport coefficients were calculated by classical Chapman–Enskog method simplified by Devoto. The thermophysical properties are presented for electron temperatures of 300–40 000 K, ratios of electron to heavy species temperature of 1–10 and N{sub 2} mole fraction of 0%–100% at atmospheric pressure. The ionization processes under both LTE and non-LTE have been discussed. The results show that deviations from local thermodynamic equilibrium significantly affect the properties of SF{sub 6}–N{sub 2} plasma, especially before the plasma is fully ionized. The different influence of N{sub 2} on properties for SF{sub 6}–N{sub 2} plasma in and out of LTE has been found. The results will serve as reliable reference data for computational simulation of the behavior of SF{sub 6}–N{sub 2} plasmas.

  15. Influence of inelastic collisions with hydrogen atoms on the non-LTE modelling of Ca i and Ca ii lines in late-type stars

    Science.gov (United States)

    Mashonkina, L.; Sitnova, T.; Belyaev, A. K.

    2017-09-01

    We performed the non-local thermodynamic equilibrium (non-LTE, NLTE) calculations for Ca i-ii with the updated model atom that includes new quantum-mechanical rate coefficients for Ca i + H i collisions from two recent studies and investigated the accuracy of calcium abundance determinations using the Sun, Procyon, and five metal-poor (MP, -2.6 ≤ [Fe/H] ≤-1.3) stars with well-determined stellar parameters. Including H i collisions substantially reduces over-ionisation of Ca i in the line formation layers compared with the case of pure electronic collisions and thus the NLTE effects on abundances derived from Ca i lines. We show that both collisional recipes lead to very similar NLTE results. As for Ca ii, the classical Drawinian rates scaled by SH = 0.1 are still applied. When using the subordinate lines of Ca i and the high-excitation lines of Ca ii, NLTE provides the smaller line-to-line scatter compared with the LTE case for each star. For Procyon, NLTE removes a steep trend with line strength among strong Ca i lines seen in LTE and leads to consistent [Ca/H] abundances from the two ionisation stages. In the MP stars, the NLTE abundance from Ca ii 8498 Å agrees well with the abundance from the Ca i subordinate lines, in contrast to LTE, where the abundance difference grows towards lower metallicity and reaches 0.46 dex in BD -13°3442 ([Fe/H] = -2.62). NLTE largely removes abundance discrepancies between the high-excitation lines of Ca ii and Ca ii 8498 Å obtained for our four [Fe/H] situation is improved when the calcium abundance decreases and the Ca i 4226 Å line formation depths are shifted into deep atmospheric layers that are dominated by over-ionisation of Ca i. However, the departures from LTE are still underestimated for Ca i 4226 Å at [Ca/H] ≃ -4.4 (HE 0557-4840). Consistent NLTE abundances from the Ca i resonance line and the Ca ii lines are found for HE 0107-5240 and HE 1327-2326 with [Ca/H] ≤-5. Thus, the Ca i/Ca ii ionisation

  16. EFFECTS OF GAS TYPE AND TEMPERATURE ON FINE PARTICLE FLUIDIZATION

    Institute of Scientific and Technical Information of China (English)

    Chunbao Xu; J.-X. Zhu

    2006-01-01

    The influence of gas type (helium and argon) and bed temperature (77-473 K) on the fluidization behaviour of Geldart groups C and A particles was investigated. For both types of particles tested, i.e., Al2O3 (4.8 μm) and glass beads (39 μm), the fluidization quality in different gases shows the following priority sequence: Ar>He. In the same gaseous atmosphere, the particles when fluidized at an elevated temperature usually show larger bed voidages, higher bed pressure drops, and a lower umf for the group A powder, all indicating an enhancement in fluidization quality. Possible mechanisms governing the operations of gas type and temperature in influencing the fluidization behaviours of fine particles have been discussed with respect to the changes in both gas properties and interparticle forces (on the basis of the London-van der Waals theory). Gas viscosity (varying significantly with gas-type and temperature) proves to be the key parameter that influences the bed pressure drops and umf in fluidization of fine particles, while the interparticle forces (also varying with gas-type and temperature) may play an important role in fine-particle fluidization by affecting the expansion behaviour of the particle-bed.

  17. Control rod drive for high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    DengJun-Xian; XuJi-Ming; 等

    1998-01-01

    This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.

  18. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  19. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  20. Study on Temperature Modulation Techniques for Micro Gas Sensors

    Institute of Scientific and Technical Information of China (English)

    Guangfen Wei; Zhenan Tang; Hongquan Zhang; Yanbing Xue; Jun Yu

    2006-01-01

    The sensitivity and selectivity of gas sensors are related with not only sensing material, but also their operating temperatures. Applying this property, temperature modulation technique has been proposed to improve the selectivity of gas sensors. With a newly developed alumina based micro gas sensor, the sensitivity to CO and CH4 at different operating temperatures was investigated. By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes, the dynamic responses of the sensor were measured and processed. Results show that the modulating waveshape plays an important role in the improvement of selectivity, while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.

  1. On the gas temperature in circumstellar disks around A stars

    CERN Document Server

    Kamp, I; Kamp, Inga; Zadelhoff, Gerd-Jan van

    2001-01-01

    In circumstellar disks or shells it is often assumed that gas and dust temperatures are equal where the latter is determined by radiative equilibrium. This paper deals with the question whether this assumption is applicable for tenous circumstellar disks around young A stars. In this paper the thin hydrostatic equilibrium models described by Kamp & Bertoldi (2000) are combined with a detailed heating/cooling balance for the gas. The most important heating and cooling processes are heating through infrared pumping, heating due to the drift velocity of dust grains, and fine structure and molecular line cooling. Throughout the whole disk gas and dust are not efficiently coupled by collisions and hence their temperatures are quite different. Most of the gas in the disk models considered here stays well below 300 K. In the temperature range below 300 K the gas chemistry is not much affected by T_gas and therefore the simplifying approximation T_gas = T_dust can be used for calculating the chemical structure of...

  2. The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies

    CERN Document Server

    Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2012-01-01

    [Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

  3. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  4. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  5. On The Gas Temperature of Molecular Cloud Cores

    CERN Document Server

    Juvela, M

    2011-01-01

    We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and the coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces t...

  6. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  7. Gravitational collapse of a magnetized fermion gas with finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)

    2013-07-15

    We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)

  8. Stopping power of an electron gas with anisotropic temperature

    Science.gov (United States)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  9. Temperature distribution and control in liquefied petroleum gas fluidized beds

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Ping Wu; Yanping Zhang; Jing Yang; Lige Tong

    2004-01-01

    Temperature distribution and control have been investigated in a liquefied petroleum gas (LPG) fluidized bed with hollow corundum spheres (A12O3) of 0.867-1.212 mm in diameter at moderately high temperatures (800-1100℃). Experiments were carried out for the air consumption coefficient α in the range of 0.3 to 1.0 and the fluidization number N in the range of 1.3 to 3.0. Particle properties, initial bed height, α and N all affect temperature distribution in the bed. Bed temperature can be adjusted about 200℃ by combined the adjusting of α and N.

  10. Numerical simulation of gas metal arc welding temperature field

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhentai; Shan Ping; Hu Shengsun; Wei Xinwei; Yang Jinglei

    2006-01-01

    The infrared camera is used to investigate the temperature field of gas metal arc welding. The results show that the temperature distribution of weld pool and adjacent area appears cone shape. A new heat source model combined by Gaussian distribution heat source of the arc and conical distribution heat source of the droplet is set up based on the experimental results,and with the combined boundary conditions, the temperature field of gas metal arc welding is simulated using finite element method. According to the comparison between the results of experiment and simulation in temperature field shows that the new combined heat source model is more accurate and effective than the Gauss heat source model.

  11. High Temperature Electron Localization in dense He Gas

    CERN Document Server

    Borghesani, A F

    2002-01-01

    We report new accurate mesasurements of the mobility of excess electrons in high density Helium gas in extended ranges of temperature $[(26\\leq T\\leq 77) K ]$ and density $[ (0.05\\leq N\\leq 12.0) {atoms} \\cdot {nm}^{-3}]$ to ascertain the effect of temperature on the formation and dynamics of localized electron states. The main result of the experiment is that the formation of localized states essentially depends on the relative balance of fluid dilation energy, repulsive electron-atom interaction energy, and thermal energy. As a consequence, the onset of localization depends on the medium disorder through gas temperature and density. It appears that the transition from delocalized to localized states shifts to larger densities as the temperature is increased. This behavior can be understood in terms of a simple model of electron self-trapping in a spherically symmetric square well.

  12. Temperatures of dust and gas in S~140

    CERN Document Server

    Koumpia, E; Ossenkopf, V; van der Tak, F F S; Mookerjea, B; Fuente, A; Kramer, C

    2015-01-01

    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 $\\mu$m and SCUBA at 450 $\\mu$m. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived wit...

  13. Anisotropic ordering in a two-temperature lattice gas

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.

    1997-01-01

    We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T...

  14. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...

  15. Kinetic Description of a Finite Temperature Meson Gas

    CERN Document Server

    Tan, Z G; Terranova, S; Bonasera, A; Tan, Zhi Guang; Zhou, Dai-Mei

    2006-01-01

    A transport model based on the mean free path approach for an interacting meson system at finite temperatures is discussed. A transition to a quark gluon plasma is included within the framework of the bag model. We discuss some calculations for a pure meson gas where the Hagedorn limiting temperature is reproduced when including the experimentally observed resonances. Next we include the possibility for a QGP formation based on the MIT bag model. The results obtained compare very well with Lattice QCD calculations. In particular the cross over to the QGP at about 175 MeV temperature is nicely reproduced.

  16. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  17. Temperature and distortion transients in gas tungsten-arc weldments

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1979-10-01

    An analysis and test program to develop a fundamental understanding of the gas tungsten-arc welding process has been undertaken at the Bettis Atomic Power Laboratory to develop techniques to determine and control the various welding parameters and weldment conditions so as to result in optimum weld response characteristics. These response characteristics include depth of penetration, weld bead configuration, weld bead sink and roll, distortion, and cracking sensitivity. The results are documented of that part of the program devoted to analytical and experimental investigations of temperatures, weld bead dimensions, and distortions for moving gas tungsten-arc welds applied to Alloy 600 plates.

  18. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  19. Optimized Feature Extraction for Temperature-Modulated Gas Sensors

    Directory of Open Access Journals (Sweden)

    Alexander Vergara

    2009-01-01

    Full Text Available One of the most serious limitations to the practical utilization of solid-state gas sensors is the drift of their signal. Even if drift is rooted in the chemical and physical processes occurring in the sensor, improved signal processing is generally considered as a methodology to increase sensors stability. Several studies evidenced the augmented stability of time variable signals elicited by the modulation of either the gas concentration or the operating temperature. Furthermore, when time-variable signals are used, the extraction of features can be accomplished in shorter time with respect to the time necessary to calculate the usual features defined in steady-state conditions. In this paper, we discuss the stability properties of distinct dynamic features using an array of metal oxide semiconductors gas sensors whose working temperature is modulated with optimized multisinusoidal signals. Experiments were aimed at measuring the dispersion of sensors features in repeated sequences of a limited number of experimental conditions. Results evidenced that the features extracted during the temperature modulation reduce the multidimensional data dispersion among repeated measurements. In particular, the Energy Signal Vector provided an almost constant classification rate along the time with respect to the temperature modulation.

  20. The ALMA View of Dense Molecular Gas in 30 Doradus

    Science.gov (United States)

    Bittle, Lauren E.; Indebetouw, Remy; Brogan, Crystal L.; Hunter, Todd R.; Leroy, Adam

    2017-01-01

    At a distance of 50 kpc, the 30 Doradus region within the Large Magellanic Cloud (LMC) hosts several sites of star formation including R136, a starburst region home to dozens of evolved O stars. The intense radiation from R136 creates an extreme environment for nearby star formation in such a low-metallicity, low mass galaxy. We have targeted a star-forming region ~15 pc away from R136 within 30 Doradus using the Atacama Large Millimeter/submillimeter Array (ALMA) to map the molecular gas to study the sites of star formation. We are conducting a clump-by-clump analysis of the intensities and line ratios of dense gas (HCO+, HCN, CS, H13CO+, H13CN) and diffuse gas (CO, 13CO, C18O) tracers at sub-parsec resolution. We identify and characterize ~100 molecular clumps within the region. With the observed molecular species, we aim to determine the physical conditions of each clump (e.g. size, internal turbulence, molecular abundance). We compare the intensities and line ratios to non-LTE Radex model grids of the excitation temperature, molecular column density, and volume density of the H2 collider to determine the physical excitation conditions within the clumps. We compare these properties of each clump to both associated and embedded star formation properties to quantify the relative importance of internal feedback from the star formation itself versus external feedback processes from R136 and determine which process dominates in this region.

  1. Granular bed filtration of high temperature biomass gasification gas.

    Science.gov (United States)

    Stanghelle, Daniel; Slungaard, Torbjørn; Sønju, Otto K

    2007-06-18

    High temperature cleaning of producer gas from biomass gasification has been investigated with a granular filter. Field tests were performed for several hours on a single filter element at about 550 degrees C. The results show cake filtration on the granular material and indicate good filtration of the biomass gasification producer gas. The relatively low pressure drop over the filter during filtration is comparable to those of bag filters. The granular filter can operate with high filtration velocities compared to bag filters and maintain high efficiency and a low residual pressure. This work is a part of the BioSOFC-up project that has a goal of utilizing the producer gas from the gasification plant in a solid oxide fuel cell (SOFC). The BioSOFC-up project will continue to the end of 2007.

  2. Chemical relaxation times in a hadron gas at finite temperature

    CERN Document Server

    Goity, J L

    1993-01-01

    The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.

  3. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  4. Development of high temperature coal gas desulfurization systems -- An overview

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Lau, F.S.; Wangergow, J.R.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)

    1997-12-31

    Integrated Gasification Combined-Cycle (IGCC) processes are among the leading contenders for generation of electricity from coal in the 21st century. Coal gas desulfurization to sufficiently low levels at temperatures above 350 C is now recognized as crucial to efficient and economical utilization of coal in advanced IGCC processes. The implementation of hot coal gas desulfurization heavily relies on the development of regenerable sorbent materials that can efficiently remove H{sub 2}S (from several thousand ppmv levels down to a few ppmv) over a very large number of sulfidation/regeneration cycles. Over the last two decades, development of high temperature desulfurization sorbents has been focused on using various combinations of transition metal oxides as regenerable sorbents. The selection of suitable metal oxides is generally based on a number of requirements imposed by the IGCC process, which include favorable thermodynamic equilibria during sulfidation and regeneration, relatively high sulfidation and regeneration reactivities, good mechanical strength and structural stability, and environmental friendliness, all at a reasonably low cost. The desulfurization reactor can have a fixed-bed, a moving-bed, a transport reactor, or a bubbling fluidized-bed reactor design. Depending on process conditions and the application intended, each of these reactor configurations offers advantages, but also has limitations. The parameters guiding the choice of a reactor system include reactivity of the sorbent, crush strength and/or attrition resistance of the sorbent, absorption capacity of the sorbent, temperature distribution inside the reactors, and SO{sub 2} concentration in the regeneration product gas. This paper provides an overview of high temperature fuel gas desulfurization within the context of IGCC processes. The paper focuses on the studies related to the development of regenerable sorbents and addresses thermodynamic considerations, sulfidation kinetics

  5. Non-intrusive measurement of hot gas temperature in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.

    2016-09-27

    A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.

  6. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    CERN Document Server

    Tang, X D; Menten, K M; Zheng, X W; Esimbek, J; Zhou, J J; Yeh, C C; König, C; Yuan, Y; He, Y X; Li, D L

    2016-01-01

    For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.Three 218 GHz transitions (JKAKC=303-202, 322-221, and 321-220) of para-H2CO were observed with the 15m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temp...

  7. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...

  8. The role of outlet temperature of flue gas in organic Rankine cycle considering low temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shuang Ying; Li, Chun; Xiao, Lan; Li, You Rong; Liu, Chao [Chongqing University, Chongqing (China)

    2014-12-15

    This paper gives a special focus on the role of outlet temperature of flue gas (T{sub go}) in organic Rankine cycle (ORC) system for low temperature flue gas waste heat recovery. The variations of performance indicators: net work (W{sub net}), exergy efficiency (η{sub ex}) and levelized energy cost (LEC) versus T{sub go} are discussed. Considering the corrosion of low temperature flue gas, the necessity and reasonability of limiting T{sub go} at its minimum allowed discharge temperature (355.15 K) are analyzed. Results show that there exist optimal T{sub go} (T{sub go,opt}) for W{sub net} and LEC, while T{sub go,opt} for η{sub ex} does not appear under the investigated range of T{sub go}. Moreover, the T{sub go,opt} for W{sub net} is always lower than 355.15 K, the T{sub go,opt} for LEC, despite being greater than the one for W{sub net}, is just slightly higher than 355.15 K when the inlet temperature of flue gas varies from 408.15 K to 463.15 K. For the waste heat recovery of low temperature flue gas, it is reasonable to fix T{sub go} at 355.15K if W{sub net} or LEC is selected as primary performance indicator under the pinch point temperature difference of evaporator (ΔT{sub e}) below 20K.

  9. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    of NH3 by formation of NH2 and NH radicals.Mixing in reacting gas phase systems is described by an empirical mixing model (the droplet diffusion model). The mixing process is separated into macro- and micromixing. The macromixing is assumed to be ideal while the micromixing is modelled by molecular......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction...

  10. High-temperature gas effects on aerodynamic characteristics of waverider

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Li Kai; Liu Weiqiang

    2015-01-01

    This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium pro-gram developed by the authors while the perfect gas flow simulations are carried out with the com-mercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57%of the whole craft’s length at the altitude of 60 km.

  11. High-temperature gas effects on aerodynamic characteristics of waverider

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2015-02-01

    Full Text Available This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft’s length at the altitude of 60 km.

  12. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    Science.gov (United States)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  13. Thermographic investigation of surface temperature of the evaporating liquid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2017-01-01

    Full Text Available An experimental study of the temperature field on the surface of horizontal liquid layer (Ethanol evaporating into gas flow (Air has been performed. Temperature gradient of the gas-liquid interface has been measured with the help of Titanium 570M IR camera. Shear stresses on gas-liquid interface induced by thermocapillary effect and inert gas flow have been defined.

  14. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from May 2004 to October 2004 including testing of catalytic materials, sensor design and fabrication, and software development.

  15. Gas sensing properties of nanocrystalline diamond at room temperature

    Directory of Open Access Journals (Sweden)

    Marina Davydova

    2014-12-01

    Full Text Available This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3 at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance, was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop.

  16. High temperature erosion of coated superalloys for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Restall, J.E.; Stephenson, D.J.

    1987-04-01

    Particulate materials ingested with the intake air, together with other solids generated within the gas turbine, are known to have the potential of degrading the hot oxidized or corroded surfaces of static and rotating aerofoil components. The nature of the degradation may be primarily by oxidation, corrosion or erosion or through some form of interaction between these processes. These regimes are illustrated by reference to the metallurgical assessment of components withdrawn from a marine gas turbine and a turbine used for pressurized fluidized-bed combustion trials. The conditions under which surface coatings may be expected to enhance the erosion-corrosion resistance of hot-end turbine components are discussed. From laboratory erosion experiments, particular attention is directed towards the importance of oxide scale plasticity and the ductile-to-brittle transition temperature of the coating under various particle-loading conditions.

  17. The Status of the US High-Temperature Gas Reactors

    Directory of Open Access Journals (Sweden)

    Andrew C. Kadak

    2016-03-01

    Full Text Available In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

  18. Observations of Arp 220 using Herschel-SPIRE: An Unprecedented View of the Molecular Gas in an Extreme Star Formation Environment

    CERN Document Server

    Rangwala, Naseem; Glenn, Jason; Wilson, Christine D; Rykala, Adam; Isaak, Kate; Baes, Maarten; Bendo, George J; Boselli, Alessandro; Bradford, Charles M; Clements, D L; Cooray, Asantha; Fulton, Trevor; Imhof, Peter; Kamenetzky, Julia; Madden, Suzanne C; Mentuch, Erin; Sacchi, Nicola; Sauvage, Marc; Schirm, Maximilien R P; Smith, M W L; Spinoglio, Luigi; Wolfire, Mark

    2011-01-01

    We present Herschel SPIRE-FTS observations of Arp~220, a nearby ULIRG. The FTS continuously covers 190 -- 670 microns, providing a good measurement of the continuum and detection of several molecular and atomic species. We detect luminous CO (J = 4-3 to 13-12) and water ladders with comparable total luminosity; very high-J HCN absorption; OH+, H2O+, and HF in absorption; and CI and NII. Modeling of the continuum yields warm dust, with T = 66 K, and an unusually large optical depth of ~5 at 100 microns. Non-LTE modeling of the CO shows two temperature components: cold molecular gas at T ~ 50 K and warm molecular gas at T ~1350 K. The mass of the warm gas is 10% of the cold gas, but dominates the luminosity of the CO ladder. The temperature of the warm gas is in excellent agreement with H2 rotational lines. At 1350 K, H2 dominates the cooling (~20 L_sun/M_sun) in the ISM compared to CO (~0.4 L_sun/M_sun). We found that only a non-ionizing source such as the mechanical energy from supernovae and stellar winds ca...

  19. The Status of the US High-Temperature Gas Reactors

    OpenAIRE

    2016-01-01

    In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR) by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current...

  20. The role of temperature with unexpected ejection of gas and rock

    Energy Technology Data Exchange (ETDEWEB)

    Somosvari, Z.

    1984-01-01

    An analysis is conducted of the physical and chemical laws for storing gas. The effect of the temperature of the rock on the content of gas in a gas storage facility and the pressure of the gas are studied. It is established that in the formation of an unexpected gas and rock ejection the temperature of the rock only has an indirect role which effects the pressure of the gas in the pores. It is also pointed out that with slow liberation of gas the temperature of the rock may play a more specific role.

  1. Exfoliated black phosphorus gas sensing properties at room temperature

    Science.gov (United States)

    Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C.

    2016-06-01

    Room temperature gas sensing properties of chemically exfoliated black phosphorus (BP) to oxidizing (NO2, CO2) and reducing (NH3, H2, CO) gases in a dry air carrier have been reported. To study the gas sensing properties of BP, chemically exfoliated BP flakes have been drop casted on Si3N4 substrates provided with Pt comb-type interdigitated electrodes in N2 atmosphere. Scanning electron microscopy and x-ray photoelectron spectroscopy characterizations show respectively the occurrence of a mixed structure, composed of BP coarse aggregates dispersed on BP exfoliated few layer flakes bridging the electrodes, and a clear 2p doublet belonging to BP, which excludes the occurrence of surface oxidation. Room temperature electrical tests in dry air show a p-type response of multilayer BP with measured detection limits of 20 ppb and 10 ppm to NO2 and NH3 respectively. No response to CO and CO2 has been detected, while a slight but steady sensitivity to H2 has been recorded. The reported results confirm, on an experimental basis, what was previously theoretically predicted, demonstrating the promising sensing properties of exfoliated BP.

  2. Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping

    Science.gov (United States)

    Kamarudin, K.; Bennetts, V. H.; Mamduh, S. M.; Visvanathan, R.; Yeon, A. S. A.; Shakaff, A. Y. M.; Zakaria, A.; Abdullah, A. H.; Kamarudin, L. M.

    2017-03-01

    Metal oxide gas sensors have been widely used in robotics application to perform remote and mobile gas sensing. However, previous researches have indicated that this type of sensor technology is cross-sensitive to environmental temperature and humidity. This paper therefore investigates the effects of these two factors towards gas distribution mapping and gas source localization domains. A mobile robot equipped with TGS2600 gas sensor was deployed to build gas distribution maps of indoor environment, where the temperature and humidity varies. The results from the trials in environment with and without gas source indicated that there is a strong relation between the fluctuation of the mean and variance map with respect to the variations in the temperature and humidity maps.

  3. Metathesis in the generation of low-temperature gas in marine shales

    OpenAIRE

    Jarvie Daniel M; Mango Frank D

    2010-01-01

    Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are e...

  4. Experimental Research On Gas Injection High Temperature Heat Pump With An Economizer

    OpenAIRE

    He, Yongning; Lei JIN; Cao, Feng; Chen, Shengkun

    2014-01-01

    Gas injection technology is often used in cold regions to solve heat pump’s low heating capacity and high discharge temperature at low ambient temperature. Injecting gas into port opened at specific position of compressor could increase mass flow rate of compressor and total heating capacity of heat pump. Gas injection also changes compression ratio of compressor and decreases discharge temperature. An optimal gas injection pressure is got when the coefficient of performance reached to peak v...

  5. Temperature profile and producer gas composition of high temperature air gasification of oil palm fronds

    Science.gov (United States)

    Guangul, F. M.; Sulaiman, S. A.; Ramli, A.

    2013-06-01

    Environmental pollution and scarcity of reliable energy source are the current pressing global problems which need a sustainable solution. Conversion of biomass to a producer gas through gasification process is one option to alleviate the aforementioned problems. In the current research the temperature profile and composition of the producer gas obtained from the gasification of oil palm fronds by using high temperature air were investigated and compared with unheated air. By preheating the gasifying air at 500°C the process temperature were improved and as a result the concentration of combustible gases and performance of the process were improved. The volumetric percentage of CO, CH4 and H2 were improved from 22.49, 1.98, and 9.67% to 24.98, to 2.48% and 13.58%, respectively. In addition, HHV, carbon conversion efficiency and cold gas efficiency were improver from 4.88 MJ/Nm3, 83.8% and 56.1% to 5.90 MJ/Nm3, 87.3% and 62.4%, respectively.

  6. Molecular line emission in NGC1068 imaged with ALMA: II. The chemistry of the dense molecular gas

    CERN Document Server

    Viti, S; Fuente, A; Hunt, L K; Usero, A; Henkel, C; Eckart, A; Martin, S; Spaans, M; Muller, S; Combes, F; Krips, M; Schinnerer, E; Casasola, V; Costagliola, F; Marquez, I; Planesas, P; van der Werf, P P; Aalto, S; Baker, A J; Boone, F; Tacconi, L J

    2014-01-01

    We present a detailed analysis of ALMA Bands 7 and 9 data of CO, HCO+, HCN and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~ 200 pc circumnuclear disk (CND) and the ~ 1.3 kpc starburst ring (SB ring) of NGC~1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim at determining the physical characteristics of the dense gas present in the CND and whether the different line intensity ratios we find within the CND as well as between the CND and the SB ring are due to excitation effects (gas density and temperature differences) or to a different chemistry. We estimate the column densities of each species in Local Thermodynamic Equilibrium (LTE). We then compute large one-dimensional non-LTE radiative transfer grids (using RADEX) by using first only the CO transitions, and then all the available molecules in order to constrain the densities, temperatures and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. We fi...

  7. Gas-temperature-dependent generation of cryoplasma jet under atmospheric pressure

    Science.gov (United States)

    Noma, Yuri; Choi, Jai Hyuk; Tomai, Takaaki; Terashima, Kazuo

    2008-09-01

    Plasma with a gas temperature below room temperature is not yet fully understood although it is expected to be an attractive tool for applications to material processing. In the present work, gas-temperature-dependent generation of a cryoplasma jet was studied. So far, we have generated a helium cryoplasma jet (296-5K) under atmospheric pressure. At gas temperatures below 20K, the helium excimer, He2, was observed clearly from by optical emission spectroscopy.

  8. High-Temperature Water-Gas Shift Membrane Reactor Study

    Energy Technology Data Exchange (ETDEWEB)

    Ciocco, M.V.; Iyoha, O.; Enick, R.M.; Killmeyer, R.P.

    2007-06-01

    NETL’s Office of Research and Development is exploring the integration of membrane reactors into coal gasification plants as a way of increasing efficiency and reducing costs. Water-Gas Shift Reaction experiments were conducted in membrane reactors at conditions similar to those encountered at the outlet of a coal gasifier. The changes in reactant conversion and product selectivity due to the removal of hydrogen via the membrane reactor were quantified. Research was conducted to determine the influence of residence time and H2S on CO conversion in both Pd and Pd80wt%Cu membrane reactors. Effects of the hydrogen sulfide-to-hydrogen ratio on palladium and a palladium-copper alloy at high-temperature were also investigated. These results were compared to thermodynamic calculations for the stability of palladium sulfides.

  9. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  10. Low-temperature primordial gas in merging halos

    CERN Document Server

    Vasiliev, E O

    2008-01-01

    Thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at cetrain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at $z=10$ it increases sharply from about $q_{_T}\\sim 10^{-3}$ for dark halos of $M=5\\times 10^7\\msun$ to $\\sim 0.1$ for halos with $M=10^8\\msun$. Further increase of the halo mass does not lead however to a significant growth of $q_T$ -- the asymptotic value for $M\\gg 10^8\\msun$ is of 0.3. We estimate star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal-poor low-mass stars in the Milky Way may have been formed from primordial gas behind such shocks.

  11. Study of Solid Particle Behavior in High Temperature Gas Flows

    Science.gov (United States)

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.

