WorldWideScience

Sample records for non-locally distributed systems

  1. Non--Local Approach to the Analysis of the Stress Distribution in Granular Systems.

    Science.gov (United States)

    Scott, J. E.; Kenkre, V. M.; Hurd, A. J.

    1998-03-01

    A continuum mechanical theory of the stress distribution in granular materials is presented, where the transformation of the vertical spatial coordinate into a formal time variable converts the study of the static stress distribution into a generally non--Markoffian, i.e., memory-possessing (non-local) propagation analysis. Previous treatments (J. -P). Bouchaud, M. E. Cates, and P. Claudin, J. Phys. I France 5, 639 (1995). (C. -h). Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995). are shown to be particular cases of our theory corresponding to, respectively, wave-like and dif fusive limits of the general evolution. Calculations are presented for the example of ceramic or metal powder compaction in dies, with emphasis on the understanding of previously unexplained features as seen in experimental data found in the literature o ver the past 50 years. Specific proposals for new experimental investigations are presented.

  2. A Systems-Theoretical Generalization of Non-Local Correlations

    Science.gov (United States)

    von Stillfried, Nikolaus

    Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.

  3. Local supersymmetry in non-relativistic systems

    International Nuclear Information System (INIS)

    Urrutia, L.F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs

  4. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  5. Distributed formation tracking using local coordinate systems

    DEFF Research Database (Denmark)

    Yang, Qingkai; Cao, Ming; Garcia de Marina, Hector

    2018-01-01

    This paper studies the formation tracking problem for multi-agent systems, for which a distributed estimator–controller scheme is designed relying only on the agents’ local coordinate systems such that the centroid of the controlled formation tracks a given trajectory. By introducing a gradient...... descent term into the estimator, the explicit knowledge of the bound of the agents’ speed is not necessary in contrast to existing works, and each agent is able to compute the centroid of the whole formation in finite time. Then, based on the centroid estimation, a distributed control algorithm...

  6. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  7. Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems

    International Nuclear Information System (INIS)

    Arsie, Alessandro; Lorenzoni, Paolo

    2014-01-01

    In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones

  8. Measurement of fuel importance distribution in non-uniformly distributed fuel systems

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.

    1995-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)

  9. Supervisor localization a top-down approach to distributed control of discrete-event systems

    CERN Document Server

    Cai, Kai

    2016-01-01

    This monograph presents a systematic top-down approach to distributed control synthesis of discrete-event systems (DES). The approach is called supervisor localization; its essence is the allocation of external supervisory control action to individual component agents as their internal control strategies. The procedure is: first synthesize a monolithic supervisor, to achieve globally optimal and nonblocking controlled behavior, then decompose the monolithic supervisor into local controllers, one for each agent. The collective behavior of the resulting local controllers is identical to that achieved by the monolithic supervisor. The basic localization theory is first presented in the Ramadge–Wonham language-based supervisory control framework, then demonstrated with distributed control examples of multi-robot formations, manufacturing systems, and distributed algorithms. An architectural approach is adopted to apply localization to large-scale DES; this yields a heterarchical localization procedure, which is...

  10. Self-hybridization within non-Hermitian localized plasmonic systems

    Science.gov (United States)

    Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu

    2018-04-01

    The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.

  11. Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems

    International Nuclear Information System (INIS)

    Cai, K.; Wonham, W. M.

    2009-01-01

    A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solve it, a top-down localization procedure is developed which systematically decomposes an external supervisor into local controllers while preserving optimality and nonblockingness. An efficient localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV) example presented for illustration. Finally, the 'easiest' and 'hardest' boundary cases of localization are discussed.

  12. Research on fully distributed optical fiber sensing security system localization algorithm

    Science.gov (United States)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  13. A locally adaptive normal distribution

    DEFF Research Database (Denmark)

    Arvanitidis, Georgios; Hansen, Lars Kai; Hauberg, Søren

    2016-01-01

    entropy distribution under the given metric. The underlying metric is, however, non-parametric. We develop a maximum likelihood algorithm to infer the distribution parameters that relies on a combination of gradient descent and Monte Carlo integration. We further extend the LAND to mixture models......The multivariate normal density is a monotonic function of the distance to the mean, and its ellipsoidal shape is due to the underlying Euclidean metric. We suggest to replace this metric with a locally adaptive, smoothly changing (Riemannian) metric that favors regions of high local density...

  14. Non-locality of non-Abelian anyons

    International Nuclear Information System (INIS)

    Brennen, G K; Iblisdir, S; Pachos, J K; Slingerland, J K

    2009-01-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  15. Non-locality of non-Abelian anyons

    Science.gov (United States)

    Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.

    2009-10-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  16. Distributed computing feasibility in a non-dedicated homogeneous distributed system

    Science.gov (United States)

    Leutenegger, Scott T.; Sun, Xian-He

    1993-01-01

    The low cost and availability of clusters of workstations have lead researchers to re-explore distributed computing using independent workstations. This approach may provide better cost/performance than tightly coupled multiprocessors. In practice, this approach often utilizes wasted cycles to run parallel jobs. The feasibility of such a non-dedicated parallel processing environment assuming workstation processes have preemptive priority over parallel tasks is addressed. An analytical model is developed to predict parallel job response times. Our model provides insight into how significantly workstation owner interference degrades parallel program performance. A new term task ratio, which relates the parallel task demand to the mean service demand of nonparallel workstation processes, is introduced. It was proposed that task ratio is a useful metric for determining how large the demand of a parallel applications must be in order to make efficient use of a non-dedicated distributed system.

  17. Local Information as a Resource in Distributed Quantum Systems

    Science.gov (United States)

    Horodecki, Michał; Horodecki, Karol; Horodecki, Paweł; Horodecki, Ryszard; Oppenheim, Jonathan; Sende, Aditi; Sen, Ujjwal

    2003-03-01

    A new paradigm for distributed quantum systems where information is a valuable resource is developed. After finding a unique measure for information, we construct a scheme for its manipulation in analogy with entanglement theory. In this scheme, instead of maximally entangled states, two parties distill local states. We show that, surprisingly, the main tools of entanglement theory are general enough to work in this opposite scheme. Up to plausible assumptions, we show that the amount of information that must be lost during the protocol of concentration of local information can be expressed as the relative entropy distance from some special set of states.

  18. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  19. Global and local emission impact assessment of distributed cogeneration systems with partial-load models

    International Nuclear Information System (INIS)

    Mancarella, Pierluigi; Chicco, Gianfranco

    2009-01-01

    Small-scale distributed cogeneration technologies represent a key resource to increase generation efficiency and reduce greenhouse gas emissions with respect to conventional separate production means. However, the diffusion of distributed cogeneration within urban areas, where air quality standards are quite stringent, brings about environmental concerns on a local level. In addition, partial-load emission worsening is often overlooked, which could lead to biased evaluations of the energy system environmental performance. In this paper, a comprehensive emission assessment framework suitable for addressing distributed cogeneration systems is formulated. Local and global emission impact models are presented to identify upper and lower boundary values of the environmental pressure from pollutants that would be emitted from reference technologies, to be compared to the actual emissions from distributed cogeneration. This provides synthetic information on the relative environmental impact from small-scale CHP sources, useful for general indicative and non-site-specific studies. The emission models are formulated according to an electrical output-based emission factor approach, through which off-design operation and relevant performance are easily accounted for. In particular, in order to address the issues that could arise under off-design operation, an equivalent load model is incorporated within the proposed framework, by exploiting the duration curve of the cogenerator loading and the emissions associated to each loading level. In this way, it is possible to quantify the contribution to the emissions from cogeneration systems that might operate at partial loads for a significant portion of their operation time, as for instance in load-tracking applications. Suitability of the proposed methodology is discussed with respect to hazardous air pollutants such as NO x and CO, as well as to greenhouse gases such as CO 2 . Two case study applications based on the emission

  20. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    Science.gov (United States)

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Non-equilibrium work distribution for interacting colloidal particles under friction

    International Nuclear Information System (INIS)

    Gomez-Solano, Juan Ruben; July, Christoph; Mehl, Jakob; Bechinger, Clemens

    2015-01-01

    We experimentally investigate the non-equilibrium steady-state distribution of the work done by an external force on a mesoscopic system with many coupled degrees of freedom: a colloidal crystal mechanically driven across a commensurate periodic light field. Since this system mimics the spatiotemporal dynamics of a crystalline surface moving on a corrugated substrate, our results show general properties of the work distribution for atomically flat surfaces undergoing friction. We address the role of several parameters which can influence the shape of the work distribution, e.g. the number of particles used to locally probe the properties of the system and the time interval to measure the work. We find that, when tuning the control parameters to induce particle depinning from the substrate, there is an abrupt change of the shape of the work distribution. While in the completely static and sliding friction regimes the work distribution is Gaussian, non-Gaussian tails show up due to the spatiotemporal heterogeneity of the particle dynamics during the transition between these two regimes. (paper)

  2. Evaluation of the differential energy distribution of systems of non-thermally activated molecules

    International Nuclear Information System (INIS)

    Rogers, E.B.

    1986-01-01

    A non-thermally activated molecule may undergo pressure dependent deactivation or energy dependent decomposition. It should be possible to use the pressure dependent stabilization/decomposition yields to determine the energy distribution in non-thermal systems. The numerical technique of regularization has been applied to this chemical problem to evaluate this distribution. The resulting method has been tested with a number of simulated distributions and kinetic models. Application was then made to several real chemical systems to determine the energy distribution resulting from the primary excitation process. Testing showed the method to be quite effective in reproducing input distributions from simulated data in all test cases. The effect of experimental error proved to be negligible when the error-filled data were first smoothed with a parabolic spline. This method has been applied to three different hot atom activated systems. Application to 18 F-for-F substituted CH 3 CF 3 generated a broad distribution extending from 62 to 318 kcal/mol, with a median energy of 138 kcal/mol. The shape of this distribution (and those from the other applications) indicated the involvement of two mechanisms in the excitation process. Analysis of the T-for-H substituted CH 3 CH 2 F system showed a more narrow distribution (56-218 kcal/mol) with a median energy of 79.8 kcal/mol. The distribution of the T-for-H substituted CH 3 CH 2 Cl system, extending from 54.5 to 199 kcal/mol was seen to be quite similar. It was concluded that this method is a valid approach to evaluating differential energy distributions in non-thermal systems, specifically those activated by hot atom substitution

  3. Risk of viral acute gastrointestinal illness from non-disinfected drinking water distribution systems

    Science.gov (United States)

    Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence attributable to virus intrusions into non-disinfecting municipal distribution systems. Viruses were enumerat...

  4. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun; Dall' Anese, Emiliano

    2016-11-21

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as well as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.

  5. Generalized ward identities for non-local transformation

    International Nuclear Information System (INIS)

    Li Ziping; Li Ruijie

    2002-01-01

    Based on the phase-space generating functional of Green function for a system with a singular higher-order Lagrangian, the generalized canonical Ward identities under the local and non-local transformation in phase space for such a system have been derived. Starting from the configuration-space generating functional for a gauge-invariant system, the generalized Ward identities were deduced under the local, non-local and global transformation, respectively. The applications to the non-Abelian Chern-Simons theories with higher derivatives were given. Some relationships among the proper vertices have been deduced, in which one does not need to carry out the integration over canonical momenta in phase-space generating functional. The Ward-Takahashi identities for BRS transformation are also obtained

  6. Non-local quantal Noether identities and their applications

    International Nuclear Information System (INIS)

    Li Ziping

    2002-01-01

    Based on the phase-space generating functional for a system with a singular high-order Lagrangian, the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived. For a gauge-invariant system with a higher-order Lagrangian, the quantal Noether identities under the local and non-local transformation in configuration space have also been derived. it has been pointed out that in certain cases the quantal Noether identities may be converted to the conservation laws at the quantum level. This algorithm to derive the quantal conservation laws is significantly different from the first quantal Noether theorem. The applications to the non-Abelian CS theories with higher-order derivatives are given. The conserved quantities at the quantum level for some local and non-local transformation are found respectively

  7. Convergence of solutions of a non-local phase-field system

    Czech Academy of Sciences Publication Activity Database

    Londen, S.-O.; Petzeltová, Hana

    2011-01-01

    Roč. 4, č. 3 (2011), s. 653-670 ISSN 1937-1632 R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-local phase-field systems * separation property * convergence to equilibria Subject RIV: BA - General Mathematics http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5698

  8. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    Science.gov (United States)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  9. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems and Manycore Processors

    Directory of Open Access Journals (Sweden)

    Ananya Muddukrishna

    2015-01-01

    Full Text Available Performance degradation due to nonuniform data access latencies has worsened on NUMA systems and can now be felt on-chip in manycore processors. Distributing data across NUMA nodes and manycore processor caches is necessary to reduce the impact of nonuniform latencies. However, techniques for distributing data are error-prone and fragile and require low-level architectural knowledge. Existing task scheduling policies favor quick load-balancing at the expense of locality and ignore NUMA node/manycore cache access latencies while scheduling. Locality-aware scheduling, in conjunction with or as a replacement for existing scheduling, is necessary to minimize NUMA effects and sustain performance. We present a data distribution and locality-aware scheduling technique for task-based OpenMP programs executing on NUMA systems and manycore processors. Our technique relieves the programmer from thinking of NUMA system/manycore processor architecture details by delegating data distribution to the runtime system and uses task data dependence information to guide the scheduling of OpenMP tasks to reduce data stall times. We demonstrate our technique on a four-socket AMD Opteron machine with eight NUMA nodes and on the TILEPro64 processor and identify that data distribution and locality-aware task scheduling improve performance up to 69% for scientific benchmarks compared to default policies and yet provide an architecture-oblivious approach for programmers.

  10. Distributed Cooperative Control of Nonlinear and Non-identical Multi-agent Systems

    DEFF Research Database (Denmark)

    Bidram, Ali; Lewis, Frank; Davoudi, Ali

    2013-01-01

    This paper exploits input-output feedback linearization technique to implement distributed cooperative control of multi-agent systems with nonlinear and non-identical dynamics. Feedback linearization transforms the synchronization problem for a nonlinear and heterogeneous multi-agent system...... for electric power microgrids. The effectiveness of the proposed control is verified by simulating a microgrid test system....

  11. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun; Dall' Anese, Emiliano

    2016-09-01

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as well as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.

  12. Distribution costs -- the cost of local delivery

    International Nuclear Information System (INIS)

    Winger, N.; Zarnett, P.; Carr, J.

    2000-01-01

    Most of the power transmission system in the province of Ontario is owned and operated as a regulated monopoly by Ontario Hydro Services Company (OHSC). Local distribution systems deliver to end-users from bulk supply points within a service territory. OHSC distributes to approximately one million, mostly rural customers, while the approximately 250 municipal utilities together serve about two million, mostly urban customers. Under the Energy Competition Act of 1998 local distribution companies will face some new challenges, including unbundled billing systems, a broader range of distribution costs, increased costs, made up of corporate taxes or payments in lieu of taxes and added costs for regulatory affairs. The consultants provide a detailed discussion of the components of distribution costs, the three components of the typical budget process (capital expenditures, (CAPEX), operating and maintenance (O and M) and administration and corporate (GA and C), a summary of some typical distribution costs in Ontario, and the estimated impacts of the Energy Competition Act (ECA) compliance on charges and rates. Various mitigation strategies are also reviewed. Among these are joint ventures by local distribution companies to reduce ECA compliance costs, re-examination of controllable costs, temporary reduction of the allowable return on equity (ROE) by 50 per cent, and/or reducing the competitive transition charge (CTC). It is estimated that either one of these two reductions could eliminate the full amount of the five to seven per cent uplift in delivered energy service costs. The conclusion of the consultants is that local distribution delivery charges will make up a greater proportion of end-user cost in the future than it has in the past. An increase to customers of about five per cent is expected when the competitive electricity market opens and unbundled billing begins. The cost increase could be mitigated by a combination of actions that would be needed for about

  13. Non-local electron transport through normal and topological ladder-like atomic systems

    Science.gov (United States)

    Kurzyna, Marcin; Kwapiński, Tomasz

    2018-05-01

    We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.

  14. Gas-leak localization using distributed ultrasonic sensors

    Science.gov (United States)

    Huseynov, Javid; Baliga, Shankar; Dillencourt, Michael; Bic, Lubomir; Bagherzadeh, Nader

    2009-03-01

    We propose an ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas leak. Statistical tools such as the maximum likelihood (ML) and the least squares (LS) estimators are used for approximating the source location when closed-form solutions fail in the presence of ambient background nuisance and inherent electronic noise. The proposed localization algorithms were implemented and tested using a Java-based simulation platform connected to four or more distributed MEMS microphones observing a broadband nitrogen leak from an orifice. The performance of centralized and decentralized algorithms under ED and TDOA schemes is analyzed and compared in terms of communication overhead and accuracy in presence of additive white Gaussian noise (AWGN).

  15. On a non-local gas dynamics like integrable hierarchy

    International Nuclear Information System (INIS)

    Brunelli, Jose Carlos; Das, Ashok

    2004-01-01

    We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)

  16. Localization and Mapping Using a Non-Central Catadioptric Camera System

    Science.gov (United States)

    Khurana, M.; Armenakis, C.

    2018-05-01

    This work details the development of an indoor navigation and mapping system using a non-central catadioptric omnidirectional camera and its implementation for mobile applications. Omnidirectional catadioptric cameras find their use in navigation and mapping of robotic platforms, owing to their wide field of view. Having a wider field of view, or rather a potential 360° field of view, allows the system to "see and move" more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. Any perspective camera can be used. A platform was constructed in order to combine the mirror and a camera to build a catadioptric system. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The mathematical model for localizing the system was determined using conditions based on the reflective properties of the mirror. The obtained platform positions were then used to map the environment using epipolar geometry. Experiments were performed to test the mathematical models and the achieved location and mapping accuracies of the system. An iterative process of positioning and mapping was applied to determine object coordinates of an indoor environment while navigating the mobile platform. Camera localization and 3D coordinates of object points obtained decimetre level accuracies.

  17. On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system

    Science.gov (United States)

    Kavallaris, Nikos I.; Suzuki, Takashi

    2017-05-01

    The purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor’s response to the activator’s growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a diffusion driven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns.

  18. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

    Directory of Open Access Journals (Sweden)

    Pengcheng HAN

    2017-12-01

    Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

  19. Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: trace distance discord and Bell's non-locality

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2018-04-01

    In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell's non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell's non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell's inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.

  20. Mermin Non-Locality in Abstract Process Theories

    Directory of Open Access Journals (Sweden)

    Stefano Gogioso

    2015-11-01

    Full Text Available The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y, opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.

  1. Global and local consistencies in distributed fault diagnosis for discrete-event systems

    NARCIS (Netherlands)

    Su, R.; Wonham, W.M.

    2005-01-01

    In this paper, we present a unified framework for distributed diagnosis. We first introduce the concepts of global and local consistency in terms of supremal global and local supports, then present two distributed diagnosis problems based on them. After that, we provide algorithms to achieve

  2. Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Dampers

    Directory of Open Access Journals (Sweden)

    Şefaatdin Yüksel

    2005-01-01

    Full Text Available Eigencharacteristics of a longitudinally vibrating elastic rod with locally and non-locally reacting damping are analyzed. The rod is considered as a continuous system and complex eigenfrequencies are determined as solution of a characteristic equation. The variation of the damping ratios with respect to damper locations and damping coefficients for the first four eigenfrequencies are obtained. It is shown that at any mode of locally or non-locally damped elastic rod, the variation of damping ratio with damper location is linearly proportional to absolute value of the mode shape of undamped system. It is seen that the increasing damping coefficient does not always increase the damping ratio and there are optimal values for the damping ratio. Optimal values for external damping coefficients of viscous dampers and locations of the dampers are presented.

  3. Optimization of distribution piping network in district cooling system using genetic algorithm with local search

    International Nuclear Information System (INIS)

    Chan, Apple L.S.; Hanby, Vic I.; Chow, T.T.

    2007-01-01

    A district cooling system is a sustainable means of distribution of cooling energy through mass production. A cooling medium like chilled water is generated at a central refrigeration plant and supplied to serve a group of consumer buildings through a piping network. Because of the substantial capital investment involved, an optimal design of the distribution piping configuration is one of the crucial factors for successful implementation of the district cooling scheme. In the present study, genetic algorithm (GA) incorporated with local search techniques was developed to find the optimal/near optimal configuration of the piping network in a hypothetical site. The effect of local search, mutation rate and frequency of local search on the performance of the GA in terms of both solution quality and computation time were investigated and presented in this paper

  4. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    Science.gov (United States)

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a

  5. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  6. New power distribution challenges at the local scale

    International Nuclear Information System (INIS)

    Delage, Marion; Cadoux, Florent; Petit, Marc

    2016-01-01

    Distribution grids are facing the connection of both more and more variable distributed generation sources and new loads such as electric vehicles. Then distribution grid operators evolve to distribution system operators (DSOs) with new flexibilities (power control of distributed energy sources) to complete their traditional planning and operation tools. In the future, additional distributed resources could be used, such as demand response and storage. DSOs are becoming actors of a global electrical system where power balancing must be ensured at the European level with local constraints (congestion and voltage), and with power flows from transmission to distribution grids but also inside the distribution grid or from distribution to transmission. Sensors and data availability are key issues to enable these transformations. This paper defines some general concerns and present European issues with illustrations from the French electrical system. (authors)

  7. Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.