    2009-01-01

    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  12. Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. IV. Effects of Compton Scattering and Metal Opacities

    CERN Document Server

    Hubeny, I; Krolik, J H; Agol, E; Hubeny, Ivan; Blaes, Omer; Krolik, Julian H.

    2001-01-01

    We extend our models of the vertical structure and emergent radiation field of accretion disks around supermassive black holes described in previous papers of this series. Our models now include both a self-consistent treatment of Compton scattering and the effects of continuum opacities of the most important metal species (C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, Ni). With these new effects incorporated, we compute the predicted spectrum from black holes accreting at nearly the Eddington luminosity (L/L_Edd = 0.3) and central masses of 10^6, 10^7, and 10^8 M_sun. We also consider two values of the Shakura-Sunyaev alpha parameter, 0.1 and 0.01. Although it has little effect when M > 10^8 M_sun, Comptonization grows in importance as the central mass decreases and the central temperature rises. It generally produces an increase in temperature with height in the uppermost layers of hot atmospheres. Compared to models with coherent electron scattering, Comptonized models have enhanced EUV/soft X-ray emission, but they...

  13. Metal sorbents for high temperature mercury capture from fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Poulston; Evan J. Granite; Henry W. Pennline; Christina R. Myers; Dennis P. Stanko; Hugh Hamilton; Liz Rowsell; Andrew W.J. Smith; Thomas Ilkenhans; Wilson Chu [Johnson Matthey Technology Centre, Reading (United Kingdom)

    2007-07-01

    We have determined the effect of a pre-sulphiding treatment on the Hg removal capacities of Pt and Pd supported on alumina at a range of different metal loadings from 2 to 9wt% using Hg vapour in a simulated fuel gas feed. In the temperature range studied (204-288{sup o}C) Pd proved far superior to Pt for Hg removal and the sulphur pre-treatment led to a considerable increase in the Hg adsorption capacity. The Hg removal capacity for Pd increased with metal loading though decreased with sorbent temperature. A shift in the 2 Theta position of the Pd XRD diffraction peak from 82.1 to 79.5{sup o} after Hg adsorption at 204{sup o}C in the absence of a sulphur pre-treatment was consistent with the formation of a solid solution of Hg in Pd, with the sulphur pre-treatment the Pd related XRD peaks occur at even lower 2 Theta position suggesting a different Pd-Hg phase is formed. 5 refs., 1 tab.

  14. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  15. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  16. Comparison of temperature distributions inside a PEM fuel cell with parallel and interdigitated gas distributors

    Science.gov (United States)

    Hwang, J. J.; Liu, S. J.

    A comparison of the temperature distributions in a proton exchange membrane (PEM) fuel cell between the parallel-flow gas distributors and the interdigitated gas distributor has been discussed in detail. An electrochemical-thermal coupled numerical model in a five-layer membrane-electrode assembly (MEA) is developed. The temperatures for the reactant fuels as well as the carbon fibers in the porous electrode are predicted by using a CFD technique. The overpotential across the MEA is varied to examine its effect on the temperature distributions of the PEM fuel cell. It is found that both the fuel temperature and the carbon fiber temperature are increased with increasing the total overpotential. In addition, the fuel and carbon-fiber temperature distributions are significantly affected by the flow pattern that cast on the gas distributor. Replacing the parallel-flow gas distributor by the interdigitated gas distributor will increase the local maximum temperature inside the PEM fuel cell.

  17. Radiative and mechanical feedback into the molecular gas in the Large Magellanic Cloud. I. N159W

    CERN Document Server

    Lee, Min-Young; Lebouteiller, Vianney; Gusdorf, Antoine; Godard, Benjamin; Wu, Ronin; Galametz, Maud; Cormier, Diane; Petit, Franck Le; Roueff, Evelyne; Bron, Emeric; Carlson, Lynn; Chevance, Melanie; Fukui, Yasuo; Galliano, Frederic; Hony, Sacha; Hughes, Annie; Indebetouw, Remy; Israel, Franck; Kawamura, Akiko; Bourlot, Jacques Le; Lesaffre, Pierre; Meixner, Margaret; Muller, Erik; Nayak, Omnarayani; Onishi, Toshikazu; Roman-Duval, Julia; Sewilo, Marta

    2016-01-01

    We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI] 609 and 370 micron, and [NII] 205 micron are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153-754 K) and moderately dense (H2 number density of (1.1-4.5)e3 cm-3). To assess the impact of the energetic processes in the interstellar medium on the physical conditions of the CO-emitting gas, we then compare the observed CO line intensities with the models of photodissociation regions (PDRs) and shock...

  18. High-Temperature Magnetic Bearings for Gas Turbine Engines

    Science.gov (United States)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in

  19. Gas-Liquid Mass Transfer Characteristics in a Gas-Liquid-Solid Bubble Column under Elevated Pressure and Temperature

    Institute of Scientific and Technical Information of China (English)

    Haibo Jin; Suohe Yang; Guangxiang He; Delin Liu; Zemin Tong; Jianhua Zhu

    2014-01-01

    abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble column reactors under elevated temperature and elevated pressure. Meanwhile, gas-holdup and gas-liquid interfacial area a were obtained. The effects of temperature, pressure, superficial gas velocity and solid concentration on the mass transfer coeffi-cient were discussed. Experimental results show that the gas-liquid volumetric mass transfer coefficient kLa and interfacial area a increased with the increase of pressure, temperature, and superficial gas velocity, and decreased with the slurry concentration. The mass transfer coefficient kL increased with increasing superficial gas velocity and temperature and decreased with higher slurry concentration, while it changed slightly with pressure. Ac-cording to analysis of experimental data, an empirical correlation is obtained to calculate the values of kLa for H2 (CO, CO2) in the gas-paraffin-quartz system in a bubble column under elevated temperature and elevated pressure.

  20. Effect of Temperature on Gas Hold—up in Aerated Stirred Tanks

    Institute of Scientific and Technical Information of China (English)

    高正明; 施力田

    2003-01-01

    Gas holdups in ambient gassed and hot sparged systems with multiple modern impellers and the effect of temperature on gas holdup are reported,The operating temperature has a great impact on gas holdup though the gas dispersion regime in the hot sparged system is similar to the ambient gassed condition,The gas holdup under the elevated temperature and the ambient gassed operation is successfully correlated.With the sarme total gas flow rate and power input,the gas holdup in the hot sparged system(say near the boiling point)is only about half of that in the ambient system ,The results imply that almost all existing hot sparged reactors have been designed on the basis of incorrect estimates of the gas holdup during operation.

  1. High temperature strain gage technology for gas turbine engines

    Science.gov (United States)

    Fichtel, Edward J.; McDaniel, Amos D.

    1994-08-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  2. MELCOR Model Development of High Temperature Gas-cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Changyong; Huh, Changwook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The High Temperature Gas-cooled Reactor is one of the major challenging issues on the development of licensing technology for HTGR. The safety evaluation tools of HTGR can be developed in two ways - development of new HTGR-specific codes or revision of existing codes. The KINS is considering using existing analytic tools to the extent feasible, with appropriate modifications for the intended purpose. The system-level MELCOR code is traditionally used for LWR safety analysis, which is capable of performing thermal-fluid and accident analysis, including fission-product transport and release. Recently, this code is being modified for the NGNP HTGR by the NRC. In this study, the MELCOR input model for HTGR with Reactor Cavity Cooling System (RCCS) was developed and the steady state performance was analyzed to evaluate the applicability in HTGR. HTGR model with design characteristics of GT-MHR was developed using MELCOR 2.1 code to validate the applicability of MELCOR code to HTGR. In addition, the steady state of GT-MHR was analyzed with the developed model. It was evaluated to predict well the design parameters of GT-MHR. The developed model can be used as the basis for accident analysis of HTGR with further update of packages such as Radio Nuclide (RN) package.

  3. Multiphysics methods development for high temperature gas reactor analysis

    Science.gov (United States)

    Seker, Volkan

    Multiphysics computational methods were developed to perform design and safety analysis of the next generation Pebble Bed High Temperature Gas Cooled Reactors. A suite of code modules was developed to solve the coupled thermal-hydraulics and neutronics field equations. The thermal-hydraulics module is based on the three dimensional solution of the mass, momentum and energy equations in cylindrical coordinates within the framework of the porous media method. The neutronics module is a part of the PARCS (Purdue Advanced Reactor Core Simulator) code and provides a fine mesh finite difference solution of the neutron diffusion equation in three dimensional cylindrical coordinates. Coupling of the two modules was performed by mapping the solution variables from one module to the other. Mapping is performed automatically in the code system by the use of a common material mesh in both modules. The standalone validation of the thermal-hydraulics module was performed with several cases of the SANA experiment and the standalone thermal-hydraulics exercise of the PBMR-400 benchmark problem. The standalone neutronics module was validated by performing the relevant exercises of the PBMR-268 and PBMR-400 benchmark problems. Additionally, the validation of the coupled code system was performed by analyzing several steady state and transient cases of the OECD/NEA PBMR-400 benchmark problem.

  4. On the second-order temperature jump coefficient of a dilute gas

    CERN Document Server

    Radtke, Gregg A; Takata, Shigeru; Aoki, Kazuo

    2012-01-01

    We use LVDSMC simulations to calculate the second-order temperature jump coefficient for a dilute gas whose temperature is governed by the Poisson equation with a constant forcing term. Both the hard sphere gas and the BGK model of the Boltzmann equation are considered. Our results show that the temperature jump coefficient is different from the well known linear and steady case where the temperature is governed by the homogeneous heat conduction (Laplace) equation.

  5. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    Science.gov (United States)

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  6. High temperature heat exchanger studies for applications to gas turbines

    Science.gov (United States)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  7. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600.

  8. Effect of temperature fluctuation on hydrate-based CO2 separation from fuel gas

    Institute of Scientific and Technical Information of China (English)

    Xiaosen Li; Chungang Xu; Zhaoyang Chen; Huijie Wu; Jing Cai

    2011-01-01

    A new method of temperature fluctuation is proposed to promote the process of hydrate-based CO2 separation from fuel gas in this work according to the dual nature of CO2 solubility in hydrate forming and non-hydrate forming regions [1].The temperature fluctuation operated in the process of hydrate formation improves the formation of gas hydrate observably.The amount of the gas consumed with temperature fluctuation is approximately 35% more than that without temperature fluctuation.It is found that only the temperature fluctuation operated in the period of forming hydrate leads to a good effect on CO2 separation.Meanwhile,with the proceeding of hydrate formation,the effect of temperature fluctuation on the gas hydrate gradually reduces,and little effect is left in the completion term.The CO2 separation efficiencies in the separation processes with the effective temperature fluctuations are improved remarkably.

  9. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    temperature than the suction pyrometer in the low velocity regions of the furnace, a difference which is likely to be an effect of the purge gas added in the optical probe. The measured temperature fluctuations were evaluated by modeling of the gas radiation. The influence from the measured fluctuations...

  10. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    OpenAIRE

    Honggang Chang; Ronghai Zhu; Zongshe Liu; Jinlong He; Chongrong Wen; Sujuan Zhang; Yang Li

    2015-01-01

    With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, prepar...

  11. IDENTIFICATION OF DYNAMIC CHARACTERISTICS OF AIRCRAFT GAS TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. F. Sabitov

    2016-01-01

    Full Text Available The estimation of dynamic behavior of aircraft gas temperature sensors (GTS has to be done only in certified air installations and be based on recorded experimental transient response in accordance with the departmental standard. Experimental transient response has hindrances of different nature and can influence the accuracy of identification of dynamic behaviour of GTS. We suggested a new method to increase the accuracy of identification of dynamic behavior of GTS. The method is based on the use of amplitude spectrum of signal composed of experimental transient response. Shaped signal is an impulse decaying signal satisfying a Dirichlet condition and Fourier transform can apply to it to get amplitude spectrum. We worked out the relation between amplitude spectrum of shaped signals and time constant of dynamic behaviour for three mathematical models of GTS. The research showed that the information about dynamic behaviour of standard aircraft GTS is located in LF part of amplitude spectrum in the range of 0 to 1 rad/s and to 3 rad/s. The study revealed that hindrance in the transient response at frequency higher than 3 rad/s did not influence the accuracy of results if to use LF part of amplitude spectrum for the identification of dynamic behaviour of GTS. The amplitude spectrum of shaped signal can be estimated by measuring equipment like LF spectrum analyzer or calculated by software package with the function of fast Fourier transform. The value of time constant of certain mathematical model of GTS can be realized with the help of regression analysis or the use of embedded resources of different data processing systems. Thus, the method gives an opportunity to increase the accuracy of identification of dynamic behavior of GTS. 

  12. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  13. Functional Integral Approach to the Transition Temperature of Attractive Interacting Bose Gas in Traps

    Institute of Scientific and Technical Information of China (English)

    HU Guang-Xi; DAI Xian-Xi

    2004-01-01

    The functional integral approach (FIA) is introduced to study the transition temperature of an imperfect Bose gas in traps.An interacting model in quantum statistical mechanics is presented.With the model we study a Bose gas with attractive interaction trapped in an external potential.We obtain the result that the transition temperature of a trapped Bose gas will slightly shift upwards owing to the attractive interacting force.Successful application of the FIA to Bose systems is demonstrated.

  14. Best Frequency for Temperature Modulation of Tin Oxide Gas Sensor for Chemical Vapor Identification

    OpenAIRE

    R Chutia; Bhuyan, M.

    2014-01-01

    In this paper, we describe a method of optimum temperature modulation of metal oxide semiconductor (MOS) based gas sensor, operated in dynamic temperature measurement for identification of gas. The volatile organic compound (VOC) sample space consists of fourteen laboratory chemicals sampled at various concentration. We have used eleven number of gas sensors, manufactured by Figaro sensors, Japan. The heater of the sensors were modulated with sawtooth heating waveform of different frequency. ...

  15. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  16. Gas Between the Stars: What Determines its Temperature?

    Indian Academy of Sciences (India)

    2016-11-01

    The interstellar gas in galaxies is heated by stellar radiationand cosmic rays and it also cools through radiation. We takea detailed look at these processes in order to understand thethermal state of equilibrium of the interstellar gas. This gasalso manifests itself in different ‘phases’– molecular, neutralatomic and ionized, each with its characteristic temperatureand density, which we attempt to understand.

  17. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    Science.gov (United States)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  18. Herschel Far-Infrared Spectral-mapping of Orion BN/KL Outflows: Spatial distribution of excited CO, H2O, OH, O and C+ in shocked gas

    CERN Document Server

    Goicoechea, Javier R; Cernicharo, Jose; Neufeld, David A; Vavrek, Roland; Bergin, Edwin A; Cuadrado, Sara; Encrenaz, Pierre; Etxaluze, Mireya; Melnick, Gary J; Polehampton, Edward

    2014-01-01

    We present ~2'x2' spectral-maps of Orion BN/KL outflows taken with Herschel at ~12'' resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions "Peak 1" and "Peak 2" from that of the Hot Core and ambient cloud. We analyze the ~54-310um spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of 12CO (up to J=48-47), H2O, OH, 13CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L(FIR)~5x10^{-3} ratio and a plethora of far-IR H2O emission lines. The high-J CO and OH lines are a factor ~2 brighter toward Peak 1 whereas several excited H2O lines are ~50% brighter toward Peak 2. A simplified non-LTE model allowed us to constrain the dominant gas temperature components. Most of the CO column density arises from Tk~200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H2O/CO~10^{-2} abundance r...

  19. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  20. Influence of the Gas Mixture Ratio on the Correlations Between the Excimer XeCl* Emission and the Sealed Gas Temperature in Dielectric Barrier Discharge Lamps

    Institute of Scientific and Technical Information of China (English)

    徐金洲; 梁荣庆; 任兆杏

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl* emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increase in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature.

  1. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    Science.gov (United States)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  2. Calculation of Gas and Electronic Temperatures in the Channel of the Direct Current Arc

    Science.gov (United States)

    Gerasimov, Alexander V.; Kirpichnikov, Alexander P.

    2009-10-01

    The results of calculations of gas and electronic temperatures in the channel of an arc plasma generator are presented. The calculations were carried out within the framework of a self-consistent two-temperature channel model of an arc discharge. The given method can be used with good precision to determine the radial distribution of gas and electronic temperatures in conducting and non-conducting zones of a constant current arc at designated parameters of the discharge (current intensity and power).

  3. Functional Integral Approach to Transition Temperature of a Homogeneous Imperfect Bose Gas

    Institute of Scientific and Technical Information of China (English)

    HU Guang-Xi; DAI Xian-Xi; DAI Ji-Xin; William E. Evenson

    2004-01-01

    A functional integral approach (FIA) is introduced to calculate the transition temperature of a uniform imperfect Bose gas. With this approach we find that the transition temperature is higher than that of the corresponding ideal gas. We obtain the expression of the transition temperature shift as △Tc/To = 2.492 (na3) 1/6, where n is the density of particle number and a is the scattering length. The result has never been reported in the literature.

  4. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  5. The Cluster Gas Mass - Temperature Relation Evidence for a High Level of Preheating

    CERN Document Server

    McCarthy, I G; Balogh, M L; Carthy, Ian G. Mc; Babul, Arif; Balogh, Michael L.

    2002-01-01

    Recent X-ray observations have been used to demonstrate that the cluster gas mass - temperature relation is steeper than theoretical self-similar predictions drawn from numerical simulations that consider the evolution of the cluster gas through the effects of gravity and shock heating alone. One possible explanation for this is that the gas mass fraction is not constant across clusters of different temperature, as usually assumed. Observationally, however, there is no compelling evidence for gas mass fraction variation, especially in the case of hot clusters. Seeking an alternative physical explanation for the observed trends, we investigate the role of preheating the intracluster medium by some arbitrary source on the cluster gas mass - temperature relation for clusters with emission-weighted mean temperatures of greater than about 3 keV. Making use of the physically-motivated, analytic model developed by Babul et al. (2002), we find that preheating does, indeed, lead to a steeper relation. This is in agree...

  6. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  7. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system

    Science.gov (United States)

    Kaneko, T.; Brouwer, J.; Samuelsen, G. S.

    This paper addresses how the power and temperature are controlled in a biomass gas fueled solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system. A SOFC and MGT dynamic model are developed and used to simulate the hybrid system performance operating on biomass gas. The transient behavior of both the SOFC and MGT are discussed in detail. An unstable power output is observed when the system is fed biomass gas. This instability is due to the fluctuation of gas composition in the fuel. A specially designed fuel controller succeeded not only in allowing the hybrid system to follow a step change of power demand from 32 to 35 kW, but also stably maintained the system power output at 35 kW. In addition to power control, fuel cell temperature is controlled by introduction and use of a bypass valve around the recuperator. By releasing excess heat to the exhaust, the bypass valve provided the control means to avoid the self-exciting behavior of system temperature and stabilized the temperature of SOFC at 850 °C.

  8. Temperature induced decay of persistent currents in superfluid ultracold gas

    CERN Document Server

    Kumar, Avinash; Jendrzejewski, Fred; Campbell, Gretchen K

    2016-01-01

    We study how temperature affects the lifetime of a quantized, persistent current state in a toroidal Bose-Einstein condensate (BEC). When the temperature is increased, we find a decrease in the persistent current lifetime. Comparing our measured decay rates to simple models of thermal activation and quantum tunneling, we do not find agreement. The measured critical velocity is also found to depend strongly on temperature, approaching the zero temperature mean-field solution as the temperature is decreased. This indicates that an appropriate definition of critical velocity must incorporate the role of thermal fluctuations, something not explicitly contained in traditional theories.

  9. Gas Emissivity of a Modified Cellulose Mix at the Temperature of 900°C

    Directory of Open Access Journals (Sweden)

    Zawieja Z.

    2015-09-01

    Full Text Available This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose mix were compared with the gas emissivity of the commercial material used in gating systems in disposable sand casting moulds. The results have shown that the modified cellulose mix is characterized by a lower gas emissivity by as much as 50% and lower gas flow rate per unit mass during the process of thermal degradation at the temperature of 900°C, compared to the commercial mix. It was also noted that the amount of microspheres considerably affected the amount of gas produced.

  10. High Temperature Gas-cooled Reactor Projected Markets and Scoping Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2010-08-01

    The NGNP Project has the objective of developing the high temperature gas-cooled reactor (HTGR) technology to supply high temperature process heat to industrial processes as a substitute for burning of fossil fuels, such as natural gas. Applications of the HTGR technology that have been evaluated by the NGNP Project for supply of process heat include supply of electricity, steam and high-temperature gas to a wide range of industrial processes, and production of hydrogen and oxygen for use in petrochemical, refining, coal to liquid fuels, chemical, and fertilizer plants.

  11. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  12. Coupled model of deformation and gas flow process with temperature and slippage effect

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    2015-06-01

    Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code

  13. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  14. Qualitative gas temperature distribution in positive DC glow corona using spectral image processing in atmospheric air

    Science.gov (United States)

    Matsumoto, Takao; Inada, Yoichi; Shimizu, Daisuke; Izawa, Yasuji; Nishijima, Kiyoto

    2015-01-01

    An experimental method of determining a qualitative two-dimensional image of the gas temperature in stationary atmospheric nonthermal plasma by spectral image processing was presented. In the experiment, a steady-state glow corona discharge was generated by applying a positive DC voltage to a rod-plane electrode in synthetic air. The changes in the gas temperature distribution due to the amplitude of applied voltage and the ambient gas pressure were investigated. Spectral images of a positive DC glow corona were taken using a gated ICCD camera with ultranarrow band-pass filters, corresponding to the head and tail of a N2 second positive system band (0-2). The qualitative gas temperature was obtained from the emission intensity ratio between the head and tail of the N2 second positive system band (0-2). From the results, we confirmed that the gas temperature and its distribution of a positive DC glow corona increased with increasing applied voltage. In particular, just before the sparkover voltage, a distinctly high temperature region was formed in the positive DC glow at the tip of the rod electrode. In addition, the gas temperature decreased and its distribution spread diffusely with decreasing ambient gas pressure.

  15. [Comparative study on the gas temperature of a plasma jet at atmospheric pressure].

    Science.gov (United States)

    Jia, Peng-Ying; Li, Xue-Chen; Yuan, Ning

    2011-08-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce jet plasma in flowing work gas (argon mixed with trace nitrogen) at atmospheric pressure. The relation between the plasma length and the gas flow rate was obtained by taking the images of the jet plasma. A high-resolution optical spectrometer was used to collect the optical emission spectrum. The emission spectra of the first negative band of N(2+) (B2 Sigma(u+)-->Chi2 Sigma(g+), 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The gas temperature was investigated by this optical method and results show that the gas temperature increases with increasing the applied voltage. For comparison, a thermometer was used to measure the temperature of the gas emitted from the jet. The results also show that the gas temperature increases with increasing the applied voltage. The gas temperatures obtained by the two methods are consistent. The difference was analyzed.

  16. Effect of Temperature Wave on the Gas Transport in Liquid-Saturated Porous Media

    CERN Document Server

    Goldobin, Denis S

    2013-01-01

    We study the effect of surface temperature oscillations on gas mass transport through liquid-saturated porous media. Temperature wave induced by these oscillations and decaying deep in the massif creates the gas solubility wave along with the corresponding solute diffusion flux wave. When bubbles are immobilized by the surface tension force the only remaining mechanisms of gas mass transport are related to solute flux through liquid in pores. We evaluate analytically the generated time-average mass flux for the case of medium everywhere littered with gas bubbles and reveal the significant effect of the temperature wave on the gas release from the massif and bubble mass redistribution within the massif. Analytical theory is validated with numerical calculations.

  17. High temperature membrane reactor for catalytic gas-solid reactions

    NARCIS (Netherlands)

    Sloot, H.J.; Sloot, H.J.; Smolders, C.A.; Smolders, C.A.; van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1992-01-01

    A mathematical model, based on the dusty-gas model extended with surface diffusion, is presented that describes mass transport owing to molecular diffusion and viscous flow, as well as an instantaneous reversible reaction inside a membrane reactor. The reactants are fed to opposite sides of the

  18. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  19. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made of the ...

  20. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    Science.gov (United States)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  1. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...

  2. [Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Li, Ning; Yan, Jian-hua; Wang, Fei; Chi, Yong; Cen, Ke-fa

    2008-08-01

    The technique of tunable diode laser absorption spectroscopy (TDLAS) can be used for gas temperature distribution measurement by scanning multiple gas absorption lines with a tunable diode laser. The fundamental of gas temperature distribution measurement by TDLAS is introduced in the present paper, and the discretization strategy of equation for gas absorption is also given here. Using constrained linear least-square fitting method, the gas temperature distribution can be calculated with the help of physical constraints under the condition of uniform gas concentration and pressure. Based on the spectral parameters of four CO absorption lines near 6330 cm(-1) from HITRAN database, the model of two-temperature distribution at 300 and 600 K with each path length of 55 cm was set up. The effects of relative measurement error and different path length constraints of temperature bins on the gas temperature distribution measurement results were simulated by constrained linear least-square fitting. The results show that the temperature distribution calculation error increases as the relative measurement error rises. A measurement error of 5% could lead to a maximum relative error of 11%, and an average relative error of 2.2% for calculation result. And the weak physical constraints of path length for temperature bins could increase the calculation result error during the process of constrained linear least-square fitting. By setting up the model of two-temperature distribution with gas cells at room temperature as the cold section and in tube furnace as the hot section, the experiment of gas temperature distribution measurement in lab was carried out. Using four absorption lines of CO near 6330 cm(-1) scanned by VCSEL diode laser, and fitting the background laser intensity without absorption by the cubic polynomial to get the baseline signal, the integrals of spectral absorbance for gas temperature distribution measurement can be calculated. The relative calculation

  3. Effect of Temperature Variation and Gas Composition on the Stability of the RPC Operation

    CERN Document Server

    Cwiok, M; Górski, M; Królikowski, J

    2002-01-01

    An Inverted Double Gap RPC made of bakelite of 5*10^9 Ohm*cm volume resistivity was tested at avalanche rates up to 1 kHz/cm^2/gap in the Gamma Irradiation Facility at CERN in 2001. The inner surfaces of the chamber electrodes were cladded using linseed oil varnish. Dependence of the intrinsic RPC noise and the stability of the gas gain on the gas temperature and the gas composition are discussed.

  4. Characteristic features of the operation of high-temperature heat pipes with a noncondesable gas

    Science.gov (United States)

    Tolubinskiy, V. I.; Shevchuk, Ye. N.

    1987-01-01

    The principal concepts related to the nature of the processes occurring in high-temperature heat pipes with a noncondensable gas are examined, and guidelines for the development of such heat pipes are presented. The discussion is illustrated by experimental results obtained for a horizontal sodium heat pipe (diameter, 18/1 mm; length, 710 mm). In particular, attention is given to the starting dynamics and mechanisms, the shape of the vapor-gas front, and the vapor-gas front velocity.

  5. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    Science.gov (United States)

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  6. Articulated Multimedia Physics, Lesson 14, Gases, The Gas Laws, and Absolute Temperature.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the fourteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to gases, gas laws, and absolute temperature. The topics are concerned with the kinetic theory of gases, thermometric scales, Charles' law, ideal gases, Boyle's law, absolute zero, and gas pressures. The…

  7. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    OpenAIRE

    Sangchoel Kim; Jehoon Choi; Minsoo Jung; Seongjeen Kim; Sungjae Joo

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate ...

  8. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features

    Science.gov (United States)

    Li, Fu-an; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-01-01

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50–400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode. PMID:28287492

  9. Finite-Temperature Collective Dynamics of a Fermi Gas in the BEC-BCS Crossover

    Science.gov (United States)

    Wright, M. J.; Riedl, S.; Altmeyer, A.; Kohstall, C.; Guajardo, E. R. Sánchez; Denschlag, J. Hecker; Grimm, R.

    2007-10-01

    We report on experimental studies on the collective behavior of a strongly interacting Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a large region where a nonsuperfluid strongly interacting gas shows hydrodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent damping peak, suggesting a relation to the superfluid phase transition.

  10. Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients κLα are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict κLα values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.

  11. Simulation of Multi-Steady States in Low Temperature Gas Discharge

    Institute of Scientific and Technical Information of China (English)

    李弘; 胡希伟

    2004-01-01

    This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions. The simulation results are in a good agreement with those of the experiments.

  12. Passive Gas-Gap Heat Switches for Use in Low-Temperature Cryogenic Systems

    Science.gov (United States)

    Kimball, M. O.; Shirron, P. J.; Canavan, E. R.; Tuttle, J. G.; Jahromi, A. E.; Dipirro, M. J.; James, B. L.; Sampson, M. A.; Letmate, R. V.

    2017-01-01

    We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.

  13. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  14. Molecular gas temperature and density in spiral galaxies

    Science.gov (United States)

    Wall, W. F.; Jaffe, D. T.; Bash, F. N.; Israel, F. P.; Maloney, P. R.; Baas, F.

    1993-01-01

    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies.

  15. Measurements of fluctuating gas temperatures using compensated fine wire thermocouples

    Science.gov (United States)

    Nina, M. N. R.; Pita, G. P.

    1985-09-01

    Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.

  16. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  17. Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Abbasian, J. [Enviropower Inc., Espoo (Finland)

    1995-11-01

    In connection with the purification of fuel gas for gas turbines in the IGCC process to meet NO{sub x} standards and maintain the thermal efficiency of the process, tests were carried out with a 7.5 cm pressurized reactor to decompose ammonia at high temperature (700-900{degree}C) and pressure (2 MPa) using Ni-based catalysts. The effects of temperature, pressure, ammonia concentration and gas residence time were determined. The simulated coal gas composition was varied to allow assessment of the effect of contaminants (sulfur compounds and tars) on the ammonia decomposition efficiency of five catalysts under otherwise identical operating conditions. The results show that two of the catalysts tested are capable of efficiently reducing the concentration of ammonia in the gas. 12 refs., 13 figs.

  18. Influence of Gas Temperature on Microstructure and Properties of Cold Spray 304SS Coating

    Institute of Scientific and Technical Information of China (English)

    Xianming Meng; Junbao Zhang; Jie Zhao; Yongli Liang; Yujun Zhang

    2011-01-01

    In the present study, 304 stainless steel coatings were deposited on interstitial-free steel substrates by cold gas dynamic spray technology. The effect of gas temperature on microstructure, micro-hardness, cohesive strength, and electrochemical property of the coatings were investigated and compared. The results showed that increasing gas temperature had a great contribution to enhancing the bonding strength between the deposited particles and making the microstructure more density. Therefore, the porosity of the coatings decreased from 0%4-0.5% to 2%4-0.3%, and the tensile strength of the coatings increased from 564-4 MPa up to 734-3 MPa. In addition, the corrosion resistance of the coatings was also deeply influenced by process gas temperature. The corrosion kinetics of the coatings were affected by both of the plastic deformation of deposited particles and the porosity in the coatings.

  19. Conditions for lowering the flue gas temperature; Foerutsaettning foer saenkning av roekgastemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus

    2012-02-15

    In heat and power production, the efficiency of the power plant increases the larger share of heat from the flue gas that is converted to power. However, this also implies that the temperature of the heat exchanging surfaces is lowered. If the temperature is lowered to a temperature below the dew point of the flue gas, this would result in condensation of the gas, which in turn elevates the risk of serious corrosion attack on the surfaces where condensation occurs. Thus, it is important to determine the dew point temperature. One way of determining the dew point temperature is to use data on composition of the fuel together with operation parameters of the plant, thus calculating the dew point temperature. However, this calculation of the dew point is not so reliable, especially if hygroscopic salts are present. Therefore, for safety reasons, the temperature of the flue gas is kept well above the dew point temperature. This results in lowered over-all efficiency of the plant. It could also be expected that for a certain plant, some construction materials under certain operation conditions would have corrosion characteristics that may allow condensation on the surface without severe and unpredictable corrosion attack. However, by only using operation parameters and fuel composition, it is even harder to predict the composition of the condensate at different operation temperatures than to calculate the dew point temperature. If the dew point temperature was known with a greater certainty, the temperature of the flue gas could be kept lower, just above the estimated value of the dew point, without any increased risk for condensation. If, in addition, also the resulting composition of the condensate at different temperatures below the dew point is known, it can be predicted if the construction materials of the flue gas channel were compatible with the formed condensate. If they are compatible, the flue gas temperature can be further lowered from the dew point

  20. M.H.D. Diagnostics - Gas Temperature and Emittance

    Science.gov (United States)

    1960-04-06

    Flames and Explosions of Gases - Lewis & Van Elbe - Academic Press Inc., New York 4. Experimental Temperature Measurement in Flames & Hot Gases - Volume...Goldberg K. Rice J. N. Groves R. A. Weise H. R. Koenig E. A. Luebke C. H. T. Pan MSVD R. H. Norris H. Robinson W. F. Ashley F. W. Staub M. J. Brunner G

  1. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...

  3. Thermal barrier coating on high temperature industrial gas turbine engines

    Science.gov (United States)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  4. A Parameter Study of the Dust and Gas Temperature in a Field of Young Stars

    CERN Document Server

    Urban, Andrea; Doty, Steven D

    2007-01-01

    We model the thermal effect of young stars on their surrounding environment in order to understand clustered star formation. We take radiative heating of dust, dust-gas collisional heating, cosmic-ray heating, and molecular cooling into account. Using Dusty, a spherical continuum radiative transfer code, we model the dust temperature distribution around young stellar objects with various luminosities and surrounding gas and dust density distributions. We have created a grid of dust temperature models, based on our modeling with Dusty, which we can use to calculate the dust temperature in a field of stars with various parameters. We then determine the gas temperature assuming energy balance. Our models can be used to make large-scale simulations of clustered star formation more realistic.

  5. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jayapalan, Kanesh K.; Chin, Oi Hoong [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  6. Apparatus for storage of compressed gas at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lowther, F.E.

    1986-10-28

    This patent describes an engine system including a combustion engine and an oxidizer subsystem for high density gaseous oxidizer. The oxidizer subsystem comprises: a storage vessel; adsorbent material in the storage vessel capable of adsorbing relatively large volumes of the gaseous oxidizer at ambient temperature and of preventing the instantaneous release thereof in the event of a rupture of the vessel, the storage vessel being operatively connected for delivery of oxidizer to the engine for combination with fuel therein to power the engine.

  7. Critical temperature of Bose-Einstein condensation for weakly interacting bose gas in a potential trap

    Institute of Scientific and Technical Information of China (English)

    YU; Xuecai; YE; Yutang; WU; Yunfeng; XIE; Kang; CHENG; Lin

    2005-01-01

    The critical temperature of Bose-Einstein condensation at minimum momentum state for weakly interacting Bose gases in a power-law potential and the deviation of the critical temperature from ideal bose gas are studied. The effect of interaction on the critical temperature is ascribed to the ratiao α/λc, where α is the scattering length for s wave and λc is de Broglie wavelength at critical temperature. As α/λc<<1/(2π)2, the interaction is negligible. The presented deviation of the critical temperature for three dimensional harmonic potential is well in agreement with recent measurement of critical temperature for 87Rb bose gas trapped in a harmonic well.

  8. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  9. An inverse method for flue gas shielded metal surface temperature measurement based on infrared radiation

    Science.gov (United States)

    Zhang, B.; Xu, C. L.; Wang, S. M.

    2016-07-01

    The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.

  10. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  11. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    Science.gov (United States)

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.

  12. Gas-liquid interface of room-temperature ionic liquids.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  13. CO-dark gas and molecular filaments in Milky Way-type galaxies - II: The temperature distribution of the gas

    CERN Document Server

    Glover, Simon C O

    2016-01-01

    We investigate the temperature distribution of CO-dark molecular hydrogen (H2) in a series of disk galaxies simulated using the AREPO moving-mesh code. In conditions similar to those in the Milky Way, we find that H2 has a flat temperature distribution ranging from 10 - 100 K. At $T 30$ K, the H2 fraction spans a broader range and the CO content is small, allowing us to classify gas in these two regimes as CO-bright and CO-dark, respectively. The mean sound speed in the CO-dark H2 is 0.64 km/s, significantly lower than the value in the cold atomic gas (1.15 km/s), implying that the CO-dark molecular phase is more susceptible to turbulent compression and gravitational collapse than its atomic counterpart. We further show that the temperature of the CO-dark H2 is highly sensitive to the strength of the interstellar radiation field, but that conditions in the CO-bright H2 remain largely unchanged. Finally, we examine the usefulness of the [CII] and [OI] fine structure lines as tracers of the CO-dark gas. We sho...

  14. Dependence of ion drift velocity and diffusion coefficient in parent gas on its temperature

    Science.gov (United States)

    Maiorov, Sergey; Golyatina, Rusudan

    2016-09-01

    The results of Monte Carlo calculations of the ion drift characteristics are presented: ions of noble gases and Ti, Fe, Co, Cs, Rb, W and mercury ions in case of constant and uniform electric field are considered. The dependences of the ion mobility on the field strength and gas temperature are analyzed. The parameters of the drift velocity approximation by the Frost formula for gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented. A universal drift velocity approximation depending on the reduced electric field strength and gas temperature is obtained. In the case of strong electric fields or low gas temperatures, the deviation of the ion distribution function from the Maxwellian one (including the shifted Maxwellian one) can be very significant. The average energies of chaotic motion of ions along and across the electric field can also differ significantly. It is analyzed the kinetic characteristics of ion drift in own gas: ion diffusion coefficient along the field and across the field; thermal spread of velocities (temperature) along the field and across the field. The unexpected and nontrivial fact takes place: collision with backscattering represent only 10-50% of the total number of collisions. This calculation can be used when analyzing experiments with dusty plasma under cryogenic discharge, ultracold plasma. The work was supported by the Russian Science Foundation (grant RNF 14-19-01492).

  15. Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ha [LIGNex1 Co. Ltd., Gumi (Korea, Republic of); Lee, Tae Won [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2015-04-15

    A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to 300℃. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.

  16. Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines

    Indian Academy of Sciences (India)

    Avinash Kumar Agrawal; Shrawan Kumar Singh; Shailendra Sinha; Mritunjay Kumar Shukla

    2004-06-01

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of reducing the NOx emission of a diesel engine is by late injection of fuel into the combustion chamber. This technique is effective but increases fuel consumption by 10–15%, which necessitates the use of more effective NOx reduction techniques like exhaust gas recirculation (EGR). Re-circulating part of the exhaust gas helps in reducing NOx, but appreciable particulate emissions are observed at high loads, hence there is a trade-off between NOx and smoke emission. To get maximum benefit from this trade-off, a particulate trap may be used to reduce the amount of unburnt particulates in EGR, which in turn reduce the particulate emission also. An experimental investigation was conducted to observe the effect of exhaust gas re-circulation on the exhaust gas temperatures and exhaust opacity. The experimental setup for the proposed experiments was developed on a two-cylinder, direct injection, air-cooled, compression ignition engine. A matrix of experiments was conducted for observing the effect of different quantities of EGR on exhaust gas temperatures and opacity.

  17. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; König, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2017-01-01

    Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature. Aims: We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps. Methods: Three 218 GHz transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202 and 321-220/303-202 ratios. Results: The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions. The reduced spectra (FITS files) are only

  18. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    Energy Technology Data Exchange (ETDEWEB)

    Horner, M.W.

    1980-12-01

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  19. Solid-state titania-based gas sensor for liquefied petroleum gas detection at room temperature

    Indian Academy of Sciences (India)

    B C Yadav; Anuradha Yadav; Tripti Shukla; Satyendra Singh

    2011-12-01

    This paper reports the liquefied petroleum gas (LPG) sensing of titanium dioxide (Qualigens, India). Scanning electron micrographs and X-ray diffraction studies of samples were done. SEM shows that the material is porous and has grapes-like morphology before exposure to the LPG. XRD patterns reveal the crystalline nature of the material. The crystallites sizes of the TiO2 were found in the range of 30–75 nm. Variations in resistance with exposure of LPG to the sensing element were observed. The average sensitivity for different volume percentages of gas was estimated. The maximum value of average sensitivity was 1.7 for higher vol.% of LPG. Percentage sensor response (%SR) as a function of time was calculated and its maximum value was 45%. Response time of the sensor was 70 s. The sensor was quite sensitive to LPG and results were found reproducible.

  20. Development of a Binary Mixture Gas Composition Instrument for Use in a Confined High Temperature Environment

    Science.gov (United States)

    Cadell, Seth R.

    With recent advancements in material science, industrial operations are being conducted at higher and higher temperatures. This is apparent in the nuclear industry where a division of the field is working to develop the High Temperature Gas Reactor and the Very High Temperature Gas Reactor concurrently. Both of these facilities will have outlet gas temperatures that are at significantly higher temperatures than the typical water cooled reactor. These increased temperatures provide improved efficiency for the production of hydrogen, provide direct heating for oil refineries, or more efficient electricity generation. As high temperature operations are being developed, instruments capable of measuring the operating parameters must be developed concurrently. Within the gas reactor community there is a need to measure the impurities within the primary coolant. Current devices will not survive the temperature and radiation environments of a nuclear reactor. An instrument is needed to measure the impurities within the coolant while living inside the reactor, where this instrument would measure the amount of the impurity within the coolant. There are many industrial applications that need to measure the ratio of two components, whether it be the amount of particulate in air that is typical to pneumatic pumping, or the liquid to gas ratio in natural gas as it flows through a pipeline. All of the measurements in these applications can be met using a capacitance sensor. Current capacitance sensors are built to operate at ambient temperatures with only one company producing a product that will handle a temperature of up to 400 °C. This maximum operating temperature is much too low to measure the gas characteristics in the High Temperature Gas Reactor. If this measurement technique were to be improved to operate at the expected temperatures, the coolant within the primary loop could be monitored for water leaks in the steam generator, carbon dust buildup entrained in the flow

  1. A simple classical approach for the melting temperature of inert-gas nanoparticles

    Science.gov (United States)

    Nanda, K. K.

    2006-02-01

    Like the metal and semiconductor nanoparticles, the melting temperature of free inert-gas nanoparticles decreases with decreasing size. The variation is linear with the inverse of the particle size for large nanoparticles and deviates from the linearity for small nanoparticles. The decrease in the melting temperature is slower for free nanoparticles with non-wetting surfaces, while the decrease is faster for nanoparticles with wetting surfaces. Though the depression of the melting temperature has been reported for inert-gas nanoparticles in porous glasses, superheating has also been observed when the nanoparticles are embedded in some matrices. By using a simple classical approach, the influence of size, geometry and the matrix on the melting temperature of nanoparticles is understood quantitatively and shown to be applicable for other materials. It is also shown that the classical approach can be applied to understand the size-dependent freezing temperature of nanoparticles.

  2. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  3. Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa

    Science.gov (United States)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.

    2004-01-01

    Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.

  4. Multifunctional Platform with CMOS-Compatible Tungsten Microhotplate for Pirani, Temperature, and Gas Sensor

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-10-01

    Full Text Available A multifunctional platform based on the microhotplate was developed for applications including a Pirani vacuum gauge, temperature, and gas sensor. It consisted of a tungsten microhotplate and an on-chip operational amplifier. The platform was fabricated in a standard complementary metal oxide semiconductor (CMOS process. A tungsten plug in standard CMOS process was specially designed as the serpentine resistor for the microhotplate, acting as both heater and thermister. With the sacrificial layer technology, the microhotplate was suspended over the silicon substrate with a 340 nm gap. The on-chip operational amplifier provided a bias current for the microhotplate. This platform has been used to develop different kinds of sensors. The first one was a Pirani vacuum gauge ranging from 1-1 to 105 Pa. The second one was a temperature sensor ranging from -20 to 70 °C. The third one was a thermal-conductivity gas sensor, which could distinguish gases with different thermal conductivities in constant gas pressure and environment temperature. In the fourth application, with extra fabrication processes including the deposition of gas-sensitive film, the platform was used as a metal-oxide gas sensor for the detection of gas concentration.

  5. Room-Temperature NH3 Gas Sensor Based on Hydrothermally Grown ZnO Nanorods

    Institute of Scientific and Technical Information of China (English)

    WEI Ang; WANG Zhao; PAN Liu-Hua; LI Wei-Wei; XIONG Li; DONG Xiao-Chen; HUANG Wei

    2011-01-01

    @@ A NH3 gas sensor based on a ZnO nanorod array is fabricated by hydrothermal decomposition on a Au electrode.The as-grown ZnO nanorods have uniform diameter distribution and good crystal structure,shown by scanning electron microscopy,x-ray diffraction,high resolution transmission electron microscopy and photoluminescence emission characterizations.The gas sensing results show that the ZnO nanorod-based device responds well to ammonia gas at room temperature(sensitivity S is about 8).

  6. Multiplexed Sensor for Synthesis Gas Compsition and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Steven Buckley; Reza Gharavi; Marco Leon

    2007-10-01

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

  7. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  8. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, C. S., E-mail: charudutta-p@yahoo.com [Material Science and Thin Film Research Laboratory, Department of Physics,Shankarrao Mohite Mahavidyalaya, Akluj India (India); Gujar, M. P. [Shri. Shivaji Junior College, Bawada, Dist: Pune (India); Mathe, V. L. [Department of Physics, University of Pune, Pune – 411 007 India (India)

    2015-06-24

    Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  9. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    Science.gov (United States)

    2016-10-17

    life time of N2(C 3Πu) is 0.7 ns at the atmospheric pressure and 58 DISTRIBUTION A. Approved for public release: distribution unlimited. 0.12 ns at P...with a heating jacket to keep the 105 DISTRIBUTION A. Approved for public release: distribution unlimited. initial gas temperature between 300 and 700...heating jacket to follow the dynamics of heating, and the third one, mounted into the chamber wall, is used to measure gas temperature before the

  10. Overview of high-temperature batteries for geothermal and oil/gas borehole power sources

    Science.gov (United States)

    Guidotti, Ronald A.; Reinhardt, Frederick W.; Odinek, Judy

    Batteries currently used as power supplies for measurement while drilling (MWD) equipment in boreholes for oil and gas exploration use a modified lithium/thionyl chloride technology. These batteries are limited to operating temperatures below 200 °C. At higher temperatures, the batteries and the associated electronics must be protected by a dewar. Sandia National Laboratories has been actively engaged in developing suitable alternative technologies for geothermal and oil/gas borehole power sources that are based on both ionic liquid and solid-state electrolytes. In this paper, we present the results of our studies to date and the directions of future efforts.

  11. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  12. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    R P Kaur; K Tankeshwar; K N Pathak

    2002-04-01

    Expressions for transverse and longitudinal current–current correlation functions of an ideal Fermi gas describing the current fluctuations induced in the electron system by external probe perpendicular and parallel to the propagation of electron wave, have been obtained at finite temperature. The results obtained for transverse and longitudinal functions are presented for different values of wavelength and frequency at different temperatures. The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wavelength and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature.

  13. FBG sensing temperature characteristic and application in oil/gas down-hole measurement

    Institute of Scientific and Technical Information of China (English)

    Shaomin LI; Xiaoying LIU; You LI; Shenlong YANG; Chong LIU

    2009-01-01

    Fiber Bragg gratings (FBGs) have been used to sense numerous parameters such as strain, temperature, and pressure. Cost-effective multipoint measurements have been achieved by connecting FBGs in parallel, serial, and other topologies as well as by using spatial, wavelength, and time-domain multiplexing techniques. This paper presents a method of measuring temperature of the oil/gas down-hole. Detailed contents include the basic theory and characteristics of fiber gratings, analysis of the sensing mechanism of fiber-optic gratings, and the cross-sensitivity effect between temperature and strain; the method of making the light-source of the fiber-optic gratings and the technology of measuring wavelength shift, building an experimental system of the temperature measurement, and dealing with the experimental data. The paper makes a comparison of several kinds of FBG sensing systems used in oil/gas down-hole to measure temperature and the analysis of the experimental results of building the temperature measurement experimental sys-tem. It demonstrates that the fiber-optic grating sensing method is the best choice in all methods of measuring temperature in oil/gas down-hole, which has a brilliant applied prospect.

  14. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  15. A HIFI preview of warm molecular gas around chi Cyg : first detection of H2O emission toward an S-type AGB star

    CERN Document Server

    Justtanont, K; Schoier, F L; Maercker, M; Olofsson, H; Bujarrabal, V; Marston, A P; Teyssier, D; Alcolea, J; Cernicharo, J; Dominik, C; de Koter, A; Melnick, G; Menten, K; Neufeld, D; Planesas, P; Schmidt, M; Szczerba, R; Waters, R; de Graauw, Th; Whyborn, N; Finn, T; Helmich, F; Siebertz, O; Schmulling, F; Ossenkopf, V; Lai, R

    2010-01-01

    A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star chi Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it possible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of chi Cyg. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho- and para-H2O lines. Our...

  16. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC

  17. Determining magnetic phase transitions temperatures in working magnetocaloric coolers bodies and gas cryorefrigerators regenerators

    Science.gov (United States)

    Karagusov, V. I.; Mayankov, I. V.

    2017-08-01

    Due to magnetic phase transitions rare-earth materials possess unique properties near the Curie and Neel temperatures, such as the magneto-caloric effect, the abnormally high heat capacity, the magnetic susceptibility and permeability extremes. Using rare earth materials in gas cryogenic refrigerators regenerators increases the efficiency, reduces the power consumption and allows reaching helium temperatures. The magneto-caloric effect has also extreme values near the Curie and Neel temperatures. The paper presents theoretical and experimental methods allowing to determine magnetic phase transitions temperatures in a wide range of low temperature materials with a various rare-earth components content and expected thermophysical properties of a certain rare-earth materials composition at the temperatures based on starting pure metals characteristics. The results analysis has shown that magnetic phase transitions temperatures are a linear function of the components concentration. Moreover, heat capacity values and MCE also depend linearly on the starting components concentration, which simplifies calculations significantly.

  18. A spherical-structure based fiber sensor for simultaneous measurement of ammonia gas concentration and temperature

    Science.gov (United States)

    Han, Wei; Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Wei, Fangfang; Sun, Lei; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2016-11-01

    A novel fiber sensor for simultaneous measurement of ammonia gas concentration and temperature is proposed. The sensor is fabricated from two sections of single-mode fiber which are cleaved and then a fusion splicer and which is then used to fabricate spherically shaped structures at the end facets. The fusion arc is used to soften the glass which naturally assumes a spherical shape due to surface tension. A short section of multimode fiber is then fusion spliced with the two spherical-shaped ends of the single mode fibers so both the core modes and the cladding modes of the multimode fiber are excited to create two kinds of interference dips: One is created by core modes only which is not sensitive to ammonia gas since the core is isolated by the cladding so the effective refractive index of the core does not change when the refractive index of the environment changes, The other dip is created by the coupling of the core mode and cladding mod, which with a suitable coating is sensitive to ammonia gas. Silica sol-gel was prepared and coated on the fiber surface as a sensing layer for detecting ammonia gas concentration. The experimental results show that the two dips have linear wavelength shift responses but with different sensitivities to ammonia gas concentration (5.03×10-4nm/ppm for dip1 and -2.5×10- 5nm/ppm for dip2) and temperature (0.0067 nm/ºC for dip1 and 0.0149 nm/ºC for dip2. By constructing a wavelength shifts matrix for the two dips vs. ammonia gas concentration and temperature, both the ammonia gas concentration and temperature can be measured simultaneously.

  19. A high-temperature gas-and-steam turbine plant operating on combined fuel

    Science.gov (United States)

    Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.

    2015-11-01

    A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.

  20. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko

    2017-07-04

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  1. On the Determination of the Gas Temperature From the Velocity of the Muzzle Rarefaction Wave

    Science.gov (United States)

    1983-02-01

    0.09 The mixture is characterized by the following values, Pressure : Density: Temperature: Ratio of Specific Heats Molecular Weight: Covolume ...the cited value of Tv:Lk ~ 5.5 x lO"^ sec at 1 atmosphere and the inverse dependence on pressure , the present example involving a pressure of 188...discharge the propulsion gas has a temperature of approximately 1800oK, for a typical high zone howitzer charge, and a pressure of 50 MPa. The release of

  2. Convective heat transfer for incompressible laminar gas flow in micropassage with constant wall temperature

    Institute of Scientific and Technical Information of China (English)

    安刚; 李俊明; 王补宣

    2001-01-01

    Theoretical investigations have been performed on the convective heat transfer for incompressible laminar flow of gases through microtube and parallel-plates micropassages with constant wall temperature. Considering the change in thermal conductivity and viscosity of gas in wall adjacent region from the kinetic theory, mathematical models are built for both of the micropassages. The dimensionless temperature distribution and the corresponding heat transfer characteristics are simulated numerically, and the results discussed briefly.

  3. Instrument for thermal radiation flux measurement in high temperature gas flow (Cuernavaca instrument)

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, N.H. [Universidade Tecnica, Lisbon (Portugal); Leontiev, A.I. [Moscow State Technical University (Russian Federation)

    1995-05-01

    A new instrument for hemispherical radiation heat flux measurement is proposed. It is based on the theory of blow of the boundary layer, taking into account that at the critical mass flow rate through the porous surface the thermal boundary layer is blown off and only radiation flux from high temperature gases reaches the porous surface. With the measurement of blow of gas flow and the temperature of the porous material, the respective heat flux is obtained. (author)

  4. Investigation of high-temperature materials for uranium-fluoride-based gas core reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.; Wang, S.C.P.; Anghaie, S.

    1988-01-01

    The development of the uranium-fluoride-based gas core reactor (GCR) systems will depend on the availability of wall materials that can survive the severe thermal, chemical, and nuclear environments of these systems. In the GCR system, the fuel/working fluid chemical constituents include enriched uranium fluorides UF{sub n} (n = 1 to 4) and fluorides operating at gas pressures of {approx}1 to 100 atm. The peak temperature of the fissioning gas/working fluid in the system can be 4000 K or higher, and the temperatures of the inner surface of the construction wall may exceed 1500 K. Wall materials that can be compatible in this environment must possess high melting points, good resistance to creep and thermal shock, and high resistance to fluorination. Compatible materials that feature high fluorination resistance are those that either do not react with fluorine/fluoride gases or those that can form a protective fluoride scale, which prevents or reduces further attack by the corrosive gas. Because fluorine and fluoride gases are strong oxidizing agents, formation of high melting point protective scales on substrate materials is more likely to be expected. This paper summarizes results of corrosion testing for evaluation of materials compatibility with uranium fluoride. These tests have been carried out by exposing different materials to UF{sub 6} gas in a closed capsule at temperatures up to 1500 K. Past exposure examinations were conducted to determine the morphology and composition of scales that were formed.

  5. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  6. Effect of fuel size and process temperature on fuel gas quality from CFB gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A.; Van Doorn, J. [ECN Biomass, Petten (Netherlands)

    2000-07-01

    A bench-scale circulating fluidized bed (CFB) gasifier with a capacity of max. 500 kWh{sub th} has been used to study the effect of fuel size and process temperature. A higher process temperature (range tested: 750 to 910C) results in more air needed to maintain the desired temperature, a lower heating value of the product gas, a higher carbon conversion and a net increase of cold gas efficiency of the gasifier. A higher process temperature also results in less heavy tars. However, light tars (measured using the solid phase adsorbent (SPA) method) do show an odd behaviour. Some individual components within the group of light tars even increase in concentration when process temperature is raised. The main reason probably is that heavy tars decompose to these relatively stable light tar components. The particle size of the fuel does influence some product gas parameters considerably. The presence of small particles seems to increase the (heavy) tar concentration and decrease the conversion of fuel-nitrogen to ammonia. Small particles can also be responsible for large temperature gradients along the axis of the riser of a CFB-gasifier. This effect can be avoided by either mixing the fuel with larger particles or feed the small particles at the bottom of the reactor. 5 refs.

  7. Mass flow discharge and total temperature characterisation of a pyrotechnic gas generator formulation for airbag systems

    Energy Technology Data Exchange (ETDEWEB)

    Neutz, Jochen; Koenig, Andreas [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany); Knauss, Helmut; Jordan, Sebastian; Roediger, Tim; Smorodsky, Boris [Universitaet Stuttgart (Germany). Institut fuer Aerodynamik und Gasdynamik; Bluemcke, Erich Walter [AUDI AG, Department I/EK-523, Ingolstadt (Germany)

    2009-06-15

    The mass flow characteristics of gas generators for airbag applications have to comply with a number of requirements for an optimal deployment of the airbag itself. Up to now, the mass flow was determined from pressure time histories of so-called can tests. This procedure suffers from the missing knowledge on the temperature of the generated gas entering the can. A new test setup described in this paper could overcome this problem by providing highly time resolved information on the gas's total temperature and the mass flow of the generator. The test setup consisted of a combustion chamber with a specially designed Laval nozzle in combination with a temperature sensor of high time resolution. The results showed a high time resolved temperature signal, which was disturbed by the formation of a slag layer on the sensor. Plausibility considerations with experimentally and thermodynamically determined combustion temperatures led to satisfying results for the overall temperature as characteristic parameter of airbag inflating gases flows from pyrotechnics. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines

    Science.gov (United States)

    Manara, J.; Zipf, M.; Stark, T.; Arduini, M.; Ebert, H.-P.; Tutschke, A.; Hallam, A.; Hanspal, J.; Langley, M.; Hodge, D.; Hartmann, J.

    2017-01-01

    The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics are semi-transparent in the near and short wavelength infrared spectral region. Fortunately the applied ceramic materials are non-transparent in the long wavelength infrared and additionally exhibit a high emittance in this wavelength region. Therefore, a LWIR pyrometer can be used for non-contact temperature measurements of the surfaces of TBCs as such pyrometers overcome the described limitation of existing techniques. For performing non-contact temperature measurements in gas turbines one has to know the infrared-optical properties of the applied TBCs as well as of the hot combustion gas in order to properly analyse the measurement data. For reaching a low uncertainty on the one hand the emittance of the TBC should be high (>0.9) in order to reduce reflections from the hot surrounding and on the other hand the absorbance of the hot combustion gas should be low (<0.1) in order to decrease the influence of the gas on the measured signal. This paper presents the results of the work performed by the authors with focus on the implementation of the LWIR pyrometer and the

  9. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions.