    Science.gov (United States)

    He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming

    2018-02-28

    Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Prediction of the Velocity Contours in Triangular Channel with Non-uniform Roughness Distributions by Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Sara Bardestani

    2017-09-01

    Full Text Available Triangular channels have different applications in many water and wastewater engineering problems. For this purpose investigating hydraulic characteristics of flow in these sections has great importance. Researchers have presented different prediction methods for the velocity contours in prismatic sections. Most proposed methods are not able to consider the effect of walls roughness, the roughness distribution and secondary flows. However, due to complexity and nonlinearity of velocity contours in open channel flow, there is no simple relationship that can be fully able to exactly draw the velocity contours. In this paper an efficient approach for modeling velocity contours in triangular open channels with non-uniform roughness distributions by Adaptive Neuro-Fuzzy Inference System (ANFIS has been suggested. For training and testing model, the experimental data including 1703 data in triangular channels with geometric symmetry and non-uniform roughness distributions have been used. Comparing experimental results with predicted values by model indicates that ANFIS model is capable to be used in simulation of local velocity and determining velocity contours and the independent evaluation showed that the calculated values of discharge and depth-averaged velocity from model information are precisely in conformity with experimental values.

  9. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  10. Improving electrical power systems reliability through locally controlled distributed curtailable load

    Science.gov (United States)

    Dehbozorgi, Mohammad Reza

    2000-10-01

    Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to

  11. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    Science.gov (United States)

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.

  12. Exploring non-signalling polytopes with negative probability

    International Nuclear Information System (INIS)

    Oas, G; Barros, J Acacio de; Carvalhaes, C

    2014-01-01

    Bipartite and tripartite EPR–Bell type systems are examined via joint quasi-probability distributions where probabilities are permitted to be negative. It is shown that such distributions exist only when the no-signalling condition is satisfied. A characteristic measure, the probability mass, is introduced and, via its minimization, limits the number of quasi-distributions describing a given marginal probability distribution. The minimized probability mass is shown to be an alternative way to characterize non-local systems. Non-signalling polytopes for two to eight settings in the bipartite scenario are examined and compared to prior work. Examining perfect cloning of non-local systems within the tripartite scenario suggests defining two categories of signalling. It is seen that many properties of non-local systems can be efficiently described by quasi-probability theory. (paper)

  13. Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    DEFF Research Database (Denmark)

    Speelman, Florian

    2016-01-01

    -depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication......Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural...... applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient...

  14. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  16. Distributed Data Management and Distributed File Systems

    CERN Document Server

    Girone, Maria

    2015-01-01

    The LHC program has been successful in part due to the globally distributed computing resources used for collecting, serving, processing, and analyzing the large LHC datasets. The introduction of distributed computing early in the LHC program spawned the development of new technologies and techniques to synchronize information and data between physically separated computing centers. Two of the most challenges services are the distributed file systems and the distributed data management systems. In this paper I will discuss how we have evolved from local site services to more globally independent services in the areas of distributed file systems and data management and how these capabilities may continue to evolve into the future. I will address the design choices, the motivations, and the future evolution of the computing systems used for High Energy Physics.

  17. Theory of non-hermitian localization in one dimension: Localization ...

    Indian Academy of Sciences (India)

    of the finite depinning field H . The degree of depinning is measured by the averaged .... system [2] shows a direct relationship between the localization length of the ... tight-binding model in a non-hermitian field h, where the discrete sites n, ..... shows that complex eigenvalues do not appear for field strengths less thanh2.

  18. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  19. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  20. Non-tuberculous mycobacteria and microbial populations in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Rossella Briancesco

    2010-01-01

    Full Text Available Data on the occurrence of non-tuberculous mycobacteria (NTM, in parallel with those obtained for bacterial indicators and amoebae, are presented with the aim to collect information on the spread of NTM in drinking water distribution systems in Italy. Samples were collected from taps of hospitals and households in Central and Southern Italy. The concentration values obtained for the more traditional microbial parameters complied with the mandatory requirements for drinking water. Conversely, moderate-to-high microbial loads (till 300 CFU/L were observed for the NTM. Positive samples were obtained from 62% of the investigated water samples. Analogous results were observed for amoebae showing a higher percentage of positive samples (76%. In terms of public health, the presence of mycobacteria in water distribution systems may represent a potential risk especially for vulnerable people such as children, the elderly or immunocompromised individuals.

  1. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    Science.gov (United States)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  2. Distributed Supervisory Protection Interlock System

    International Nuclear Information System (INIS)

    Walz, H.V.; Agostini, R.C.; Barker, L.; Cherkassky, R.; Constant, T.; Matheson, R.

    1989-03-01

    The Distributed Supervisory Protection Interlock System, DSPI, is under development at the Stanford Linear Accelerator Center for requirements in the areas of personnel protection, beam containment and equipment protection interlocks. The DSPI system, distributed over the application site, consists of segments with microprocessor-based controller and I/O modules, local area networks for communication, and a global supervisor computer. Segments are implemented with commercially available controller and I/O modules arranged in local interlock clusters, and associated software. Segments provide local interlock data acquisition, processing and control. Local area networks provide the communication backbone between segments and a global supervisor processor. The supervisor processor monitors the overall system, reports detail status and provides human interfaces. Details of an R and D test system, which will implement the requirements for personnel protection of 4 typical linear accelerator sectors, will be described. 4 refs., 2 figs

  3. On monogamy of non-locality and macroscopic averages: examples and preliminary results

    Directory of Open Access Journals (Sweden)

    Rui Soares Barbosa

    2014-12-01

    Full Text Available We explore a connection between monogamy of non-locality and a weak macroscopic locality condition: the locality of the average behaviour. These are revealed by our analysis as being two sides of the same coin. Moreover, we exhibit a structural reason for both in the case of Bell-type multipartite scenarios, shedding light on but also generalising the results in the literature [Ramanathan et al., Phys. Rev. Lett. 107, 060405 (2001; Pawlowski & Brukner, Phys. Rev. Lett. 102, 030403 (2009]. More specifically, we show that, provided the number of particles in each site is large enough compared to the number of allowed measurement settings, and whatever the microscopic state of the system, the macroscopic average behaviour is local realistic, or equivalently, general multipartite monogamy relations hold. This result relies on a classical mathematical theorem by Vorob'ev [Theory Probab. Appl. 7(2, 147-163 (1962] about extending compatible families of probability distributions defined on the faces of a simplicial complex – in the language of the sheaf-theoretic framework of Abramsky & Brandenburger [New J. Phys. 13, 113036 (2011], such families correspond to no-signalling empirical models, and the existence of an extension corresponds to locality or non-contextuality. Since Vorob'ev's theorem depends solely on the structure of the simplicial complex, which encodes the compatibility of the measurements, and not on the specific probability distributions (i.e. the empirical models, our result about monogamy relations and locality of macroscopic averages holds not just for quantum theory, but for any empirical model satisfying the no-signalling condition. In this extended abstract, we illustrate our approach by working out a couple of examples, which convey the intuition behind our analysis while keeping the discussion at an elementary level.

  4. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  5. Distributed State Estimation Using a Modified Partitioned Moving Horizon Strategy for Power Systems.

    Science.gov (United States)

    Chen, Tengpeng; Foo, Yi Shyh Eddy; Ling, K V; Chen, Xuebing

    2017-10-11

    In this paper, a distributed state estimation method based on moving horizon estimation (MHE) is proposed for the large-scale power system state estimation. The proposed method partitions the power systems into several local areas with non-overlapping states. Unlike the centralized approach where all measurements are sent to a processing center, the proposed method distributes the state estimation task to the local processing centers where local measurements are collected. Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves a smaller optimization problem to estimate its own local states by using local measurements and estimated results from its neighboring areas. In contrast with PMHE, the error from the process model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take constraints on states into account during the optimization process such that the influence of the outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify that our method achieves comparable state estimation accuracy but with a significant reduction in the overall computation load.

  6. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  7. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  8. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  9. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.

    2012-01-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  10. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized control,  control with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  11. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Science.gov (United States)

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  12. Agent-based distributed hierarchical control of dc microgrid systems

    DEFF Research Database (Denmark)

    Meng, Lexuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken as ....... Standard genetic algorithm is applied in each local control system in order to search for a global optimum. Hardware-in-Loop simulation results are shown to demonstrate the effectiveness of the method.......In order to enable distributed control and management for microgrids, this paper explores the application of information consensus and local decisionmaking methods formulating an agent based distributed hierarchical control system. A droop controlled paralleled DC/DC converter system is taken...... as a case study. The objective is to enhance the system efficiency by finding the optimal sharing ratio of load current. Virtual resistances in local control systems are taken as decision variables. Consensus algorithms are applied for global information discovery and local control systems coordination...

  13. A distributed database view of network tracking systems

    Science.gov (United States)

    Yosinski, Jason; Paffenroth, Randy

    2008-04-01

    In distributed tracking systems, multiple non-collocated trackers cooperate to fuse local sensor data into a global track picture. Generating this global track picture at a central location is fairly straightforward, but the single point of failure and excessive bandwidth requirements introduced by centralized processing motivate the development of decentralized methods. In many decentralized tracking systems, trackers communicate with their peers via a lossy, bandwidth-limited network in which dropped, delayed, and out of order packets are typical. Oftentimes the decentralized tracking problem is viewed as a local tracking problem with a networking twist; we believe this view can underestimate the network complexities to be overcome. Indeed, a subsequent 'oversight' layer is often introduced to detect and handle track inconsistencies arising from a lack of robustness to network conditions. We instead pose the decentralized tracking problem as a distributed database problem, enabling us to draw inspiration from the vast extant literature on distributed databases. Using the two-phase commit algorithm, a well known technique for resolving transactions across a lossy network, we describe several ways in which one may build a distributed multiple hypothesis tracking system from the ground up to be robust to typical network intricacies. We pay particular attention to the dissimilar challenges presented by network track initiation vs. maintenance and suggest a hybrid system that balances speed and robustness by utilizing two-phase commit for only track initiation transactions. Finally, we present simulation results contrasting the performance of such a system with that of more traditional decentralized tracking implementations.

  14. High Voltage Distribution System (HVDS) as a better system compared to Low Voltage Distribution System (LVDS) applied at Medan city power network

    Science.gov (United States)

    Dinzi, R.; Hamonangan, TS; Fahmi, F.

    2018-02-01

    In the current distribution system, a large-capacity distribution transformer supplies loads to remote locations. The use of 220/380 V network is nowadays less common compared to 20 kV network. This results in losses due to the non-optimal distribution transformer, which neglected the load location, poor consumer profile, and large power losses along the carrier. This paper discusses how high voltage distribution systems (HVDS) can be a better system used in distribution networks than the currently used distribution system (Low Voltage Distribution System, LVDS). The proposed change of the system into the new configuration is done by replacing a large-capacity distribution transformer with some smaller-capacity distribution transformers and installed them in positions that closest to the load. The use of high voltage distribution systems will result in better voltage profiles and fewer power losses. From the non-technical side, the annual savings and payback periods on high voltage distribution systems will also be the advantage.

  15. Can EPR non-locality be geometrical?

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  16. Non-local effects in kaonic atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-04-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self-energy in nuclear matter. The optical potentials show strong non-linearities in the nucleon density and sizeable non-local terms. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful fits are obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. We conclude that a microscopic description of kaonic atom data requires further detailed studies of the microscopic K - nuclear dynamics. (orig.)

  17. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    Science.gov (United States)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  18. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    Science.gov (United States)

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Non-Local Effects in Kaonic Atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-01-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self energy in nuclear matter. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful description is obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. (author)

  20. Analysis of the cable equation with non-local and non-singular kernel fractional derivative

    Science.gov (United States)

    Karaagac, Berat

    2018-02-01

    Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

  1. Local versus non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-01-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms. For some of the most detailed observables in this collision system, the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (Author)

  2. Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems

    Czech Academy of Sciences Publication Activity Database

    Kiguradze, I.; Šremr, Jiří

    2011-01-01

    Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573

  3. Optical distribution of local oscillators in future telecommunication satellite payloads

    Science.gov (United States)

    Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.

  4. Image-Guided Analyses Reveal that Non-CD4 Splenocytes Contribute to CD4+ T Cell–Mediated Inflammation Leading to Islet Destruction by Altering Their Local Function and Not Systemic Trafficking Patterns

    Directory of Open Access Journals (Sweden)

    Mi-Heon Lee

    2007-11-01

    Full Text Available Recruitment of CD4+ T cells into islets is a critical component of islet inflammation (insulitis leading to type 1 diabetes; therefore, determining if conditions used to treat diabetes change their trafficking patterns is relevant to the outcome. Cotransfer of CD4+BDC2.5 (BDC cells with non-CD4 splenocytes obtained from newly diabetic NOD mice, but not when they are transferred alone, induces accelerated diabetes. It is unclear whether these splenocytes affect diabetes development by altering the systemic and/or local trafficking and proliferation patterns of BDC cells in target and nontarget tissues. To address these questions, we developed an animal model to visualize BDC cell trafficking and proliferation using whole-body in vivo bioluminescence imaging and used the images to direct tissue sampling for further analyses of the cell distribution within tissues. The whole-body, or macroscopic, trafficking patterns were not dramatically altered in both groups of recipient mice. However, the local patterns of cell distribution were distinct, which led to invasive insulitis only in cotransferred mice with an increased number of islet-infiltrating CD11b+ and CD11c+ cells. Taken together, the non-CD4 splenocytes act locally by promoting invasive insulitis without altering the systemic trafficking patterns or proliferation of BDC cells and thus contributing to diabetes by altering the localization within the tissue.

  5. Scalable and Fully Distributed Localization in Large-Scale Sensor Networks

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2017-06-01

    Full Text Available This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of the measurement error at one sensor node is limited within a small area of the network around the node. Extensive simulations and comparison with other methods under various representative network settings are carried out, showing the superior performance of the proposed algorithm.

  6. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  7. Testing the non-locality of quantum theory in two-kaon systems

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, P.H. (California Univ., Berkeley (United States). Lawrence Berkeley Lab.)

    1993-06-07

    An idea for testing the non-local character of quantum theory in systems made of two neutral kaons is suggested. Such tests require detecting two long-lived or two short-lived neutral kaons in coincidence, when copper slabs are either interposed on or removed from their paths. They may be performed at an asymmetric [Phi][sup 0]-factory. They could answer some questions raised by the EPR paradox and Bell's inequalities. If such tests are performed and if predictions of quantum mechanics and standard theory of kaon regeneration are verified experimentally, all descriptions of the relevant phenomena in terms of local interactions will be ruled out in principle with the exception of very peculiar ones, which imply the existence of hidden variables, of different kinds of kaons corresponding to different values of the hidden variables, and, for some of these kaons, of regeneration probabilities enhanced by a factor of the order of 400 or more over the average. Of course, the experiment may also reveal a break down of quantum theory. (orig.)

  8. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  9. Efficacy of Local and Systemic Antimicrobials in the Non-Surgical Treatment of Smokers With Chronic Periodontitis: A Systematic Review.

    Science.gov (United States)

    Chambrone, Leandro; Vargas, Miguel; Arboleda, Silie; Serna, Maritza; Guerrero, Marcela; de Sousa, Jose; Lafaurie, Gloria Inés

    2016-11-01

    The aim of this systematic review is to evaluate whether use of local or systemic antimicrobials would improve clinical results of non-surgical periodontal therapy for smokers with chronic periodontitis (CP). Medical Literature Analysis and Retrieval System Online, Excerpta Medica Database, and The Cochrane Central Register of Controlled Trials were searched up to and including March 2016. Randomized clinical trials of duration of at least 6 months were included if they reported on treatment of smokers (≥10 cigarettes per day for minimum 12 months) with CP with non-surgical periodontal therapy either alone or associated with local or systemic antimicrobials. Random-effects meta-analyses were undertaken to evaluate mean differences in probing depth (PD) and clinical attachment level (CAL). Of 108 potentially eligible articles, seven were included. Most individual studies (75%) testing locally delivered antibiotics reported that smokers benefited from this treatment approach. Pooled estimates found additional PD reduction of 0.81 mm (P = 0.01) and CAL gain of 0.91 mm (P = 0.01) at sites with baseline PD ≥5 mm. Conversely, meta-analysis on systemic use of antimicrobials failed to detect significant differences in mean changes from baseline, and only one trial supported their use. In smokers with CP, adjunctive use of local antimicrobials improved efficacy of non-surgical periodontal therapy in reducing PD and improving CAL at sites presenting PD ≥5 mm before treatment. Current evidence does not demonstrate similar gains when scaling and root planing plus systemic antimicrobial/antibiotics were associated with therapy.

  10. Local distribution and franchising rights

    International Nuclear Information System (INIS)

    Penick, V.; Grant, R.; McKelvey, S.; Cramm, K.

    1998-01-01

    A summary of local distribution and franchising rights in Nova Scotia and New Brunswick is presented. The Gas Distribution Act calls for two distinct sets of regulations : broad regulations to be made by the provinces, and more technical procedural regulations to be made by the Utility and Review Board. The focus of this paper is on how municipalities will be affected by the regulations and how franchising within a local area will work. The overall objective is to ensure free competition in gas sales

  11. Local distribution and franchising rights

    Energy Technology Data Exchange (ETDEWEB)

    Penick, V. [McInnes, Cooper and Robertson, Halifax, NS (Canada); Grant, R.; McKelvey, S. [Stirling Scales, NB (Canada); Cramm, K. [Maritimes NRG, Halifax, NS (Canada)

    1998-12-31

    A summary of local distribution and franchising rights in Nova Scotia and New Brunswick is presented. The Gas Distribution Act calls for two distinct sets of regulations : broad regulations to be made by the provinces, and more technical procedural regulations to be made by the Utility and Review Board. The focus of this paper is on how municipalities will be affected by the regulations and how franchising within a local area will work. The overall objective is to ensure free competition in gas sales.

  12. Probing the transition from non-localization to localization by K-shell photoemission from isotope-substituted N2

    International Nuclear Information System (INIS)

    Rolles, Daniel; Braune, Markus; Cvejanovic, Slobodan; Gessner, Oliver; Hentges, Rainer; Korica, Sanja; Langer, Burkhard; Lischke, Toralf; Pruemper, Georg; Reinkoester, Axel; Viefhaus, Jens; Zimmermann, Bjoern; McKoy, Vince; Becker, Uwe

    2006-01-01

    In homonuclear diatomic molecules such as N 2 , the inversion symmetry of the system causes non-local, coherent behavior of the otherwise localized core holes. The non-locality of the electron emission and the remaining core hole changes in a continuous way into partially localized behaviour if a gradual breakdown of the inversion symmetry is induced by isotope substitution. This is reflected by a loss of interference and a parity mixing of the outgoing photoelectron waves. Our results represent the first experimentally observed isotope effect on the electronic structure of a diatomic molecule

  13. Local vs. Non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-02-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms For some of the most detailed observables in this collision system/ the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (authors). 16 refs., 4 figs

  14. Regularized κ-distributions with non-diverging moments

    Science.gov (United States)

    Scherer, K.; Fichtner, H.; Lazar, M.

    2017-12-01

    For various plasma applications the so-called (non-relativistic) κ-distribution is widely used to reproduce and interpret the suprathermal particle populations exhibiting a power-law distribution in velocity or energy. Despite its reputation the standard κ-distribution as a concept is still disputable, mainly due to the velocity moments M l which make a macroscopic characterization possible, but whose existence is restricted only to low orders l definition of the κ-distribution itself is conditioned by the existence of the moment of order l = 2 (i.e., kinetic temperature) satisfied only for κ > 3/2 . In order to resolve these critical limitations we introduce the regularized κ-distribution with non-diverging moments. For the evaluation of all velocity moments a general analytical expression is provided enabling a significant step towards a macroscopic (fluid-like) description of space plasmas, and, in general, any system of κ-distributed particles.

  15. Local and non-local equivalent potentials for p-12C scattering

    International Nuclear Information System (INIS)

    Lovell, A.; Amos, K.

    2000-01-01

    A Newton-Sabatier fixed energy inversion scheme has been used to equate inherently non-local p- 12 C potentials at a variety of energies to pion threshold, with exactly phase equivalent local ones. Those energy dependent local potentials then have been recast in the form of non-local Frahn-Lemmer interactions

  16. Critical thresholds in flocking hydrodynamics with non-local alignment.

    Science.gov (United States)

    Tadmor, Eitan; Tan, Changhui

    2014-11-13

    We study the large-time behaviour of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852-862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923-947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, in analogy with the agent-based models, the presence of non-local alignment enforces strong solutions to self-organize into a macroscopic flock. This then raises the question of existence of such strong solutions. We address this question in one- and two-dimensional set-ups, proving global regularity for subcritical initial data. Indeed, we show that there exist critical thresholds in the phase space of the initial configuration which dictate the global regularity versus a finite-time blow-up. In particular, we explore the regularity of non-local alignment in the presence of vacuum. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Off-line tracking of series parameters in distribution systems using AMI data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Sun, Yannan; Schneider, Kevin

    2016-05-01

    Electric distribution systems have historically lacked measurement points, and equipment is often operated to its failure point, resulting in customer outages. The widespread deployment of sensors at the distribution level is enabling observability. This paper presents an off-line parameter value tracking procedure that takes advantage of the increasing number of measurement devices being deployed at the distribution level to estimate changes in series impedance parameter values over time. The tracking of parameter values enables non-diurnal and non-seasonal change to be flagged for investigation. The presented method uses an unbalanced Distribution System State Estimation (DSSE) and a measurement residual-based parameter estimation procedure. Measurement residuals from multiple measurement snapshots are combined in order to increase the effective local redundancy and improve the robustness of the calculations in the presence of measurement noise. Data from devices on the primary distribution system and from customer meters, via an AMI system, form the input data set. Results of simulations on the IEEE 13-Node Test Feeder are presented to illustrate the proposed approach applied to changes in series impedance parameters. A 5% change in series resistance elements can be detected in the presence of 2% measurement error when combining less than 1 day of measurement snapshots into a single estimate.