  10. Fuel gas desulfurization at elevated temperatures with copper-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Lau, F.S. [Inst. of Gas Technology, Des Plaines, IL (United States); Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States); Honea, F.I. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1995-12-31

    Zinc-based sorbents, the leading candidates for hot gas cleanup, have been shown to suffer from zinc volatilization at elevated temperatures, leading to sorbent deterioration, increasing sorbent replacement costs. Copper-based sorbents, because of the high melting point of the metal, do not suffer from this problem. However, bulk copper oxide is generally reduced to metallic copper in reducing fuel gas environments leading to thermodynamic limitations, resulting in insufficient level of desulfurization. The reduction stability and therefore the desulfurization performance of copper oxide sorbents can be significantly improved by combining copper oxide with other oxides in a supported form or as bulk mixed metal oxides. This paper addresses the results of a systematic study of several novel copper-based sorbents for hot gas cleanup application. The evaluation criteria included reduction stability, sulfidation reactivity and regenerability at elevated temperatures. The performance of the most promising sorbent in long duration cycle sulfidation-regeneration tests is also presented.

  11. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor.

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  12. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were

  13. On Developing a Spectroscopic System for Fast Gas Temperature Measurements in Combustion Environments

    DEFF Research Database (Denmark)

    Evseev, Vadim; Clausen, Sønnik

    2009-01-01

    Fourier Transform Infra Red (FTIR) spectroscopy techniques are known to provide reliable results for gas temperature measurements and can be comparatively easily performed on an industrial scale such as a boiler on a power plant or an exhaust of a ship engine cylinder. However temporal resolution...

  14. Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas

    NARCIS (Netherlands)

    Panfil, M.; Caux, J.-S.

    2014-01-01

    We address the problem of calculating finite-temperature response functions of an experimentally relevant low-dimensional, strongly correlated system: the integrable one-dimensional Bose gas with a repulsive δ-function interaction (the Lieb-Liniger model). Focusing on the dynamical density-density f

  15. Parametric analysis of a high temperature packed bed thermal storage design for a solar gas turbine

    CSIR Research Space (South Africa)

    Klein, P

    2015-08-01

    Full Text Available The development of a high temperature Thermal Energy Storage (TES) system will allow for high solar shares in Solar Gas Turbine (SGT) plants. In this research a pressurised storage solution is proposed that utilises a packed bed of alumina spheres...

  16. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  17. Vortex line in a neutral finite-temperature superfluid Fermi gas

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Bruun, G. M.; Schneider, B. I.;

    2004-01-01

    The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within the context of self-consistent Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated, and the shift in the critical temperature due to the presence of the vortex...

  18. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  19. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  20. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  1. IGCC performance comparison for variations in gasifier type and gas turbine firing temperature

    Science.gov (United States)

    Stochl, R. J.; Nainiger, J. J.

    1983-01-01

    Performance estimates were made for a series of integrated coal gasification combined cycle (IGCC) power systems using three generic types of coal gasification subsystems. The objectives of this study were (1) to provide a self consistent comparison of IGCC systems using different types of gasifiers and different oxidants and (2) to use this framework of cases to evaluate the effect of a gas turbine firing temperature and cooling approach an overall system efficiency. The basic IGCC systems considered included both air and oxygen blown versions of a fluidized bed gasifier, represented by the Westinghouse design, and an entrained bed gasifier, represented by the Texaco design. Also considered were systems using an oxygen blown, fixed bed gasifier, represented by the British Gas Corporation (BGC) slagging gasifier. All of these gasifiers were integrated with a combined cycle using a gas turbine firing temperature of 1700 K (2600 F) and a compressor pressure ratio of 16:1. Steam turbine throttle conditions were chosen to be 16.6 MPa/811 K (2400 psia/1000 F) with a single reheat to 810 K (1000 F). Some of these cases were modified to allow the evaluation of the effect of gas turbine firing temperature. Turbine firing temperatures from state of the art 1365 K (2000 F) to an advanced technology 1920 K (3000 F) were analyzed. A turbine cooling technology that maintains metal temperatures below acceptable limits was assumed for each level of firing temperature. System performance comparisons were made using three advanced turbine cooling technologies for the 1920 K (3000 F) firing temperature. The results indicate that the IGCC using the BGC gasifier had the highest net system efficiency (42.1 percent) of the five gasification cases considered.

  2. Calculation of gas content in coal seam influenced by in-situ stress grads and ground temperature

    Institute of Scientific and Technical Information of China (English)

    王宏图; 李时雨; 吴再生; 杨晓峰; 秦大亮; 杜云贵

    2002-01-01

    On the basis of the analysis of coal-bed gas pressure in deep mine, and the coal-bed permeability (k) and the characteristic of adsorption parameter (b) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in-situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal-bed gas pressure with the computing results of coal-bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.

  3. Gas Geothermometry in the Hveragerdi High—Temperature Geothermal Field,SW Iceland

    Institute of Scientific and Technical Information of China (English)

    孙占学; HALLDORARMANNSON

    2000-01-01

    Five gas geothermometers based on the concentrations of CO2,H2S,H2,CH2,N2 and Ar in fumaroles and wet-stem wells are applied to estimating subsurface temperatures in the Hveragerdi high-temperature geothmal field,SW Iceland,The results for fumaroles indicate that the calculated subsurface temperatures decrase from the northern part to the southern part of the field.The CO2-geothermometer gives the highers temperature values,with an average of 256℃ for the northern part,and 247℃ for the southern part.The H2S-geothermometer reveals an aquifer temperature of 211℃ for the northern part,and 203℃ for the southern part.The H2-geothermometer gives an average subsurface temperature of 229℃ for the northern part,and 184℃ for the southern part,which agerees excellently with the measured temperatures in wet-steam wells.The measured borhole temperatures in the field range from 215℃ to 230℃ for the northern part,and from 167℃ to 198℃ for the southern part.The CO2/H2-geothermometer gives the lowest subsurface temperature values,with an average of 203℃ for the northern part,and 143℃ for the southern part,The CO2/N2-geothermometer gives 249℃ for the northern part and 235℃ for the southern part.For the data from wells,the CO2-, H2S-,and H2-geothermometers,give average subsurface temperatures of 247℃ for the northern part and 246℃ for the southern part,213℃ for the northern part and 220℃ for the southern part,and 217℃ for the northern part and 216℃ for the southern part,respectively.The CO2/H2-geothermometer indicates an average subsurface tem,perature of about 200℃ for both the northern part and the southern part.The CO2/N2-geothermometer gives an average subsurface temperature of 180℃ for the northern part and 259℃ for the southern part.The discrepancy between the estimeated subsurface temperatures obtained by the various gas geothermometers has been explained in this paper.By integrating the solute geothermometric results,mixing model

  4. Ultra-low-temperature cooling of two-dimensional electron gas

    Science.gov (United States)

    Xia, J. S.; Adams, E. D.; Shvarts, V.; Pan, W.; Stormer, H. L.; Tsui, D. C.

    2000-05-01

    A new design has been used for cooling GaAs/Al xGa 1- xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid 3He, which was cooled by a PrNI 5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0 mK at the refrigerator base temperature Tb of 2.0 mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

  5. Critical temperature for the nuclear liquid-gas phase transition (from multifragmentation and fission)

    CERN Document Server

    Karnaukhov, V A; Budzanowski, A; Avdeyev, S P; Botvina, A S; Cherepanov, E A; Karcz, W; Kirakosyan, V V; Rukoyatkin, P A; Skwirczynska, I; Norbeck, E

    2008-01-01

    Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.

  6. Effects of Imidapril on Venous Blood Gas Values in Broiler Chickens Exposed to Low Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Xueqin HAO; Meng LI; Shouyan ZHANG; Yongshu WANG; Tongwen SUN

    2013-01-01

    [Objective] This study was designed to evaluate the effects of imidapril on blood gas parameters in broiler chickens.[Method] Twenty-four chickens were randomly divided into three groups (n=8),control group,low temperature group and imidapril group.Chickens in low temperature group and imidapril group were exposed to low ambient temperature (12-18 ℃) from age at 14 d to 45 d,whereas the control group was exposed to 24-30 ℃; chickens in imidapril group were gavaged with imidapril (3 mg/kg) once daily for 30 d.At age of 45 d,blood was taken from wing vein and blood gas parameters were evaluated by blood gas analyzer in Luoyang Central Hospital Affiliated to Zhengzhou University.[Result] Imidapril significantly increased hematocrit (HCT) and total hemoglobin content (THBC) and blood Na concentration in broiler chickens exposed to low ambient temperature.No significant differences were observed in pH,Pco2,Po2,K+,Ca2+,HCO3-,HCO3std,Tco2,BE and SO2c.[Conclusion] Imidapril increases hematocrit,total hemoglobin content and blood Na+concentration in chickens exposed to low ambient temperature.

  7. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  8. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  9. Lining for high temperature gas turbines. Auskleidung fuer Hochtemperatur-Gasturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, P.; Heckel, J.

    1986-06-26

    A lining is described for high temperature gas turbines, where a thermally insulating layer of a ceramic material is applied on the side of the turbine casing towards the high temperature. In order to insulate the heat which occurs at the very high process temperatures in this gas turbine plant, it is proposed that a first layer of microporous material containing mainly silica should be applied on the inner wall of the casing, that a second layer of ceramic fibres should be applied on this first layer that a binding layer of a fibre mat consisting of Al/sub 2/O/sub 3/ and SiO/sub 2/ and possibly with the addition of Cr/sub 2/O/sub 3/ should be provided between the turbine casing and the first layer and between the first and second layer, and that a lining layer of heat-resistant high quality steel is applied on this second layer.

  10. Temperature structures in Galactic Center clouds - Direct evidence for gas heating via turbulence

    CERN Document Server

    Immer, K; Pillai, T; Ginsburg, A; Menten, K M

    2016-01-01

    The Central Molecular Zone (CMZ) at the center of our Galaxy is the best template to study star formation processes under extreme conditions, similar to those in high-redshift galaxies. We observed on-the-fly maps of para-H$_{2}$CO transitions at 218 GHz and 291 GHz towards seven Galactic Center clouds. From the temperature-sensitive integrated intensity line ratios of H$_{2}$CO(3$_{2,1}-$2$_{2,0}$)/H$_{2}$CO(3$_{0,3}-$2$_{0,2}$) and H$_{2}$CO(4$_{2,2}-$3$_{2,1}$)/H$_{2}$CO(4$_{0,4}-$3$_{0,3}$) in combination with radiative transfer models, we produce gas temperature maps of our targets. These transitions are sensitive to gas with densities of $\\sim$10$^{5}$ cm$^{-3}$ and temperatures 40 K) than their dust temperatures ($\\sim$25 K). Our targets have a complex velocity structure that requires a careful disentanglement of the different components. We produce temperature maps for each of the velocity components and show that the temperatures of the components differ, revealing temperature gradients in the clouds...

  11. Multiple temperature model for the information preservation method and its application to nonequilibrium gas flows

    Science.gov (United States)

    Zhang, Jun; Fan, Jing; Jiang, Jianzheng

    2011-08-01

    The information preservation (IP) method has been successfully applied to various nonequilibrium gas flows. Comparing with the direct simulation Monte Carlo (DSMC) method, the IP method dramatically reduces the statistical scatter by preserving collective information of simulation molecules. In this paper, a multiple temperature model is proposed to extend the IP method to strongly translational nonequilibrium gas flows. The governing equations for the IP quantities have been derived from the Boltzmann equation based on an assumption that each simulation molecule represents a Gaussian distribution function with a second-order temperature tensor. According to the governing equations, the implementation of IP method is divided into three steps: molecular movement, molecular collision, and update step. With a reasonable multiple temperature collision model and the flux splitting method in the update step, the transport of IP quantities can be accurately modeled. We apply the IP method with the multiple temperature model to shear-driven Couette flow, external force-driven Poiseuille flow and thermal creep flow, respectively. In the former two cases, the separation of different temperature components is clearly observed in the transition regime, and the velocity, temperature and pressure distributions are also well captured. The thermal creep flow, resulting from the presence of temperature gradients along boundary walls, is properly simulated. All of the IP results compare well with the corresponding DSMC results, whereas the IP method uses much smaller sampling sizes than the DSMC method. This paper shows that the IP method with the multiple temperature model is an accurate and efficient tool to simulate strongly translational nonequilibrium gas flows.

  12. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  13. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  14. Engineering study - alternatives for SHMS high temperature/moisture gas sample conditioners for the aging waste facility

    Energy Technology Data Exchange (ETDEWEB)

    THOMPSON, J.F.

    1999-06-02

    The Standard Hydrogen Monitoring Systems have been experiencing high temperature/moisture problems with gas samples from the Aging Waste Tanks. These moist hot gas samples have stopped the operation of the SHMS units on tanks AZ-101, AZ-102, and AY-102. This study looks at alternatives for gas sample conditioners for the Aging Waste Facility.

  15. Investigation Into Gas-Sensing Mechanism of Nanostructured Magnesium Aluminate as a Function of Temperature.

    Science.gov (United States)

    Nithyavathy, N; Arunmetha, S; Dhineshbabu, N R; Rajendran, V

    2015-07-01

    In this study, we used a new simple chemical method to synthesise nanostructured magnesium aluminate (NMA) powder. Sol-gel technique followed by sonication was used to develop different sensor samples namely NMA573, NMA873, and NMA1 073 by calcination at temperatures of 573, 873, and 1073 K respectively. Average crystallite size of 18-27 nm and specific surface area of 68.09 to 61.84 m2 g(-1) was obtained for the sensor samples. The existence of functional groups at 800 and 550 cm-1 corresponding respectively to AIO6 group and the lattice vibration of MgO4 stretching were confirmed through FTIR studies; SEM/EDX confirm the spherical morphology with elemental composition Mg, Al and O at different calcination temperatures. UV-Vis absorption spectra show band gap energy as 3.50, 3.48, and 3.44 eV for the sensor samples NMA573, NMA873, and NMA1 073 respectively. The effect of polyethylene glycol on the gas-sensing behaviour was studied in all the sensor samples. In particular, NMA1073 was found to have better resistance and sensor response for CO gas than NMA573 and NMA873. The effect of increase in calcination temperature of the sensor samples on the structural, morphological, optical, and gas response properties were carried out extensively to explore its gas sensing applications.

  16. Temperature dependence of the universal contact parameter in a unitary Fermi gas.

    Science.gov (United States)

    Kuhnle, E D; Hoinka, S; Dyke, P; Hu, H; Hannaford, P; Vale, C J

    2011-04-29

    The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.

  17. Assessment of High-Temperature Measurements for Use in the Gas Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    S. Curt Wilkins; Robert P. Evans

    2005-05-01

    Temperature transducers capable of control and test measurements in the 1400-1800¢ªC range in the fast neutron irradiation environment of the Gas Test Loop are evaluated. Among the instruments discussed are high-temperature thermocouples, resistance temperature detectors, ultrasonic thermometers, noise thermometers, and optical temperature sensors. High-temperature capability, behavior under irradiation, technical maturity, cost, and availability are among the key factors considered in assessing the relative merits of each measurement method. In the near term, the doped molybdenum versus niobium-zirconium alloy thermocouple is deemed to be best suited to the in-pile test and control requirements. Additional characterization of this thermocouple combination is needed to ensure confidence in its performance. Use of tungsten-rhenium alloy thermocouples, with specific disadvantages noted, constitutes the recommended back-up position.

  18. Metathesis in the generation of low-temperature gas in marine shales.

    Science.gov (United States)

    Mango, Frank D; Jarvie, Daniel M

    2010-01-20

    The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control) or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis) as the source of equilibrium in experiments with Cretaceous Mowry shale at 100 degrees C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C(1))*(C(3))]/[(C(2))(2)]), and between these hydrocarbons and n-butane, Q* (K = [(C(1))*(n-C(4))]/[(C(2))*(C(3))]), reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW). Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [C(n)] to smaller intermediates (fission) as gas generation creates open catalytic sites ([ ]): [C(n)] + [ ] --> [C(n-m)] + [C(m)]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C(3)] and [n-C(4)] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.

  19. Metathesis in the generation of low-temperature gas in marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2010-01-01

    Full Text Available Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1*(C3]/[(C22], and between these hydrocarbons and n-butane, Q* (K = [(C1*(n-C4]/[(C2*(C3], reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW. Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission as gas generation creates open catalytic sites ([ ]: [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.

  20. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, John P. [U.S. DOE; Ohodnicki, Paul R. [U.S. DOE

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  1. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  2. Temperature oscillations of a gas in circular geodesic motion in the Schwarzschild field

    CERN Document Server

    Zimdahl, Winfried

    2014-01-01

    We investigate a Boltzmann gas in equilibrium with its center of mass moving on a circular geodesics in the Schwarzschild field. As a consequence of Tolman's law we find that a central comoving observer measures oscillations of the temperature and of other thermodynamic quantities with twice the frequencies that are known from test-particle motion. We apply this scheme to the gas dynamics in the gravitational fields of the planets of the solar system as well as to strong-field configurations of neutron stars and black holes.

  3. Temperature oscillations of a gas in circular geodesic motion in the Schwarzschild field

    Science.gov (United States)

    Zimdahl, Winfried; Kremer, Gilberto M.

    2015-01-01

    We investigate a Boltzmann gas at equilibrium with its center of mass moving on a circular geodesic in the Schwarzschild field. As a consequence of Tolman's law we find that a central comoving observer measures oscillations of the temperature and of other thermodynamic quantities with twice the frequencies that are known from test-particle motion. We apply this scheme to the gas dynamics in the gravitational fields of the planets of the Solar System as well as to strong-field configurations of neutron stars and black holes.

  4. Influence of dissolved gas and temperature on the light yield of new liquid scintillators

    CERN Document Server

    Buontempo, S; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    Sixteen new liquid scintillators, emitting green light, were studied. They are based on four solvents combined with four dopants. The influence of different gas atmospheres was studied. In particular it was shown that by keeping these liquid scintillators in vacuum or in a neutral gas, the light yield increases up to 32~\\% at 20 $^{\\circ}$C and for the best solvent-dopant combinations. The dependance of the light yield on temperature was also studied for these scintillators. In the 20--60 $^{\\circ}$C interval, some exhibit a light yield variation of $\\sim$ 3 \\% which is smaller than that of the NE 102A plastic scintillator.

  5. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Barsell, A.W.

    1980-05-01

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  6. Preparation and characterization of composite membrane for high temperature gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Su, N.

    1994-10-01

    The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates and then characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane fabrication; Characterization of composite membrane; and Development of theoretical model for hydrogen gas separation. The experimental procedures are described.

  7. Room Temperature Ammonia Gas Sensing Characteristics of Co3O4

    Directory of Open Access Journals (Sweden)

    P.N. Shelke

    2011-01-01

    Full Text Available Room temperature ammonia gas-sensing characteristics of Co3O4 pellet sensor are reported in this paper. For this purpose, Co3O4 powder is prepared by a route of simple precipitation + heating at 800 °C/2 hr. The as-prepared powder is characterized by using X-ray diffraction and scanning electron microscopy. The ammonia gas-sensing properties of Co3O4 pellets made at various loads of 3, 5, 7 & 9 ton and at constant time = 4 min. are measured using home-built static gas sensing system. The characterization studies revealed that the cobalt oxide particles formed are cubic spinel Co3O4, highly pure and spherical in shape. The particle size distribution is found to be nearly uniform with average particle size ~ 1 µm. The ammonia gas sensing properties of Co3O4 pellet sensor are found to be good. The highest sensitivities – S.F. = 175 and 358 are found at ~ 25 ppm and 250 ppm concentrations of ammonia gas respectively for the Co3O4 pellet sensor made at the load = 3 ton. Further, an admirable repeatability and reversibility in the ammonia gas sensing characteristics are observed for all the Co3O4 pellet sensors. The average response time of 4.0 min. and recovery time of 3.0 min. are obtained for all the Co3O4 pellet sensors.

  8. Room-temperature ionic liquids: temperature dependence of gas solubility selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Alexia Finotello; Jason E. Bara; Dean Camper; Richard D. Noble [University of Colorado, Boulder, CO (United States). Department of Chemical and Biological Engineering

    2008-05-15

    This study focuses on bulk fluid solubility of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), hydrogen (H{sub 2}), and nitrogen (N{sub 2}) gases in the imidazolium-based RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ((emim)(Tf{sub 2}N)),1-ethyl-3-methylimidazolium tetrafluoroborate ((emim)(BF{sub 4})),1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide((hmim)(Tf{sub 2}N)), and 1,3-dimethylimidazolium methyl sulfate ((mmim)(MeSO{sub 4})) as a function of temperature (25, 40, 55, and 70{sup o}C) at near-atmospheric pressures. The experimental behaviors are explained in terms of thermodynamic relationships that account for the negligible vapor pressure of the RTIL as well as the low solubilities of the gases. Results show that, as temperature increases, the solubility of CO{sub 2} decreases in all RTILs, the solubility of CH{sub 4} remains constant in (emim)(Tf{sub 2}N) and (hmim)(Tf{sub 2}N) but increases in(mmim)(MeSO{sub 4}) and (emim)(BF{sub 4}), and the solubility of N{sub 2} and H{sub 2} increases. Also, the ideal solubility selectivity (ratio of pure-component solubilities) increases as temperature decreases for CO{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, and CO{sub 2}/H{sub 2} systems. Experimental values for the enthalpy and entropy of solvation are reported.

  9. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter

    Science.gov (United States)

    Gritsch, Christine; Egger, Florian; Zehetner, Franz; Zechmeister-Boltenstern, Sophie

    2016-05-01

    The forest litter layer lies at the boundary between soil and atmosphere and is a major factor in biogeochemical cycles. While there are several studies on how the litter layer controls soil trace gas emissions, litter emissions itself are less well understood, and it is still unclear how important gases respond to changing temperature and moisture. In order to assess leaf litter gas exchange, we conducted laboratory incubation experiments in which the full set of climate relevant gases, i.e., carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and nitric oxide (NO) coming from deciduous and coniferous leaf litter were measured at five temperatures and seven moisture contents. In addition, we compared litter and soil from different origin in terms of temperature/moisture responses of gas fluxes and investigated possible interactions between the two climate factors. Deciduous litter emitted more CO2 (up to 335 mg CO2-C kg-1 h-1) than coniferous litter, whereas coniferous litter released maximum amounts of NO (207 µg NO-N kg-1 h-1). N2O was only emitted from litter under very moist and warm conditions (>70% wet weight, >10°C). CH4 emissions were close to zero. Temperature sensitivities of litter emissions were generally lower than for soil emissions. Nevertheless, wet and warm conditions always enhanced litter emissions, suggesting a strong feedback effect of the litter layer to predicted future climate change.

  10. Simulating thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor for the LIFE reactor design using the BUCKY 1-D radiation hydrodynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Heltemes, T A; Prochaska, A E; Moses, G A, E-mail: taheltemes@wisc.ed [Fusion Technology Institute, University of Wisconsin - Madison, 1500 Engineering Dr., Madison WI 53706 (United States)

    2010-08-01

    The BUCKY 1-D radiation hydrodynamics code has been used to simulate the dynamic thermo-mechanical interaction between a xenon gas-filled chamber and tungsten first-wall armor with an indirect-drive laser fusion target for the LIFE reactor design. Two classes of simulations were performed: (1) short-time (0-2 ms) simulations to fully capture the hydrodynamic effects of the introduction of the LIFE indirect-drive target x-ray and ion threat spectra and (2) long-time (2-70 ms) simulations starting with quiescent chamber conditions characteristic of those at 2 ms to estimate xenon plasma cooling between target implosions at 13 Hz. The short-time simulation results reported are: (1) the plasma hydrodynamics of the xenon in the chamber, (2) dynamic overpressure on the tungsten armor, and (3) time-dependent temperatures in the tungsten armor. The ramifications of local thermodynamic equilibrium (LTE) vs. non-LTE opacity models are also addressed.

  11. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  12. Simultaneous measurement of gas concentration and temperature by the ball surface acoustic wave sensor

    Science.gov (United States)

    Yamanaka, Kazushi; Akao, Shingo; Takeda, Nobuo; Tsuji, Toshihiro; Oizumi, Toru; Tsukahara, Yusuke

    2017-07-01

    We have developed a ball surface acoustic wave (SAW) trace moisture sensor with an amorphous silica sensitive film and realized wide-range measurement from 0.017 ppmv [a frost point (FP) of -99 °C] to 6.0 × 103 ppmv (0 °C FP). However, since the sensitivity of the sensor depends on the temperature, measurement results are disturbed when the temperature largely changes. To overcome this problem, we developed a method to simultaneously measure temperature and gas concentration using a ball SAW sensor. Temperature and concentration is derived by solving equations for the delay time change at two frequencies. When the temperature had a large jump, the delay time change was significantly disturbed, but the water concentration was almost correctly measured, by compensating the sensitivity change using measured temperature. The temperature measured by a ball SAW sensor will also be used to control the ball temperature. This method will make a ball SAW sensor reliable in environments of varying temperatures.

  13. Multiwalled carbon nanotubes-zinc oxide nanocomposites as low temperature toluene gas sensor

    Science.gov (United States)

    Septiani, Ni Luh Wulan; Yuliarto, Brian; Nugraha; Dipojono, Hermawan Kresno

    2017-03-01

    The performance of nanocomposite MWCNT-ZnO thin films was investigated as toluene gas sensor. The nanocomposites MWCNT-ZnO thin films were synthesized by reflux method with the variation of MWCNT:ZnO ratio on 1:0, 3:1, 1:1, 1:3, and 0:1. Crystallinity and morphology characterization show that the crystal structure was not influenced by the presence of MWCNT, and the presence of MWCNTs could prevent the agglomeration of ZnO nanostructure. The dynamic response curve of nanocomposites MWCNT-ZnO thin films shows two different patterns at low temperature region and high temperature region. At low temperature region, the sensor response decreases as the increasing operating temperature and increasing the concentration of ZnO. On the other hand, at high temperature region, the sensor response increases as the increasing operating temperature and increasing the concentration of ZnO. Moreover, the variation concentration of MWCNT and ZnO can decrease the operating temperature of the sensors. The sensor with the ratio of MWCNT:ZnO at 1:3 show highest sensor response that reaches 17% at 150 °C of operating temperature, while the pure MWCNTs and pure ZnO show no response at that temperature.

  14. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  15. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  16. Effect of ionol extraction temperature onto its gas chromatographic detection at transformer oil

    Directory of Open Access Journals (Sweden)

    Sergiy V. Zaitsev

    2015-03-01

    Full Text Available The gas chromatography used for detecting antioxidizing additive ionol at transformer oil presence helps to ensure reliable operation of oil-filled electrical equipment. Changes in the ionol preliminary extraction temperature do affect the reliability of measurement result. This study aim consisted in investigating the temperature effect on the value of extraction degree and distribution coefficients for ionol in the system “oil — ionol — ethanol” at extraction temperatures 15...75 °C. The experiment included optimization of gas chromatographic ionol in transformer oil detection conditions using method of ionol ethanol extraction and an estimated equation for a single extraction. Found is that the ionol extraction temperature increase in the range of 15...75 °C reduces the values of the ionol distribution coefficients and increases the value of ionol extraction degree and its concentration in the extract reducing the extraction duration, lowering the value of the detection threshold and the total duration of ionol in transformer oil detection. The recommended values for ionol extraction in the temperature range of 15...32 °C at a temperature of extraction 20 °C with precision temperature Δt ≤ ±1 °C, in the range of 32…40 °C, with a temperature of extraction 36 °C and Δt ≤ ±2 °C, in the range of 40...75 °C, with a temperature of extraction 65 °C and Δt ≤ ±5 °C.

  17. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Kawahara, Nobuyuki [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Tomita, Eiji [Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Suzuki, Kosuke [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2016-02-17

    Measurement of combustion gas by high-energy X-ray Compton scattering is reported. Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.

  18. Transfer of CVD-grown graphene for room temperature gas sensors

    Science.gov (United States)

    Rigoni, F.; Maiti, R.; Baratto, C.; Donarelli, M.; MacLeod, J.; Gupta, B.; Lyu, M.; Ponzoni, A.; Sberveglieri, G.; Motta, N.; Faglia, G.

    2017-10-01

    An easy transfer procedure to obtain graphene-based gas sensing devices operating at room temperature (RT) is presented. Starting from chemical vapor deposition-grown graphene on copper foil, we obtained single layer graphene which could be transferred onto arbitrary substrates. In particular, we placed single layer graphene on top of a SiO2/Si substrate with pre-patterned Pt electrodes to realize a chemiresistor gas sensor able to operate at RT. The responses to ammonia (10, 20, 30 ppm) and nitrogen dioxide (1, 2, 3 ppm) are shown at different values of relative humidity, in dark and under 254 nm UV light. In order to check the sensor selectivity, gas response has also been tested towards hydrogen, ethanol, acetone and carbon oxide. Finally, a model based on linear dispersion relation characteristic of graphene, which take into account humidity and UV light effects, has been proposed.