  18. Pricing local distribution services in a competitive market

    International Nuclear Information System (INIS)

    Duann, D.J.

    1995-12-01

    Unbundling and restructuring of local distribution services is the focus of the natural gas industry. As a result of regulatory reforms, a competitive local distribution market has emerged, and the validity of traditional cost-based regulation is being questioned. One alternative is to completely unbundle local distribution services and transform the local distribution company into a common carrier for intrastate transportation services. Three kinds of alternative pricing mechanisms are examined. For firm intrastate transportation services, cost-based pricing is the preferred method unless it can be shown that a competitive secondary market can be established and maintained. Pricing interruptible transportation capacity is discussed

  19. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  20. Local viscosity distribution in bifurcating microfluidic blood flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2018-03-01

    The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

  1. Constraining generalized non-local cosmology from Noether symmetries.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F

    2017-01-01

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.

  2. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

    Science.gov (United States)

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

    2014-10-01

    Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft

  3. Constraining generalized non-local cosmology from Noether symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Dialektopoulos, Konstantinos F. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy)

    2017-11-15

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory. (orig.)

  4. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  5. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune

    2013-01-01

    description of affine transformations and subsequent compact description of non-translational movement in a globally nonrigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction......To achieve sparse parametrizations that allow intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper...... higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  6. Assessment of Stable Isotope Distribution in Complex Systems

    Science.gov (United States)

    He, Y.; Cao, X.; Wang, J.; Bao, H.

    2017-12-01

    Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern

  7. An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems

    Science.gov (United States)

    Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi

    2014-10-01

    In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.

  8. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  9. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  10. Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment

    Science.gov (United States)

    Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2013-10-01

    Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.

  11. Local observables in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1981-09-01

    Labelling of the physical states of a non-Abelian gauge theory on a lattice in terms of local observables in considered. The labelling is in terms of local color electric field observables and (separately) local color magnetic field observables. Matter field is also included. The non-local variables required when space is multiply-connected, are specified. Non-Abelian version of the Stokes' theorem is considered. Relevance to the continuum theory is discussed in detail. (orig.)

  12. A non-local variable for general relativity

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.

    1983-01-01

    The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)

  13. A Simple Adaptive Overcurrent Protection of Distribution Systems With Distributed Generation

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2011-01-01

    current when the system is connected to the grid and when it is islanded. This paper proposes the use of adaptive protection, using local information, to overcome the challenges of the overcurrent protection in distribution systems with distributed generation. The trip characteristics of the relays...... are updated by detecting operating states (grid connected or island) and the faulted section. The paper also proposes faulted section detection using the time over-current characteristics of the protective relays. Simulation results show that the operating state and faulted section can be correctly identified......A significant increase in the penetration of distributed generation has resulted in a possibility of operating distribution systems with distributed generation in islanded mode. However, over-current protection of an islanded distribution system is still an issue due to the difference in fault...

  14. Local Dynamic Reactive Power for Correction of System Voltage Problems

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  15. Local, organic food initiatives and their potentials for transforming the conventional food system

    Directory of Open Access Journals (Sweden)

    Geir Lieblein

    2005-05-01

    Full Text Available L’objectif de cet article est de discuter l’importance des initiatives locales dans la distribution de produits biologiques. Le sujet est abordé d’une part en fonction de la relation entre ce type d’initiatives et le système agroalimentaire conventionnel et d’autre part en fonction de la possibilité du développement d’un système agroalimentaire plus durable. Basé sur trois études scandinaves, concernant des produits biologiques en Norvège et au Danemark, cet article souligne le fait que les différents acteurs intreviewés jouent à la fois sur le tableau du local et du biologique et sur le tableau du conventionnel. En dépit de différences structurelles distinctes, les deux systèmes, et les conventions qui leur sont rattachées, s’influencent mutuellement. Afin de mettre au point une agriculture plus durable, il semble donc important de mettre en valeur le fondement global de l’agriculture écologique, qui repose non seulement sur des valeurs biologiques et locales, mais encore sur des aspects économiques, sociaux et culturels qui doivent être pris en considération.The aim of this article is to discuss the importance of local initiatives for distribution of organic food. This subject is discussed both in relation to how such initiatives may affect the overall conventional food system and the possible implications for development of a more sustainable food system. The article is based on findings from three different cases of local, organic food in Norway and Denmark. We found that actors within the cases are both involved with local, organic food initiatives and at the same time part of the overall conventional food system. Even though there are distinctive structural differences between these distribution systems, they mutually affect each other. This means that conventions normally associated with local, organic food systems may ‘rub off’ to the conventional food system and vice versa. In order to develop

  16. Food availability and accessibility in the local food distribution ...

    African Journals Online (AJOL)

    Objectives: The objective was to understand the local food distribution system in Avian Park, with a focus on food availability and accessibility. Study design: This was a quantitative food store survey that employed semi-structured interviews and focus group discussions. Setting: The study was conducted in Avian Park, ...

  17. Programming a Distributed System Using Shared Objects

    NARCIS (Netherlands)

    Tanenbaum, A.S.; Bal, H.E.; Kaashoek, M.F.

    1993-01-01

    Building the hardware for a high-performance distributed computer system is a lot easier than building its software. The authors describe a model for programming distributed systems based on abstract data types that can be replicated on all machines that need them. Read operations are done locally,

  18. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  19. Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad

    Microgrids (MGs)--the building blocks of the smart grid-- are local grids comprise different technologies such as power electronics converters, distributed renewable and non-renewable energy sources, energy storage systems, and telecommunications which can operate either in islanded mode or conne......Microgrids (MGs)--the building blocks of the smart grid-- are local grids comprise different technologies such as power electronics converters, distributed renewable and non-renewable energy sources, energy storage systems, and telecommunications which can operate either in islanded mode...

  20. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  1. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  2. A comparison of non-local electron transport models relevant to inertial confinement fusion

    Science.gov (United States)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Optimal Sizing and Placement of Power-to-Gas Systems in Future Active Distribution Networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bhattarai, Bishnu Prasad; Kouzelis, Konstantinos

    2015-01-01

    Power-to-Gas is recently attracting lots of interest as a new alternative for the regulation of renewable based power system. In cases, where the re-powering of old wind turbines threatens the normal operation of the local distribution network, this becomes especially relevant. However, the design...... -investment cost- and the technical losses in the system under study. The results obtained from the assessed test system show how such non-linear methods could help distribution system operators to obtain a fast and precise perception of what is the best way to integrate the Power-to-Gas facilities...... of medium voltage distribution networks does not normally follow a common pattern, finding a singular and very particular layouts in each case. This fact, makes the placement and dimensioning of such flexible loads a complicated task for the distribution system operator in the future. This paper describes...

  4. Affordable non-traditional source data mining for context assessment to improve distributed fusion system robustness

    Science.gov (United States)

    Bowman, Christopher; Haith, Gary; Steinberg, Alan; Morefield, Charles; Morefield, Michael

    2013-05-01

    This paper describes methods to affordably improve the robustness of distributed fusion systems by opportunistically leveraging non-traditional data sources. Adaptive methods help find relevant data, create models, and characterize the model quality. These methods also can measure the conformity of this non-traditional data with fusion system products including situation modeling and mission impact prediction. Non-traditional data can improve the quantity, quality, availability, timeliness, and diversity of the baseline fusion system sources and therefore can improve prediction and estimation accuracy and robustness at all levels of fusion. Techniques are described that automatically learn to characterize and search non-traditional contextual data to enable operators integrate the data with the high-level fusion systems and ontologies. These techniques apply the extension of the Data Fusion & Resource Management Dual Node Network (DNN) technical architecture at Level 4. The DNN architecture supports effectively assessment and management of the expanded portfolio of data sources, entities of interest, models, and algorithms including data pattern discovery and context conformity. Affordable model-driven and data-driven data mining methods to discover unknown models from non-traditional and `big data' sources are used to automatically learn entity behaviors and correlations with fusion products, [14 and 15]. This paper describes our context assessment software development, and the demonstration of context assessment of non-traditional data to compare to an intelligence surveillance and reconnaissance fusion product based upon an IED POIs workflow.

  5. Restructuring local distribution services: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  6. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  7. IMPLICATIONS OF NON-LOCALITY OF TRANSPORT IN GEOMORPHIC TRANSPORT LAWS: HILLSLOPES AND LANDSCAPE EVOLUTION MODELING

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.

    2009-12-01

    Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.

  8. A hybrid local/non-local framework for the simulation of damage and fracture

    KAUST Repository

    Azdoud, Yan

    2014-01-01

    Recent advances in non-local continuum models, notably peridynamics, have spurred a paradigm shift in solid mechanics simulation by allowing accurate mathematical representation of singularities and discontinuities. This doctoral work attempts to extend the use of this theory to a community more familiar with local continuum models. In this communication, a coupling strategy - the morphing method -, which bridges local and non-local models, is presented. This thesis employs the morphing method to ease use of the non-local model to represent problems with failure-induced discontinuities. First, we give a quick review of strategies for the simulation of discrete degradation, and suggest a hybrid local/non-local alternative. Second, we present the technical concepts involved in the morphing method and evaluate the quality of the coupling. Third, we develop a numerical tool for the simulation of the hybrid model for fracture and damage and demonstrate its capabilities on numerical model examples

  9. The right inferior frontal gyrus processes nested non-local dependencies in music.

    Science.gov (United States)

    Cheung, Vincent K M; Meyer, Lars; Friederici, Angela D; Koelsch, Stefan

    2018-02-28

    Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.

  10. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2011-07-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  11. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    International Nuclear Information System (INIS)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.

    2011-01-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  12. Formal Specification of Distributed Information Systems

    NARCIS (Netherlands)

    Vis, J.; Brinksma, Hendrik; de By, R.A.; de By, R.A.

    The design of distributed information systems tends to be complex and therefore error-prone. However, in the field of monolithic, i.e. non-distributed, information systems much has already been achieved, and by now, the principles of their design seem to be fairly well-understood. The past decade

  13. Quantification of non-coding RNA target localization diversity and its application in cancers.

    Science.gov (United States)

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  14. Non-Hermitian localization in biological networks.

    Science.gov (United States)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R

    2016-04-01

    We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  15. Propositional systems in local field theories

    International Nuclear Information System (INIS)

    Banai, M.

    1980-07-01

    The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)

  16. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  17. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  18. Localization in Naturally Deformed Systems - the Default State?

    Science.gov (United States)

    Clancy White, Joseph

    2017-04-01

    materials typical of most rocks. Such perturbations are of themselves only larger examples of variation in the fundamental defect distribution and response; that is the boundary conditions that induce heterogeneous response are reflections of the microphysical behaviour seen in aggregate as strain accommodating softening or stabilization processes such as grain size reduction and independent grain displacements. Additionally, cyclic interplay between inelastic rupture and subsequent plastic material softening resulting from the concomitant introduction of exogenous material in the form of igneous melts, deformation-induced melts and fluid precipitates (veins). This two-stage process determines the siting and temporary stabilization of the shear phenomena, and indicates that material hardening and non-associated flow over some characteristic time are precursors to any particular instability, with stabilization of localized shear correlated with system softening tied to redistribution of strain energy dissipation within what is effectively a reconstituted material.

  19. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  20. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  1. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    Science.gov (United States)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  2. Probabilistic analysis in normal operation of distribution system with distributed generation

    DEFF Research Database (Denmark)

    Villafafila-Robles, R.; Sumper, A.; Bak-Jensen, B.

    2011-01-01

    Nowadays, the incorporation of high levels of small-scale non-dispatchable distributed generation is leading to the transition from the traditional 'vertical' power system structure to a 'horizontally-operated' power system, where the distribution networks contain both stochastic generation...... and load. This fact increases the number of stochastic inputs and dependence structures between them need to be considered. The deterministic analysis is not enough to cope with these issues and a new approach is needed. Probabilistic analysis provides a better approach. Moreover, as distribution systems...

  3. Localized eigenvectors of the non-backtracking matrix

    International Nuclear Information System (INIS)

    Kawamoto, Tatsuro

    2016-01-01

    In the case of graph partitioning, the emergence of localized eigenvectors can cause the standard spectral method to fail. To overcome this problem, the spectral method using a non-backtracking matrix was proposed. Based on numerical experiments on several examples of real networks, it is clear that the non-backtracking matrix does not exhibit localization of eigenvectors. However, we show that localized eigenvectors of the non-backtracking matrix can exist outside the spectral band, which may lead to deterioration in the performance of graph partitioning. (paper: interdisciplinary statistical mechanics)

  4. Effect of non-local equilibrium on minimal thermal resistance porous layered systems

    International Nuclear Information System (INIS)

    Leblond, Genevieve; Gosselin, Louis

    2008-01-01

    In this paper, the cooling of a heat-generating surface by a stacking of porous media (e.g., metallic foam) through which fluid flows parallel to the surface is considered. A two-temperature model is proposed to account for non-local thermal equilibrium (non-LTE). A scale analysis is performed to determine temperatures profiles in the boundary layer regime. The hot spot temperature is minimized with respect to the three design variables of each layer: porosity, pore diameter, and material. Global cost and mass are constrained. The optimization is performed with a hybrid genetic algorithm (GA) including local search to enhance convergence and repeatability. Results demonstrate that the optimized stacks do not operate in LTE. Therefore, we show that assuming LTE might result in underestimation of the hot spot temperature, and into different final designs as well

  5. Palantiri: a distributed real-time database system for process control

    International Nuclear Information System (INIS)

    Tummers, B.J.; Heubers, W.P.J.

    1992-01-01

    The medium-energy accelerator MEA, located in Amsterdam, is controlled by a heterogeneous computer network. A large real-time database contains the parameters involved in the control of the accelerator and the experiments. This database system was implemented about ten years ago and has since been extended several times. In response to increased needs the database system has been redesigned. The new database environment, as described in this paper, consists out of two new concepts: (1) A Palantir which is a per machine process that stores the locally declared data and forwards all non local requests for data access to the appropriate machine. It acts as a storage device for data and a looking glass upon the world. (2) Golems: working units that define the data within the Palantir, and that have knowledge of the hardware they control. Applications access the data of a Golem by name (which do resemble Unix path names). The palantir that runs on the same machine as the application handles the distribution of access requests. This paper focuses on the Palantir concept as a distributed data storage and event handling device for process control. (author)

  6. Study of the localization of slaughterhouses and distribution center of broilers agroindustries in Distrito Federal

    Directory of Open Access Journals (Sweden)

    Eliane Almeida do Carmo

    2011-02-01

    Full Text Available The work investigated the localization of an avian industry and optimized its net, from the corporatives to the consumers, determining the amount of slaughterhouses and distribution centers that the concern should possess and their localization in order to minimize costs. From the collection of real data and by utilizing tools of Geographic Information Systems and binary linear programming, the optimum setting for the net as well the setting of several alternative scenarios were determined. The objective function utilized minimizes the sum of the costs of the slaughterhouse localization, the costs of the localization of the distribution center, the production costs and shipment of the living chickens from the corporatives to the slaughterhouse, the costs of slaughter and shipment as far as the distribution center and the storage costs in the distribution center and shipment to the end clients. The optimum scenario obtained takes into account only the establishment of a slaughterhouse and a distribution center of increased capacity, standing out scale gains. The results support the localization of slaughterhouses close to the coporatives and distribution centers close to the clients submitted to the several restrictions imposed by the local reality.

  7. Modeling of a Pouch Lithium Ion Battery Using a Distributed Parameter Equivalent Circuit for Internal Non-Uniformity Analysis

    Directory of Open Access Journals (Sweden)

    Dafen Chen

    2016-10-01

    Full Text Available A battery model that has the capability of analyzing the internal non-uniformity of local state variables, including the state of charge (SOC, temperature and current density, is proposed in this paper. The model is built using a set of distributed parameter equivalent circuits. In order to validate the accuracy of the model, a customized battery with embedded T-type thermocouple sensors inside the battery is tested. The simulated temperature conforms well with the measured temperature at each test point, and the maximum difference is less than 1 °C. Then, the model is applied to analyze the evolution processes of local state variables’ distribution inside the battery during the discharge process. The simulation results demonstrate drastic distribution changes of the local state variables inside the battery during the discharge process. The internal non-uniformity is originally caused by the resistance of positive and negative foils, while also influenced by the change rate of open circuit voltage and the total resistance of the battery. Hence, the factors that affect the distribution of the local state variables are addressed.

  8. Distributed Power Allocation for Wireless Sensor Network Localization: A Potential Game Approach.

    Science.gov (United States)

    Ke, Mingxing; Li, Ding; Tian, Shiwei; Zhang, Yuli; Tong, Kaixiang; Xu, Yuhua

    2018-05-08

    The problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task. To cope with this issue, we propose a power allocation game where each anchor node minimizes the square position error bound (SPEB) of the service area penalized by its individual power. Meanwhile, it is proven that the power allocation game is an exact potential game which has one pure Nash equilibrium (NE) at least. In addition, we also prove the existence of an ϵ -equilibrium point, which is a refinement of NE and the better response dynamic approach can reach the end solution. Analytical and simulation results demonstrate that: (i) when prior distribution information is available, the proposed strategies have better localization accuracy than the uniform strategies; (ii) when prior distribution information is unknown, the performance of the proposed strategies outperforms power management strategies based on the second-order cone program (SOCP) for particular agent nodes after obtaining the estimated distribution of agent nodes. In addition, proposed strategies also provide an instructional trade-off between power consumption and localization accuracy.

  9. Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level

    Directory of Open Access Journals (Sweden)

    Pol Olivella-Rosell

    2018-04-01

    Full Text Available This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.

  10. Investigations on the gas distribution phenomena inside the containment system of LWRs

    International Nuclear Information System (INIS)

    Manfredini, A.; Oriolo, F.; Villotti, A.

    1994-01-01

    The importance of mixing and distribution phenomena of hydrogen gas in the reactor safety is emphasised in the advanced reactor concepts, that heavily rely upon the passive cooling systems during a typical severe accident sequence. An advanced methodology for evaluating the temporal and spatial distribution of non condensable gases, including the simulation of buoyancy-driven flows and the effects of the various ESFs activation, in a multi-compartment containment system of a LWR is reviewed. The methodology employs an analogy technique with electrical networks to determine the convection flows among the containment compartments and evaluates, inside a single node, the profile of the vertical concentrations of steam and non condensable gases. The application of the proposed models to simulate the gas distribution phenomena occurring in the HDR E11.2, in the FIPLOC-F2 and in the NUPEC M-7-1 tests demonstrates the importance of these models providing information about local details and spatial distribution. The main results from the post-test analysis performed to simulate the thermal-hydraulic responses of the above mentioned experiments are presented and demonstrate the improvements and the reduction of the error band with respect to the experimental data. This methodology allows to perform a realistic prediction of severe accident sequence inside the containment system of the actual and advanced passive generation of LWRs. (author). 14 refs., 11 figs

  11. Non-Hermitian quantum mechanics and localization in physical systems

    International Nuclear Information System (INIS)

    Hatano, Naomichi

    1998-01-01

    Recent studies on a delocalization phenomenon of a non-Hermitian random system is reviewed. The complex spectrum of the system indicates delocalization transition of its eigenfunctions. It is emphasized that the delocalization is related to various physical phenomena such as flux-line pinning in superconductors and population biology of bacteria colony

  12. A hand-held sensor for analyses of local distributions of magnetic fields and losses

    CERN Document Server

    Krismanic, G; Baumgartinger, N

    2000-01-01

    The paper describes a novel sensor for non-destructive analyses of local field and loss distributions in laminated soft magnetic cores, such as transformer cores. It was designed for rapid information on comparative local degrees of inhomogeneity, e.g., for the estimation of local building factors. Similar to a magnifying glass with handle, the compact hand-held sensor contains extremely sharp needle electrodes for the detection of the induction vector B as well as double-field coils for the vector H. Losses P are derived from the Poynting law. Applied to inner -- or also outer -- core regions, the sensor yields instantaneous computer displays of local H, B, and P.

  13. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  14. Time distributions of recurrences of immunogenic and nonimmunogenic tumors following local irradiation

    International Nuclear Information System (INIS)

    Suit, H.D.; Sedlacek, R.; Fagundes, L.; Goitein, M.; Rothman, K.J.

    1978-01-01

    Three hundred and fourteen mice received single-dose irradiation of the right leg and thigh as treatment of an 8-mm mammary carcinoma isotransplant, and were then observed until death, usually by 1000 days. The time distributions of death due to local recurrence, radiation-induced sarcoma, distant metastasis in the absence of local regrowth, second primary, intercurrent disease, and unknown causes have been evaluated. The times for the transplant tumor inoculum to grow to an 8-mm tumor and the times of death due to local regrowth, distant metastasis, or induced tumor were all approximately log-normally distributed. Of the 128 recurrences, the latest-appearing 3 were at 300, 323, and 436 days; no recurrences were noted during the time period from 436 to 1000 days. These findings have been interpreted to mean that in some cases absolute cure of mice of the tumor in the leg was achieved by radiation alone at the dose levels employed. Radiation-induced sarcomas began to appear after 300 days. The time of appearance of the radiation-induced tumors was inversely related to radiation dose. Similar data for an immunogenic fibrosarcoma show that recurrences appeared earlier and were more closely bunched with respect to time than the recurrences of mammary carcinoma. The time distribution of the development of radiation-induced tumors in non-tumor-bearing animals was also approximately long-normally distributed; the slope of the time distribution curve was the same as that for radiation-induced tumors in mice which had been treated for tumor

  15. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  16. EGSNRC distributed systems on commercial network

    International Nuclear Information System (INIS)

    McCormack, J.M.

    2001-01-01

    Full text: EGSnrc is a Monte Carlo based simulation program for determining radiation dose distribution within a body. Computational times are large as each individual photon path must be calculated and every energy absorption event stored. This means that EGSnrc lends itself to distributed processing, as each photon is independent of the next, and code is included within the package to enable this. EGSnrc is currently only supported on Unix based computer systems, whilst the department has ∼45 Pentium II and III class workstations all operating under Windows NT within a Novell network. This investigation demonstrates the capability of a windows based system to perform distributed computation of EGSnrc. All Unix scripts were modified to work as one single Windows NT batch file. The source code was then compiled using the gcc C compiler (a Windows NT version of the Unix compiler) without modification of the underlying source code. A small Visual Basic program was used as a trigger to start the simulation as a Windows NT service, with Novell Z.E.N. Works to distribute the trigger code to each system. When a trigger was received, the computer began a simulation as a low priority task in such a way that the user did not see anything on the screen, and so the simulation did not slow down the general running of the computer. The results were then transferred to the network, and collated on a central computer. As an unattended system, a calculation can start within 15 minutes of any desired time, calculate the desired results, and return the results for collation. This demonstrated effectively a distributed Windows NT TM EGSnrc system. Simulations must be chosen carefully to ensure that each photon can be considered independent, as photon histories do not get distributed. Each system that was used for EGSnrc was required to be capable of running the full EGSnrc simulation on its own EGSnrc stored the entire result array locally, so a large, high-resolution body required

  17. A Distributed Approach to System-Level Prognostics

    Science.gov (United States)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, Indranil

    2012-01-01

    Prognostics, which deals with predicting remaining useful life of components, subsystems, and systems, is a key technology for systems health management that leads to improved safety and reliability with reduced costs. The prognostics problem is often approached from a component-centric view. However, in most cases, it is not specifically component lifetimes that are important, but, rather, the lifetimes of the systems in which these components reside. The system-level prognostics problem can be quite difficult due to the increased scale and scope of the prognostics problem and the relative Jack of scalability and efficiency of typical prognostics approaches. In order to address these is ues, we develop a distributed solution to the system-level prognostics problem, based on the concept of structural model decomposition. The system model is decomposed into independent submodels. Independent local prognostics subproblems are then formed based on these local submodels, resul ting in a scalable, efficient, and flexible distributed approach to the system-level prognostics problem. We provide a formulation of the system-level prognostics problem and demonstrate the approach on a four-wheeled rover simulation testbed. The results show that the system-level prognostics problem can be accurately and efficiently solved in a distributed fashion.

  18. Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources

    International Nuclear Information System (INIS)

    Tabatabaee, Sajad; Mortazavi, Seyed Saeedallah; Niknam, Taher

    2017-01-01

    This paper investigates the optimal scheduling of electric power units in the renewable based local distribution systems considering plug-in electric vehicles (PEVs). The appearance of PEVs in the electric grid can create new challenges for the operation of distributed generations and power units inside the network. In order to deal with this issue, a new stochastic optimization method is devised to let the central controll manage the power units and charging behavior of PEVs. The problem formulation aims to minimize the total cost of the network including the cost of power supply for loads and PEVs as well as the cost of energy not supplied (ENS) as the reliability costs. In order to make PEVs as opportunity for the grid, the vehicle-2-grid (V2G) technology is employed to reduce the operational costs. To model the high uncertain behavior of wind turbine, photovoltaics and the charging and discharging pattern of PEVs, a new stochastic power flow based on unscented transform is proposed. Finally, a new optimization algorithm based on bat algorithm (BA) is proposed to solve the problem optimally. The satisfying performance of the proposed stochastic method is tested on a grid-connected local distribution system. - Highlights: • Introduction of stochastic method to assess Plug-in Electric Vehicles effects on the microgrid. • Assessing the role of V2G technology on battery aging and degradation costs. • Use of BA for solving the proposed problem. • Introduction of a new modification method for the BA.

  19. Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol.

    Science.gov (United States)

    Chen, Shun; Ho, Daniel W C; Li, Lulu; Liu, Ming

    2015-10-01

    In this paper, fault-tolerant consensus in multi-agent system using distributed adaptive protocol is investigated. Firstly, distributed adaptive online updating strategies for some parameters are proposed based on local information of the network structure. Then, under the online updating parameters, a distributed adaptive protocol is developed to compensate the fault effects and the uncertainty effects in the leaderless multi-agent system. Based on the local state information of neighboring agents, a distributed updating protocol gain is developed which leads to a fully distributed continuous adaptive fault-tolerant consensus protocol design for the leaderless multi-agent system. Furthermore, a distributed fault-tolerant leader-follower consensus protocol for multi-agent system is constructed by the proposed adaptive method. Finally, a simulation example is given to illustrate the effectiveness of the theoretical analysis.

  20. Marketing of Non-Timber Forest Products in Kajola Local ...

    African Journals Online (AJOL)

    Marketing of Non-Timber Forest Products in Kajola Local Government Area of Oyo State, Nigeria. ... International Journal of Tropical Agriculture and Food Systems ... The results of the marketing margin reveal that charcoal commanded the highest margin of ₦2500, followed by bush meat (₦300), while wrapping had the ...

  1. An Event-Based Approach to Distributed Diagnosis of Continuous Systems

    Science.gov (United States)

    Daigle, Matthew; Roychoudhurry, Indranil; Biswas, Gautam; Koutsoukos, Xenofon

    2010-01-01

    Distributed fault diagnosis solutions are becoming necessary due to the complexity of modern engineering systems, and the advent of smart sensors and computing elements. This paper presents a novel event-based approach for distributed diagnosis of abrupt parametric faults in continuous systems, based on a qualitative abstraction of measurement deviations from the nominal behavior. We systematically derive dynamic fault signatures expressed as event-based fault models. We develop a distributed diagnoser design algorithm that uses these models for designing local event-based diagnosers based on global diagnosability analysis. The local diagnosers each generate globally correct diagnosis results locally, without a centralized coordinator, and by communicating a minimal number of measurements between themselves. The proposed approach is applied to a multi-tank system, and results demonstrate a marked improvement in scalability compared to a centralized approach.

  2. Non-locality versus entanglement in the neutral kaon system

    International Nuclear Information System (INIS)

    Ableitinger, A.; Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.

    2006-01-01

    Full text: Particle physics has become an interesting testing ground for fundamental questions of quantum mechanics (QM). The entangled massive meson-antimeson systems are specially suitable as they offer a unique laboratory to test various aspects of particle physics (CP violation, CPT violation, . . . ) as well to test foundations of QM (local realistic theories versus QM, Bell inequalities, decoherence effects, quantum marking and erasure concepts, . . . ). For the neutral kaon system we show that nonlocality detected by the violation of a Bell inequality and entanglement are indeed different concepts. (author)

  3. Distributed illumination control with local sensing and actuation in networked lighting systems

    NARCIS (Netherlands)

    Caicedo Fernandez, D.R.; Pandharipande, A.

    2013-01-01

    We consider the problem of illumination control in a networked lighting system wherein luminaires have local sensing and actuation capabilities. Each luminaire (i) consists of a light emitting diode (LED) based light source dimmable by a local controller, (ii) is actuated based on sensing

  4. Local Alternative for Energy Supply : Performance Assessment of Integrated Community Energy Systems

    NARCIS (Netherlands)

    Koirala, B.P.; Chaves Avila, J.P.; Gomez, T.; Hakvoort, R.A.; Herder, P.M.

    2016-01-01

    Integrated community energy systems (ICESs) are emerging as a modern development to re-organize local energy systems allowing simultaneous integration of distributed energy resources (DERs) and engagement of local communities. Although local energy initiatives, such as ICESs are rapidly emerging due

  5. Universality of non-leading logarithmic contributions in transverse-momentum distributions

    CERN Document Server

    Catani, S; Grazzini, Massimiliano

    2001-01-01

    We consider the resummation of the logarithmic contributions to the region of small transverse momenta in the distributions of high-mass systems (lepton pairs, vector bosons, Higgs particles, ....) produced in hadron collisions. We point out that the resummation formulae that are usually used to compute the distributions in perturbative QCD involve process-dependent form factors and coefficient functions. We present a new universal form of the resummed distribution, in which the dependence on the process is embodied in a single perturbative factor. The new form simplifies the calculation of non-leading logarithms at higher perturbative orders. It can also be useful to systematically implement process-independent non-perturbative effects in transverse-momentum distributions. We also comment on the dependence of these distributions on the factorization and renormalization scales.

  6. Employee Travel Data (Non-Local)

    Data.gov (United States)

    Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...

  7. The Green’s functions for peridynamic non-local diffusion

    Science.gov (United States)

    Wang, L. J.; Xu, J. F.

    2016-01-01

    In this work, we develop the Green’s function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green’s functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green’s functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems. PMID:27713658

  8. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  9. States of Cybersecurity: Electricity Distribution System Discussions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Ivonne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ingram, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Maurice [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-16

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.

  10. Estimation of subcriticality and fuel concentration by using 'pattern matching' of neutron flux distribution under non uniformed system

    International Nuclear Information System (INIS)

    Ishitani, Kazuki; Yamane, Yoshihiro

    1999-01-01

    In nuclear fuel reprocessing plants, monitoring the spatial profile of neutron flux to infer subcriticality and distribution of fuel concentration using detectors such as PSPC, is very beneficial in sight of criticality safety. In this paper a method of subcriticality and fuel concentration estimation which is supposed to use under non-uniformed system is proposed. Its basic concept is the pattern matching between measured neutron flux distribution and beforehand calculated one. In any kind of subcriticality estimation, we can regard that measured neutron counts put any kind of black box, and then this black box outputs subcriticality. We proposed the use of artificial neural network or 'pattern matching' as black box which have no theoretical clear base. These method are wholly based on the calculated value as recently advancement of computer code accuracy for criticality safety. The most difference between indirect bias estimation method and our method is that our new approach target are the unknown non-uniform system. (J.P.N.)

  11. IBS for non-gaussian distributions

    International Nuclear Information System (INIS)

    Fedotov, A.; Sidorin, A.O.; Smirnov, A.V.

    2010-01-01

    In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.

  12. An Efficient Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm is designed for distributed...

  13. A Scalable Local Algorithm for Distributed Multivariate Regression

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer environments. The algorithm can be used for distributed...

  14. Analysis of Causes of Non-Uniform Flow Distribution in Manifold Systems with Variable Flow Rate along Length

    Science.gov (United States)

    Zemlyanaya, N. V.; Gulyakin, A. V.

    2017-11-01

    The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.

  15. Concurrency control in distributed database systems

    CERN Document Server

    Cellary, W; Gelenbe, E

    1989-01-01

    Distributed Database Systems (DDBS) may be defined as integrated database systems composed of autonomous local databases, geographically distributed and interconnected by a computer network.The purpose of this monograph is to present DDBS concurrency control algorithms and their related performance issues. The most recent results have been taken into consideration. A detailed analysis and selection of these results has been made so as to include those which will promote applications and progress in the field. The application of the methods and algorithms presented is not limited to DDBSs but a

  16. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  17. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  18. EPR correlations and EPW distributions

    International Nuclear Information System (INIS)

    Bell, J.S.

    1995-01-01

    In the case of two free spin-zero particles, the wave function originally considered by Einstein, Podolsky and Rosen to exemplify EPR correlations has a non-negative Wigner distribution. This distribution gives an explicitly local account of the correlations. For an irreducible non-locality, more elaborate wave functions are required, with Wigner distributions which are not non-negative. (author)

  19. Distributed hierarchical radiation monitoring system

    International Nuclear Information System (INIS)

    Barak, D.

    1985-01-01

    A solution to the problem of monitoring the radiation levels in and around a nuclear facility is presented in this paper. This is a private case of a large scale general purpose data acqisition system with high reliability, availability and short maintenance time. The physical layout of the detectors in the plant, and the strict control demands dictated a distributed and hierarchical system. The system is comprised of three levels, each level contains modules. Level one contains the Control modules which collects data from groups of detectors and executes emergency local control tasks. In level two are the Group controllers which concentrate data from the Control modules, and enable local display and communication. The system computer is in level three, enabling the plant operator to receive information from the detectors and execute control tasks. The described system was built and is operating successfully for about two years. (author)

  20. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  1. A new approach to non-local boundary value problems for ordinary differential systems

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rontó, M.; Shchobak, N.

    2015-01-01

    Roč. 250, č. 1 (2015), s. 689-700 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : non-local problem * parametrisation * successive approximations Subject RIV: BA - General Mathematics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300314015434

  2. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  3. Characterization of the loss allocation techniques for radial systems with distributed generation

    International Nuclear Information System (INIS)

    Carpaneto, Enrico; Chicco, Gianfranco; Sumaili Akilimali, Jean

    2008-01-01

    In the restructured electricity industry, meaningful loss allocation methods are required in order to send correct signals to the market taking into account the location and characteristics of loads and generations, including the local sources forming the distributed generation (DG). This paper addresses the issues related to loss allocation in radial distribution systems with DG, with a three-fold focus. First, the key differences in the formulation of the loss allocation problem for radial distribution systems with respect to transmission systems are discussed, specifying the modeling and computational issues concerning the treatment of the slack node in radial distribution systems. Then, the characteristics of derivative-based and circuit-based loss allocation techniques are presented and compared, illustrating the arrangements used for adapting the various techniques to be applied to radial distribution systems with DG. Finally, the effects of introducing voltage-controllable local generation on the calculation of the loss allocation coefficients are discussed, proposing the adoption of a ''reduced'' representation of the system capable of taking into proper account the characteristics of the nodes containing voltage-controllable DG units. Numerical results are provided to show the time evolution of the loss allocation coefficients for distribution systems with variable load and local generation patterns. (author)

  4. Development of distributed measurement and control systems for application in electrical energy systems

    Directory of Open Access Journals (Sweden)

    Gajić Tomislav

    2013-01-01

    Full Text Available In this paper LPC1766 microcontroller based network capable application processor (NCAP system, is described. This system is intended to be used in modern distributed control and monitoring systems for application in power plants and industry, as well as in modern electricity distribution networks. In order to do that it is necessary to analyze different aspects of the system, like signal processing part or communication requirements. The chosen microcontroller has enough resources to satisfy requirements of an transducer interface module (TIM. Beside the realization of NCAp and TIM controllers it is necessary to develop the necessary measurement modules, in order to realize measurement-control systems. The developed layout could be connected to actuators to the local area network (LAN, as well. If the local LAN is connected to the internet it is possible to monitor and configure measurement modules form the remote site. Having in mind the growing complexity in control systems, it has been a real challenge to detect a diagnose problems in today's large scale distributed systems. Implementation of the proposed module could potentially reduce the time necessary to extract necessary information from the abundant quantity of information that are usually provided by the complex distributed systems.

  5. Distributed embedded controller development with petri nets application to globally-asynchronous locally-synchronous systems

    CERN Document Server

    Moutinho, Filipe de Carvalho

    2016-01-01

    This book describes a model-based development approach for globally-asynchronous locally-synchronous distributed embedded controllers.  This approach uses Petri nets as modeling formalism to create platform and network independent models supporting the use of design automation tools.  To support this development approach, the Petri nets class in use is extended with time-domains and asynchronous-channels. The authors’ approach uses models not only providing a better understanding of the distributed controller and improving the communication among the stakeholders, but also to be ready to support the entire lifecycle, including the simulation, the verification (using model-checking tools), the implementation (relying on automatic code generators), and the deployment of the distributed controller into specific platforms. Uses a graphical and intuitive modeling formalism supported by design automation tools; Enables verification, ensuring that the distributed controller was correctly specified; Provides flex...

  6. Strengthening local seed systems within the bean value chain ...

    African Journals Online (AJOL)

    Strengthening local seed systems within the bean value chain: Experience of agricultural innovation platforms in the Democratic Republic of Congo. ... associations, local grain/seed traders, private and public extension agents, researchers, finance and credit cooperatives and Non-Governmental Organisations (NGOs).

  7. Characterization of short necklace states in the logarithmic transmission spectra of localized systems.

    Science.gov (United States)

    Chen, Liang; Jiang, Xunya

    2013-05-01

    High transmission plateaus exist widely in the logarithmic transmission spectra of localized systems. Their physical origins are short chains of coupled localized states embedded inside the localized system, which are dubbed as 'short necklace states'. In this work, we define the essential quantities and then, based on these quantities, we investigate the properties of the short necklace states statistically and quantitatively. Two different approaches are utilized and their results agree very well. In the first approach, the typical plateau-width and the typical order of short necklace states are obtained from the correlation function of the logarithmic transmission. In the second approach, we investigate the statistical distribution of the peak/plateau-width measured in the logarithmic transmission spectra. A novel distribution is found, which can be exactly fitted by the summation of two Gaussian distributions. These two distributions are the results of sharp peaks of localized states and the high plateaus of short necklace states. The center of the second distribution also tells us the typical plateau-width of short necklace states. With increasing system length, the scaling property of the typical plateau-width is very special since it hardly decreases. The methods and quantities defined in this work can be widely used in Anderson localization studies.

  8. Fault-tolerant quantum computation for local non-Markovian noise

    International Nuclear Information System (INIS)

    Terhal, Barbara M.; Burkard, Guido

    2005-01-01

    We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis

  9. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-01-01

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  10. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-03-11

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  11. A new distributed systems scheduling algorithm: a swarm intelligence approach

    Science.gov (United States)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  12. The effects of relativistic and non-local non-linearities on modulational instabilities in non-uniform plasma

    International Nuclear Information System (INIS)

    Mohamed, B.F.; El-Shorbagy, Kh.H.

    2000-01-01

    A general detailed analysis for the nonlinear generation of localized fields due to the existence of a strong pump field inside the non-uniform plasma has been considered. We have taken into account the effects of relativistic and non-local nonlinearities on the structure of plasma resonance region. The nonlinear Schrodinger equation described the localized fields are investigated. Besides, the generalized dispersion relation is obtained to study the modulational instabilities in different cases. Keywords: Wave-plasma interaction, Nonlinear effects, Modulation instabilities

  13. Non-Local Diffusion of Energetic Electrons during Solar Flares

    Science.gov (United States)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  14. Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.

    Directory of Open Access Journals (Sweden)

    Noam Shemesh

    Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.

  15. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  16. Magnetic response of magnetic molecules with non-collinear local d-tensors

    Directory of Open Access Journals (Sweden)

    J. Schnack

    2009-01-01

    Full Text Available Investigations of molecular magnets are driven both by prospective applications in future storage technology or quantum computing as well as by fundamental questions. Nowadays numerical simulation techniques and computer capabilities make it possible to investigate spin Hamiltonians with realistic arrangements of local anisotropy tensors. In this contribution I will discuss the magnetic response of a small spin system with special emphasis on non-collinear alignments of the local anisotropy axes.