  19. Binary Collision Density in a Non-Ideal Gas as a Function of Particle Density, Collision Diameter, and Temperature

    Science.gov (United States)

    Mohazzabi, Pirooz

    2017-09-01

    Using molecular dynamics simulations, binary collision density in a dense non-ideal gas with Lennard-Jones interactions is investigated. It is shown that the functional form of the dependence of collision density on particle density and collision diameter remains the same as that for an ideal gas. The temperature dependence of the collision density, however, has a very different form at low temperatures, where it decreases as temperature increases. But at higher temperatures the functional form becomes the same as that for an ideal gas.

  20. Applying Alkyl-Chain Surface Functionalizations in Mesoporous Inorganic Structures: Their Impact on Gas Flow and Selectivity Depending on Temperature.

    Science.gov (United States)

    Besser, Benjamin; Ahmed, Atiq; Baune, Michael; Kroll, Stephen; Thöming, Jorg; Rezwan, Kurosch

    2016-10-12

    Porous inorganic capillary membranes are prepared to serve as model structures for the experimental investigation of the gas transport in functionalized mesopores. The porous structures possess a mean pore diameter of 23 nm which is slightly reduced to 20 nm after immobilizing C16-alkyl chains on the surface. Gas permeation measurements are performed at temperatures ranging from 0 to 80 °C using Ar, N2, and CO2. Nonfunctionalized structures feature a gas transport according to Knudsen diffusion with regard to gas flow and selectivity. After C16-functionalization, the gas flow is reduced by a factor of 10, and the ideal selectivities deviate from the Knudsen theory. CO2 adsorption measurements show a decrease in total amount of adsorbed gas and isosteric heat of adsorption. It is hypothesized that the immobilized C16-chains sterically influence the gas transport behavior without a contribution from adsorption effects. The reduced gas flow derives from an additional surface resistance caused by the C16-chains spacially limiting the adsorption and desorption directions for gas molecules propagating through the structure, resulting in longer diffusion paths. In agreement, the gas flow is found to correlate with the molecular diameter of the gas species (CO2 ideal selectivities with the relation [Formula: see text]. The influence on selectivity increases with increasing temperature which leads to the conclusion that the temperature induced movement of the C16-chains is responsible for the stronger interaction between gas molecules and surface functional groups.

  1. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    Science.gov (United States)

    Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy M.

    2016-04-01

    Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, the rotational level populations have to be in local thermodynamic equilibrium (LTE). However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-LTE contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1), which peaks at about 94 to 95 km, and O2a(0-0) with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0) emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0)-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v', showed significant excesses with a maximum of more than 10 K for v' = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly for high v'. The amplitude of these variations can be about 2 K

  2. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    Directory of Open Access Journals (Sweden)

    S. Noll

    2015-11-01

    Full Text Available Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, a corresponding Boltzmann distribution of the rotational level populations has to be achieved. However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-local thermodynamic equilibrium (non-LTE contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1, which peaks at about 94 to 95 km, and O2a(0-0 with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0 emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v', showed significant excesses with a maximum of more than 10 K for v' = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly

  3. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Science.gov (United States)

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  4. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  5. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  6. Thermophoresis of a Small Evaporating Particle in a High-Temperature Diatomic Gas

    Science.gov (United States)

    Chen

    1997-07-15

    Kinetic-theory analytical results are presented concerning the effect of intense evaporation on the thermophoretic force acting on a spherical particle suspended in a high-temperature diatomic gas for the case of free-molecule regime. Molecule dissociation and atom recombination are included in the analysis. It has been shown that evaporation may substantially enhance the thermophoretic force acting on a particle, especially for the case of the particle materials with low evaporation latent heat and small molecular weight and at high gas temperatures. The values of the effective atomic and molecular thermal-accommodation factors do not affect the thermophoretic force acting on a nonevaporating particle, but they affect significantly the evaporation-added thermophoretic force. It has been shown that the recombination fraction of atoms at the particle surface does not influence the thermophoresis.

  7. Moderate-temperature operable SO2 gas sensor based on Zr4+ ion conducting solid electrolyte

    Directory of Open Access Journals (Sweden)

    Y. Uneme

    2012-12-01

    Full Text Available A solid electrolyte type sulfur dioxide (SO2 gas sensor that can operate at moderate temperatures was fabricated using Zr4+ ion conducting Zr39/40TaP2.9W0.1O12 solid electrolyte with 0.7La2O2SO4 − 0.3(0.8Li2SO4 + 0.2K2SO4 having a large surface area and Zr metal as the auxiliary sensing electrode and reference electrode, respectively. Since the present sensor showed a quantitative, reproducible and rapid response which obeys the theoretical Nernst relationship even at 400 °C, it is a potential on site SO2 gas sensing tool operable at moderate temperatures around 400 °C.

  8. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    Science.gov (United States)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  9. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure

    Science.gov (United States)

    Yatsyna, Vasyl; Bakker, Daniël J.; Salén, Peter; Feifel, Raimund; Rijs, Anouk M.; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N -methylacetamide molecules in the mid-IR spectral range of 1000 - 1800 cm-1 , utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N -methylacetamide are measured in the full amide I-III range.

  10. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  11. A small high temperature gas cooled reactor for nuclear marine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brugiere, F.; Sillon, C. [Ecole des Applications Militaires de l' Energie Atomique, 50 - Cherbourg (France); Foster, A.; Hamilton, P.; Jewer, S.; Thompson, A.C. [Defence College of Electromechanical Engineering, Nuclear Dept., Military Rd, Gosport (United Kingdom); Kingston, T.; Williams, A.M.; Beeley, P.A. [Rolls-Royce (Marine Power), Raynesway, Derby (United Kingdom)

    2007-07-01

    Results from a design study for a hypothetical nuclear marine propulsion plant are presented. The plant utilizes a small High Temperature Gas Cooled Reactor (HTGCR) similar to the GTHTR300 design by the Japan Atomic Energy Agency with power being generated by a direct cycle gas turbine. The GTHTR300 design is modified in order to achieve the required power of 80 MWth and core lifetime of approximately 10 years. Thermal hydraulic analysis shows that in the event of a complete loss of flow accident the hot channel fuel temperature exceeds the 1600 Celsius degrees limit due to the high power peaking in assemblies adjacent to the inner reflector. Reactor dynamics shows oscillatory behaviour in rapid power transients. An automatic control rod system is suggested to overcome this problem. (authors)

  12. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    Science.gov (United States)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  13. The gap of electronic and gas temperatures at the border of the electric arc

    Science.gov (United States)

    Gerasimov, Alexander; Kirpichnikov, Alexander; Sabirova, Farida; Yakimov, Igor

    2017-01-01

    In this paper we consider fundamental, and one of the most interesting questions that arise in the theory and practice of two-temperature arc matter of breaking Te(R) and atomic-ion (gas) T(R) temperatures on the border of the electric arc. For the two-temperature calculations used channel model arc. Presented gap value calculated for different values of the current strength in the discharge. Calculations were made for an argon plasma at atmospheric pressure for two values of current intensity I = 78 A, and I = 200 A and various values of the wall temperature. Also shows the corresponding experimental results for the same conditions of other authors, we are in good qualitative agreement of the results of calculations with experimental data.

  14. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  15. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    to gas recovery at smaller and older landfills in northern Europe. Equations have been developed that describe the dependency of temperature and soil moisture content for each soil. The oxidation rates depended significantly on the soils (and thereby organic matter content), temperature, and soil...... moisture content. Soil moisture was the most important factor. However, high Q(10) values indicate that temperature also was important. The four soils tested had optimum soil moisture content between 11 and 32%. At increasing organic matter content, both the optimal soil moisture content and the maximum...... cannot be extrapolated to soils exposed to high methane concentrations. Four sandy soils with different organic matter content (1-9% w/w) from two landfills in Denmark were investigated in batch experiments in the laboratory to determine the response of methane oxidation at low temperatures and different...

  16. Numerical Analysis of Silicon Micromachined Gas Pendulum Tilt Sense Organ Temperature Field

    Institute of Scientific and Technical Information of China (English)

    Linhua Piao; Bin Zhang; Yaojie Lv; Fuxue Zhang

    2006-01-01

    An analysis of the sensitive mechanism of silicon micromachined gas pendulum tilt sense organ is made. Adopting the method of FEA (finite element analysis), the temperature field at two points heat source, when the two-dimensional enclosure was inclined, was obtained by application of the program ANSYS-FLOTRAN CFD and a series of procedures, such as modeling, meshing, loading and equation solving. The numerical results show that in the level state, the temperatures at two points heat source are two points in the same isotherm; however, the temperatures are not the same when the enclosure is inclined. The difference of the temperatures will increase with the augment of the tilt angle, and contrarily it will decrease. That is the characteristic used to sense the transformation of obliquity.

  17. Rapid method for simulating gas spectra using reversed PCR temperature calibration models based on Hitran data

    DEFF Research Database (Denmark)

    Bak, J.

    1999-01-01

    A computer program was produced to make rapid simulations of CO gas spectra at a spectral resolution of 1 cm(-1) and at temperatures ranging from 295 to 845 K and concentrations from 5 to 400 mg/m(3). The program is based on loadings and scores from three principal component regression (PCR......) temperature calibration models. Three sets of 12 Hitran-simulated high-density spectra, each set spanning the entire temperature range at constant concentrations (50, 150, and 300 mg/m(3)), were used as calibration spectra in the PCR temperature models. All the spectra were convoluted with a sine......-squared instrumental line-shape function and reduced in the number of data points prior to PCR modeling. The simulated spectra, calculated on the basis of the PCR model parameters, were next scaled by using the areas of the spectra to represent the input concentration. The program simulates spectra very rapidly...

  18. Low temperature operated NiO-SnO2 heterostructured SO2 gas sensor

    Science.gov (United States)

    Tyagi, Punit; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Sulfur dioxide (SO2) is among the most toxic gas released by the industries which is extremely dangerous for human health. In the present communication, an attempt has been made for the detection of SO2 gas (500 ppm) with the help of SnO2 thin film based gas sensor. A low sensing response of 1.3 is obtained for sputtered SnO2 thin films based sensors at a high operating temperature of 220 °C. To improve the sensing response, different heterostructured sensors are developed by incorporating other metal oxide thin films (PdO, MgO, NiO, V2O5) over SnO2 thin film surface. Sensing response studies of different sensors towards SO2 gas (500 ppm) are presented in the present report. Among all the prepared sensors NiO-SnO2 hetero-structure sensor is showing highest sensing response (˜8) at a comparatively lower operating temperature (140 °C). Possible sensing mechanism for NiO-SnO2 heterostructured sensor has also been discussed in the present report.

  19. Considerations on the temperature dependence of the gas-liquid chromatographic retention.

    Science.gov (United States)

    González, Francisco Rex

    2002-01-04

    A discussion on the temperature dependence of the partition coefficient K is developed. This discussion embraces topics such as the limitations of conventional thermodynamic approaches followed in the chromatographic literature, qualitative theoretical notions arising from molecular thermodynamics and the experimental information that is accessible through modern capillary gas chromatography. It is shown that the heat capacity difference of solute transfer for flexible molecules has at least one maximum in the chromatographic range of temperature. As a consequence, a great amount of experimental data is required for a correct thermodynamic interpretation of the chromatographic retention.

  20. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren;

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  1. On Developing a Spectroscopic System for Fast Gas Temperature Measurements in Combustion Environments

    DEFF Research Database (Denmark)

    Evseev, Vadim; Clausen, Sønnik

    2009-01-01

    Fourier Transform Infra Red (FTIR) spectroscopy techniques are known to provide reliable results for gas temperature measurements and can be comparatively easily performed on an industrial scale such as a boiler on a power plant or an exhaust of a ship engine cylinder. However temporal resolution...... is not high enough to trace fast temperature variations which are of great importance for complete combustion diagnostics. To eliminate the above mentioned shortcoming, a new IR spectroscopic-imaging system has been developed at Risø DTU. The schematic of the system is presented. Results on lab and industrial...

  2. Temperature and bath gas composition dependence of effective fluorescence lifetimes of toluene excited at 266 nm

    Science.gov (United States)

    Faust, S.; Dreier, T.; Schulz, C.

    2011-05-01

    Time-resolved fluorescence spectra of gas-phase toluene upon picosecond excitation at 266 nm were investigated as a function of temperature (296-1074 K) and bath gas composition (varying amounts of N 2, O 2, and CO 2) at 1 bar total pressure with a temporal resolution of 50 ps. In the investigated temperature range the effective fluorescence lifetime drops with increasing temperature from 46 ± 3 ns to 0.05 ± 0.01 ns in N 2 and CO 2. In the presence of O 2 at constant temperature the lifetimes also decrease significantly (e.g., from 46 ± 3 ns without O 2 to 0.63 ± 0.05 ns in air at room temperature), whereas lifetimes are independent on the CO 2 concentration. The implications of the results for the existing phenomenological model of predicting temporally integrated fluorescence intensities in toluene [W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80 (2005) 777] are discussed.

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M. [UMR 5672 du CNRS, ENS Lyon (France). Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Institute, Moscow (Russian Federation)

    2010-12-15

    We describe a Bethe ansatz based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting onedimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach with the correlation lengths stemming from the quantum transfer matrix method. (orig.)

  5. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  6. Experimental Investigation of Temperature Effects on Microparticle Sand Rebound Characteristics at Gas Turbine Representative Conditions

    OpenAIRE

    Delimont, Jacob M

    2014-01-01

    When a gas turbine operates in a particle laden environment, such as a desert, small solid particles are ingested into the engine. The ingested sand particles can cause damage to engine components and reduce the service life of the engine. Particle ingestion causes the erosion of metal blades and vanes, and, if the firing temperature is hot enough, deposition of molten particles in the hot sections of the engine. Both deposition and erosion phenomena can severely reduce overall engine perfo...

  7. Design analysis and development of a high temperature actuaror for gas turbine blade tip clearance control

    OpenAIRE

    2011-01-01

    During a typical startup cycle industrial gas turbine blades experience rapid radial thermal expansion while bulky shroud structure with larger thermal inertia requires much longer period to reach its operating temperature. Turbine designers have to leave a safe radial distance in order to prevent contact of blades to the surrounding annular casing. However, when thermal steady state in the turbine stage is achieved, shroud and casing grow and excessive amount of blade-shroud clearance remain...

  8. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    Science.gov (United States)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  9. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  10. Difference Of Evaporation and Boiling for Heterogeneous Water Droplets in a High-Temperature Gas

    Directory of Open Access Journals (Sweden)

    Legros Jean Claude

    2015-01-01

    Full Text Available Experimental investigation of vapor formation was carried out on water droplets on fixed graphite substrate and heterogeneous droplets (containing solid single inclusions when heating in high-temperature gas. High-speed video shooting (up to 105 frames per second, optical method (Particle Image Velocimetry and TEMA Automotive software were used. We revealed two phase change mechanisms of heterogeneous liquid droplets. Effect of evaporation and boiling on evaporation times of water droplets was determined.

  11. Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography.

    Science.gov (United States)

    Boursier, Laure; Souchon, Vincent; Dartiguelongue, Cyril; Ponthus, Jérémie; Courtiade, Marion; Thiébaut, Didier

    2013-03-08

    The development of efficient conversion processes requires extended knowledge on vacuum gas oils (VGOs). Among these processes, hydrocracking is certainly one of the best suited to meet the increasing demand on high quality diesel fuels. Most of refractory and inhibiting compounds towards hydrocracking and especially nitrogen containing compounds are contained in a fraction of the VGO called the resin fraction, which corresponds to the most polar fraction of a VGO obtained by liquid chromatography (LC) fractionation on a silica column. However, the lack of resolution observed through existing analytical methods does not allow a detailed characterization of these fractions. A recent study showed that comprehensive high temperature two-dimensional gas chromatography (HT-GC×GC) methods could be optimized in order to elute heavy compounds. This method was implemented for the analysis of VGO resin fractions and complete elution was reached. Firstly, the method was validated through repeatability, accuracy, linearity and response factors calculations. Four VGO resin fractions were analyzed and their HT-GC×GC simulated distillation curves were compared to their GC simulated distillation (GC-SimDist) curves. This comparison showed that the method allows complete elution of most of the analyzed VGO resin fractions. However, a detailed characterization of these fractions is not yet obtained due to the very large number of heteroatomic and aromatic species that a flame ionization detector can detect. Current work aims at increasing the selectivity of GC×GC by using heteroatom selective detectors in order to improve the characterization of such products.

  12. Optimization of Low-Temperature Exhaust Gas Waste Heat Fueled Organic Rankine Cycle

    Institute of Scientific and Technical Information of China (English)

    WANGHui—tao; WANGHua; ZHANGZhu—ming

    2012-01-01

    Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.

  13. Development of GAMMA Code and Evaluation for a Very High Temperature gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang H; Lim, H.S.; Kim, E.S.; NO, H.C.

    2007-06-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-of-coolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of toxic gasses (CO and CO2) and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. This paper will also include what improvements will be made in the Gamma code for the VHTR.

  14. Temperature dependence of gas evolution from polyolefins on irradiation under vacuum

    Science.gov (United States)

    Seguchi, Tadao; Haruyama, Yasuyuki; Sugimoto, Masaki

    2013-04-01

    The yields of gases evolved from three types of polyethylene and ethylene-propylene copolymer during radiation were precisely measured after gamma ray irradiation under vacuum over a wide range of temperatures (-196 to 200 °C). For all polymers the major gas evolved was H2 and the minor products were C1, C2, C3 hydrocarbons and the oxidation compounds CO2 and CO. The total gas yield increased with an increase in the irradiation temperature, but the ratio of the yields among the gas components was not greatly changed. The H2 would originate from H-bond scission and the concomitant formation of crosslinks and double bonds in the polymer chains. The minor products of C1, C2, C3 hydrocarbons were products of chain scission at the chain ends, including branched chains, and the oxidation compounds of CO and CO2 were the products formed by reactions of oxygen remaining trapped in the polymer matrix. The yield of H2 increased with increasing irradiation temperature, which is closely related to the molecular motions of the polymer chains during irradiation.

  15. Electrochemical studies of hydrogen chloride gas in several room temperature ionic liquids: mechanism and sensing.

    Science.gov (United States)

    Murugappan, Krishnan; Silvester, Debbie S

    2016-01-28

    The electrochemical behaviour of highly toxic hydrogen chloride (HCl) gas has been investigated in six room temperature ionic liquids (RTILs) containing imidazolium/pyrrolidinium cations and range of anions on a Pt microelectrode using cyclic voltammetry (CV). HCl gas exists in a dissociated form of H(+) and [HCl2](-) in RTILs. A peak corresponding to the oxidation of [HCl2](-) was observed, resulting in the formation of Cl2 and H(+). These species were reversibly reduced to H2 and Cl(-), respectively, on the cathodic CV scan. The H(+) reduction peak is also present initially when scanned only in the cathodic direction. In the RTILs with a tetrafluoroborate or hexafluorophosphate anion, CVs indicated a reaction of the RTIL with the analyte/electrogenerated products, suggesting that these RTILs might not be suitable solvents for the detection of HCl gas. This was supported by NMR spectroscopy experiments, which showed that the hexafluorophosphate ionic liquid underwent structural changes after HCl gas electrochemical experiments. The analytical utility was then studied in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) by utilising both peaks (oxidation of [HCl2](-) and reduction of protons) and linear calibration graphs for current vs. concentration for the two processes were obtained. The reactive behaviour of some ionic liquids clearly shows that the choice of the ionic liquid is very important if employing RTILs as solvents for HCl gas detection.

  16. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  17. Survey of processes for high temperature-high pressure gas purification. [52 references

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.P.; Edwards, M.S.

    1978-11-01

    In order to ensure the optimum operating efficiency of a combined-cycle electric power generating system, it is necessary to provide gas treatment processes capable of operating at high temperatures (> 1000/sup 0/F) and high pressures (> 10 atm (absolute)). These systems will be required to condition the inlet stream to the gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) to be compatible with both environmental and machine constraints. A survey of the available and developmental processes for the removal of these various contaminant materials has been conducted. Based on the data obtained from a variety of sources, an analysis has been performed to evaluate the performance of a number of potential cleanup processes in view of the overall system needs. The results indicate that commercially available, reliable, and economically competitive hot-gas cleanup systems (for the removal of H/sub 2/S, particulate matter, alkali, and nitrogen compounds) capable of conditioning raw product gas to the levels required for turbine use will not be available for some time.

  18. Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature

    Science.gov (United States)

    Eremin, A.; Gurentsov, E.; Schulz, C.

    2008-03-01

    The influence of the kind of bath gas and its pressure on the iron nanoparticle formation and growth was investigated experimentally. Iron nanoparticles were synthesized from supersaturated iron vapour generated by ArF excimer laser pulse photolysis of gaseous Fe(CO)5 at room temperature. The particle size was determined by time-resolved laser-induced incandescence (TiRe-LII) as a function of time after photolysis at different experimental conditions. Additionally, final particles were sampled and analysed by transmission electron microscopy and by energy-dispersive x-ray analysis. The particle growth rate and the final particle size depended on the bath-gas composition and pressure. Increasing the argon bath-gas pressure accelerated the iron nanoparticle growth rate. In contrast to argon, no influence of helium on the particle growth rate was observed. The experimental results are compared with numerical simulations of particle surface growth, based on the model developed in previous investigations. The simulations indicate that the observed differences in the influence of the bath gas on the particle formation are caused by the species-dependent quenching probability of the active atom-particle complexes by the bath gas.

  19. On the stability of non-isothermal Bonnor-Ebert spheres. II. The effect of gas temperature on the stability

    CERN Document Server

    Sipilä, O; Juvela, M

    2015-01-01

    Aims. We investigate the stability of non-isothermal Bonnor-Ebert spheres with a model that includes a self-consistent calculation of the gas temperature. This way we can discard the assumption of equality between the dust and gas temperatures, and study the stability as the gas temperature changes with chemical evolution of the gas. Methods. We use a gas-grain chemical model including a time-dependent treatment of depletion onto grain surfaces, which strongly influences the gas temperature as the main coolant, CO, depletes from the gas. Dust and gas temperatures are solved with radiative transfer. For comparison with previous work, we assume that the cores are deeply embedded in a larger external structure, corresponding to visual extinction $A_{\\rm V}^{\\rm ext}=10$ mag. Results. We find that the critical non-dimensional radius $\\xi_1$ derived here is similar to our previous work where we assumed $T_{\\rm dust}=T_{\\rm gas}$; the $\\xi_1$ values lie below the isothermal critical value $\\xi_0\\sim6.45$, but the d...

  20. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  1. Gas Temperature Measurements of Fluctuating Coal - MHD Plasmas Using Modified Line Reversal.

    Science.gov (United States)

    Winkleman, Bradley Carl

    The technique of modified line reversal is investigated and developed to allow accurate measurements on fluctuating coal fired magnetohydrodynamic plasmas and flows. Generalized modified line reversal equations applicable to any geometry and optical system are developed and presented. The generalized equations are specialized to the two most common optical systems, focussed and collimated, employed for modified line reversal measurements. Approximations introduced by specializing to the specific optical systems are investigated. Vignetting of the optical system images is shown to introduce large biases in the temperature measurement for certain optical configurations commonly applied. It is shown that symmetric optical systems are unacceptable for line reversal measurements. The errors introduced by non-simultaneous measurement of the required line reversal parameters due to rapidly fluctuating plasma characteristics are characterized. Line reversal signal and temperature measurements made on a coal fired MHD plasma are used to quantify the error in the temperature measurement due to non-simultaneous sampling of the measured line reversal parameters. A simple modified line reversal system based on interference filters and photodiodes that employs spatial separation to obtain the required line reversal parameters is described. Gas temperatures measured with devices using both the spatial and temporal separation techniques are compared. Modified line reversal temperature measurements are compared to theoretically predicted temperatures as well as CARS and high velocity thermocouple temperature measurements.

  2. Testing marine shales' ability to generate catalytic gas at low temperature

    Science.gov (United States)

    Wei, L.; Schimmelmann, A.; Drobniak, A.; Sauer, P. E.; Mastalerz, M.

    2013-12-01

    Hydrocarbon gases are generally thought to originatevia low-temperature microbial or high-temperature thermogenicpathways (Whiticar, 1996) that can be distinguished by compound-specific hydrogen and carbon stable isotope ratios. An alternative low-temperature catalytic pathway for hydrocarbon generation from sedimentary organic matter has been proposed to be active at temperatures as low as 50oC (e.g.,Mango and Jarvie,2009,2010; Mango et al., 2010; Bartholomew et al., 1999). This hypothesis, however, still requires rigoroustesting by independent laboratory experiments.The possibility of catalytic generation of hydrocarbons in some source rocks (most likely in relatively impermeable and organic-rich shales where reduced catalytic centers can be best preserved) would offer an explanation for the finding of gas of non-microbial origin in formations that lack the thermal maturity for generating thermogenic gas.It is unknown whether catalytically generated methane would be isotopically different from thermogenicmethane (δ13CCH4>-50‰, δ2HCH4from -275‰ to -100‰) ormicrobially generated methane (δ13CCH4from -40‰ to -110‰, δ2HCH4from -400‰to -150‰) (Whiticar, 1998). In order to test for catalytic gas generationin water-wet shales and coals, we are conductinglaboratory experiments at three temperatures (60°C, 100°C, 200°C)and three pressures (ambient pressure, 107 Pa, 3x107 Pa)over periods of six months to several years. So far, our longest running experiments have reached one year. We sealed different types of thermally immature, pre-evacuatedshales (Mowry, New Albany, and Mahoganyshales) and coals (SpringfieldCoal and Wilcoxlignite)with isotopically defined waters in gold cells in the absence of elemental oxygen.Preliminary results show that these samples, depending on conditions, can generate light hydrocarbon gases (methane, ethane and propane) and CO2. Methane, CO2, and traces of H2havebeen generated at 60°C, whereas experiments at 100°C and 200

  3. Non-Uniformity of the Combustor Exit Flow Temperature in Front of the Gas Turbine

    Directory of Open Access Journals (Sweden)

    Błachnio Józef

    2014-12-01

    Full Text Available Various types of damages to gas-turbine components, in particular to turbine blades, may occur in the course of gas turbine operation. The paper has been intended to discuss different forms of damages to the blades due to non-uniformity of the exit flow temperature. It has been shown that the overheating of blade material and thermal fatigue are the most common reasons for these damages. The paper presents results from numerical experiments with use of the computer model of the aero jet engine designed for simulations. The model has been purposefully modified to take account of the assumed non-homogeneity of the temperature field within the working agent at the turbine intake. It turned out that such non-homogeneity substantially affects dynamic and static properties of the engine considered as an object of control since it leads to a lag of the acceleration time and to increase in fuel consumption. The summarized simulation results demonstrate that the foregoing properties of a jet engine are subject to considerable deterioration in pace with gradual increase of the assumed non-homogeneity of the temperature field. The simulations made it possible to find out that variations of the temperature field nonhomogeneity within the working agent at the turbine intake lead to huge fluctuation of the turbine rpm for the idle run.

  4. Speckle measurements of density and temperature profiles in a model gas circuit breaker

    Science.gov (United States)

    Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.

    2015-01-01

    Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.

  5. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  6. Validation of gas temperature measurements by OES in an atmospheric air glow discharge with water electrode using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Verreycken, T; Van Gessel, A F H; Pageau, A; Bruggeman, P, E-mail: p.j.bruggeman@tue.n [Eindhoven University of Technology, Department of Applied Physics, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-04-15

    Rayleigh scattering is used to determine the gas temperature of an atmospheric pressure dc excited glow discharge in air with a water electrode. The obtained temperatures are compared with calculated rotational temperatures measured by optical emission spectroscopy of OH(A-X) and N{sub 2}(C-B). At a current of 15 mA a deviation is found between T{sub rot}(OH) and the gas temperature obtained from Rayleigh scattering of about 1000 K. The gas temperatures obtained from Rayleigh scattering, N{sub 2}(C) and OH(A) in the positive column are, respectively, 2600 {+-} 100 K, 2700 {+-} 150 K and 3600 {+-} 200 K. It is shown that the rotational temperature of N{sub 2}(C) is a reliable measurement of the gas temperature while this is not the case for OH(A). The results are explained in the context of quenching processes of the excited states. Spatially resolved gas temperatures in both longitudinal and radial directions are presented. The observed strong temperature gradients near the electrodes are checked to be consistent with the power dissipation and the heat transfer in the discharge. The effect of the polarity of the water electrode and filamentation on the measured temperatures is discussed.

  7. The electric field effect on the sensitivity of tin oxide gas sensors on nanostructured substrates at low temperature

    Directory of Open Access Journals (Sweden)

    Haizhou Ren

    2014-10-01

    Full Text Available A novel low-temperature SnO2 gas sensor was prepared and studied on silicon nanostructures formed by femtosecond laser irradiation. By applying a bias voltage on the silicon substrate to alter the charge distribution on the surface of the SnO2, carbon monoxide (CO, and ammonia (NH3 gas can be distinguished by the same sensor at room temperature. The experimental results are explained with a mechanism that the sensor works at low temperature because of adsorption of gas molecules that trap electrons to the surface of the SnO2.