  17. Radioguided occult lesion localization versus wire-guided localization for non-palpable breast lesions: randomized controlled trial

    International Nuclear Information System (INIS)

    Ocal, Koray; Dag, Ahmet; Turkmenoglu, Ozgur; Yucel, Erdem; Gunay, Emel Ceylan; Duce, Meltem Nass

    2011-01-01

    Aim: this prospective randomized clinical study was conducted to compare radioguided occult lesion localization (ROLL) with wire-guided localization to evaluate optimum localization techniques for non-palpable breast lesions. Methods: a total of 108 patients who were undergoing an excisional biopsy for non-palpable breast lesions requiring pathologic diagnosis were randomly assigned to the ROLL group (n 56) and wire-guided localization group (n 52). In the study, patients' characteristics, radiological abnormalities, radiological technique of localization, localization time, operation time, weight of the excised specimen, clearance margins, pathological diagnosis and perioperative complications were assessed. Results: there were no differences between the two groups in terms of age, radiological abnormalities and localization technique (p = non-significant for all). ROLL techniques resulted in 100% retrieval of the lesions; for the wire-guided localization technique, 98%. Both localization time and operation time were significantly reduced with the ROLL technique (p = significant for all). The weight of the specimen was significantly lower in the ROLL group than in the wire-guided localization group (p = significant). The overall complication rate and pathological diagnosis were similar for both groups (p = non-significant for all). Clear margins were achieved in 91% of ROLL patients and in 53% of wire-guided localization patients, and the difference was significant. Conclusions: the present study indicated that the ROLL technique is as effective as wire-guided localization for the excision of non-palpable breast lesions. In addition, ROLL improved the outcomes by reducing localization and operation time, preventing healthy tissue excision and achieving clearer margins. (author)

  18. Radioguided occult lesion localization versus wire-guided localization for non-palpable breast lesions: randomized controlled trial

    Energy Technology Data Exchange (ETDEWEB)

    Ocal, Koray; Dag, Ahmet; Turkmenoglu, Ozgur; Yucel, Erdem [Mersin University (Turkey). Medical Faculty. Dept. of General Surgery; Gunay, Emel Ceylan [Mersin University (Turkey). Medical Faculty. Dept. of Nuclear Medicine; Duce, Meltem Nass [Mersin University (Turkey). Medical Faculty. Dept. of Radiology

    2011-07-01

    Aim: this prospective randomized clinical study was conducted to compare radioguided occult lesion localization (ROLL) with wire-guided localization to evaluate optimum localization techniques for non-palpable breast lesions. Methods: a total of 108 patients who were undergoing an excisional biopsy for non-palpable breast lesions requiring pathologic diagnosis were randomly assigned to the ROLL group (n 56) and wire-guided localization group (n 52). In the study, patients' characteristics, radiological abnormalities, radiological technique of localization, localization time, operation time, weight of the excised specimen, clearance margins, pathological diagnosis and perioperative complications were assessed. Results: there were no differences between the two groups in terms of age, radiological abnormalities and localization technique (p = non-significant for all). ROLL techniques resulted in 100% retrieval of the lesions; for the wire-guided localization technique, 98%. Both localization time and operation time were significantly reduced with the ROLL technique (p = significant for all). The weight of the specimen was significantly lower in the ROLL group than in the wire-guided localization group (p = significant). The overall complication rate and pathological diagnosis were similar for both groups (p = non-significant for all). Clear margins were achieved in 91% of ROLL patients and in 53% of wire-guided localization patients, and the difference was significant. Conclusions: the present study indicated that the ROLL technique is as effective as wire-guided localization for the excision of non-palpable breast lesions. In addition, ROLL improved the outcomes by reducing localization and operation time, preventing healthy tissue excision and achieving clearer margins. (author)

  19. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  20. Reactivity effect of non-uniformly distributed fuel in fuel solution systems

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Yamane, Yoshihiro; Nishina, Kojiro; Mitsuhashi, Ishi.

    1991-01-01

    A numerical method to determine the optimal fuel distribution for minimum critical mass, or maximum k-effective, is developed using the Maximum Principle in order to evaluate the maximum effect of non-uniformly distributed fuel on reactivity. This algorithm maximizes the Hamiltonian directly by an iterative method under a certain constraint-the maintenance of criticality or total fuel mass. It ultimately reaches the same optimal state of a flattened fuel importance distribution as another algorithm by Dam based on perturbation theory. This method was applied to two kinds of spherical cores with water reflector in the simulating reprocessing facility. In the slightly-enriched uranyl nitrate solution core, the minimum critical mass decreased by less than 1% at the optimal moderation state. In the plutonium nitrate solution core, the k-effective increment amounted up to 4.3% Δk within the range of present study. (author)

  1. Measurement based scenario analysis of short-range distribution system planning

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    This paper focuses on short-range distribution system planning using a probabilistic approach. Empirical probabilistic distributions of load demand and distributed generations are derived from the historical measurement data and incorporated into the system planning. Simulations with various...... feasible scenarios are performed based on a local distribution system at Støvring in Denmark. Simulation results provide more accurate and insightful information for the decision-maker when using the probabilistic analysis than using the worst-case analysis, so that a better planning can be achieved....

  2. Non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi

    1998-01-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  3. Optimal Placement and Sizing of Renewable Distributed Generations and Capacitor Banks into Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Mahesh Kumar

    2017-06-01

    Full Text Available In recent years, renewable types of distributed generation in the distribution system have been much appreciated due to their enormous technical and environmental advantages. This paper proposes a methodology for optimal placement and sizing of renewable distributed generation(s (i.e., wind, solar and biomass and capacitor banks into a radial distribution system. The intermittency of wind speed and solar irradiance are handled with multi-state modeling using suitable probability distribution functions. The three objective functions, i.e., power loss reduction, voltage stability improvement, and voltage deviation minimization are optimized using advanced Pareto-front non-dominated sorting multi-objective particle swarm optimization method. First a set of non-dominated Pareto-front data are called from the algorithm. Later, a fuzzy decision technique is applied to extract the trade-off solution set. The effectiveness of the proposed methodology is tested on the standard IEEE 33 test system. The overall results reveal that combination of renewable distributed generations and capacitor banks are dominant in power loss reduction, voltage stability and voltage profile improvement.

  4. Automated leak localization performance without detailed demand distribution data

    NARCIS (Netherlands)

    Moors, Janneke; Scholten, L.; van der Hoek, J.P.; den Besten, J.

    2018-01-01

    Automatic leak localization has been suggested to reduce the time and personnel efforts needed to localize
    (small) leaks. Yet, the available methods require a detailed demand distribution model for successful
    calibration and good leak localization performance. The main aim of this work was

  5. Spatial Distribution Of Local Markets In Ife North Local Government Area

    Directory of Open Access Journals (Sweden)

    OMOTOYE-OMISORE Oyelola

    2015-08-01

    Full Text Available Researches have been carried out in the past by several authors concerning agricultural marketing without the use of geospatial techniques. This research therefore is meant to show the efficacy of Geographical Information System GIS in local market distribution. The role of market place as a man-made feature where goods and services are exchanged for the purpose of satisfying human needs cannot be overemphasized especially in the general development of villages and towns. This study shows the effectiveness of GIS without the use of metrics method to determine the agricultural market locations and closeness of the markets in Ife North Local Government area. Different kinds of people bring their goods from far and near villages for sale and sustainability in this research both primary and secondary data were collected. Primary data includes the use of Global Positioning System GPS receiver to collect coordinate points of the existing markets. It also involves verbal interview with market women. While secondary data were sourced from administrative maps and satellite images of the area of study it was geo-referenced and digitized. Arc Map was used to run average nearest neighbor analysis. Base on the analysis performed the major constraint facing the market people is poor road network which affect majority of the farmers in transporting their goods from remote villages as indicated in this study. As a result new markets sites were proposed with the use of geospatial techniques for easy accessibility.

  6. Experimental analysis of considering the sound pressure distribution pattern at the ear canal entrance as an unrevealed head-related localization clue

    Institute of Scientific and Technical Information of China (English)

    TONG Xin; QI Na; MENG Zihou

    2018-01-01

    By analyzing the differences between binaural recording and real listening,it was deduced that there were some unrevealed auditory localization clues,and the sound pressure distribution pattern at the entrance of ear canal was probably a clue.It was proved through the listening test that the unrevealed auditory localization clues really exist with the reduction to absurdity.And the effective frequency bands of the unrevealed localization clues were induced and summed.The result of finite element based simulations showed that the pressure distribution at the entrance of ear canal was non-uniform,and the pattern was related to the direction of sound source.And it was proved that the sound pressure distribution pattern at the entrance of the ear canal carried the sound source direction information and could be used as an unrevealed localization cluc.The frequency bands in which the sound pressure distribution patterns had significant differences between front and back sound source directions were roughly matched with the effective frequency bands of unrevealed localization clues obtained from the listening tests.To some extent,it supports the hypothesis that the sound pressure distribution pattern could be a kind of unrevealed auditory localization clues.

  7. Reinvestigation of the charge density distribution in arc discharge fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd [Centre of Photonics and Advance Material, Universiti Tunku Abdul Rahman Kuala Lumpur (Malaysia)

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  8. Reinvestigation of the charge density distribution in arc discharge fusion system

    International Nuclear Information System (INIS)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-01-01

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices

  9. Combined operation of AC and DC distribution system with distributed generation units

    International Nuclear Information System (INIS)

    Noroozian, R.; Abedi, M.; Gharehpetian, G.

    2010-01-01

    This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system. (authors)

  10. Expected Range of Cooperation Between Transmission System Operators and Distribution System Operators After Implementation of ENTSO-E Grid Codes

    Directory of Open Access Journals (Sweden)

    Tomasz Pakulski

    2015-06-01

    Full Text Available The authors present the prospects of cooperation between transmission system operators (TSO and distribution system operators (DSO after entry into force ENTSO-E (European Network of Transmission System Operators for Electricity grid codes. New areas of DSO activities, associated with offering TSO aggregated services for national power system regulation based on the regulation resources connected to the distribution grid, and services on the distribution system level as part of the creation of local balancing areas (LBA are presented. The paper also presents the possibilities of providing ancillary services by different types of distributed generation sources in the distribution network. The LBA concept, which involves integrated management of local regulation resources including generation, demand, and energy storage is described. The options of the renewable energy sources (RES using for voltage and reactive power control in the distribution network with the use of wind farms (WF connected to the distribution system are characterized.

  11. Event-triggered output feedback control for distributed networked systems.

    Science.gov (United States)

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2016-01-01

    This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of Non Local Image Denoising Methods

    Science.gov (United States)

    Pardo, Álvaro

    Image denoising is probably one of the most studied problems in the image processing community. Recently a new paradigm on non local denoising was introduced. The Non Local Means method proposed by Buades, Morel and Coll attracted the attention of other researches who proposed improvements and modifications to their proposal. In this work we analyze those methods trying to understand their properties while connecting them to segmentation based on spectral graph properties. We also propose some improvements to automatically estimate the parameters used on these methods.

  13. Scale-dependent bias from the reconstruction of non-Gaussian distributions

    International Nuclear Information System (INIS)

    Chongchitnan, Sirichai; Silk, Joseph

    2011-01-01

    Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently accurate. The bias is obtained directly in real space by comparing the one- and two-point probability distributions of density fluctuations. We show that these distributions can be reconstructed using a bivariate Edgeworth series, presented here up to an arbitrarily high order. The Edgeworth formalism is shown to be well-suited for ''local'' cubic-order non-Gaussianity parametrized by g NL . We show that a strong scale dependence in the bias can be produced by g NL of order 10 5 , consistent with cosmic microwave background constraints. On a separation length of ∼100 Mpc, current constraints on g NL still allow the bias for the most massive clusters to be enhanced by 20-30% of the Gaussian value. We further examine the bias as a function of mass scale, and also explore the relationship between the clustering and the abundance of massive clusters in the presence of g NL . We explain why the Edgeworth formalism, though technically challenging, is a very powerful technique for constraining high-order non-Gaussianity with large-scale structures.

  14. The sheaf-theoretic structure of non-locality and contextuality

    International Nuclear Information System (INIS)

    Abramsky, Samson; Brandenburger, Adam

    2011-01-01

    We use the mathematical language of sheaf theory to give a unified treatment of non-locality and contextuality, in a setting that generalizes the familiar probability tables used in non-locality theory to arbitrary measurement covers; this includes Kochen-Specker configurations and more. We show that contextuality, and non-locality as a special case, correspond exactly to obstructions to the existence of global sections. We describe a linear algebraic approach to computing these obstructions, which allows a systematic treatment of arguments for non-locality and contextuality. We distinguish a proper hierarchy of strengths of no-go theorems, and show that three leading examples—due to Bell, Hardy and Greenberger, Horne and Zeilinger, respectively—occupy successively higher levels of this hierarchy. A general correspondence is shown between the existence of local hidden-variable realizations using negative probabilities, and no-signalling; this is based on a result showing that the linear subspaces generated by the non-contextual and no-signalling models, over an arbitrary measurement cover, coincide. Maximal non-locality is generalized to maximal contextuality, and characterized in purely qualitative terms, as the non-existence of global sections in the support. A general setting is developed for the Kochen-Specker-type results, as generic, model-independent proofs of maximal contextuality, and a new combinatorial condition is given, which generalizes the ‘parity proofs’ commonly found in the literature. We also show how our abstract setting can be represented in quantum mechanics. This leads to a strengthening of the usual no-signalling theorem, which shows that quantum mechanics obeys no-signalling for arbitrary families of commuting observables, not just those represented on different factors of a tensor product. (paper)

  15. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  16. Non-localization and localization ROC analyses using clinically based scoring

    Science.gov (United States)

    Paquerault, Sophie; Samuelson, Frank W.; Myers, Kyle J.; Smith, Robert C.

    2009-02-01

    We are investigating the potential for differences in study conclusions when assessing the estimated impact of a computer-aided detection (CAD) system on readers' performance. The data utilized in this investigation were derived from a multi-reader multi-case observer study involving one hundred mammographic background images to which fixed-size and fixed-intensity Gaussian signals were added, generating a low- and high-intensity signal sets. The study setting allowed CAD assessment in two situations: when CAD sensitivity was 1) superior or 2) lower than the average reader. Seven readers were asked to review each set in the unaided and CAD-aided reading modes, mark and rate their findings. Using this data, we studied the effect on study conclusion of three clinically-based receiver operating characteristic (ROC) scoring definitions. These scoring definitions included both location-specific and non-location-specific rules. The results showed agreement in the estimated impact of CAD on the overall reader performance. In the study setting where CAD sensitivity is superior to the average reader, the mean difference in AUC between the CAD-aided read and unaided read was 0.049 (95%CIs: -0.027; 0.130) for the image scoring definition that is based on non-location-specific rules, and 0.104 (95%CIs: 0.036; 0.174) and 0.090 (95%CIs: 0.031; 0.155) for image scoring definitions that are based on location-specific rules. The increases in AUC were statistically significant for the location-specific scoring definitions. It was further observed that the variance on these estimates was reduced when using the location-specific scoring definitions compared to that using a non-location-specific scoring definition. In the study setting where CAD sensitivity is equivalent or lower than the average reader, the mean differences in AUC are slightly above 0.01 for all image scoring definitions. These increases in AUC were not statistical significant for any of the image scoring definitions

  17. Ring interconnection for distributed memory automation and computing system

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V I [Inst. for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation)

    1996-12-31

    Problems of development of measurement, acquisition and central systems based on a distributed memory and a ring interface are discussed. It has been found that the RAM LINK-type protocol can be used for ringlet links in non-symmetrical distributed memory architecture multiprocessor system interaction. 5 refs.

  18. A global organism detection and monitoring system for non-native species

    Science.gov (United States)

    Graham, J.; Newman, G.; Jarnevich, C.; Shory, R.; Stohlgren, T.J.

    2007-01-01

    Harmful invasive non-native species are a significant threat to native species and ecosystems, and the costs associated with non-native species in the United States is estimated at over $120 Billion/year. While some local or regional databases exist for some taxonomic groups, there are no effective geographic databases designed to detect and monitor all species of non-native plants, animals, and pathogens. We developed a web-based solution called the Global Organism Detection and Monitoring (GODM) system to provide real-time data from a broad spectrum of users on the distribution and abundance of non-native species, including attributes of their habitats for predictive spatial modeling of current and potential distributions. The four major subsystems of GODM provide dynamic links between the organism data, web pages, spatial data, and modeling capabilities. The core survey database tables for recording invasive species survey data are organized into three categories: "Where, Who & When, and What." Organisms are identified with Taxonomic Serial Numbers from the Integrated Taxonomic Information System. To allow users to immediately see a map of their data combined with other user's data, a custom geographic information system (GIS) Internet solution was required. The GIS solution provides an unprecedented level of flexibility in database access, allowing users to display maps of invasive species distributions or abundances based on various criteria including taxonomic classification (i.e., phylum or division, order, class, family, genus, species, subspecies, and variety), a specific project, a range of dates, and a range of attributes (percent cover, age, height, sex, weight). This is a significant paradigm shift from "map servers" to true Internet-based GIS solutions. The remainder of the system was created with a mix of commercial products, open source software, and custom software. Custom GIS libraries were created where required for processing large datasets

  19. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  20. A Comparison of Distribution Free and Non-Distribution Free Factor Analysis Methods

    Science.gov (United States)

    Ritter, Nicola L.

    2012-01-01

    Many researchers recognize that factor analysis can be conducted on both correlation matrices and variance-covariance matrices. Although most researchers extract factors from non-distribution free or parametric methods, researchers can also extract factors from distribution free or non-parametric methods. The nature of the data dictates the method…

  1. The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture

    KAUST Repository

    Azdoud, Yan

    2014-04-19

    We introduce a framework that adapts local and non-local continuum models to simulate static fracture problems. Non-local models based on the peridynamic theory are promising for the simulation of fracture, as they allow discontinuities in the displacement field. However, they remain computationally expensive. As an alternative, we develop an adaptive coupling technique based on the morphing method to restrict the non-local model adaptively during the evolution of the fracture. The rest of the structure is described by local continuum mechanics. We conduct all simulations in three dimensions, using the relevant discretization scheme in each domain, i.e., the discontinuous Galerkin finite element method in the peridynamic domain and the continuous finite element method in the local continuum mechanics domain. © 2014 Springer-Verlag Berlin Heidelberg.

  2. Tier 3 batch system data locality via managed caches

    Science.gov (United States)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  3. Localization of weakly interacting Bose gas in quasiperiodic potential

    International Nuclear Information System (INIS)

    Ray, Sayak; Pandey, Mohit; Ghosh, Anandamohan; Sinha, Subhasis

    2016-01-01

    We study the localization properties of weakly interacting Bose gas in a quasiperiodic potential. The Hamiltonian of the non-interacting system reduces to the well known ‘Aubry–André model’, which shows the localization transition at a critical strength of the potential. In the presence of repulsive interaction we observe multi-site localization and obtain a phase diagram of the dilute Bose gas by computing the superfluid fraction and the inverse participation ratio. We construct a low-dimensional classical Hamiltonian map and show that the onset of localization is manifested by the chaotic phase space dynamics. The level spacing statistics also identify the transition to localized states resembling a Poisson distribution that are ubiquitous for both non-interacting and interacting systems. We also study the quantum fluctuations within the Bogoliubov approximation and compute the quasiparticle energy spectrum. Enhanced quantum fluctuation and multi-site localization phenomenon of non-condensate density are observed above the critical coupling of the potential. We briefly discuss the effect of the trapping potential on the localization of matter wave. (paper)

  4. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  5. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  6. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  7. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    International Nuclear Information System (INIS)

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  8. Integrating information systems : linking global business goals to local database applications

    NARCIS (Netherlands)

    Dignum, F.P.M.; Houben, G.J.P.M.

    1999-01-01

    This paper describes a new approach to design modern information systems that offer an integrated access to the data and knowledge that is available in local applications. By integrating the local data management activities into one transparent information distribution process, modern organizations

  9. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  10. Stability issues of black hole in non-local gravity

    Science.gov (United States)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  11. Decision Criteria for Distributed Versus Non-Distributed Information Systems in the Health Care Environment

    Science.gov (United States)

    McGinnis, John W.

    1980-01-01

    The very same technological advances that support distributed systems have also dramatically increased the efficiency and capabilities of centralized systems making it more complex for health care managers to select the “right” system architecture to meet their particular needs. How this selection can be made with a reasonable degree of managerial comfort is the focus of this paper. The approach advocated is based on experience in developing the Tri-Service Medical Information System (TRIMIS) program. Along with this technical standards and configuration management procedures were developed that provided the necessary guidance to implement the selected architecture and to allow it to change in a controlled way over its life cycle.

  12. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  13. Real-time Distributed Economic Dispatch forDistributed Generation Based on Multi-Agent System

    DEFF Research Database (Denmark)

    Luo, Kui; Wu, Qiuwei; Nielsen, Arne Hejde

    2015-01-01

    The distributed economic dispatch for distributed generation is formulated as a optimization problem with equality and inequality constraints. An effective distributed approach based on multi-agent system is proposed for solving the economic dispatch problem in this paper. The proposed approach...... consists of two stages. In the first stage, an adjacency average allocation algorithm is proposed to ensure the generation-demand equality. In the second stage, a local replicator dynamics algorithm is applied to achieve nash equilibrium for the power dispatch game. The approach is implemented in a fully...

  14. Point processes and the position distribution of infinite boson systems

    International Nuclear Information System (INIS)

    Fichtner, K.H.; Freudenberg, W.

    1987-01-01

    It is shown that to each locally normal state of a boson system one can associate a point process that can be interpreted as the position distribution of the state. The point process contains all information one can get by position measurements and is determined by the latter. On the other hand, to each so-called Σ/sup c/-point process Q they relate a locally normal state with position distribution Q

  15. Distributed Input and State Estimation Using Local Information in Heterogeneous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dzung Tran

    2017-07-01

    Full Text Available A new distributed input and state estimation architecture is introduced and analyzed for heterogeneous sensor networks. Specifically, nodes of a given sensor network are allowed to have heterogeneous information roles in the sense that a subset of nodes can be active (that is, subject to observations of a process of interest and the rest can be passive (that is, subject to no observation. Both fixed and varying active and passive roles of sensor nodes in the network are investigated. In addition, these nodes are allowed to have non-identical sensor modalities under the common underlying assumption that they have complimentary properties distributed over the sensor network to achieve collective observability. The key feature of our framework is that it utilizes local information not only during the execution of the proposed distributed input and state estimation architecture but also in its design in that global uniform ultimate boundedness of error dynamics is guaranteed once each node satisfies given local stability conditions independent from the graph topology and neighboring information of these nodes. As a special case (e.g., when all nodes are active and a positive real condition is satisfied, the asymptotic stability can be achieved with our algorithm. Several illustrative numerical examples are further provided to demonstrate the efficacy of the proposed architecture.

  16. CRISP. Fault detection, analysis and diagnostics in high-DG distribution systems

    International Nuclear Information System (INIS)

    Fontela, M.; Bacha, S.; Hadsjaid, N.; Andrieu, C.; Raison, B.; Penkov, D.