  8. Pt-loaded zeolites for reducing exhaust gas emissions at low temperatures and in lean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huuhtanen, Mika; Keiski, Riitta L. [University of Oulu, Department of Process and Environmental Engineering, P.O. Box 4300, FIN-90014 Oulu (Finland); Rahkamaa-Tolonen, Katariina; Maunula, Teuvo [ECOCAT Oy, Catalyst Research, Typpitie 1, FIN-90650 Oulu (Finland)

    2005-02-28

    In this study, pure and platinum-loaded zeolites, ZSM-5, Beta, zeolite Y and Ferrierite, were examined for the reduction of NO with propene in lean conditions and at low temperatures. The studies were carried out by utilising the FT-IR technique both in determination of surface species as well as concentrations in the gas flow at reactor outlet. The maximum in the intermediate formation can be observed at the light-off temperatures over all studied catalyst materials. The maximum conversions of NO were reached with 1wt% Pt-loaded Beta and Y zeolites in excess oxygen. The lowest light-off temperatures of NO as well as propene can be detected also with Beta and Y zeolite catalysts.

  9. Hexanal Gas Detection Using Chitosan Biopolymer as Sensing Material at Room Temperature

    Directory of Open Access Journals (Sweden)

    Devi Shantini

    2016-01-01

    Full Text Available Hexanal was identified as one of the major volatile gases which are produced in degraded dairy products and wood industries. Therefore, preliminary study on hexanal gas detection with the laboratory scale was carried out in this paper. Electrical testing with chitosan as a sensing material to sense hexanal gas in low concentration was carried out at room temperature. Chitosan sensor was fabricated by using electrochemical deposition technique to form active sensing layer. The response of the chitosan film sensor (CFS towards hexanal was tested via electrical testing by exposing different hexanal concentrations ranging between 20 ppm, 100 ppm, 200 ppm, and 300 ppm using air as a carrier gas. Sensing properties of the CFS toward hexanal exposure including responsibility, recovery, repeatability, stability, and selectively were studied. Overall, our result suggested that hexanal sensor based on chitosan was able to perform well at room temperature demonstrated by good response, good recovery, good repeatability, good stability, and good selectively. This simple and low cost sensor has high potential to be utilized in early quality degradation detection in dairy products and can be used to monitor the level of hexanal exposure in wood industries.

  10. Influence of gas pressure and substrate temperature on PIII nitrocarburizing process of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rahman, A.M. [Physics Department, Faculty of Science, South Valley University, Sohag Branch, Sohag (Egypt) and Institute of Ion Beam Physics and Material Research, FWII, Forschungszentrum Rossendorf, 01314 Dresden (Germany)]. E-mail: ahmedphys96@hotmail.com; El-Hossary, F.M. [Physics Department, Faculty of Science, South Valley University, Sohag Branch, Sohag (Egypt); Negm, N.Z. [Physics Department, Faculty of Science, South Valley University, Sohag Branch, Sohag (Egypt); Prokert, F. [Institute of Ion Beam Physics and Material Research, FWII, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Richter, E. [Institute of Ion Beam Physics and Material Research, FWII, Forschungszentrum Rossendorf, 01314 Dresden (Germany); Moeller, W. [Institute of Ion Beam Physics and Material Research, FWII, Forschungszentrum Rossendorf, 01314 Dresden (Germany)

    2004-12-01

    Plasma immersion ion implantation (PIII) has been used to modify the surface properties of 304 austenitic stainless steel (AISI). The influence of working gas pressure, 0.2-1.0 Pa, and substrate temperature, 300-500 deg. C, on the microstructure, treating rate, nitrogen/carbon concentration depth profile, and surface microhardness was investigated. A gas composition of 25% C{sub 2}H{sub 2}, 75% N{sub 2}, r.f. plasma power input of 350 W, and a negatively biased potential of 30 kV were fixed during the experiment. The experimental results show that the substrate temperature and the diffusion process of nitrogen and carbon depend on the gas pressure inside the plasma chamber. The thickness of the modified layer has been found to be more than 30 {mu}m for samples were treated in the plasma for 60 min. The results show also that the values of diffusion coefficient and surface microhardness of the treated samples are high to be 3.4 x 10{sup -1} {mu}m{sup 2}/s and 1880 kg/mm{sup 2}, respectively.

  11. Influence of gas pressure and substrate temperature on PIII nitrocarburizing process of AISI 304 stainless steel

    Science.gov (United States)

    Abd El-Rahman, A. M.; El-Hossary, F. M.; Negm, N. Z.; Prokert, F.; Richter, E.; Möller, W.

    2004-12-01

    Plasma immersion ion implantation (PIII) has been used to modify the surface properties of 304 austenitic stainless steel (AISI). The influence of working gas pressure, 0.2-1.0 Pa, and substrate temperature, 300-500 °C, on the microstructure, treating rate, nitrogen/carbon concentration depth profile, and surface microhardness was investigated. A gas composition of 25% C2H2, 75% N2, r.f. plasma power input of 350 W, and a negatively biased potential of 30 kV were fixed during the experiment. The experimental results show that the substrate temperature and the diffusion process of nitrogen and carbon depend on the gas pressure inside the plasma chamber. The thickness of the modified layer has been found to be more than 30 μm for samples were treated in the plasma for 60 min. The results show also that the values of diffusion coefficient and surface microhardness of the treated samples are high to be 3.4 × 10-1 μm2/s and 1880 kg/mm2, respectively.

  12. Effects of fluxing agents on gasification reactivity and gas composition of high ash fusion temperature coal

    Directory of Open Access Journals (Sweden)

    Zhao Ruifang

    2015-01-01

    Full Text Available A Na-based fluxing agent Na2O (NBFA and a composite fluxing agent (mixture of CaO and Fe2O3 with mass ratio of 3:1, CFA for short were used to decrease the ash fusion temperature of the Dongshan and Xishan coal from Shanxi of China and make these coal meet the requirements of the specific gasification process. The main constituents of the fluxing agents used in this study can play a catalyst role in coal gasification. So it is necessary to understand the effect of fluxing agents on coal gasification reactivity and gas composition. The results showed that the ash fusion temperature of the two coal used decreased to the lowest point due to the eutectic phenomenon when 5 wt% of CFA or NBFA was added. Simultaneously, the gas molar ratio of H2/CO changed when CFA was added. A key application was thus found where the gas molar ratio of H2/CO can be adjusted by controlling the fluxing agent amount to meet the synthetic requirements for different chemical products.

  13. Exergy Assessment of Recovery Solutions from Dry and Moist Gas Available at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Fadhel Ayachi

    2012-03-01

    Full Text Available The Agence Nationale de la Recherche (ANR-EESI ENERGY ReCOvery from Low Temperature heat sources (ENERCO_LT project is a waste heat recovery project that aims to reduce energy consumption in industrial gas production sites, by producing electrical power from exothermic processes discharges at low and medium temperature. Two promising thermal sources, consisting of: (i almost dry gas flow at 165 °C and (ii moist gas flow at 150 °C with a dew point at 60 °C, were then investigated. In this paper, the challenge was to discern suitable recovery solutions facing resource specificities and their thermodynamic constraints, in order to minimize the overall exergy destruction, i.e., to move up the exergy efficiency of the entire system. In this spirit, different designs, including Organic Rankine Cycles (ORCs and CO2 transcritical cycles, operating as simple and cascade cycles, were investigated. Combined exergy analysis and pinch optimization was performed to identify the potential of various working fluids, by their properties, to overcome the global irreversibility according to the studied resource. Supercritical parameters of various working fluids are investigated too, and seem to bring promising results regarding system performances.

  14. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    Science.gov (United States)

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology.

  15. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  16. Effect of temperature and -irradiation on gas permeability for polymeric membrane

    Indian Academy of Sciences (India)

    Vaibhav Kulshrestha; K Awasthi; N K Acharya; M Singh; Y K Vijay

    2005-12-01

    In the present study the polyethersulphone (PES) membranes of thickness (35 ± 2) m were prepared by solution cast method. The permeability of these membranes was calculated by varying the temperature and by irradiation of ions. For the variation of temperature, the gas permeation cell was dipped in a constant temperature water bath in the temperature range from 303–373 K, which is well below the glass transition temperature (498 K). The permeability of H2 and CO2 increased with increasing temperature. The PES membrane was exposed by -source (${}_{95}$Am$^{241}$) of strength (1 Ci) in vacuum of the order of 10-6 torr, with fluence 2.7 × 107 ions/cm2. The permeability of H2 and CO2 has been observed for irradiated membrane with increasing etching time. The permeability increases with increasing etching time for both gases. There was a sudden change in permeability for both the gases when observed at 18 min etching. At this stage the tracks are visible with optical instrument, which confirms that the pores are generated. Most of pores seen in the micrograph are circular cross-section ones.

  17. A High Temperature Polymer Electrolyte Membrane Fuel Cell Model for Reformate Gas

    Directory of Open Access Journals (Sweden)

    M. Mamlouk

    2011-01-01

    Full Text Available A one-dimensional model of a high temperature polymer electrolyte membrane fuel cell using polybenzimidazole (PBI membranes is described. The model considers mass transport through a thin film electrolyte covering the catalyst particles as well as through the porous media. The incorporation of a thin film model describing reactant gas mass transport through electrolyte covering the electrocatalyst is shown to be an essential requirement for accurate simulation. The catalyst interface is represented using a macrohomogeneous model. The influence of carbon monoxide, carbon dioxide, and methane, which would be present in a reformate gas, is considered in terms of the effect on the anode polarisation/kinetics behaviour. The model simulates the influence of operating conditions, cell parameters, and fuel gas compositions on the cell voltage current density characteristics. The model gives good predictions of the effect of oxygen and air pressures on cell behaviour and correctly simulates the mass transport behaviour of the cell. The model with reformate gas shows that additional voltage losses associated with CO poisoning can lead to loss in voltage of tens of mV and thus reduction in power.

  18. Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas

    Science.gov (United States)

    Viti, S.; García-Burillo, S.; Fuente, A.; Hunt, L. K.; Usero, A.; Henkel, C.; Eckart, A.; Martin, S.; Spaans, M.; Muller, S.; Combes, F.; Krips, M.; Schinnerer, E.; Casasola, V.; Costagliola, F.; Marquez, I.; Planesas, P.; van der Werf, P. P.; Aalto, S.; Baker, A. J.; Boone, F.; Tacconi, L. J.

    2014-10-01

    Aims: We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO+, HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~200 pc circumnuclear disc (CND) and the ~1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry. Methods: We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. Results: We find that, in general, the gas in the CND is very dense (>105 cm-3) and hot (T> 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components. Conclusions: The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to

  19. The influence of changes of combustion gas temperature during flow around the horizontal cylinder on local Nu number

    Directory of Open Access Journals (Sweden)

    M. Górska

    2009-04-01

    Full Text Available The article the influence of changes of combustion gas temperature during flow around of horizontal cylinder on local Nu number was presented. In order to test an influence of effect waste gas temperature cycle of experimental investigations were conducted. Experimental tests were carried out on a properly designed measuring cylinder furnished with a number of thermocouples embedded along the cylinder perimeter. The cylinder was made from stainless steel of known thermal conductivity, and was cooled on the outer side through a water cooling system. The cylinder was placed horizontally in a heating chamber equipped with an axially positioned gas burner fired with natural gas. Gas and air feeds were regulated with control valves, based on combustion gas analyzer data.

  20. Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors

    Science.gov (United States)

    Li, X. Q.; Li, D. P.; Xu, J. C.; Han, Y. B.; Jin, H. X.; Hong, B.; Ge, H. L.; Wang, X. Q.

    2017-07-01

    The mesoporous α-Fe2O3 nanowires (NWs) were successfully synthesized by changing the calcination temperature from 550 to 750 °C (marked NWs-550, NWs-650 and NWs-750) via using SBA-15 silica as the hard templates with the nanocasting method. The characterization results indicated that the bandgap of the as-prepared samples hardly changed and the high BET surface areas changed a little with the calcination temperature from 550 to 750 °C. Mesoporous α-Fe2O3 NWs had been found to possess the remarkable gas-sensing performance to ethanol gas. The gas-sensing behavior indicated that α-Fe2O3 NWs-650 exhibited the higher response than that of α-Fe2O3 NWs-550 and α-Fe2O3 NWs-750. The calcination-temperature-dependent gas-sensing properties were mainly attributed to the competition of surface defects and body defects by the crystallization temperature. The lower calcination temperature could create more surface defects to improve the gas-sensing response, while the higher temperature would reduce the body defect and make the charge carriers transport easily. As the result, the suitable calcination temperature was desired to optimize the defects of nanostructures to improve the gas sensitivity.

  1. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Science.gov (United States)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  2. Concept of an inherently-safe high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro [Nuclear Hydrogen and Heat Application Research Center, Japan Atomic Energy Agency, Oarai-machi, Ibaraki-ken, 311-1394 (Japan)

    2012-06-06

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  3. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  4. The Effective Temperatures of O-type Stars from UV spectroscopy

    CERN Document Server

    Bianchi, Luciana

    2013-01-01

    We present an analysis of high resolution spectra in the far-UV -- UV range (~905-2000\\AA) with non-LTE, spherical, hydrodynamical, line-blanketed models, of three O-type Galactic stars, and derive their photospheric and wind parameters. These data extend previously analyzed samples and fill a gap in spectral type coverage. The combined sample confirms a revised (downward) effective temperature scale with respect to canonical calibrations, as found in our previous works from UV and optical spectra, and in recent works by other authors.

  5. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Smith, Ashly P.; Bailey, Vanessa L.

    2016-12-21

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is highly uncertain, but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e. directly above permafrost, in an Alaskan boreal forest. Gas emissions from thirty cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Carbon dioxide fluxes were strongly influenced by incubation chamber temperature, core water content, and percent soil nitrogen, and had a temperature sensitivity (i.e. Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Methane emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over six orders of magnitudes higher than that from CH4. These results suggest that deep active-layer soils may be much more sensitive to changes in moisture than to temperature, a critical factor as discontinuous permafrost melts in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.

  6. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  7. Enhancing the radiative heat dissipation from high-temperature SF6 gas plasma by using selective absorbers

    Science.gov (United States)

    Tsuda, Shinichiro; Horinouchi, Katsuhiko; Yugami, Hiroo

    2017-09-01

    Radiative cooling accomplished by tailoring the properties of spectral thermal emission is an interesting method for energy harvesting and high-efficiency passive cooling of terrestrial structures. This strategy, however, has not been extended to cool enclosed heat sources, common in engineering applications, and heat sources in high-temperature environments where radiative transfer plays a dominant role. Here we show a radiative cooling scheme for a high-temperature gaseous medium, using radiative heat extraction with selective absorbers matched to the gas-selective emission properties. We used SF6 gas plasma as a model, because this gas is used in gas circuit breakers, which require effective cooling of the hot insulating gas. Our theoretical analysis confirms that a copper photonic absorber, matched to the ultraviolet-to-near-infrared-selective emission properties of the gas, effectively extracts heat from the high-temperature gas plasma and lowers the radiative equilibrium gas temperature by up to 1270 K, exceeding both blackbody-like and metallic surfaces in practical operating conditions.

  8. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  9. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  10. UNCERTAINTY QUANTIFICATION OF CALCULATED TEMPERATURES FOR ADVANCED GAS REACTOR FUEL IRRADIATION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh Thi-Cam [Idaho National Laboratory; Hawkes, Grant Lynn [Idaho National Laboratory; Einerson, Jeffrey James [Idaho National Laboratory

    2015-08-01

    This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technology Research and Development program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR tests, the results of the numerical simulations are used in combination with statistical analysis methods to improve qualification of measured data. The temperature simulation data for AGR tests are also used for validation of the fission product transport and fuel performance simulation models. These crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. To quantify the uncertainty of AGR calculated temperatures, this study identifies and analyzes ABAQUS model parameters of potential importance to the AGR predicted fuel temperatures. The selection of input parameters for uncertainty quantification of the AGR calculated temperatures is based on the ranking of their influences on variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. Propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of AGR calculated temperatures. Expert judgment is used as the basis to specify the uncertainty range for selected input parameters. The input uncertainties are dynamic accounting for the effect of unplanned events and changes in thermal properties of capsule components over extended exposure to high temperature and fast neutron irradiation. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using experimental design, analysis of pairwise interactions of model parameters was performed to establish

  11. Influence of metal vapour on arc temperatures in gas-metal arc welding: convection versus radiation

    Science.gov (United States)

    Murphy, Anthony B.

    2013-06-01

    The presence of metal vapour in gas-metal arc welding has been shown to have two strong effects on the arc plasma: a decrease in temperature throughout the arc, and the formation of a local temperature minimum near the arc axis. These effects have been attributed, on the basis of different computational models, to either the increased radiative emission associated with the presence of metal vapour in the arc plasma, or the influence of the metal vapour influx on convective flow in the arc. This question is investigated using a three-dimensional computational model in which the production and the transport of metal vapour are taken into account self-consistently. Parameters relevant to welding of thin sheets of aluminum are examined. For these conditions, it is found that the first effect (the decrease in temperature throughout the arc) is due to both the increased radiative emission and the influence of the metal vapour influx on flow. The second effect (the local temperature minimum, which in this case occurs just below the wire electrode) is a consequence of the influence of aluminum vapour produced from the wire electrode on flow in the arc. By examining published results and the energy balance in the plasma, it is shown that for welding of steel with higher arc currents, the increased radiative emission can lead to a local temperature minimum at a greater distance from the wire electrode.

  12. Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane

    Indian Academy of Sciences (India)

    N K ACHARYA

    2017-06-01

    Activation energies for permeation of polymer nanocomposite membrane have not been reported so far. A tradeoff relation between permeability and selectivity shows that as permeability increases, the selectivity decreases. Attempts have been made to see this trade-off relation at relatively higher temperature. It is found that selectivity decreases drasticallywith increasing temperature.Apolymer–matrix compositewas prepared by adding silica nanoparticles using casting method. Pure gas permeability was measured using a constant volume–variable pressure method at different temperature ranges from 35 to 70$^{\\circ}$C. The Van’t Hoff relation was used to estimate the activation energy for permeation. It is found to decrease as compared with virgin polycarbonate and it increases with kinetic diameter. For the first time, the permeability and selectivity for nanocomposite membrane are reported as a function of temperature. Activation energies for different gases have beencalculated for nanocomposite membrane and comparedwith that of virgin polymer membrane. Decrease in activation energies for permeation ($E_p$) with increasing kinetic diameter has been observed for both the membranes. Selectivity reduces with temperature for both the membranes.Mechanical and thermal properties of nanocomposite membrane have been investigatedusing a dynamic mechanical analyser and differential scanning calorimetry, respectively. Scanning electron microscopy has been used to study surface morphology. The results show modification in physical properties due to incorporation of silica nanoparticles.

  13. Comparisons of Gas-phase Temperature Measurements in a Flame Using Thin-Filament Pyrometry and Thermocouples

    Science.gov (United States)

    Struk, Peter; Dietrich, Daniel; Valentine, Russell; Feier, Ioan

    2003-01-01

    Less-intrusive, fast-responding, and full-field temperature measurements have long been a desired tool for the research community. Recently, the emission of a silicon-carbide (SiC) fiber placed in a flowing hot (or reacting) gas has been used to measure the temperature profile along the length of the fiber. The relationship between the gas and fiber temperature comes from an energy balance on the fiber. In the present work, we compared single point flame temperature measurements using thin-filament pyrometry (TFP) and thermocouples. The data was from vertically traversing a thermocouple and a SiC fiber through a methanol/air diffusion flame of a porous-metal wick burner. The results showed that the gas temperature using the TFP technique agreed with the thermocouple measurements (25.4 m diameter wire) within 3.5% for temperatures above 1200 K. Additionally, we imaged the entire SiC fiber (with a spatial resolution of 0.14 mm) while it was in the flame using a high resolution CCD camera. The intensity level along the fiber length is a function of the temperature. This results in a one-dimensional temperature profiles at various heights above the burner wick. This temperature measurement technique, while having a precision of less than 1 K, showed data scatter as high as 38 K. Finally, we discuss the major sources of uncertainty in gas temperature measurement using TFP.

  14. CONJUGATE MODEL FOR HEAT AND MASS TRANSFER OF POROUS WALL IN THE HIGH TEMPERATURE GAS FLOW

    Institute of Scientific and Technical Information of China (English)

    A.F. Polyakov; D.L.Reviznikov; 沈青; 魏叔如

    2001-01-01

    Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow.The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

  15. Proposal for determining changes in entropy of semi ideal gas using mean values of temperature functions

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2014-01-01

    Full Text Available In a semi-ideal gas, entropy changes cannot be determined through the medium specific heat capacity in a manner as determined by the change of internal energy and enthalpy, i.e. the amount of heat exchanged. Taking this into account, the authors conducted two models through which it is possible to determine the change in the specific entropy of a semi-ideal gas for arbitrary temperature interval using the spread sheet method, using the mean values of the appropriate functions. The idea is to replace integration, which occurs here in evitably, with mean values of the previous functions. The models are derived based on the functional dependence of the actual specific heat capacity on the temperature. The theorem used is that of the mean value of a function as well as the mathematical properties of the definite integral. The mean value of a fractional function is determined via its integrand while the logarithmic functions were performed by applying a suitable transformation of the differential calculus. The relations derived relation, using the computer program, have enabled the design of appropriate thermodynamic tables through which it is possible to determine the change in entropy of arbitrary state changes in an efficient and rational manner, without the use of calculus or finished forms. In this way, the change in the entropy of a semi-ideal gas is determined for an arbitrary temperature interval using the method which is analogous to that applied in determining the change of internal energy and enthalpy or the amount of heat exchanged, which was the goal of the work. Verification of the proposed method for both the above functions was performed for a a few characteristic semi-ideal gases where change c(T is significant, for the three adopted temperature intervals, for the characteristic change of state. This was compared to the results of the classical integral and the proposed method through the prepared tables. In certain or special cases

  16. Surface Morphology Dependent Copper Sulphide Ammonia Gas Sensor Working at Room Temperature: Effect of SHI Irradiation

    Directory of Open Access Journals (Sweden)

    Ramphal Sharma

    2009-02-01

    Full Text Available We report the synthesis of copper sulphide (CuS nano-pillars on copper sulphide thin film surface by using swift heavy ion (SHI irradiation. Thin films of CuS are irradiated with 100 MeV gold ions at fluence varying from 1011 to 5 ´ 1012 ions/cm2. These nanostructures grown on the surface of copper sulphide has been used for the detection of ammonia gas at room temperature. The time dependent surface conductance measurements show the utility of copper sulphide for the detection of ammonia. It is observed that the response of the material is highly influenced by the irradiation fluence.

  17. Surface Morphology Dependent Copper Sulphide Ammonia Gas Sensor Working at Room Temperature: Effect of SHI Irradiation

    OpenAIRE

    Ramphal Sharma; Sagade, Abhay A.; J. C. Vyas; P. K. Nema; Anil Ghule; Sung-Hwan Han

    2009-01-01

    We report the synthesis of copper sulphide (CuS) nano-pillars on copper sulphide thin film surface by using swift heavy ion (SHI) irradiation. Thin films of CuS are irradiated with 100 MeV gold ions at fluence varying from 1011 to 5 ´ 1012 ions/cm2. These nanostructures grown on the surface of copper sulphide has been used for the detection of ammonia gas at room temperature. The time dependent surface conductance measurements show the utility of copper sulphide for the detection of ammonia. ...

  18. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Ekaterina I. Radeva; Esmeryan, Karekin D.; Avramov, Ivan D.

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  19. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    Science.gov (United States)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  20. Critical Temperature Associated to Symmetry Breaking of Klein--Gordon fields versus Condensation Temperature in a Weakly interacting Bose--Einstein Gas

    CERN Document Server

    Castellanos, Elias

    2012-01-01

    We deduce the relation between the critical temperature associated to the U(1) symmetry breaking of scalar fields with one--loop correction potential immersed in a thermal bath, and the condensation temperature of the aforementioned system in the thermodynamic limit, within the semiclassical approximation for a weakly interacting bosonic gas with a positive coupling constant. Additionally, we show that the shift in the condensation temperature caused by the coupling constant is independent of the thermal bath.

  1. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-09-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.

  2. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    Science.gov (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  3. EXAFS and XRD characterization of palladium sorbents for high temperature mercury capture from fuel gas.

    Science.gov (United States)

    Poulston, Stephen; Hyde, Timothy I; Hamilton, Hugh; Mathon, Olivier; Prestipino, Carmelo; Sankar, Gopinathan; Smith, Andrew W J

    2010-01-14

    Removal of pollutants such as mercury at elevated temperatures provides improvements in the overall thermal efficiency during the process of coal gasification. The two high temperature sorbents studied were 5 wt% Pd/Al(2)O(3) and 5 wt% Pd/SiO(2): materials shown to have significantly different Hg adsorption capacities. A combination of XRD and EXAFS has been used to characterize the Pd-Hg alloy formed when these Pd-based sorbents were exposed to fuel gas (CO, CO(2), H(2)) containing Hg vapour at 204 degrees C. Significant differences were found in the nature of the alloy formed on the two sorbents following Hg exposure. The Pd/Al(2)O(3) sorbent produced a single homogeneous solid solution of Pd-Hg whilst the silica-supported Pd produced an alloy of varying composition.

  4. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  5. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  6. Universal Behavior of the BEC Critical Temperature for a Multi-slab Ideal Bose Gas

    Science.gov (United States)

    Rodríguez, O. A.; Solís, M. A.

    2016-05-01

    For an ideal Bose gas within a multi-slab periodic structure, we discuss the effect of the spatial distribution of the gas on its Bose-Einstein condensation critical temperature T_c, as well as on the origin of its dimensional crossover observed in the specific heat. The multi-slabs structure is generated by applying a Kronig-Penney potential to the gas in the perpendicular direction to the slabs of width b and separated by a distance a, and allowing the particles to move freely in the other two directions. We found that T_c decreases continuously as the potential barrier height increases, becoming inversely proportional to the square root of the barrier height when it is large enough. This behavior is universal as it is independent of the width and spacing of the barriers. The specific heat at constant volume shows a crossover from 3D to 2D when the height of the potential or the barrier width increases, in addition to the well-known peak related to the Bose-Einstein condensation. These features are due to the trapping of the bosons by the potential barriers and can be characterized by the energy difference between the energy bands below the potential height.

  7. Hydrogen from biomass gas steam reforming for low temperature fuel cell: energy and exergy analysis

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-03-01

    Full Text Available This work presents a method to analyze hydrogen production by biomass gasification, as well as electric power generation in small scale fuel cells. The proposed methodology is the thermodynamic modeling of a reaction system for the conversion of methane and carbon monoxide (steam reforming, as well as the energy balance of gaseous flow purification in PSA (Pressure Swing Adsorption is used with eight types of gasification gases in this study. The electric power is generated by electrochemical hydrogen conversion in fuel cell type PEMFC (Proton Exchange Membrane Fuel Cell. Energy and exergy analyses are applied to evaluate the performance of the system model. The simulation demonstrates that hydrogen production varies with the operation temperature of the reforming reactor and with the composition of the gas mixture. The maximum H2 mole fraction (0.6-0.64 mol.mol-1 and exergetic efficiency of 91- 92.5% for the reforming reactor are achieved when gas mixtures of higher quality such as: GGAS2, GGAS4 and GGAS5 are used. The use of those gas mixtures for electric power generation results in lower irreversibility and higher exergetic efficiency of 30-30.5%.

  8. Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature andHigh Pressure

    Institute of Scientific and Technical Information of China (English)

    杨卫国; 王金福; 金涌

    2001-01-01

    The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure,superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffln/solid particles slurry bubble column reactors.

  9. The viscosity and density of sour gas fluids at high temperatures and high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Giri, B.R.; Marriott, R.A.; Blais, P.; Clark, P.D. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-01-15

    This poster session discussed an experiment designed to measure the viscosity and density of sour gas fluids at high temperatures and pressures. An option for disposing acid gases while enhancing the production of oil and gas fields is the re-injection of gases rich in hydrogen sulphide/carbon dioxide (H{sub 2}S/CO{sub 2}) into reservoirs up to very high pressures, but issues with respect to corrosion, compression, pumping, and transport need addressing, and the reliable high-density/high-pressure data needed to arrive at an optimum process concept and the design of pumps, compressors, and transport lines had up to this point been lacking. The experimental set up involved the use of a Vibrating Tube Densimeter and a Cambridge Viscometer. Working with toxic gases at very high pressures and obtaining highly accurate data in a wide range of conditions were two of the challenges faced during the experiment. The experiment resulted in physical property measurement systems being recalibrated and a new daily calibration routine being adopted for accuracy. The densities and viscosities of pure CO{sub 2} and sulphur dioxide (SO{sub 2}) in a wide pressure and temperature range were determined. 1 tab., 9 figs.

  10. [An investigation of temperature compensation of HCL gas online monitoring based on TDLAS method].