    2004-04-01

    The fault in the electrotechnical meaning is defined in the document. The main part of faults in overhead lines are non permanent faults, what entails the network operator to maintain the existing techniques to clear as fast as possible these faults. When a permanent fault occurs the operator has to detect and to limit the risks as soon as possible. Different axes are followed: limitation of the fault current, clearing the faulted feeder, locating the fault by test and try under possible fault condition. So the fault detection, fault clearing and fault localization are important functions of an EPS (electric power systems) to allow secure and safe operation of the system. The function may be improved by means of a better use of ICT components in the future sharing conveniently the intelligence needed near the distributed devices and a defined centralized intelligence. This improvement becomes necessary in distribution EPS with a high introduction of DR (distributed resources). The transmission and sub-transmission protection systems are already installed in order to manage power flow in all directions, so the DR issue is less critical for this part of the power system in term of fault clearing and diagnosis. Nevertheless the massive introduction of RES involves another constraints to the transmission system which are the bottlenecks caused by important local and fast installed production as wind power plants. Dealing with the distribution power system, and facing a permanent fault, two main actions must be achieved: identify the faulted elementary EPS area quickly and allow the field crew to locate and to repair the fault as soon as possible. The introduction of DR in distribution EPS involves some changes in fault location methods or equipment. The different existing neutral grounding systems make it difficult the achievement of a general method relevant for any distribution EPS in Europe. Some solutions are studied in the CRISP project in order to improve the

  17. Error Control in Distributed Node Self-Localization

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2008-03-01

    Full Text Available Location information of nodes in an ad hoc sensor network is essential to many tasks such as routing, cooperative sensing, and service delivery. Distributed node self-localization is lightweight and requires little communication overhead, but often suffers from the adverse effects of error propagation. Unlike other localization papers which focus on designing elaborate localization algorithms, this paper takes a different perspective, focusing on the error propagation problem, addressing questions such as where localization error comes from and how it propagates from node to node. To prevent error from propagating and accumulating, we develop an error-control mechanism based on characterization of node uncertainties and discrimination between neighboring nodes. The error-control mechanism uses only local knowledge and is fully decentralized. Simulation results have shown that the active selection strategy significantly mitigates the effect of error propagation for both range and directional sensors. It greatly improves localization accuracy and robustness.

  18. Visualizing request-flow comparison to aid performance diagnosis in distributed systems.

    Science.gov (United States)

    Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R

    2013-12-01

    Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.

  19. Diffusion Strategy-Based Distributed Operation of Microgrids Using Multiagent System

    Directory of Open Access Journals (Sweden)

    Van-Hai Bui

    2017-07-01

    Full Text Available In distributed operation, each unit is operated by its local controller instead of using a centralized controller, which allows the action to be based on local information rather than global information. Most of the distributed solutions have implemented the consensus method, however, convergence time of the consensus method is quite long, while diffusion strategy includes a stochastic gradient term and can reach convergence much faster compared with consensus method. Therefore, in this paper, a diffusion strategy-based distributed operation of microgrids (MGs is proposed using multiagent system for both normal and emergency operation modes. In normal operation, the MG system is operated by a central controller instead of the distributed controller to minimize the operation cost. If any event (fault occurs in the system, MG system can be divided into two parts to isolate the faulty region. In this case, the MG system is changed to emergency operation mode. The normal part is rescheduled by the central controller while the isolated part schedules its resources in a distributed manner. The isolated part carries out distributed communication using diffusion between neighboring agents for optimal operation of this part. The proposed method enables peer-to-peer communication among the agents without the necessity of a centralized controller, and simultaneously performs resource optimization. Simulation results show that the system can be operated in an economic way in both normal operation and emergency operation modes.

  20. Statistical distribution of the local purity in a large quantum system

    International Nuclear Information System (INIS)

    De Pasquale, A; Pascazio, S; Facchi, P; Giovannetti, V; Parisi, G; Scardicchio, A

    2012-01-01

    The local purity of large many-body quantum systems can be studied by following a statistical mechanical approach based on a random matrix model. Restricting the analysis to the case of global pure states, this method proved to be successful, and a full characterization of the statistical properties of the local purity was obtained by computing the partition function of the problem. Here we generalize these techniques to the case of global mixed states. In this context, by uniformly sampling the phase space of states with assigned global mixedness, we determine the exact expression of the first two moments of the local purity and a general expression for the moments of higher order. This generalizes previous results obtained for globally pure configurations. Furthermore, through the introduction of a partition function for a suitable canonical ensemble, we compute the approximate expression of the first moment of the marginal purity in the high-temperature regime. In the process, we establish a formal connection with the theory of quantum twirling maps that provides an alternative, possibly fruitful, way of performing the calculation. (paper)

  1. Distributed data base systems with special emphasis toward POREL

    Science.gov (United States)

    Neuhold, E. J.

    1984-01-01

    In the last few years a number of research and advanced development projects have resulted in distributed data base management prototypes. POREL, developed at the University of Stuttgart, is a multiuser, distributed, relational system developed for wide and local area networks of minicomputers and advanced micros. The general objectives of such data base systems and the architecture of POREL are discussed. In addition a comparison of some of the the existing distributed DMBS is included to provide the reader with information about the current state of the art.

  2. A distributed clinical decision support system architecture

    Directory of Open Access Journals (Sweden)

    Shaker H. El-Sappagh

    2014-01-01

    Full Text Available This paper proposes an open and distributed clinical decision support system architecture. This technical architecture takes advantage of Electronic Health Record (EHR, data mining techniques, clinical databases, domain expert knowledge bases, available technologies and standards to provide decision-making support for healthcare professionals. The architecture will work extremely well in distributed EHR environments in which each hospital has its own local EHR, and it satisfies the compatibility, interoperability and scalability objectives of an EHR. The system will also have a set of distributed knowledge bases. Each knowledge base will be specialized in a specific domain (i.e., heart disease, and the model achieves cooperation, integration and interoperability between these knowledge bases. Moreover, the model ensures that all knowledge bases are up-to-date by connecting data mining engines to each local knowledge base. These data mining engines continuously mine EHR databases to extract the most recent knowledge, to standardize it and to add it to the knowledge bases. This framework is expected to improve the quality of healthcare, reducing medical errors and guaranteeing the safety of patients by helping clinicians to make correct, accurate, knowledgeable and timely decisions.

  3. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  4. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information

    Science.gov (United States)

    Jarnevich, Catherine S.; Young, Nicholas E.; Talbert, Marian; Talbert, Colin

    2018-01-01

    Understanding invasive species distributions and potential invasions often requires broad‐scale information on the environmental tolerances of the species. Further, resource managers are often faced with knowing these broad‐scale relationships as well as nuanced environmental factors related to their landscape that influence where an invasive species occurs and potentially could occur. Using invasive buffelgrass (Cenchrus ciliaris), we developed global models and local models for Saguaro National Park, Arizona, USA, based on location records and literature on physiological tolerances to environmental factors to investigate whether environmental relationships of a species at a global scale are also important at local scales. In addition to correlative models with five commonly used algorithms, we also developed a model using a priori user‐defined relationships between occurrence and environmental characteristics based on a literature review. All correlative models at both scales performed well based on statistical evaluations. The user‐defined curves closely matched those produced by the correlative models, indicating that the correlative models may be capturing mechanisms driving the distribution of buffelgrass. Given climate projections for the region, both global and local models indicate that conditions at Saguaro National Park may become more suitable for buffelgrass. Combining global and local data with correlative models and physiological information provided a holistic approach to forecasting invasive species distributions.

  5. Non-local boxes and their implementation in Minecraft

    Science.gov (United States)

    Simnacher, Timo Yannick

    PR-boxes are binary devices connecting two remote parties satisfying x AND y = a + b mod 2, where x and y denote the binary inputs and a and b are the respective outcomes without signaling. These devices are named after their inventors Sandu Popescu and Daniel Rohrlich and saturate the Clauser-Horne-Shimony-Holt (CHSH) inequality. This Bell-like inequality bounds the correlation that can exist between two remote, non-signaling, classical systems described by local hidden variable theories. Experiments have now convincingly shown that quantum entanglement cannot be explained by local hidden variable theories. Furthermore, the CHSH inequality provides a method to distinguish quantum systems from super-quantum correlations. The correlation between the outputs of the PR-box goes beyond any quantum entanglement. Though PR-boxes would have impressive consequences, as far as we know they are not physically realizable. However, by introducing PR-boxes to Minecraft as part of the redstone system, which simulates the electrical components for binary computing, we can experience the consequences of super-quantum correlations. For instance, Wim van Dam proved that two parties can use a sufficient number of PR-boxes to compute any Boolean function f(x,y) with only one bit of communication.

  6. Detection of Leaks in Water Distribution System using Non-Destructive Techniques

    Science.gov (United States)

    Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.

    2018-05-01

    Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.

  7. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  8. Wearable Sensor Localization Considering Mixed Distributed Sources in Health Monitoring Systems.

    Science.gov (United States)

    Wan, Liangtian; Han, Guangjie; Wang, Hao; Shu, Lei; Feng, Nanxing; Peng, Bao

    2016-03-12

    In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

  9. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  10. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  11. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The

  12. Gauge unification, non-local breaking, open strings

    International Nuclear Information System (INIS)

    Trapletti, M.

    2005-01-01

    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1

  13. Probing Anderson localization of light by weak non-linear effects

    International Nuclear Information System (INIS)

    Sperling, T; Bührer, W; Maret, G; Ackermann, M; Aegerter, C M

    2014-01-01

    Breakdown of wave transport due to strong disorder is a universal phenomenon known as Anderson localization (AL). It occurs because of the macroscopic population of reciprocal multiple scattering paths, which in three dimensional systems happens at a critical scattering strength. Intensities on these random loops should thus be highly increased relative to those of a diffusive sample. In order to highlight localized modes of light, we exploit the optical nonlinearities of TiO 2 . Power dependent and spectrally resolved time of flight distribution measurements in transmission through slabs of TiO 2 powders at various turbidities reveal that mostly long loops are affected by nonlinearities and that the deviations from diffusive transport observed at long times are due to these localized modes. Our data are a first step in the experimental investigation of the interplay between nonlinear effects and AL in 3D. (fast track communication)

  14. A Distribution-class Locational Marginal Price (DLMP) Index for Enhanced Distribution Systems

    Science.gov (United States)

    Akinbode, Oluwaseyi Wemimo

    The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load

  15. Bosonization, dual transformation and non-local hidden symmetry in two dimensions

    International Nuclear Information System (INIS)

    Hata, Hiroyuki

    1985-01-01

    The non-local hidden symmetry is investigated in the bosonized non-abelian Thirring model and the dual representation of the chiral model. In these representations the first non-local symmetry is spontaneously broken in naive pertubation theory. (orig.)

  16. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks

    DEFF Research Database (Denmark)

    Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj

    2015-01-01

    We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potent...

  17. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...

  18. A generalized non-local optical response theory for plasmonic nanostructures

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Raza, Søren; Wubs, Martijn

    2014-01-01

    for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory...

  19. A non-negative Wigner-type distribution

    International Nuclear Information System (INIS)

    Cartwright, N.D.

    1976-01-01

    The Wigner function, which is commonly used as a joint distribution for non-commuting observables, is shown to be non-negative in all quantum states when smoothed with a gaussian whose variances are greater than or equal to those of the minimum uncertainty wave packet. (Auth.)

  20. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    Science.gov (United States)

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  1. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Science.gov (United States)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  2. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  3. Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model

    International Nuclear Information System (INIS)

    Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao

    2014-01-01

    In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained

  4. MODELS AND SOLUTIONS FOR THE IMPLEMENTATION OF DISTRIBUTED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tarca Naiana

    2011-07-01

    Full Text Available Software applications may have different degrees of complexity depending on the problems they try to solve and can integrate very complex elements that bring together functionality that sometimes are competing or conflicting. We can take for example a mobile communications system. Functionalities of such a system are difficult to understand, and they add to the non-functional requirements such as the use in practice, performance, cost, durability and security. The transition from local computer networks to cover large networks that allow millions of machines around the world at speeds exceeding one gigabit per second allowed universal access to data and design of applications that require simultaneous use of computing power of several interconnected systems. The result of these technologies has enabled the evolution from centralized to distributed systems that connect a large number of computers. To enable the exploitation of the advantages of distributed systems one had developed software and communications tools that have enabled the implementation of distributed processing of complex solutions. The objective of this document is to present all the hardware, software and communication tools, closely related to the possibility of their application in integrated social and economic level as a result of globalization and the evolution of e-society. These objectives and national priorities are based on current needs and realities of Romanian society, while being consistent with the requirements of Romania's European orientation towards the knowledge society, strengthening the information society, the target goal representing the accomplishment of e-Romania, with its strategic e-government component. Achieving this objective repositions Romania and gives an advantage for sustainable growth, positive international image, rapid convergence in Europe, inclusion and strengthening areas of high competence, in line with Europe 2020, launched by the

  5. Integrating CLIPS applications into heterogeneous distributed systems

    Science.gov (United States)

    Adler, Richard M.

    1991-01-01

    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.

  6. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2018-01-01

    localization method is cast that operates on the premise of shaping inputs—whose spatial distribution is fixed—by use of a model, such that these inputs, in one structural subdomain at a time, suppress certain steady-state vibration quantities (depending on the type of damage one seeks to interrogate for......). Accordingly, damage is localized when the vibration signature induced by the shaped inputs in the damaged state corresponds to that in the reference state, hereby implying that the approach does not point directly to damage. Instead, it operates with interrogation based on postulated damage patterns...

  7. Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.

    Science.gov (United States)

    Cattiaux, Patrick; Méléard, Sylvie

    2010-06-01

    We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.

  8. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. [National Institutes of Health (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  9. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    International Nuclear Information System (INIS)

    Ahmed, M.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  10. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  11. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

    Science.gov (United States)

    Willebrand, Heinz A.; Clark, Gerald R.; Willson, Bryan; Andreu von Euw, Christian G.; Roy, Joe; Mayhew, Laurel M.

    2001-11-01

    This paper compares two emerging broadband access methodologies, Free Space Optics (FSO) and Local Multipoint Distribution System (LMDS) and the atmospheric propagation characteristics of each when exposed to a dynamically changing channel. The comparison focuses on bandwidth, availability, and distance requirements for the new broadband market and how LMDS and FSO can be used to meet these requirements. Possible network topologies and their associated costs are examined. This comparison takes into account the total cost of deployment, including equipment costs, installation fees, access fees, and spectrum licensing fees. LMDS and FSO are compared on speed of deployment, scalability, aggregate bandwidth, and bandwidth per customer. Present and projected capabilities of each technology are considered for their suitability in different locations in the network, from the Wide Area Network (WAN), to the Metropolitan Area Network (MAN), all the way to Last Mile Access. There is a discussion on the relative performance of LMDS and FSO, focusing on the different factors that can affect link availability. Since network design is a large factor in assuring overall reliability, the flexibility of each technology with regard to network design is compared. LMDS and FSO are both line of sight, space-propagated technologies, and as such, they are both susceptible to path impediments and atmospheric attenuation, dispersion, scattering, and absorption. LMDS and FSO are affected very differently by different meteorological phenomena. Problematic atmospheric conditions are, specifically scintillation, rainfall, and fog, are examined. In addition to a discussion of these conditions, various techniques for minimizing atmospheric and environmental effects are investigated. The paper concludes with a summary of findings and recommendations for a number of broadband wireless applications.

  12. Distributed SLAM Using Improved Particle Filter for Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    Fujun Pei

    2014-01-01

    Full Text Available The distributed SLAM system has a similar estimation performance and requires only one-fifth of the computation time compared with centralized particle filter. However, particle impoverishment is inevitably because of the random particles prediction and resampling applied in generic particle filter, especially in SLAM problem that involves a large number of dimensions. In this paper, particle filter use in distributed SLAM was improved in two aspects. First, we improved the important function of the local filters in particle filter. The adaptive values were used to replace a set of constants in the computational process of importance function, which improved the robustness of the particle filter. Second, an information fusion method was proposed by mixing the innovation method and the number of effective particles method, which combined the advantages of these two methods. And this paper extends the previously known convergence results for particle filter to prove that improved particle filter converges to the optimal filter in mean square as the number of particles goes to infinity. The experiment results show that the proposed algorithm improved the virtue of the DPF-SLAM system in isolate faults and enabled the system to have a better tolerance and robustness.

  13. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  14. Controlling Price-Responsive Heat Pumps for Overload Elimination in Distribution Systems

    DEFF Research Database (Denmark)

    Csetvei, Zsuzsa; Østergaard, Jacob; Nyeng, Preben

    2011-01-01

    This paper investigates the possibility of applying electric heat pumps with the control-by-price-concept in order to avoid overload in a local distribution system. The proposed control algorithm is based upon a centrally dispatched real-time market price, reflecting the state of a larger power...... system, and is extended with a local price control for overload elimination on the corresponding feeder. The paper presents the mathematical models of a two-node system with price-responsive heat pumps, the chosen methodology of the central price calculation, and the proposed local feedback control...

  15. Equilibrium distributions of free charged particles and molecules in systems with non-plane boundaries

    International Nuclear Information System (INIS)

    Usenko, A.S.

    1995-01-01

    The equilibrium space-inhomogeneous distributions of free and pair bound charged particles are calculated in the dipole approximation for the plasma-molecular cylinder and sphere. It is shown that the space and orientational distributions of charged particles and molecules in these systems are similar to those in the cases of plasma-molecular system restricted by one or two parallel planes. The influence of the parameters of outer medium and a plasma-molecular system on the space and orientational distributions of charged particles and molecules is studied in detail

  16. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  17. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  18. Influence of large local and non-local bispectra on primordial black hole abundance

    International Nuclear Information System (INIS)

    Young, Sam; Regan, Donough; Byrnes, Christian T.

    2016-01-01

    Primordial black holes represent a unique probe to constrain the early universe on small scales—providing the only constraints on the primordial power spectrum on the majority of scales. However, these constraints are strongly dependent on even small amounts of non-Gaussianity, which is unconstrained on scales significantly smaller than those visible in the CMB. This paper goes beyond previous considerations to consider the effects of a bispectrum of the equilateral, orthogonal and local shapes with arbitrary magnitude upon the abundance of primordial black holes. Non-Gaussian density maps of the early universe are generated from a given bispectrum and used to place constraints on the small scale power spectrum. When small, we show that the skewness provides an accurate estimate for how the constraint depends on non-Gaussianity, independently of the shape of the bispectrum. We show that the orthogonal template of non-Gaussianity has an order of magnitude weaker effect on the constraints than the local and equilateral templates

  19. Comparison between local ablative therapy and chemotherapy for non-resectable colorectal liver metastases: a prospective study

    NARCIS (Netherlands)

    Ruers, Theo J. M.; Joosten, Joris J.; Wiering, Bastiaan; Langenhoff, Barbara S.; Dekker, Heleen M.; Wobbes, Theo; Oyen, Wim J. G.; Krabbe, Paul F. M.; Punt, Cornelis J. A.

    2007-01-01

    There is a growing interest for the use of local ablative techniques in patients with non-resectable colorectal liver metastases. Evidence on the efficacy over systemic chemotherapy is, however, extremely weak. In this prospective study we aim to assess the additional benefits of local tumour

  20. Comparison between local ablative therapy and chemotherapy for non-resectable colorectal liver metastases: a prospective study.

    NARCIS (Netherlands)

    Ruers, T.J.M.; Joosten, J.J.; Wiering, B.; Langenhoff, B.S.; Dekker, H.M.; Wobbes, Th.; Oyen, W.J.G.; Krabbe, P.F.M.; Punt, C.J.A.

    2007-01-01

    BACKGROUND: There is a growing interest for the use of local ablative techniques in patients with non-resectable colorectal liver metastases. Evidence on the efficacy over systemic chemotherapy is, however, extremely weak. In this prospective study we aim to assess the additional benefits of local

  1. Electricity market design requirements for DC distribution systems

    NARCIS (Netherlands)

    Piao, L.; de Weerdt, M.M.; de Vries, L.J.

    2017-01-01

    DC distribution systems (DCDS) connect local generators and loads directly. By avoiding unnecessary losses in AC-DC conversion, DCDS offers higher energy efficiency. Since different parties in a DCDS may have conflicting goals, matching between power supply and demand should be done with carefully

  2. Estimators for local non-Gaussianities

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.; Zaldarriaga, M.

    2006-05-01

    We study the Likelihood function of data given f NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f NL and show that for small values of f NL the 3- point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f NL , the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f NL only decrease as 1/ln N pix rather than N pix -1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non- Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as N pix -1/2 even for large f NL , asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f NL . In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f NL . (author)

  3. On non-local energy transfer via zonal flow in the Dimits shift

    International Nuclear Information System (INIS)

    St-Onge, Denis A.

    2017-01-01

    The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an E×B nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  4. On non-local energy transfer via zonal flow in the Dimits shift

    Science.gov (United States)

    St-Onge, Denis A.

    2017-10-01

    The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  5. Application of Infrared Thermography in Power Distribution System

    Directory of Open Access Journals (Sweden)

    Anwer Ali Sahito

    2014-07-01

    Full Text Available Electricity sector of Pakistan is facing daunting energy crisis. Generation deficit results in long duration of load shedding throughout the country. Old aged distribution system, lack of maintenance and equipment failure cause long unplanned outages and frequent supply interruptions. HESCO (Hyderabad Electric Supply Company is facing high technical losses, supply interruption and financial loss due to transformer damages. Infrared Thermography is non-contact, safe and fast measure for distribution system inspection. In this paper, thermographic inspection for different distribution system equipment is carried out to identify possible developed faults. It is observed that IR (Infrared thermography is effective measure for detecting developed faulty conditions at the initial stages to avoid unplanned outages

  6. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  7. The Territory, a Container of Local Specificities: Evidence by Analysis of the Local Productive System of Ksar-Hellal

    Directory of Open Access Journals (Sweden)

    MAKRAM GAALICHE

    2013-01-01

    Full Text Available This article aims to highlight the relevance of the territory in the experience of local development. Indeed, by an application on a Tunisian case, it was shown that the territory of Ksar-Hellal is implicated in the functioning of its local production system, specializing in textile and clothing. It turned out that the Hilalian territory is abundant in specific economic resources such as competition, complementarity, and non-economic such as cooperation, technological externalities and social values. Those resources that are specific to the Hilalian territory are essential to stimulate the local dynamics of the productive system in question.

  8. Quantum gravitational collapse: non-singularity and non-locality

    International Nuclear Information System (INIS)

    Greenwood, Eric; Stojkovic, Dejan

    2008-01-01

    We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.

  9. Distributed ESO based cooperative tracking control for high-order nonlinear multiagent systems with lumped disturbance and application in multi flight simulators systems.

    Science.gov (United States)

    Cong, Zhang

    2018-03-01

    Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Congestion Control Algorithm in Distribution Feeders: Integration in a Distribution Management System

    Directory of Open Access Journals (Sweden)

    Tine L. Vandoorn

    2015-06-01

    Full Text Available The increasing share of distributed energy resources poses a challenge to the distribution network operator (DNO to maintain the current availability of the system while limiting the investment costs. Related to this, there is a clear trend in DNOs trying to better monitor their grid by installing a distribution management system (DMS. This DMS enables the DNOs to remotely switch their network or better localize and solve faults. Moreover, the DMS can be used to centrally control the grid assets. Therefore, in this paper, a control strategy is discussed that can be implemented in the DMS for solving current congestion problems posed by the increasing share of renewables in the grid. This control strategy controls wind turbines in order to avoid congestion while mitigating the required investment costs in order to achieve a global cost-efficient solution. Next to the application and objective of the control, the parameter tuning of the control algorithm is discussed.

  11. Risk management communication system between a local government and residents using several network systems and terminal devices

    Science.gov (United States)

    Ohyama, Takashi; Enomoto, Hiroyuki; Takei, Yuichiro; Maeda, Yuji

    2009-05-01

    Most of Japan's local governments utilize municipal disaster-management radio communications systems to communicate information on disasters or terrorism to residents. The national government is progressing in efforts toward digitalization by local governments of these systems, but only a small number (approx. 10%) have introduced such equipment due to its requiring large amounts of investment. On the other hand, many local governments are moving forward in installation of optical fiber networks for the purpose of eliminating the "digital divide." We herein propose a communication system as an alternative or supplement to municipal disaster-management radio communications systems, which utilizes municipal optical fiber networks, the internet and similar networks and terminals. The system utilizes the multiple existing networks and is capable of instantly distributing to all residents, and controlling, risk management information. We describe the system overview and the field trials conducted with a local government using this system.

  12. Tests of non-local interferences in kaon physics at asymmetric φ-factories

    International Nuclear Information System (INIS)

    Eberhard, P.H.

    1993-01-01

    Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K S → K L regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric φ-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed

  13. Local and non-local Schroedinger cat states in cavity QED

    International Nuclear Information System (INIS)

    Haroche, S.

    2005-01-01

    Full text: I will review recent experiments performed on mesoscopic state superpositions of field states in cavity QED. Proposals to extend these studies to Schroedinger cat states delocalized in two cavities will be discussed. New versions of Bell's inequality tests will probe the non-local behavior of these cats and study their sensitivity to decoherence. (author)

  14. Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach

    DEFF Research Database (Denmark)

    Hounyo, Ulrich; Varneskov, Rasmus T.

    of "large" jumps. Our locally dependent wild bootstrap (LDWB) accommodate issues related to the stochastic scale and jumps as well as account for a special block-wise dependence structure induced by sampling errors. We show that the LDWB replicates first and second-order limit theory from the usual...... empirical process and the stochastic scale estimate, respectively, as well as an asymptotic bias. Moreover, we design the LDWB sufficiently general to establish asymptotic equivalence between it and and a nonparametric local block bootstrap, also introduced here, up to second-order distribution theory....... Finally, we introduce LDWB-aided Kolmogorov-Smirnov tests for local Gaussianity as well as local von-Mises statistics, with and without bootstrap inference, and establish their asymptotic validity using the second-order distribution theory. The finite sample performance of CLT and LDWB-aided local...

  15. Interconnection, Integration, and Interactive Impact Analysis of Microgrids and Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ning [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Ravindra [Argonne National Lab. (ANL), Argonne, IL (United States); Lu, Xiaonan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Distribution management systems (DMSs) are increasingly used by distribution system operators (DSOs) to manage the distribution grid and to monitor the status of both power imported from the transmission grid and power generated locally by a distributed energy resource (DER), to ensure that power flows and voltages along the feeders are maintained within designed limits and that appropriate measures are taken to guarantee service continuity and energy security. When microgrids are deployed and interconnected to the distribution grids, they will have an impact on the operation of the distribution grid. The challenge is to design this interconnection in such a way that it enhances the reliability and security of the distribution grid and the loads embedded in the microgrid, while providing economic benefits to all stakeholders, including the microgrid owner and operator and the distribution system operator.

  16. Smart Distribution Systems

    Directory of Open Access Journals (Sweden)

    Yazhou Jiang

    2016-04-01

    Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.

  17. Local features with large spiky non-Gaussianities during inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan; Khosravi, Shahram; Sasaki, Misao

    2012-01-01

    We provide a dynamical mechanism to generate localized features during inflation. The local feature is due to a sharp waterfall phase transition which is coupled to the inflaton field. The key effect is the contributions of waterfall quantum fluctuations which induce a sharp peak on the curvature perturbation which can be as large as the background curvature perturbation from inflaton field. Due to non-Gaussian nature of waterfall quantum fluctuations a large spike non-Gaussianity is produced which is narrowly peaked at modes which leave the Hubble radius at the time of phase transition. The large localized peaks in power spectrum and bispectrum can have interesting consequences on CMB anisotropies

  18. Distributed electric power systems of the future: Institutional and technological drivers for near-optimal performance

    International Nuclear Information System (INIS)

    Ilic, Marija; Prica, Marija; Black, Jason W.

    2007-01-01

    Viewing electric power distribution systems as complex engineering systems whose states and inputs are defined by both technical and non-technical components of the system could help us understand challenges and lead to possible innovative solutions. In this setup, regulatory incentives, pricing, demand, and technological innovation are all endogenous feed-forward and/or feedback signals to the existing physical network and shape its evolution in both the short and long terms. We suggest that it is, indeed, possible to design technical, economic, and regulatory feed-forward and feedback signals keeping in mind the desired performance of the system. A particularly unique challenge is to enhance and operate the existing systems by incorporating distributed technologies (distributed generation or DG, active demand response, controllable wires) whose added value comes from just-in-time and right-location adjustments to the changing conditions. One way of interpreting the value of technologies of this type is to understand that they provide flexible and efficient responses by the end-user (DG and demand), therefore reducing the need for capacity reserve at the system level. Technical implementations and regulatory rules are not in place today to support systematic penetration of these technologies into the existing distribution systems. In this paper we stress the critical role of future load serving entities (LSEs) as aggregators and catalysts of customer choice at the value as one possible way forward. The LSEs would, through systematic protocols between themselves and the wholesale markets, on one side, and the customers whom they serve, on the other side, effectively implement incentives to induce near-optimal distribution system performance over long time horizons by investing in near-optimal technologies. These incentives must capture and compare both cumulative effects of real time decisions and the effects of longer-term investment decisions on near

  19. Non-linear model predictive supervisory controller for building, air handling unit with recuperator and refrigeration system with heat waste recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2016-01-01

    . The retrieved heat excess can be stored in the water tank. For this purpose the charging and the discharging water loops has been designed. We present the non-linear model of the above described system and a non-linear model predictive supervisory controller that according to the received price signal......, occupancy information and ambient temperature minimizes the operation cost of the whole system and distributes set points to local controllers of supermarkets subsystems. We find that when reliable information about the high price period is available, it is profitable to use the refrigeration system...... to generate heat during the low price period, store it and use it to substitute the conventional heater during the high price period....

  20. Magnetic field and contact resistance dependence of non-local charge imbalance

    International Nuclear Information System (INIS)

    Kleine, A; Baumgartner, A; Trbovic, J; Schoenenberger, C; Golubev, D S; Zaikin, A D

    2010-01-01

    Crossed Andreev reflection (CAR) in metallic nanostructures, a possible basis for solid-state electron entangler devices, is usually investigated by detecting non-local voltages in multi-terminal superconductor/normal metal devices. This task is difficult because other subgap processes may mask the effects of CAR. One of these processes is the generation of charge imbalance (CI) and the diffusion of non-equilibrium quasi-particles in the superconductor. Here we demonstrate a characteristic dependence of non-local CI on a magnetic field applied parallel to the superconducting wire, which can be understood by a generalization of the standard description of CI to non-local experiments. These results can be used to distinguish CAR and CI and to extract CI relaxation times in superconducting nanostructures. In addition, we investigate the dependence of non-local CI on the resistance of the injector and detector contacts and demonstrate a quantitative agreement with a recent theory using only material and junction characteristics extracted from separate direct measurements.

  1. Management tools for distributed control system in KSTAR

    International Nuclear Information System (INIS)

    Sangil Lee; Jinseop Park; Jaesic Hong; Mikyung Park; Sangwon Yun

    2012-01-01

    The integrated control system of the Korea Superconducting Tokamak Advanced Research (KSTAR) has been developed with distributed control systems based on Experimental Physics and Industrial Control System (EPICS) middle-ware. It has the essential role of remote operation, supervising of tokamak device and conducting of plasma experiments without any interruption. Therefore, the availability of the control system directly impacts on the entire device performance. For the non-interrupted operation of the KSTAR control system, we have developed a tool named as Control System Monitoring (CSM) to monitor the resources of EPICS Input/Output Controller (IOC) servers (utilization of memory, cpu, disk, network, user-defined process and system-defined process), the soundness of storage systems (storage utilization, storage status), the status of network switches using Simple Network Management Protocol (SNMP), the network connection status of every local control sever using Internet Control Message Protocol (ICMP), and the operation environment of the main control room and the computer room (temperature, humidity, electricity) in real time. When abnormal conditions or faults are detected by the CSM, it alerts abnormal or fault alarms to operators. Especially, if critical fault related to the data storage occurs, the CSM sends the simple messages to operator's mobile phone. The operators then quickly restored the problems according to the emergency procedure. As a result of this process, KSTAR was able to perform continuous operation and experiment without interruption for 4 months

  2. Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper focuses on a multi-agent based distributed coordinated control for radial DC microgrid considering trans-mission time delays. Firstly, a two-level multi-agent system is constructed, where local control is formulated based on local states and executed by means of the first-level agent......, and dis-tributed coordinated control law is formulated based on wide-area information and executed by means of the secondary- level agent in order to improve the voltage control performances. Afterwards, the research mainly focuses on designing the local controller and the distributed coordinated...

  3. Deceit: A flexible distributed file system

    Science.gov (United States)

    Siegel, Alex; Birman, Kenneth; Marzullo, Keith

    1989-01-01

    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness.

  4. Extended non-local games and monogamy-of-entanglement games.

    Science.gov (United States)

    Johnston, Nathaniel; Mittal, Rajat; Russo, Vincent; Watrous, John

    2016-05-01

    We study a generalization of non-local games-which we call extended non-local games -in which the players, Alice and Bob, initially share a tripartite quantum state with the referee. In such games, the winning conditions for Alice and Bob may depend on the outcomes of measurements made by the referee, on its part of the shared quantum state, in addition to Alice and Bob's answers to randomly selected questions. Our study of this class of games was inspired by the monogamy-of-entanglement games introduced by Tomamichel, Fehr, Kaniewski and Wehner, which they also generalize. We prove that a natural extension of the Navascués-Pironio-Acín hierarchy of semidefinite programmes converges to the optimal commuting measurement value of extended non-local games, and we prove two extensions of results of Tomamichel et al.  concerning monogamy-of-entanglement games.

  5. Moessbauer spectroscopy of locally inhomogeneous systems

    International Nuclear Information System (INIS)

    Rusakov, V. S.; Kadyrzhanov, K. K.

    2004-01-01

    Substances with characteristic local inhomogeneities - with different from position to position neighborhood and properties of like atoms - gain recently increased scientific attention and wide practical application. We would call a system locally inhomogeneous if atoms in the system are in non-equivalent atomic locations and reveal different properties. Such systems are, first of all, variable composition phases, amorphous, multi-phase, admixture, defect and other systems. LIS are most convenient model objects for studies of structure, charge, and spin atomic states, interatomic interactions, relations between matter properties and its local characteristics as well as for studies of diffusion kinetics, phase formation, crystallization and atomic ordering; all that explains considerable scientific interest in such LIS. Such systems find their practical application due to wide spectrum of useful, and sometimes unique, properties that can be controlled varying character and degree of local inhomogeneity. Moessbauer spectroscopy is one of the most effective methods for investigation of LIS. Local character of obtained information combined with information on cooperative phenomena makes it possible to run investigations impossible for other methods. Moessbauer spectroscopy may provide with abundant information on peculiarities of macro- and microscopic state of matter including that for materials without regular structure. At the same time, analysis, processing and interpretation of Moessbauer spectra for LIS (that are sets of a large amount of partial spectra) face considerable difficulties. Development of computer technique is accompanied with development of mathematical methods used for obtaining physical information from experimental data. The methods make it possible to improve considerably, with some available a priori information, effectiveness of the research. Utilization of up-to-date mathematical methods in Moessbauer spectroscopy requires not only adaptation

  6. Intelligent Control and Operation of Distribution System

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad

    methodology to ensure efficient control and operation of the future distribution networks. The major scientific challenge is thus to develop control models and strategies to coordinate responses from widely distributed controllable loads and local generations. Detailed models of key Smart Grid (SG) elements...... in this direction but also benefit distribution system operators in the planning and development of the distribution network. The major contributions of this work are described in the following four stages: In the first stage, an intelligent Demand Response (DR) control architecture is developed for coordinating...... the key SG actors, namely consumers, network operators, aggregators, and electricity market entities. A key intent of the architecture is to facilitate market participation of residential consumers and prosumers. A Hierarchical Control Architecture (HCA) having primary, secondary, and tertiary control...

  7. High order scheme for the non-local transport in ICF plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feugeas, J.L.; Nicolai, Ph.; Schurtz, G. [Bordeaux-1 Univ., Centre Lasers Intenses et Applications (UMR 5107), 33 - Talence (France); Charrier, P.; Ahusborde, E. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    A high order practical scheme for a model of non-local transport is here proposed to be used in multidimensional radiation hydrodynamic codes. A high order scheme is necessary to solve non-local problems on strongly deformed meshes that are on hot point or ablation front zones. It is shown that the errors made by a classical 5 point scheme on a disturbed grid can be of the same order of magnitude as the non-local effects. The use of a 9 point scheme in a simulation of inertial confinement fusion appears to be essential.

  8. Effect of local automatic control rods on three-dimensional calculations of the power distribution in an RBMK

    International Nuclear Information System (INIS)

    Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.

    1993-01-01

    Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution

  9. Modeling non-locality of plasmonic excitations with a fictitious film

    Science.gov (United States)

    Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof

    Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.

  10. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  11. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1994-01-01

    It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref

  12. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    Science.gov (United States)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  13. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  14. Non-local energy deposition: A problem in regional RF hyperthermia

    International Nuclear Information System (INIS)

    Hagmann, M.J.; Levin, R.L.

    1984-01-01

    As the frequency is decreased below 1 GHz, RF applicators can cause deep heating of tissues. However, there is a concomitant problem in that significant energy deposition may occur well beyond the dimensions of the applicator. The BSD Medical Corporation has described to the authors tests with a phantom manequin in which SAR in the neck was significantly greater than that in the abdomen when an Annular Phased Array System (APAS) was positioned for abdominal heating. The authors have obtained numerical solutions for the SAR distribution in a 180-cell inhomogeneous block model of man subjected to r-f irradiation approximating that emanating from various applicators. The solutions agree with the reports of BSD that significant heating in the neck, inner thighs, and back will occur with an abdominally-placed APAS. They suggest that a similar problem will occur with a helical-coil or other applicator for which the electric field is predominantly parallel to the axis of the body. Typically, 70% or more of the total energy will be deposited outside the bounds of an axial applicator when it is placed around the chest or abdomen. The problem is most severe at frequencies for which body parts such as the arm or head may resonate. In such cases, over 90% of the energy may be deposited outside the bounds of applicator. The problem of non-local energy deposition appears to be substantially reduced for non-axial applicators. If the arm extends outward from the side of the body, an axial applicator around it will cause negligible energy deposition in the rest of the body

  15. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  16. The status and prospects of quantum non-local field theory

    International Nuclear Information System (INIS)

    Cornish, N.J.; Melbourne Univ., Parkville

    1991-01-01

    A critical review of the physical constraints on the form the non-locality can take is presented. The conclusion of this review is that non-locality must be restricted to interactions with the vacuum sea of virtual particles. A successful formulation of such a theory, Quantum Nonlocal Field Theory (QNFT), is applied to scalar electrodynamics and serves to illustrate how gauge invariance and manifest finiteness can be achieved. The importance of the infinite dimensional symmetry groups that occur in QNFT are discussed as an alternative to supersymmetry, the ability to generate masses by breaking the non-local symmetry with a non-invariant functional measure is given a critical assessment. To demonstrate some of the many novel applications QNFT may make possible, three disparate examples are mooted, the existence of electroweak monopoles, an mechanism for CP violation and the formulation of a finite perturbative theory of Quantum Gravity. 21 refs., ills

  17. Effect of the interface resistance in non-local Hanle measurements

    International Nuclear Information System (INIS)

    Villamor, Estitxu; Hueso, Luis E.; Casanova, Fèlix

    2015-01-01

    We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements

  18. Post-Newtonian parameter γ in generalized non-local gravity

    Science.gov (United States)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  19. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  20. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    Science.gov (United States)

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  1. An anthology of non-local QFT and QFT on non-commutative spacetime

    Science.gov (United States)

    Schroer, Bert

    2005-09-01

    Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject.

  2. An anthology of non-local QFT and QFT on non-commutative spacetime

    International Nuclear Information System (INIS)

    Schroer, Bert

    2005-01-01

    Ever since the appearance of renormalization theory, there have been several differently motivated attempts at non-localized (in the sense of not generated by pointlike fields) relativistic particle theories, the most recent one being at QFT on non-commutative Minkowski spacetime. The often conceptually uncritical and historically forgetful contemporary approach to these problems calls for a critical review in the light of previous results on this subject

  3. Distributed system for acquisition and analysis of NPP systems noise data

    International Nuclear Information System (INIS)

    Oprea, F.; Gruia, L.

    2001-01-01

    Since years '90 the noise analysis for nuclear stations is more frequently used because: - the data can be acquired by making use of the NPP instrumentation; - acquisition may be performed in a steady-state regime, at rated capacity; - reactor dynamical regime data are obtainable although steady-state regime data are used. The signal noise analysis is based on the dynamical information about the reactor operation obtained from instrumentation signal fluctuations as determined in steady-system regime. The small fluctuations are due to the stochastic effects inherent to physical processes such as heat transfer, boiling, turbulences in coolant flow, moderator collective motions, fission process, structural vibrations and pressure oscillations. Specifically, for CANDU type reactors, the results may be applied for: - surveillance of the functioning characteristics of detectors and transducers; - signaling or predicting misfunctioning of detectors and transducers, what implies establishment of optimal time rate for macro-sampling; - signaling or prediction of misfunctioning of reactor core components, what implies setting up methods and procedures for detecting vibrations inside the fuel channels, based mainly on the signals from the ROPT adjacent detectors and on the flow rate transducers. The system of signal acquisition is a distributed, fixed-data acquisition system provided with a limited number of inputs, based on a number of modules of local analog signal processing and conversion to digital representation. The signal, local processing implies noise removal out of signal through continuous current component elimination, an amplification of the signal, low-pass filtering for alias frequency removal, 16 bit analog-to-digital conversion and digital value serial way transmission. The local processing is based on the characteristics of the acquired signal (noise), namely: - the frequency band, 0.01 Hz - 200 Hz; - the signal amplitude level, 16 - 32 MeV superimposed

  4. Small Aircraft Data Distribution System

    Science.gov (United States)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  5. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  6. Non-local means filter for trim statics

    KAUST Repository

    Huang, Yunsong; Wang, Xin; Schuster, Gerard T.

    2014-01-01

    this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image

  7. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  8. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  9. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    Science.gov (United States)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  10. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  11. Development of neural network for analysis of local power distributions in BWR fuel bundles

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinfuku, Kimihiro; Nakamae, Takuji.

    1993-01-01

    A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)

  12. Surface effects on static bending of nanowires based on non-local elasticity theory

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2015-10-01

    Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.

  13. Application of local area networks to accelerator control systems at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Linstadt, E.; Melen, R.