    Science.gov (United States)

    Shu, Xiao-Wen; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; He, Ying; Zhang, Shuai; Geng, Hui; Liu, Wen-Qing

    2010-05-01

    HCL, with the character of strong erosion and toxicity, is a kind of chemical material of vital importance. So measuring the HCL in-situ can not only optimize its production process, but also be necessary to reduce the environment pollution. TDLAS (tunable diode laser absorption spectroscopy) technology, and owning the advantage of the tunability and narrow line width of the diode laser, this method can relatively easily select the absorption line of the detected gas without the interference from other gas, thus making the rapid and accurate HCL measurement possible. In the present paper, the HCL measurement system and the implemented experiment are introduced. The impact of the temperature on the measurement as well as the temperature compensation method is emphasized. The final experimental results validated the rationality of the empirical equation and therefore the improvement of the accuracy and feasibility of the TDLAS technology. The system, whose detection limitation reaches 2 ppm, can satisfy the needs of industrial in-sit measurement.

  11. Corrosion of high temperature alloys in the coolant helium of a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cabet, C.; Terlain, A. [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, DEN/DPC - CEA/Saclay, Gif sur Yvette (France); Monnier, A. [Lab. de Genie Electrique de Paris, Plateau du Moulon, Gif sur Yvette (France)

    2004-07-01

    The corrosion of structural alloys in gas cooled reactor environment appears to be a critical issue. The coolant helium proved to contain impurities mainly H{sub 2}, H{sub 2}O, CO, and CH{sub 4} in the microbar range that interact with metallic materials at high temperature. Surface scale formation, bulk carburisation and/or decarburisation can occur, depending on the gas chemistry, the alloy composition and the temperature. These structural transformations can notably influence the component mechanical properties. A short review of the literature on the topic is first given. Corrosion tests with high chromium alloys and a Mo-based alloy were carried out at 750 C in a purposely-designed facility under simulated GCR helium. The first, rather short term, results showed that the Mo-based alloy was inert while the others alloys oxidised during at least 900 hours. The alloy with the higher Al and Ti contents exhibited poor oxidation resistance impeding its use as structural material without further investigations. (orig.)

  12. Prediction of water formation temperature in natural gas dehydrators using radial basis function (RBF neural networks

    Directory of Open Access Journals (Sweden)

    Tatar Afshin

    2016-03-01

    Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.

  13. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2016-01-01

    Full Text Available A new room temperature supra-molecular cryptophane A (CrypA-coated surface acoustic wave (SAW sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM. A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively.

  14. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating.

    Science.gov (United States)

    Wang, Wen; Hu, Haoliang; Liu, Xinlu; He, Shitang; Pan, Yong; Zhang, Caihong; Dong, Chuan

    2016-01-07

    A new room temperature supra-molecular cryptophane A (CrypA)-coated surface acoustic wave (SAW) sensor for sensing methane gas is presented. The sensor is composed of differential resonator-oscillators, a supra-molecular CrypA coated along the acoustic propagation path, and a frequency signal acquisition module (FSAM). A two-port SAW resonator configuration with low insertion loss, single resonation mode, and high quality factor was designed on a temperature-compensated ST-X quartz substrate, and as the feedback of the differntial oscillators. Prior to development, the coupling of modes (COM) simulation was conducted to predict the device performance. The supramolecular CrypA was synthesized from vanillyl alcohol using a double trimerisation method and deposited onto the SAW propagation path of the sensing resonators via different film deposition methods. Experiential results indicate the CrypA-coated sensor made using a dropping method exhibits higher sensor response compared to the unit prepared by the spinning approach because of the obviously larger surface roughness. Fast response and excellent repeatability were observed in gas sensing experiments, and the estimated detection limit and measured sensitivity are ~0.05% and ~204 Hz/%, respectively.

  15. Single-stage temperature-controllable water gas shift reactor with catalytic nickel plates

    Science.gov (United States)

    Park, Jin-Woo; Lee, Sung-Wook; Lee, Chun-Boo; Park, Jong-Soo; Lee, Dong-Wook; Kim, Sung-Hyun; Kim, Sung-Soo; Ryi, Shin-Kun

    2014-02-01

    In this study, a microstructured reactor with catalytic nickel plates is newly designed and developed for proper heat management in an exothermic water gas shift WGS reaction. The reactor is designed to increase the reactor capacity simply by numbering-up a set of a catalyst layers and heat exchanger layers. The WGS reactor is built up with two sets of a catalyst layers and heat exchanger layers. The performance of the reactor is verified by WGS testing with the variation of the furnace temperatures, gas hourly space velocity (GHSV) and coolant (N2) flow rate. At a GHSV of 10,000 h-1, CO conversion reaches the equilibrium value with a CH4 selectivity of ≤0.5% at the furnace temperature of ≥375 °C. At high GHSV (40,000 h-1), CO conversion decreases considerably because of the heat from the exothermic WGS reaction at a large reactants mass. By increasing the coolant flow rate, the heat from the WGS reaction is properly managed, leading an increase of the CO conversion to the equilibrium value at GHSV of 40,000 h-1.

  16. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator.

    Science.gov (United States)

    Collin, William R; Nuñovero, Nicolas; Paul, Dibyadeep; Kurabayashi, Katsuo; Zellers, Edward T

    2016-04-29

    Comprehensive two-dimensional gas chromatography (GC×GC) with a temperature-programmed microfabricated thermal modulator (μTM) is demonstrated. The 0.78 cm(2), 2-stage μTM chip with integrated heaters and a PDMS coated microchannel was placed in thermal contact with a solid-state thermoelectric cooler and mounted on top of a bench scale GC. It was fluidically coupled through heated interconnects to an upstream first-dimension ((1)D) PDMS-coated capillary column and a downstream uncoated capillary or second-dimension ((2)D) PEG-coated capillary. A mixture of n-alkanes C6-C10 was separated isothermally and the full-width-at-half-maximum (fwhm) values of the modulated peaks were assessed as a function of the computer-controlled minimum and maximum stage temperatures of μTM, Tmin and Tmax, respectively. With Tmin and Tmax fixed at -25 and 100°C, respectively, modulated peaks of C6 and C7 had fwhm valuesthermal modulator. Replacing the PDMS phase in the μTM with a trigonal-tricationic room temperature ionic liquid eliminated the bleed observed with the PDMS, but also reduced the capacity for several test compounds. Regardless, the demonstrated capability to independently temperature program this low resource μTM enhances its versatility and its promise for use in bench-scale GC×GC systems.

  17. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  18. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  19. Optimum Performance Enhancing Strategies of the Gas Turbine Based on the Effective Temperatures

    Directory of Open Access Journals (Sweden)

    Ibrahim Thamir K.

    2016-01-01

    Full Text Available Gas turbines (GT have come to play a significant role in distributed energy systems due to its multi-fuel capability, compact size and low environmental impact and reduced cost. Nevertheless, the low electrical efficiency, typically about 30% (LHV, is an important obstruction to the development of the GT plants. New strategies are designed for the GT plant, to increase the overall performance based on the operational modeling and optimization of GT power plants. The enhancing strategies effect on the GT power plant’s performance (with intercooler, two-shaft, reheat and regenerative based on the real power plant of GT. An analysis based on thermodynamics has been carried out on the modifications of the cycle configurations’ enhancements. Then, the results showed the effect of the ambient and turbine inlet temperatures on the performance of the GT plants to select an optimum strategy for the GT. The performance model code to compare the strategies of the GT plants were developed utilizing the MATLAB software. The results show that, the best thermal efficiency occurs in the intercooler-regenerative-reheated GT strategy (IRHGT; it decreased from 51.5 to 48%, when the ambient temperature increased (from 273 to 327K. Furthermore, the thermal efficiency of the GT for the strategies without the regenerative increased (about 3.3%, while thermal efficiency for the strategies with regenerative increased (about 22% with increased of the turbine inlet temperature. The lower thermal efficiency occurs in the IHGT strategy, while the higher thermal efficiency occurs in the IRHGT strategy. However, the power output variation is more significant at a higher value of the turbine inlet temperature. The simulation model gives a consistent result compared with Baiji GT plant. The extensive modeling performed in this study reveals that; the ambient temperature and turbine inlet temperature are strongly influenced on the performance of GT plant.

  20. Gas-pressure forming of an AlMg-alloy sheet at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, B.; Goesling, M.; Homberg, W.; Kleiner, M. [Dortmund Univ. (DE). Inst. of Forming Technology and Lightweight Construction (IUL)

    2005-12-01

    Forming of automotive leightweight parts using aluminium offers numerous advantages. Compared to other wrought aluminium alloys, in particular AlMg-alloys generally show a good formability which is favourable for the production of complex parts. However, forming of Mg-containing alloys at room temperature leads to yielding patterns preventing their implementation for class-A-surface applications. Furthermore, the formability of steel still exceeds that of AlMg-alloys at room temperature. Thus, in the present study, sheet metal forming is applied at a temperature range that is typical for warm forming. It is supposed to profit from the advantages of warm forming like high achievable strains and improved surface quality of the formed part, while not having the disadvantages of long production times and high energy consumption, which is correlated with superplastic forming. Applying fluid-based sheet metal forming in this paper, nitrogen is used as fluid working medium to satisfy the demand on high temperature resistance. Concerning the blank material used, formability of Mg-containing aluminium alloys shows strong strain rate sensitivity at elevated temperatures. To figure out the optimal strain rates for this particular process, a control system for forming processes is developed within the scope of this paper. Additionally, FE-simulations are carried out and adapted to the experiment, based on the generated process data. FE-investigations include forming of domes (bulging) as well as shape-defined forming, having the objective to increase formability in critical form elements by applying optimal strain rates. Here, a closed-loop process control for gas-pressure forming at elevated temperatures is to be developed in the next stages of the project. (orig.)

  1. A Simple Mercury-Free Laboratory Apparatus to Study the Relationship between Pressure, Volume, and Temperature in a Gas

    Science.gov (United States)

    McGregor, Donna; Sweeney, William V.; Mills, Pamela

    2012-01-01

    A simple and inexpensive mercury-free apparatus to measure the change in volume of a gas as a function of pressure at different temperatures is described. The apparatus is simpler than many found in the literature and can be used to study variations in pressure, volume, and temperature. (Contains 1 table and 7 figures.)

  2. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-3: High Temperature Gas Cooled Reactor Thermal-Hydraulics.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical high temperature gas-cooled reactor (HTGR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module…

  3. A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties.

    Science.gov (United States)

    Huang, Yong-Liang; Gong, Yun-Nan; Jiang, Long; Lu, Tong-Bu

    2013-02-28

    A porous Mg-based 3D metal-organic framework with unique nanoscale cages and two-fold interpenetrating pcu nets has been synthesized and characterized. It shows gas-uptake capacities for N(2), H(2), O(2) and CO(2) at low temperatures and selective adsorption of CO(2) over O(2) and N(2) at room temperature.

  4. A Simple Mercury-Free Laboratory Apparatus to Study the Relationship between Pressure, Volume, and Temperature in a Gas

    Science.gov (United States)

    McGregor, Donna; Sweeney, William V.; Mills, Pamela

    2012-01-01

    A simple and inexpensive mercury-free apparatus to measure the change in volume of a gas as a function of pressure at different temperatures is described. The apparatus is simpler than many found in the literature and can be used to study variations in pressure, volume, and temperature. (Contains 1 table and 7 figures.)

  5. High-temperature high-pressure gas cleanup with ceramic bag filters. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Shackleton, M.; Chang, R.; Sawyer, J.; Kuby, W.; Turner-Tamiyasu, E.

    1982-12-06

    Advanced processes designed for the efficient use of coal in the production of energy will benefit from, or even depend upon, highly efficient, economical, high-temperature removal systems for fine particulates. In the case of pressurized fluidized-bed combustion (PFBC), the hot gas cleanup device must operate at approximately 1600/sup 0/F. Existing commercial filter systems are temperature limited due to the filter material, but ceramic fibers intended for refractory insulation offer the promise of a practical high-temperature filter media if they can be incorporated into a design which combines filter performance with acceptable durability. The current work was initiated to further develop and demonstrate on a larger-scale basis, a ceramic fiber filtration system for application to coal-fired PFBC's. The development effort centered around the need to replace the knit metal wire scrim, used in earlier designs as support for the fine fiber ceramic mat filtration medium, with a corrosion-resistant material. This led to the selection of woven ceramic cloth for support of the mat layer. Because of the substantial difference in strength and other material properties between the metal and ceramic cloth, tests were necessary to optimize the filter; pulse parameters such as pulse duration, pulse pressure, and pulse injection orifice size; woven cloth mesh configuration; the technique for clamping the bag to the support; and similar structural, fluid, and control parameters. The demonstration effort included both tests to prove this concept in a real application and a systems analysis to show commercial feasibility of the ceramic filtration approach for hot gas cleanup in PFBC's. 12 references, 57 figures, 23 tables.

  6. High-Temperature Gas-Cooled Reactor Technology Development Program: Annual progress report for period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.E.,Jr.; Kasten, P.R.; Rittenhouse, P.L.; Sanders, J.P.

    1989-03-01

    The High-Temperature Gas-Cooled Reactor (HTGR) Program being carried out under the US Department of Energy (DOE) continues to emphasize the development of modular high-temperature gas-cooled reactors (MHTGRs) possessing a high degree of inherent safety. The emphasis at this time is to develop the preliminary design of the reference MHTGR and to develop the associated technology base and licensing infrastructure in support of future reactor deployment. A longer-term objective is to realize the full high-temperature potential of HTGRs in gas turbine and high-temperature, process-heat applications. This document summarizes the activities of the HTGR Technology Development Program for the period ending December 31, 1987.

  7. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures

    Science.gov (United States)

    Sabour, Mohammad Hossein

    Advanced gas turbine engines, which use hot section airfoil cooling, present a wide range of design problems. The frequencies of applied loads and the natural frequencies of the blade also are important since they have significant effects on failure of the component due to fatigue phenomenon. Due to high temperature environment the thermal creep and fatigue are quite severe. One-dimensional creep model, using ANSYS has been formulated in order to predict the creep life of a gas turbine engine blade. Innovative mathematical models for the prediction of the operating life of aircraft components, specifically gas turbine blades, which are subjected to creep-fatigue at high temperatures, are proposed. The components are modeled by FEM, mathematically, and using similitude principles. Three models have been suggested and evaluated numerically and experimentally. Using FEM method for natural frequencies causes phenomena such as curve veering which is studied in more detail. The simulation studies on the life-limiting modes of failure, as well as estimating the expected lifetime of the blade, using the proposed models have been carried out. Although the scale model approach has been used for quite some time, the thermal scaling has been used in this study for the first time. The only thermal studies in literature using scaling for structures is by NASA in which materials of both the prototype and the model are the same, but in the present study materials also are different. The finite element method is employed to model the structure. Because of stress redistribution due to the creep process, it is necessary to include a full inelastic creep step in the finite element formulation. Otherwise over-conservative creep life predictions will be estimated if only the initial elastic stresses are considered. The experimental investigations are carried out in order to validate the models. The main contributions in the thesis are: (1) Using similitude theory for life prediction of

  8. Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca [National Centre for Physics, Quaid-i-azam University, Islamabad (Pakistan); Bakar, Shahzad Abu [National Centre for Physics, Quaid-i-azam University, Islamabad (Pakistan); Department of Chemistry, Quaid-e-azam University, Islamabad (Pakistan); Saima, BiBi; Muhammad, Bakhtiar [Department of Chemistry, Hazara University, Mansehra (Pakistan)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Silver sulfide thin films were deposited by aerosol assisted chemical vapor deposition from a single source precursor [Ag(S{sub 2}CN (C{sub 2}H{sub 5}){sub 2}){sub 3}]{sub 2} (1). Black-Right-Pointing-Pointer The precursor (1), prepared in high yield by simple reported chemical procedure, was characterized and undergoes facile decomposition at 400 Degree-Sign C. Black-Right-Pointing-Pointer The deposited thin films were characterized by SEM, EDX and XRD which suggests the formation of impurity-free mesoporous Ag{sub 2}S, with well defined particles evenly distributed in the range of 0.3-0.5 {mu}m. Black-Right-Pointing-Pointer The optical bandgap energy of the thin film was estimated, and it is about 1.33 eV. Black-Right-Pointing-Pointer The thin films were investigated for the gas sensor applications. - Abstract: Crack free Ag{sub 2}S thin films were deposited on glass substrates by aerosol assisted chemical vapor deposition (AACVD) using [Ag(S{sub 2}CN (C{sub 2}H{sub 5}){sub 2}){sub 3}]{sub 2} (1) as a precursor. Thin films were deposited from solution of methanol at 400 Degree-Sign C and characterized by X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. SEM image of thin film showed well-defined and porous surface morphology with an average particle size of 0.3-0.5 {mu}m. Optical band gaps energy of 1.33 eV was estimated for Ag{sub 2}S thin film, by extrapolating the linear part of the Tauc plot recorded at room temperature. The gas sensing characteristics of the novel gas sensors based on Ag{sub 2}S were investigated for the detection carbon monoxide. The effect of operating temperature and change in gas concentration on the performance of carbon monoxide were investigated. The sensing mechanism of sensor was discussed.

  9. High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages.

    Science.gov (United States)

    Baek, Seung Bin; Moon, Dohyun; Graf, Robert; Cho, Woo Jong; Park, Sung Woo; Yoon, Tae-Ung; Cho, Seung Joo; Hwang, In-Chul; Bae, Youn-Sang; Spiess, Hans W; Lee, Hee Cheon; Kim, Kwang S

    2015-11-17

    Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π-π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.

  10. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Science.gov (United States)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  11. Quantitative comparison of performance of isothermal and temperature-programmed gas chromatography.

    Science.gov (United States)

    Blumberg, L M; Klee, M S

    2001-11-09

    As a basic metric of separation for comparing isothermal and temperature-programmed GC (gas chromatography), we used the separation measure. S (defined elsewhere). We used this metric as both a measure of separation of any two peaks, and a measure of separation capacity of arbitrary intervals where peaks can potentially exist. We derived several formulae for calculation of S for any pair of peaks regardless of their shape and the distance from each other in isothermal and temperature-programmed GC. The formulae for isothermal GC can be viewed as generalizations of previously known expressions while, in the case of temperature-programmed GC, no equivalents for the new formulae were previously known from the literature. In all formulae for S. we identified similar key component-metrics (solute separability, intrinsic efficiency of separation, specific separation measure, separation power) that helped us to identify and better understand the key factors affecting the separation process. These metrics also facilitated the quantitative comparison of separation capacities and analysis times in isothermal and temperature-programmed GC. Some of these metrics can be useful beyond GC. In the case of GC, we have shown that, if the same complex mixture was analyzed by the same column, and the same separation requirements were used then isothermal analysis can separate more peaks than its temperature-programmed counterpart can. Unfortunately, this advantage comes at the cost of prohibitively longer isothermal analysis time. The latter is a well know fact. Here, however, we provided a quantitative comparison. In a specific example, we have shown that a single-ramp temperature program with a typical heating rate yields about 25% fewer peaks than the number of peaks available from isothermal analysis of the same mixture using the same column. However, that isothermal analysis would last 1000 times longer than its temperature-programmed counterpart. Using twice as longer column in

  12. Effects of Gas and Surface Temperatures during Cryogenic Etching of silicon with SF6/O2

    Science.gov (United States)

    Tinck, Stefan; Neyts, Erik; Tillocher, Thomas; Dussart, Remi; Bogaerts, Annemie; Plasmant Team; Gremi Team

    2016-09-01

    Cryogenic deep reactive ion etching (DRIE) of silicon and SiO2 used for creating vias is investigated. The wafer is cooled to about -100 °C and a SF6/O2 mixture is applied. During cryogenic DRIE, a SiFxOy passivation layer is formed which prevents isotropic etching and the diffusion of F atoms into the Si or SiO2 material. When the wafer is brought back to room temperature, this passivation layer desorbs naturally, leaving a clean trench with no scalloping. The primary issue with cryogenic DRIE is the high sensitivity to oxygen content and substrate or gas temperature. Both effects are investigated here. We believe that understanding the temperature dependent surface behavior of the O and F atoms to etch silicon is a primary step in obtaining full insight in the mechanisms of the SiFxOy passivation layer formation and automatic desorption. For this purpose, we apply a self-consistent model that covers both the bulk plasma characteristics as well as the surface processes during etching. Molecular Dynamics (MD) simulations are also performed to obtain insight in the surface reaction mechanisms. For validation of the modeling results, the etch rates are also experimentally obtained with reflectometry and Scanning Electron Microscopy (SEM) pictures.

  13. Reactive and inelastic processes in the gas-phase at ultra-low temperatures

    CERN Document Server

    Chastaing, D

    2000-01-01

    This thesis reports the gas-phase kinetic study of reactions between neutral species of astrophysical importance, over a wide range of temperatures, from 295 K down to 15 K. Such extremely low temperatures were provided by the CRESU technique (Cinetique de Reaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow). The kinetics of the reactions of ethynyl radical (C sub 2 H) with oxygen (O sub 2) and unsaturated hydrocarbons (C sub 2 H sub 2 , C sub 2 H sub 4 , C sub 3 H sub 6) has been investigated for the first time down to such extremely low temperatures, using a laser photolysis - chemiluminescence technique. Rate coefficients of the reactions of ground state carbon atom with O sub 2 , NO, C sub 2 H sub 2 , C sub 2 H sub 4 and the two C sub 3 H sub 4 isomers (allene and methyl acetylene) have been measured, using a direct detection technique (laser induced fluorescence). These investigations are of particular interest for the improvement of theoretical models which seek ...

  14. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    Science.gov (United States)

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  15. Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment

    Energy Technology Data Exchange (ETDEWEB)

    Tylczak, Joseph [NETL

    2014-05-02

    This paper reports on the results of a study that compares the erosion-corrosion behavior of a variety of alloys (Fe- 2¼Cr 1Mo, 304 SS, 310 SS, Incoloy 800, Haynes 230 and a Fe3Al) in a combustion environment. Advanced coal combustion environments, with higher temperatures, are driving re-examination of traditional and examination of new alloys in these hostile environments. In order to simulate conditions in advanced coal combustion boilers, a special erosion apparatus was used to allow for impingement of particles under a low abrasive flux in a gaseous environment comprised of 20 % CO2, 0.05 % HCl, 77 % N2, 3 % O2, and 0.1 % SO2. Tests were conducted at room temperature and 700 °C with ~ 270 μm silica, using an impact velocity of 20 m/s in both air and the simulated combustion gas environment. The erosion-corrosion behavior was characterized by gravimetric measurements and by examination of the degraded surfaces optically and by scanning electron microscopy (SEM). At room temperature most of the alloys had similar loss rates. Not surprisingly, at 700 °C the lower chrome-iron alloy had a very high loss rate. The nickel alloys tended to have higher loss rates than the high chrome austenitic alloys.

  16. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  17. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  18. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work

  19. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    Science.gov (United States)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-02-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  20. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  1. Pengaruh Variasi Temperatur Post Hydrothermal Terhadap Sensitivitas Sensor Gas Co Dari Material Wo3 Hasil Proses Sol Gel

    Directory of Open Access Journals (Sweden)

    Agung Seras Perdana

    2013-03-01

    Full Text Available Gas karbon monoksida (CO adalah gas yang tidak berbau, tidak berwarna, dan tidak larut dalam air, tetapi beracun bila berikatan secara metabolis dengan darah ketika terhirup kedalam tubuh manusia.     Oleh karena itu diperlukan suatu alatberupa sensor untuk mendeteksi keberadaan gas CO secara dini untuk mengindari efek yang berbahaya bagi kesehatan.  Penelitian ini bertujuan mempersiapkan material WO3 sebagai sensor gas CO. Proses sintesa material WO3 dilakukan dengan metode sol gel menggunakan WCl6, ethanol, dan NH4OH. Chip sensor dibuat dari serbuk hasil proses post hydrothermal dengan variasi temperatur 160oC, 180oC dan 200oC selama 12 jam dikompaksi pada tekanan 150 bar dan dianil 300oC selama 1 jam. Proses karakterisasi material WO3 dilakukan dengan pengujian Scanning Electron Microscope (SEM dan X-Ray Diffraction (XRD. Luas permukaan aktif diukur dengan Brauner Emmet Teller (BET, dan pengujian sensitivitas menggunakan alat Potentiostat sebagai Instrumen pengukur arus.     Hasil pengujian menunjukkan struktur kristal adalah monoklinik. Sensitivitas  naik seiring dengan kenaikan temperatur operasi, begitu juga dengan peningkatan konsentrasi gas. Nilai sensitivitas tertinggi adalah pada sampel temperatur 160oC dengan temperatur operasi 100oC dan konsentrasi gas 500 ppm.

  2. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    Science.gov (United States)

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  3. A GM (1, 1 Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

    Directory of Open Access Journals (Sweden)

    Ning-bo Zhao

    2014-01-01

    Full Text Available Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1 Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1 model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this approach, firstly, the GM (1, 1 model is used to forecast the trend by using limited data samples. Then, Markov chain model is integrated into GM (1, 1 model in order to enhance the forecast performance, which can solve the influence of random fluctuation data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM (1, 1 Markov chain model. The results show that the GM (1, 1 Markov chain model is able to forecast exhaust gas temperature accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

  4. Copper-based sorbents for coal gas desulfurization at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Abbasian, J.

    2000-05-01

    In a previous paper, the authors reported on the development of a regenerable copper chromite sorbent, designated as CuCr-29, that is capable of achieving less than 5 ppmv H{sub 2}S concentration in the cleaned fuel gas at about 600 C. This paper reports on recent research carried out to develop a new class of copper-based sorbents for hot fuel gas desulfurization applications in the moderate temperature range of 350--550 C that is currently of industrial interest. A reproducible sorbent preparation technique has been extended to the formulation of highly reactive and attrition-resistant sulfur sorbents based on reagent-grade oxides of copper, manganese, and alumina. The results of packed-bed experiments carried out for the evaluation of the performance of several copper-based sorbents at 350 and 450 C as well as the assessment of the long-term durability and regenerability of one selected formulation are presented and discussed. Three copper-based sorbents were shown to exhibit excellent sulfur removal efficiency and effective capacity, with one formulation (IGTSS-145) being particularly effective in the range of 450--600 C and two formulations (IGTSS-179 and IGTSS-326A) for the range of 350--450 C. The IGTSS-326A formulation maintained excellent sulfur removal efficiency (<1 ppmv H{sub 2}S in the cleaned fuel gas) as well as excellent effective sulfur capacity throughout extended durability testing. This sorbent was also shown to have significantly high attrition resistance, as determined in accordance with the ASTM D5757-95 procedure. These results strongly suggest the suitability of this formulation as a candidate sorbent for demonstration in the Sierra Pacific (Pinon Pine) Clean Coal Technology IGCC Demonstration Program.

  5. Trends in low-temperature water–gas shift reactivity on transition metals

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Boisen, Astrid; Dahl, Søren;

    2005-01-01

    Low-temperature water–gas shift reactivity trends on transition metals were investigated with the use of a microkinetic model based on a redox mechanism. It is established that the adsorption energies for carbon monoxide and oxygen can describe to a large extent changes in the remaining activation...... and adsorption energies through linear correlations. In comparisons with experimental data it is found that the model predicts well the order of catalytic activities for transition metals, although it fails to quantitatively describe the experimental data. This discrepancy could be due to the assumption...... that the redox mechanism dominates and to the neglect of adsorbate interactions, which play an important role at high coverages. The model predicts that the activity of copper can be improved by increasing the strengths with which carbon monoxide and oxygen are bonded to the surface, thus suggesting possible...

  6. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    Science.gov (United States)

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  7. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  8. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  9. Mechanistic and kinetic studies of high-temperature coal gas desulfurization sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lew, S.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1991-10-01

    The overall objective of this project was to investigate the properties of and evaluate mixed oxides of zinc and titanium for hot fuel gas desulfurization. Uncombined ZnO was also investigated as a base case. Detailed investigation of the reduction and sulfidation reactions of Zn-Ti-O sorbents was performed. The intrinsic kinetics and the product layer diffusion rates in reduction and sulfidation were determined. Kinetic experiments with sorbents containing various Zn/Ti atomic ratios were performed. Chemical phase and structural transformations were followed by various methods. The results were compared to similar experiments performed with ZnO. The purpose of these experiments was to determine how the presence of titanium dioxide affects the reduction and sulfidation of ZnO. This information would be used to identify and select the sorbent composition that gives the best combination of low reduction rate and acceptable sulfidation performance at temperatures exceeding 600{degree}C. (VC)

  10. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  11. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  12. Application of high-temperature gas chromatography to the analysis of used frying fats

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, M.; Marmesat, S.; Ruiz Mendez, M. V.; Dobarganes, M. C.

    2010-07-01

    The determination of polar compounds is the most commonly applied technique in the analysis of used frying fats and oils. High-temperature gas chromatography allows for a quantitative determination of oxidized monomeric FAME and dimeric FAME thus giving extra information on oil degradation starting from the fraction of polar compounds. Polar compounds are trans esterified and methyl esters are separated in a VF-5ht Ultimetal column (150 degree centigrade -held for 5 min- rising at 5 degree centigrade min-1 to 370 degree centigrade and held for 5 min) using methyl tricosanoate as internal standard. Results are compared with those obtained by more complex alternative methodology using high-performance size-exclusion chromatography. (Author)

  13. Experimental results of a residential house fire test on tenability: temperature, smoke, and gas analyses.

    Science.gov (United States)

    Crewe, Robert J; Stec, Anna A; Walker, Richard G; Shaw, John E A; Hull, T Richard; Rhodes, Jennifer; Garcia-Sorribes, Tamar

    2014-01-01

    A fire experiment conducted in a British 1950s-style house is described. Measurements of temperature, smoke, CO, CO2 , and O2 were taken in the Lounge, stairwell, and front and back bedrooms. The front bedroom door was wedged open, while the door to the back bedroom was wedged closed. Contrary to expectations and despite the relatively small fire load, analysis and hazard calculations show permeation of toxic fire gases throughout the property with lethal concentrations of effluent being measured at each sampling point. A generally poor state of repair and missing carpets in the upper story contributed to a high degree of gas and smoke permeation. The available egress time was calculated as the time before the main escape route became impassable. Given known human responses to fire, such an incident could have caused fatalities to sleeping or otherwise immobile occupants.

  14. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Mills

    2012-02-01

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  15. Simultaneous approach for simulation of a high-temperature gas-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Yang CHEN; Jiang-hong YOU; Zhi-jiang SHAO; Ke-xin WANG; Ji-xin QIAN

    2011-01-01

    The simulation of a high-temperature gas-cooled reactor pebble-bed module (HTR-PM) plant is discussed.This lumped parameter model has the form of a set differential algebraic equations (DAEs) that include stiff equations to model point neutron kinetics.The nested approach is the most common method to solve DAE,but this approach is very expensive and time-consuming due to inner iterations.This paper deals with an alternative approach in which a simultaneous solution method is used.The DAEs are discretized over a time horizon using collocation on finite elements,and Radau collocation points are applied.The resulting nonlinear algebraic equations can be solved by existing solvers.The discrete algorithm is discussed in detail; both accuracy and stability issues are considered.Finally,the simulation results are presented to validate the efficiency and accuracy of the simultaneous approach that takes much less time than the nested one.

  16. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  17. Safety and licensing of MHTGR (Modular High Temperature Gas Cooled Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Silady, F.A.; Millunzi, A.C.; Kelley, A.P. Jr.; Cunliffe, J.

    1987-07-01

    The Modular High Temperature Gas Cooled Reactor (MHTGR) design meets stringent top-level regulatory and user safety requirements that require that the normal and off-normal operation of the plant not disturb the public's day-to-day activities. Quantitative, top-level regulatory criteria have been specified from US NRC and EPA sources to guide the design. The user/utility group has further specified that these criteria be met at the plant boundary. The focus of the safety approach has then been centered on retaining the radionuclide inventory within the fuel by removing core heat, controlling chemical attack, and by controlling heat generation. The MHTGR is shown to passively meet the stringent requirements with margin. No operator action is required and the plant is insensitive to operator error.

  18. A 3He gas heat switch for the 0.5-2 K temperature range

    Science.gov (United States)

    Smith, Eric N.; Parpia, Jeevak M.; Beamish, John R.

    2000-07-01

    We have constructed a prototype heat switch for use in a cyclic demagnetization apparatus. The desired operating range of the switch is from 0.5 to 1.8 K. The measured conductivity of the switch is 50 μW/ K at 1.5 K when ‘off ’ and 8 mW/K at 0.5 K when ‘on’. The switching is carried out by 3He gas which is admitted and extracted from the device by a miniature charcoal adsorption pump which is controlled by electrical heat and a weak thermal link to a pumped 4He bath. In this paper we discuss details of construction and the performance as a function of temperature, and consider the switching time between on and off states.

  19. Observing the gas temperature drop in the high-density nucleus of L 1544

    Science.gov (United States)

    Crapsi, A.; Caselli, P.; Walmsley, M. C.; Tafalla, M.

    2007-07-01

    Context: The thermal structure of a starless core is crucial for our understanding of the physics in these objects and hence for our understanding of star formation. Theory predicts a gas temperature drop in the inner 5000 AU of the pre-stellar core L 1544, but there has been no observational proof of this. Aims: We performed VLA observations of the NH{3} (1, 1) and (2, 2) transitions towards L 1544 in order to measure the temperature gradient between the high density core nucleus and the surrounding core envelope. Our VLA observation for the first time provide measurements of gas temperature in a core with a resolution smaller than 1000 AU. We have also obtained high resolution Plateau de Bure observations of the 110 GHz 111-101 para-NH2D line in order to further constrain the physical parameters of the high density nucleus. Methods: We combine our interferometric NH{3} and NH2D observations with available single dish measurements in order to estimate the effects of flux loss from extended components upon our data. We have estimated the temperature gradient using a model of the source to fit our data in the u,v plane. As the NH{3}(1, 1) line is extremely optically thick, this also involved fitting a gradient in the NH{3} abundance. In this way, we also measure the [ NH2D] /[ NH{3}] abundance ratio in the inner nucleus. Results: We find that indeed the temperature decreases toward the core nucleus from 12 K down to 5.5 K resulting in an increase of a factor of 50% in the estimated density of the core from the dust continuum if compared with the estimates done with constant temperature of 8.75 K. Current models of the thermal equilibrium can describe consistently the observed temperature and density in this object, simultaneously fitting our temperature profile and the continuum emission. We also found a remarkably high abundance of deuterated ammonia with respect to the ammonia abundance (50% ± 20%), which proves the persistence of nitrogen bearing molecules at

  20. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D. [University of Colorado, Boulder, CO (United States)

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  1. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  2. Low-temperature gas opacity - AESOPUS: a versatile and quick computational tool

    CERN Document Server

    Marigo, Paola

    2009-01-01

    We introduce a new tool - AESOPUS: Accurate Equation of State and OPacity Utility Software - for computing the equation of state and the Rosseland mean (RM) opacities of matter in the ideal gas phase. Results are given as a function of one pair of state variables, (i.e. temperature T in the range 3.2 <= log(T) <= 4.5, and parameter R= rho/(T/10^6 K)^3 in the range -8 <= log(R) <= 1), and arbitrary chemical mixture. The chemistry is presently solved for about 800 species, consisting of almost 300 atomic and 500 molecular species. The gas opacities account for many continuum and discrete sources, including atomic opacities, molecular absorption bands, and collision-induced absorption. Several tests made on AESOPUS have proved that the new opacity tool is accurate in the results,flexible in the management of the input prescriptions, and agile in terms of computational time requirement. We set up a web-interface (http://stev.oapd.inaf.it/aesopus) which enables the user to compute and shortly retrieve ...

  3. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    Science.gov (United States)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-11-01

    GaN is highly sensitive to low concentrations of H2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H2-gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ~8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120-147% and 179-389%, respectively, to 500-2,500 ppm of H2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H2 gas when using ZnO encapsulation and UV irradiation is discussed.

  4. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    Science.gov (United States)

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

  5. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  6. The evolution of the mass ratio of accreting binaries: the role of gas temperature

    CERN Document Server

    Young, Matthew D; Clarke, Cathie J

    2014-01-01

    We explore an unresolved controversy in the literature about the accuracy of Smoothed Particle Hydrodynamics (SPH) in modeling the accretion of gas onto a binary system, a problem with important applications to the evolution of proto-binaries as well as accreting binary super massive black holes. It has previously been suggested that SPH fails to model the flow of loosely bound material from the secondary to primary Roche lobe and that its general prediction that accretion drives mass ratios upwards is numerically flawed. Here we show with 2D SPH that this flow from secondary to primary Roche lobe is a sensitive function of gas temperature and that this largely explains the conflicting claims in the literature which have hitherto been based on either 'cold' SPH simulations or 'hot' grid based calculations. We present simulations of a specimen 'cold' and 'hot' accretion scenario which are numerically converged and evolved into a steady state. Our analysis of the conservation of the Jacobi integral of accreting...

  7. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  8. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  9. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  10. Approaches to experimental validation of high-temperature gas-cooled reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Belov, S.E. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Borovkov, M.N., E-mail: borovkov@okbm.nnov.ru [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Golovko, V.F.; Dmitrieva, I.V.; Drumov, I.V.; Znamensky, D.S.; Kodochigov, N.G. [Joint Stock Company ' Afrikantov OKB Mechanical Engineering' , Burnakovsky Proezd, 15, Nizhny Novgorod 603074 (Russian Federation); Baxi, C.B.; Shenoy, A.; Telengator, A. [General Atomics, 3550 General Atomics Court, CA (United States); Razvi, J., E-mail: Junaid.Razvi@ga.com [General Atomics, 3550 General Atomics Court, CA (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Computational and experimental investigations of thermal and hydrodynamic characteristics for the equipment. Black-Right-Pointing-Pointer Vibroacoustic investigations. Black-Right-Pointing-Pointer Studies of the electromagnetic suspension system on GT-MHR turbo machine rotor models. Black-Right-Pointing-Pointer Experimental investigations of the catcher bearings design. - Abstract: The special feature of high-temperature gas-cooled reactors (HTGRs) is stressed operating conditions for equipment due to high temperature of the primary circuit helium, up to 950 Degree-Sign C, as well as acoustic and hydrodynamic loads upon the gas path elements. Therefore, great significance is given to reproduction of real operation conditions in tests. Experimental investigation of full-size nuclear power plant (NPP) primary circuit components is not practically feasible because costly test facilities will have to be developed for the power of up to hundreds of megawatts. Under such conditions, the only possible process to validate designs under development is representative tests of smaller scale models and fragmentary models. At the same time, in order to take in to validated account the effect of various physical factors, it is necessary to ensure reproduction of both individual processes and integrated tests incorporating needed integrated investigations. Presented are approaches to experimental validation of thermohydraulic and vibroacoustic characteristics for main equipment components and primary circuit path elements under standard loading conditions, which take account of their operation in the HTGR. Within the framework of the of modular helium reactor project, including a turbo machine in the primary circuit, a new and difficult problem is creation of multiple-bearing flexible vertical rotor. Presented are approaches to analytical and experimental validation of the rotor electromagnetic bearings, catcher bearings, flexible rotor

  11. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    Science.gov (United States)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  12. Detection of H2S gas at lower operating temperature using sprayed nanostructured In2O3 thin films

    Indian Academy of Sciences (India)

    Ramesh H Bari; Parag P Patil; Sharad B Patil; Anil R Bari

    2013-11-01

    Nanostructured indium oxide (In2O3) thin films were prepared by spray pyrolysis (SP) technique. X-ray diffraction (XRD) was used to investigate the structural properties and field emission scanning electron microscopy (FESEM) was used to confirm surface morphology of In2O3 films. Measurement of electrical conductivity and gas sensing performance were conducted using static gas sensing system. Gas sensing performance was studied at different operating temperature in the range of 25–150°C for the gas concentration of 500 ppm. Themaximum sensitivity ( = 79%) to H2S was found at lower temperature of 50 °C. The quick response (4 s) and fast recovery (8 s) are the main features of this film.

  13. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  14. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    CERN Document Server

    Noll, S; Kimeswenger, S; Unterguggenberger, S; Jones, A M

    2016-01-01

    Rotational temperatures Trot derived from lines of the same OH band are an important method to study the mesopause region near 87 km. To measure realistic temperatures, the rotational level populations have to be in local thermodynamic equilibrium (LTE). However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-LTE contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1), which peaks at 94 to 95 km, and O2a(0-0) with an emission peak at about 90 km. Since the radiative lifetimes are relatively long, the derived O2 Trot are not significantly affected by non-LTE contributions. For a comparison with OH, the differences in the emission profiles were corrected by using OH emission, O2a(0-0) emission, a...

  15. Design and fabrication of a data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector development

    CERN Document Server

    Sahu, S; Rudra, Sharmili; Biswas, S; Mohanty, B; Sahu, P K

    2015-01-01

    A novel instrument has been developed to monitor and record the ambient pa- rameters such as temperature, atmospheric pressure and relative humidity. These parameters are very essential for understanding the characteristics such as gain of gas filled detectors like Gas Electron Multiplier (GEM) and Multi Wire Propor- tional Counter (MWPC). In this article the details of the design, fabrication and operation processes of the device has been presented.

  16. Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn; Hans Hornung

    2006-10-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and

  17. Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Amutha, A. [Pondicherry University, Centre for Nanoscience and Technology (India); Amirthapandian, S. [Indira Gandhi Centre for Atomic Research, Materials Physics Division, Materials Science Group (India); Prasad, A. K. [Indira Gandhi Centre for Atomic Research, Surface and Nanoscience Division, Materials Science Group (India); Panigrahi, B. K. [Indira Gandhi Centre for Atomic Research, Materials Physics Division, Materials Science Group (India); Thangadurai, P., E-mail: thangadurai.p@gmail.com [Pondicherry University, Centre for Nanoscience and Technology (India)

    2015-07-15

    Tin oxide (SnO{sub 2}) nanorods were prepared by surfactant-free hydrothermal method and their methane gas sensing characteristics were studied. These SnO{sub 2} nanorods were characterized by XRD, SEM, TEM, EDS, EELS, UV–Visible, and Raman spectroscopies. The SnO{sub 2} nanorods were single crystalline possessing tetragonal rutile structure. Average diameter of the nanorods was in the range from 8 to 48 nm with an average length of 174 nm. The diameter of the nanorod was found to increase with the increase of reaction time. The E{sub g} and A{sub 1g} Raman modes showed a significant blue and red shift, respectively, and this was due to the contribution from the phonons with q ≠ 0 in the first Brillouin zone. Gas sensing measurements against methane gas showed a good sensitivity at an operating temperature of 100 °C, and the maximum gas sensitivity was observed at 175 °C. Our present experiments clearly demonstrate the sensitivity of methane up to 300 ppm at 100 °C, which is a lower operating temperature compared to the previously reported values. Hydrogen sensor was also fabricated with the same SnO{sub 2} nanorods and its performance was compared with the methane gas sensor. These rods show better sensitivity toward methane gas than hydrogen gas.

  18. The dependence of isobaric thermal heat capacity of gas condensates in liquid phase on their temperature

    Directory of Open Access Journals (Sweden)

    Bukhovich Y. V.

    2015-09-01

    Full Text Available The study of the thermo-physical properties of liquids gives an opportunity of qualitative and quantitative evaluation of condensed matter theory, phase transitions and critical phenomena. To forecast the thermo-dynamic properties of liquid natural hydrocarbons one must know the basic heat-physical characteristics in a wide range of condition parameters. We have researched specific isobaric thermal heat capacity of gas condensates of Oposhnyanskoye, Solokhovskoye, Bukharskoye, Rybalskoye, Stavropolskoye, Schebelinskoye and Yubileinoye deposits theoretically and experimentally. These substances were in liquid phase on pseudo-critical isobar in the range of temperatures from minus 40 till 100 °C. In the article the findings of the investigation are presented. The mean relative experimental error doesn’t exceed ± 1.5 %, with reliability 0.95. The universal equation expressing specific isobaric thermal heat capacity as the function of temperature and molar mass has been obtained. It describes specific isobaric thermal heat capacity on pseudo-critical isobar for investigated natural hydrocarbons with the mean relative error, which does not exceed ± 1.65 %. The use of the equation for the calculation of specific isobaric thermal heat capacity of the substances of other deposits is recommended

  19. High-Temperature Magnetic Bearings Being Developed for Gas Turbine Engines

    Science.gov (United States)

    Kascak, Albert F.

    1998-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and cooperation with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of bearing times the rpm) limit on engine speed and allow active vibration cancellation systems to be used, resulting in a more efficient, "more electric" engine. Finally, the Integrated High Performance Turbine Engine Technology (IHPTET) program, a joint Department of Defense/industry program, identified a need for a high-temperature (1200 F) magnetic bearing that could be demonstrated in their Phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator's circumference are a series of electrical wire coils which form a series of electric magnets that exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it centered in the cavity. The engine rotor, bearings, and casing form a flexible structure with many modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system.

  20. Behavior of a high-temperature gas reactor with transuranic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, A.; Pereira, C.; Sousa, R.V.; Veloso, M.A.F.; Costa, A.L.; Silva, C.A.; Cardoso, F.S., E-mail: fortini@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    In this work, we modeled a high-temperature gas reactor, HTGR, of prismatic block type using the SCALE 6.0 code to analyze the use of transuranic fuel in these reactors. To represent the concept, the Japanese HTTR reactor was chosen. The fuels considered used transuranic elements from UREX+ reprocessing of burned PWR fuel spiked with depleted U or Th. The calculations, performed for typical temperatures of HTR reactors, showed that, in mixtures with the same percentage of fissile material, the initial effective multiplication factor, K{sub eff} , is higher in the mixtures containing Th than that with U. Comparisons between the two types of fuel were performed using fuel pairs with the same initial K{sub eff}. During burn-up, the two mixtures show a slow and practically equal decrease in K{sub eff}. For the same level of burnup, mixtures containing Th show greater effectiveness in burning transuranics and total plutonium when compared to corresponding mixtures with depleted U. (author)

  1. A new high temperature resistant glass–ceramic coating for gas turbine engine components

    Indian Academy of Sciences (India)

    Someswar Datta; Sumana Das

    2005-12-01

    A new high temperature and abrasion resistant glass–ceramic coating system (based on MgO–Al2O3–TiO2 and ZnO–Al2O3–SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90°-bend test and static oxidation resistance at the required working temperature (1000°C) for continuous service and abrasion resistance are evaluated using suitable standard methods. The coating materials and the resultant coatings are characterized using differential thermal analysis, differential thermogravimetric analysis, X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The properties evaluated clearly showed the suitability of these coatings for protection of different hot zone components in different types of engines. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs indicate strong chemical bonding at the metal–ceramic interface. Optical micrographs showed smooth glossy impervious defect free surface finish.

  2. Polyaniline-Cadmium Ferrite Nanostructured Composite for Room-Temperature Liquefied Petroleum Gas Sensing

    Science.gov (United States)

    Kotresh, S.; Ravikiran, Y. T.; Tiwari, S. K.; Vijaya Kumari, S. C.

    2017-08-01

    We introduce polyaniline-cadmium ferrite (PANI-CdFe2O4) nanostructured composite as a room-temperature-operable liquefied petroleum gas (LPG) sensor. The structure of PANI and the composite prepared by chemical polymerization was characterized by Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy. Comparative XRD and FT-IR analysis confirmed CdFe2O4 embedded in PANI matrix with mutual interfacial interaction. The nanostructure of the composite was confirmed by transmission electron microscopy. A simple LPG sensor operable at room temperature, exclusively based on spin-coated PANI-CdFe2O4 nanocomposite, was fabricated with maximum sensing response of 50.83% at 1000 ppm LPG. The response and recovery time of the sensor were 50 s and 110 s, respectively, and it was stable over a period of 1 month with slight degradation of 4%. The sensing mechanism is discussed on the basis of the p- n heterojunction barrier formed at the interface of PANI and CdFe2O4.

  3. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  4. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  5. Gas Emissivity of a Modified Cellulose Mix at the Temperature of 900°C

    OpenAIRE

    Zawieja Z.; Sawicki J.

    2015-01-01

    This paper presents the findings of a study of gas emissivity and the volumetric gas flow rate from a patented modified cellulose mix used in production of disposable sand casting moulds. The modified cellulose mix with such additives as expanded perlite, expanded vermiculite and microspheres was used as the study material. The results for gas emissivity and the gas flow rate for the modified cellulose mix were compared with the gas emissivity of the commercial material used in gating systems...

  6. The effect of temperature and gas Reynolds number on evaporation of a sessile liquid drop in mini-channel

    Directory of Open Access Journals (Sweden)

    Orlik Evgeniy

    2016-01-01

    Full Text Available Experimental setup has been designed and manufactured to study the evaporation processes of liquid drop under blowing gas in mini-channel. The height of channel can be varied from 3 to 20 mm. Substrates are removable and its surface temperature is kept to constant value. The shadow method is main measurement technique. Series of experiments with 100 μl water drop on polished stainless still substrate are carried out in channel with 9 mm height. Dependences of evaporating rate for different range of temperatures and gas Reynolds numbers are obtained.

  7. New gas-gas heat exchanger in silicon carbide for heat recovery from high temperature gases (1200/sup 0/C)

    Energy Technology Data Exchange (ETDEWEB)

    Galant, S.; Grouset, D.; Martinez, G.; Mulet, J.; Rebuffat, D. (Societe Bertin, 78 - Plaisir (France)); Minjolle, L. (Societe Ceraver, 75 - Paris (France))

    1984-06-01

    A study of a novel gas-gas ceramic heat exchanger is presented with main industrial end uses as a heat recovery systems on exhaust combustion gases to preheat the combustion air to furnace burners. Large overall heat transfer coefficients are obtained by using both radiative and jet impingement convective heat transfer. A silicium carbide plate design is chosen on the basis of existing large scale production capabilities. A 100 hour experimental test program is carried out successfully, which confirms thermodynamic calculations and good overall design: 4 year payback times are expected for a standard industrial case examined. Further optimization studies will aim at further reducing such preliminary values.

  8. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  9. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  10. Modeling impacts of changes in temperature and water table on C gas fluxes in an Alaskan peatland

    Science.gov (United States)

    Deng, Jia; Li, Changsheng; Frolking, Steve

    2015-07-01

    Northern peatlands have accumulated a large amount of organic carbon (C) in their thick peat profile. Climate change and associated variations in soil environments are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is still highly uncertain. Verifying and understanding the influences of changes in environmental factors on C gas fluxes in biogeochemical models are essential for forecasting feedbacks between C gas fluxes and climate change. In this study, we applied a biogeochemical model, DeNitrification-DeComposition (DNDC), to assess impacts of air temperature (TA) and water table (WT) on C gas fluxes in an Alaskan peatland. DNDC was validated against field measurements of net ecosystem exchange of CO2 (NEE) and CH4 fluxes under manipulated surface soil temperature and WT conditions in a moderate rich fen. The validation demonstrates that DNDC was able to capture the observed impacts of the manipulations in soil environments on C gas fluxes. To investigate responses of C gas fluxes to changes in TA and soil water condition, we conducted a series of simulations with varying TA and WT. The results demonstrate that (1) uptake rates of CO2 at the site were reduced by either too colder or warmer temperatures and generally increased with increasing soil moisture; (2) CH4 emissions showed an increasing trend as TA increased or WT rose toward the peat surface; and (3) the site could shift from a net greenhouse gas (GHG) sink into a net GHG source under some warm and/or dry conditions. A sensitivity analysis evaluated the relative importance of TA and WT to C gas fluxes. The results indicate that both TA and WT played important roles in regulating NEE and CH4 emissions and that within the investigated ranges of the variations in TA and WT, changes in WT showed a greater impact than changes in TA on NEE, CH4 fluxes, and net C gas fluxes at the study fen.

  11. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar

    2008-05-01

    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  12. Estimation of gas hydrate saturation with temperature calculated from hydrate threshold at C0002 during IODP NanTroSEIZE Stage 1 expeditions in the Nankai Trough

    Science.gov (United States)

    Miyakawa, A.; Yamada, Y.; Saito, S.; Bourlange, S.; Chang, C.; Conin, M.; Tomaru, H.; Kinoshita, M.; Tobin, H.; 314/315/316Scientists, E.

    2008-12-01

    During the IODP Expedition 314, conducted at Nankai trough accretionary prism, gas hydrate was observed at Site C0002. Gas hydrate beneath seafloor is promising energy source and potentially hazardous material during drilling. The precise estimation of gas hydrate saturation is important, but previous works have not considered the effect" of the in-situ temperature. In this study, we propose an estimation method of gas hydrate saturation with temperature calculated from threshold of gas hydrate. Gas hydrate saturation was determined based on the Logging While Drilling (LWD) Expedition 314 data. The gas hydrate bearing zone was located between 218.1 to 400.4 m below seafloor. Archie's relation was used to estimate gas hydrate saturation. This relation requires the porosity, the sea water resistivity and formation resistivity. We determined porosity to be between ~70 to ~30% based on density log. Since the resistivity of sea water is temperature dependent, temperature profile (calculated temperature model) was determined from the thermal conductivity and the temperature at the base of the gas hydrate. In our calculated temperature model, the saturation increases from ~10% at ~220m to ~30% at 400 m below sea floor. Spikes that have a maximum value at 80% at sand layers were observed. We also estimated the gas hydrate saturation from the constant temperature profile in 12°C (temperature constant model). This resulted in almost constant saturation (~15%) with the high saturation spikes. We compared these saturations with the hydrate occupation ratio within sand layers derived from RAB image. The hydrate occupation ratio shows increasing trend with increasing depth, and this trend is similar to the gas hydrate saturation with the calculated temperature model. This result suggests that the temperature profile should be considered to obtain precise gas hydrate saturation. Since the high sedimentation rate can affect thermal condition, we are planning to estimate the

  13. Non-LTE modeling of radiatively driven dense plasmas

    Science.gov (United States)

    Scott, H. A.

    2017-03-01

    There are now several experimental facilities that use strong X-ray fields to produce plasmas with densities ranging from ˜1 to ˜103 g/cm3. Large laser facilities, such as the National Ignition Facility (NIF) and the Omega laser reach high densities with radiatively driven compression, short-pulse lasers such as XFELs produce solid density plasmas on very short timescales, and the Orion laser facility combines these methods. Despite the high densities, these plasmas can be very far from LTE, due to large radiation fields and/or short timescales, and simulations mostly use collisional-radiative (CR) modeling which has been adapted to handle these conditions. These dense plasmas present challenges to CR modeling. Ionization potential depression (IPD) has received much attention recently as researchers work to understand experimental results from LCLS and Orion [1,2]. However, incorporating IPD into a CR model is only one challenge presented by these conditions. Electron degeneracy and the extent of the state space can also play important roles in the plasma energetics and radiative properties, with effects evident in recent observations [3,4]. We discuss the computational issues associated with these phenomena and methods for handling them.

  14. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  15. Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines

    Science.gov (United States)

    Yubero, C.; Rodero, A.; Dimitrijevic, M. S.; Gamero, A.; García, M. C.

    2017-03-01

    In this work a new spectroscopic method, allowing gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure, is presented. The method is based on the measurements of selected pairs of argon atomic lines (Ar I 603.2 nm/Ar I 549.6 nm, Ar I 603.2 nm/Ar I 522.1 nm, Ar I 549.6 nm/Ar I 522.1 nm). For gas temperature determination using the proposed method, there is no need of knowing the electron density, neither making assumptions on the degree of thermodynamic equilibrium existing in the plasma. The values of the temperatures obtained using this method, have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using both, the well-known Boltzmann-plot technique and the best fitting to simulated ro-vibrational bands. A very good agreement has been found.

  16. Regenerable copper-based sorbents for high temperature flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, P.; Abbasian, J.; Slimane, R.B.; Williams, B.E.; Khalili, N.R.; Ho, K.K.

    2000-07-01

    During conventional combustion process the sulfur in the coal is converted to sulfur dioxide (SO{sub 2}). This hazardous air pollutant combines with the moisture in the atmosphere and creates what is commonly known as acid rain. Thus the removal of this pollutant from flue gas prior to its discharge is very important. Government regulations have been introduced and have become progressively more stringent. In the Clean Air Act Amendments (CAAA) of 1990, for example, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. A number of processes have been developed for flue gas desulfurization (FGD). The moving bed copper oxide process has been regarded as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases at elevated temperatures. This process is based on the utilization of a dry, regenerable sorbent, that consists of copper oxide (CuO) supported on gamma alumina ({gamma}-Al{sub 2}O{sub 3}), in a cross flow moving-bed reactor. This study has been directed toward evaluation of the commercially available alumina-supported copper-based (ALCOA) sorbent to establish the baseline for development of new and improved sorbents for the copper oxide process. Evaluation of the baseline sorbent included determination of effective sulfur capacity and sulfur removal efficiency of the sorbent, the effects of operating parameters on the performance of the sorbent, as well as long term durability of the sorbent. Physical and chemical properties of the baseline sorbent were also determined.

  17. An electrochemical gas sensor based on paper supported room temperature ionic liquids.

    Science.gov (United States)

    Dossi, Nicolò; Toniolo, Rosanna; Pizzariello, Andrea; Carrilho, Emanuel; Piccin, Evandro; Battiston, Simone; Bontempelli, Gino

    2012-01-07

    A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 μM; dynamic range: 2-200 μM, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: ±7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.

  18. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  19. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the

  20. Nanostructured ZrO2 Thick Film Resistors as H2-Gas Sensors Operable at Room Temperature

    Directory of Open Access Journals (Sweden)

    K. M. GARADKAR

    2009-11-01

    Full Text Available Nanostructured ZrO2 powder was synthesized by microwave assisted sol-gel method. The material was characterized by XRD and SEM techniques. X-Ray diffraction studies confirm that a combination of tetragonal and monoclinic zirconia nanoparticles is obtained by using microwave-assisted method. The nanopowder was calcined at an optimized temperature of 400 °C for 3 h. The prepared powder had crystalline size about 25 nm. Thick films of synthesized ZrO2 powder were prepared by screen printing technique. The gas sensing performances of these films for various gases were tested. Films showed highest response to H2 (50 ppm gas at room temperature with poor responses to others (1000 ppm. The quick response and fast recovery are the main features of this sensor. The effects of microstructure, operating temperature and gas concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of H2 gas and others were studied and discussed.