    1983-03-01

    The history and current status of SLAC's SDLC networks for distributed accelerator control systems are discussed. These local area networks have been used for instrumentation and control of the linear accelerator. Network topologies, protocols, physical links, and logical interconnections are discussed for specific applications in distributed data acquisition and control system, computer networks and accelerator operations

  14. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Breakdown of the classical description of a local system

    DEFF Research Database (Denmark)

    Eran, Kot; Grønbech-Jensen, Niels; Nielsen, Bo Melholt

    2012-01-01

    We provide a straightforward demonstration of a fundamental difference between classical and quantum mechanics for a single local system: namely, the absence of a joint probability distribution of the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig...... of the breakdown of a classical description of the underlying state. Most importantly, the criterion used does not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system...... [ Phys. Rev. A 83 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint probability distribution in classical physics. We demonstrate the violation of this criterion using the homodyne measurement of a single photon state, thus proving a straightforward signature...

  16. Cosmological perturbations in non-local higher-derivative gravity

    International Nuclear Information System (INIS)

    Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.

    2014-01-01

    We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model

  17. Distributed processor systems

    International Nuclear Information System (INIS)

    Zacharov, B.

    1976-01-01

    In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)

  18. Non-local means denoising of dynamic PET images.

    Directory of Open Access Journals (Sweden)

    Joyita Dutta

    Full Text Available Dynamic positron emission tomography (PET, which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM.NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high

  19. Non-local means denoising of dynamic PET images.

    Science.gov (United States)

    Dutta, Joyita; Leahy, Richard M; Li, Quanzheng

    2013-01-01

    Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while

  20. Almost conserved operators in nearly many-body localized systems

    Science.gov (United States)

    Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen

    2018-03-01

    We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.

  1. Study of Solid State Drives performance in PROOF distributed analysis system

    Science.gov (United States)

    Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.

    2010-04-01

    Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.

  2. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

  3. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  4. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  5. A decision support system for on-line leakage localization

    OpenAIRE

    Meseguer, Jordi; Mirats-Tur, Josep M.; Cembrano, Gabriela; Puig, Vicenç; Quevedo, Joseba; Pérez, Ramon; Sanz, Gerard; Ibarra, David

    2014-01-01

    This paper describes a model-driven decision-support system (software tool) implementing a model-based methodology for on-line leakage detection and localization which is useful for a large class of water distribution networks. Since these methods present a certain degree of complexity which limits their use to experts, the proposed software tool focuses on the integration of a method emphasizing its use by water network managers as a decision support system. The proposed software tool integr...

  6. Research and design of distributed intelligence fault diagnosis system in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xie Chunli; Cheng Shouyu; Xia Hong

    2011-01-01

    In order to further reduce the misoperation after the faults occurring of nuclear power plant, according to the function distribution of nuclear power equipment and the distributed control features of digital instrument control system, a nuclear power plant distributed condition monitoring and fault diagnosis system was researched and designed. Based on decomposition-integrated diagnostic thinking, a fuzzy neural network and RBF neural network was presented to do the distributed local diagnosis and multi-source information fusion technology for the global integrated diagnosis. Simulation results show that the developed distributed status monitoring and fault diagnosis system can diagnose more typical accidents of PWR to provide effective diagnosis and operation information. (authors)

  7. New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2018-01-01

    Full Text Available The question of whether mesospheric OH(v rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v rotational population distributions. Rapid OH(high-v + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v rotational distributions. The effective rotational temperatures of mesospheric OH(v are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.

  8. PVUSA: The value of photovoltaics in the distribution system. The Kerman Grid-Support Project

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, H.J.; Hoff, T.E. [Pacific Energy Group, Walnut Creek, CA (United States)

    1995-05-01

    As part of the Photovoltaics for Utility Scale Applications Applications (PVUSA) Project Pacific Gas Electric Company (PG&E) built the Kerman 500-kW photovoltaic power plant. Located near the end of a distribution feeder in a rural section of Fresno County, the plant was not built so much to demonstrate PV technology, but to evaluate its interaction with the local distribution grid and quantify available nontraditional grid-support benefits (those other than energy and capacity). As demand for new generation began to languish in the 1980s, and siting and permitting of power plants and transmission lines became more involved, utilities began considering smaller, distributed power sources. Potential benefits include shorter construction lead time, less capital outlay, and better utilization of existing assets. The results of a PG&E study in 1990/1991 of the benefits from a PV system to the distribution grid prompted the PVUSA Project to construct a plant at Kerman. Completed in 1993, the plant is believed to be the first one specifically built to evaluate the multiple benefits to the grid of a strategically sited plant. Each of nine discrete benefits were evaluated in detail by first establishing the technical impact, then translating the results into present economic value. Benefits span the entire system from distribution feeder to the generation fleet. This work breaks new ground in evaluation of distributed resources, and suggests that resource planning practices be expanded to account for these non-traditional benefits.

  9. System analysis and planning of a gas distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Edwin F.M.; Farias, Helio Monteiro [AUTOMIND, Rio de Janeiro, RJ (Brazil); Costa, Carla V.R. [Universidade Salvador (UNIFACS), BA (Brazil)

    2009-07-01

    The increase in demand by gas consumers require that projects or improvements in gas distribution networks be made carefully and safely to ensure a continuous, efficient and economical supply. Gas distribution companies must ensure that the networks and equipment involved are defined and designed at the appropriate time to attend to the demands of the market. To do that a gas distribution network analysis and planning tool should use distribution networks and transmission models for the current situation and the future changes to be implemented. These models are used to evaluate project options and help in making appropriate decisions in order to minimize the capital investment in new components or simple changes in operational procedures. Gas demands are increasing and it is important that gas distribute design new distribution systems to ensure this growth, considering financial constraints of the company, as well as local legislation and regulation. In this study some steps of developing a flexible system that attends to those needs will be described. The analysis of distribution requires geographically referenced data for the models as well as an accurate connectivity and the attributes of the equipment. GIS systems are often used as a deposit center that holds the majority of this information. GIS systems are constantly updated as distribution network equipment is modified. The distribution network modeling gathered from this system ensures that the model represents the current network condition. The benefits of this architecture drastically reduce the creation and maintenance cost of the network models, because network components data are conveniently made available to populate the distribution network. This architecture ensures that the models are continually reflecting the reality of the distribution network. (author)

  10. Three-body models of the 6ΛΛHe and 9ΛBe hypernuclei with non-local interactions

    International Nuclear Information System (INIS)

    Theeten, M.; Baye, D.; Descouvemont, P.

    2005-01-01

    A three-body model involving non-local interactions is developed in configuration space. It is based on a hyperspherical-harmonics expansion and the Lagrange-mesh method. The 6 ΛΛ He and 9 Λ Be hypernuclei are studied as three-body αΛΛ and ααΛ systems. Recently proposed quark-model based ΛN and ΛΛ interactions are used. A non-local Λα interaction is obtained by folding the ΛN interaction with a Gaussian α density. Various phenomenological αα interactions are employed. The results agree within 1 keV with recent Faddeev calculations in momentum space. Energies and radii of 6 ΛΛ He and 9 Λ Be are compared with a purely local model. The B(E2) between the 9 Λ Be bound states is also calculated. The role of non-locality is discussed

  11. A non-differentiable solution for the local fractional telegraph equation

    Directory of Open Access Journals (Sweden)

    Li Jie

    2017-01-01

    Full Text Available In this paper, we consider the linear telegraph equations with local fractional derivative. The local fractional Laplace series expansion method is used to handle the local fractional telegraph equation. The analytical solution with the non-differentiable graphs is discussed in detail. The proposed method is efficient and accurate.

  12. Linear velocity fields in non-Gaussian models for large-scale structure

    Science.gov (United States)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  13. Evaluation of hydrophilic permeant transport parameters in the localized and non-localized transport regions of skin treated simultaneously with low-frequency ultrasound and sodium lauryl sulfate.

    Science.gov (United States)

    Kushner, Joseph; Blankschtein, Daniel; Langer, Robert

    2008-02-01

    The porosity (epsilon), the tortuosity (tau), and the hindrance factor (H) of the aqueous pore channels located in the localized transport regions (LTRs) and the non-LTRs formed in skin treated simultaneously with low-frequency ultrasound (US) and the surfactant sodium lauryl sulfate (SLS), were evaluated for the delivery of four hydrophilic permeants (urea, mannitol, raffinose, and inulin) by analyzing dual-radiolabeled diffusion masking experiments for three different idealized cases of the aqueous pore pathway hypothesis. When epsilon and tau were assumed to be independent of the permeant radius, H was found to be statistically larger in the LTRs than in the non-LTRs. When a distribution of pore radii was assumed to exist in the skin, no statistical differences in epsilon, tau, and H were observed due to the large variation in the pore radii distribution shape parameter (3 A to infinity). When infinitely large aqueous pores were assumed to exist in the skin, epsilon was found to be 3-8-fold greater in the LTRs than in the non-LTRs, while little difference was observed in the LTRs and in the non-LTRs for tau. This last result suggests that the efficacy of US/SLS treatment may be enhanced by increasing the porosity of the non-LTRs.

  14. A Distributed Synchronization and Timing System on the EAST Tokamak

    Science.gov (United States)

    Luo, Jiarong; Wu, Yichun; Shu, Yantai

    2008-08-01

    A key requirement for the EAST distributed control system (EASTDCS) is time synchronization to an accuracy of RTOS). The DSTS provides the control and the data acquisition systems with reference clocks (0.01 Hz 10 MHz) and delayed trigger times ( 1 mus 4294 s). These are produced by a Core Module Unit (CMU) connected by optical fibres to many Local Synchronized Node Units (LSNU). The fibres provide immunity from electrical noise and are of equal length to match clock and trigger delays between systems. This paper describes the architecture of the DSTS on the EAST tokamak and provides an overview of the characteristics of the main and local units.

  15. A distributed data base management system. [for Deep Space Network

    Science.gov (United States)

    Bryan, A. I.

    1975-01-01

    Major system design features of a distributed data management system for the NASA Deep Space Network (DSN) designed for continuous two-way deep space communications are described. The reasons for which the distributed data base utilizing third-generation minicomputers is selected as the optimum approach for the DSN are threefold: (1) with a distributed master data base, valid data is available in real-time to support DSN management activities at each location; (2) data base integrity is the responsibility of local management; and (3) the data acquisition/distribution and processing power of a third-generation computer enables the computer to function successfully as a data handler or as an on-line process controller. The concept of the distributed data base is discussed along with the software, data base integrity, and hardware used. The data analysis/update constraint is examined.

  16. Generalized parton distribution for non zero skewness

    International Nuclear Information System (INIS)

    Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg

    2012-01-01

    In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses

  17. COM-LOC: A Distributed Range-Free Localization Algorithm in Wireless Networks

    NARCIS (Netherlands)

    Dil, B.J.; Havinga, Paul J.M.; Marusic, S; Palaniswami, M; Gubbi, J.; Law, Y.W.

    2009-01-01

    This paper investigates distributed range-free localization in wireless networks using a communication protocol called sum-dist which is commonly employed by localization algorithms. With this protocol, the reference nodes flood the network in order to estimate the shortest distance between the

  18. Local, distributed topology control for large-scale wireless ad-hoc networks

    NARCIS (Netherlands)

    Nieberg, T.; Hurink, Johann L.

    In this document, topology control of a large-scale, wireless network by a distributed algorithm that uses only locally available information is presented. Topology control algorithms adjust the transmission power of wireless nodes to create a desired topology. The algorithm, named local power

  19. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  20. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  1. Boundary Lax pairs from non-ultra-local Poisson algebras

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2009-01-01

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  2. Non-contact finger vein acquisition system using NIR laser

    Science.gov (United States)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  3. Functional brain networks develop from a "local to distributed" organization.

    Directory of Open Access Journals (Sweden)

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  4. Functional brain networks develop from a "local to distributed" organization.

    Science.gov (United States)

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  5. Electric distribution systems

    CERN Document Server

    Sallam, A A

    2010-01-01

    "Electricity distribution is the penultimate stage in the delivery of electricity to end users. The only book that deals with the key topics of interest to distribution system engineers, Electric Distribution Systems presents a comprehensive treatment of the subject with an emphasis on both the practical and academic points of view. Reviewing traditional and cutting-edge topics, the text is useful to practicing engineers working with utility companies and industry, undergraduate graduate and students, and faculty members who wish to increase their skills in distribution system automation and monitoring."--

  6. Advanced Twisted Pair Cables for Distributed Local Area Networks in Intelligent Structure Systems

    Science.gov (United States)

    Semenov, Andrey

    2018-03-01

    The possibility of a significant increase in the length of cable communication channels of local area networks of automation and engineering support systems of buildings in the case of their implementation on balanced twisted pair cables is shown. Assuming a direct connection scheme and an effective speed of 100 Mbit/s, analytical relationships are obtained for the calculation of the maximum communication distance. The necessity of using in the linear part of such systems of twisted pair cables with U/UTP structure and interference parameters at the level of category 5e is grounded.

  7. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  8. Identification of systems with distributed parameters

    International Nuclear Information System (INIS)

    Moret, J.M.

    1990-10-01

    The problem of finding a model for the dynamical response of a system with distributed parameters based on measured data is addressed. First a mathematical formalism is developed in order to obtain the specific properties of such a system. Then a linear iterative identification algorithm is proposed that includes these properties, and that produces better results than usual non linear minimisation techniques. This algorithm is further improved by an original data decimation that allow to artificially increase the sampling period without losing between sample information. These algorithms are tested with real laboratory data

  9. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  10. On the non-local obstruction to interacting higher spins in flat space

    Energy Technology Data Exchange (ETDEWEB)

    Taronna, Massimo [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2017-05-04

    Owing to a renewed interest in flat space higher spin gauge theories, in this note we provide further details and clarifications on the results presented in arXiv:1107.5843 and arXiv: 1209.5755, which investigated their locality properties. Focusing, for simplicity, on quartic couplings with one of the external legs having non-zero integer spin (which can be considered as a prototype for Weinberg-type arguments), we review the appearance of 1/◻ non-localities. In particular, we emphasise that it appears to be not possible to eliminate all of the aforementioned non-localities in the general quartic Noether procedure solution with a judicious choice of coupling constants and spectrum. We also discuss the light-cone gauge fixing in d=4, and argue that the non-local obstruction discussed in the covariant language cannot be avoided using light-cone gauge formalism.

  11. Commissioning an image-guided localization system for radiotherapy

    International Nuclear Information System (INIS)

    Phillips, Mark H.; Singer, Karen; Miller, Elizabeth; Stelzer, Keith

    2000-01-01

    Purpose: To describe the design and commissioning of a system for the treatment of classes of tumors that require highly accurate target localization during a course of fractionated external-beam therapy. This system uses image-guided localization techniques in the linac vault to position patients being treated for cranial tumors using stereotactic radiotherapy, conformal radiotherapy, and intensity-modulated radiation therapy techniques. Design constraints included flexibility in the use of treatment-planning software, accuracy and precision of repeat localization, limits on the time and human resources needed to use the system, and ease of use. Methods and Materials: A commercially marketed, stereotactic radiotherapy system, based on a system designed at the University of Florida, Gainesville, was adapted for use at the University of Washington Medical Center. A stereo pair of cameras in the linac vault were used to detect the position and orientation of an array of fiducial markers that are attached to a patient's biteblock. The system was modified to allow the use of either a treatment-planning system designed for stereotactic treatments, or a general, three-dimensional radiation therapy planning program. Measurements of the precision and accuracy of the target localization, dose delivery, and patient positioning were made using a number of different jigs and devices. Procedures were developed for the safe and accurate clinical use of the system. Results: The accuracy of the target localization is comparable to that of other treatment-planning systems. Gantry sag, which cannot be improved, was measured to be 1.7 mm, which had the effect of broadening the dose distribution, as confirmed by a comparison of measurement and calculation. The accuracy of positioning a target point in the radiation field was 1.0 ± 0.2 mm. The calibration procedure using the room-based lasers had an accuracy of 0.76 mm, and using a floor-based radiosurgery system it was 0.73 mm

  12. Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory

    Science.gov (United States)

    Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.

    2018-01-01

    The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.

  13. Prediction future asset price which is non-concordant with the historical distribution

    Science.gov (United States)

    Seong, Ng Yew; Hin, Pooi Ah

    2015-12-01

    This paper attempts to predict the major characteristics of the future asset price which is non-concordant with the distribution estimated from the price today and the prices on a large number of previous days. The three major characteristics of the i-th non-concordant asset price are the length of the interval between the occurrence time of the previous non-concordant asset price and that of the present non-concordant asset price, the indicator which denotes that the non-concordant price is extremely small or large by its values -1 and 1 respectively, and the degree of non-concordance given by the negative logarithm of the probability of the left tail or right tail of which one of the end points is given by the observed future price. The vector of three major characteristics of the next non-concordant price is modelled to be dependent on the vectors corresponding to the present and l - 1 previous non-concordant prices via a 3-dimensional conditional distribution which is derived from a 3(l + 1)-dimensional power-normal mixture distribution. The marginal distribution for each of the three major characteristics can then be derived from the conditional distribution. The mean of the j-th marginal distribution is an estimate of the value of the j-th characteristics of the next non-concordant price. Meanwhile, the 100(α/2) % and 100(1 - α/2) % points of the j-th marginal distribution can be used to form a prediction interval for the j-th characteristic of the next non-concordant price. The performance measures of the above estimates and prediction intervals indicate that the fitted conditional distribution is satisfactory. Thus the incorporation of the distribution of the characteristics of the next non-concordant price in the model for asset price has a good potential of yielding a more realistic model.

  14. Model-based leakage localization in drinking water distribution networks using structured residuals

    OpenAIRE

    Puig Cayuela, Vicenç; Rosich, Albert

    2013-01-01

    In this paper, a new model based approach to leakage localization in drinking water networks is proposed based on generating a set of structured residuals. The residual evaluation is based on a numerical method based on an enhanced Newton-Raphson algorithm. The proposed method is suitable for water network systems because the non-linearities of the model make impossible to derive analytical residuals. Furthermore, the computed residuals are designed so that leaks are decoupled, which impro...

  15. Experimental and numerical study of impact of voltage fluctuate, flicker and power factor wave electric generator to local distribution

    Science.gov (United States)

    Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan

    2017-10-01

    Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.

  16. State distribution and reliability of some multi- state systems with ...

    African Journals Online (AJOL)

    mn : G series systems and second, the multi-state consecutive kn-out-of-mn : G parallel systems (see denitions 1 and 2).We begin by giving a non recursive formula which calculates the state distribution and the reliability of multi-state ...

  17. Non-local matrix generalizations of W-algebras

    International Nuclear Information System (INIS)

    Bilal, A.

    1995-01-01

    There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary m th -order linear differential operators L=-d m +U 1 d m-1 +U 2 d m-2 +..+U m . In this paper, I consider in detail the case where the U k are nxn-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U 1 =0. This reduction gives rise to matrix generalizations of (the classical version of) the non-linear W m -algebras, called V n,m -algebras. The non-commutativity of the matrices leads to non-local terms in these V n,m -algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations W k of the U k can be formed that are nxn-matrices of conformally primary fields of spin k, in analogy with the scalar case n=1. In general however, the V m,n -algebras have a much richer structure than the W m -algebras as can be seen on the examples of the non-linear and non-local Poisson brackets {(U 2 ) ab (σ),(U 2 ) cd (σ')}, {(U 2 ) ab (σ),(W 3 ) cd (σ')} and {(W 3 ) ab (σ),(W 3 ) cd (σ')} which I work out explicitly for all m and n. A matrix Miura transformation is derived, mapping these complicated (second Gelfand-Dikii) brackets of the U k to a set of much simpler Poisson brackets, providing the analogue of the free-field representation of the W m -algebras. (orig.)

  18. A geometric initial guess for localized electronic orbitals in modular biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Chicago, IL (United States); Fattebert, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osei-Kuffuor, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol, facilitates first-principles simulations in biological systems of sizes which were previously impossible.

  19. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  20. Hardware-in-the-Loop Simulation of Distributed Intelligent Energy Management System for Microgrids

    Directory of Open Access Journals (Sweden)

    Dong-Jun Won

    2013-07-01

    Full Text Available Microgrids are autonomous low-voltage power distribution systems that contain multiple distributed energy resources (DERs and smart loads that can provide power system operation flexibility. To effectively control and coordinate multiple DERs and loads of microgrids, this paper proposes a distributed intelligent management system that employs a multi-agent-based control system so that delicate decision-making functions can be distributed to local intelligent agents. This paper presents the development of a hardware-in-the-loop simulation (HILS system for distributed intelligent management system for microgrids and its promising application to an emergency demand response program. In the developed HILS system, intelligent agents are developed using microcontrollers and ZigBee wireless communication technology. Power system dynamic models are implemented in real-time simulation environments using the Opal-RT system. This paper presents key features of the data communication and management schemes based on multi-agent concepts. The performance of the developed system is tested for emergency demand response program applications.

  1. Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Science.gov (United States)

    Nozaki, Takayuki; Maehara, Masaki; Kasai, Kenta; Sakaniwa, Kohichi

    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist $(2,d_c)$-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.

  2. Power Consumption Evaluation of Distributed Computing Network Considering Traffic Locality

    Science.gov (United States)

    Ogawa, Yukio; Hasegawa, Go; Murata, Masayuki

    When computing resources are consolidated in a few huge data centers, a massive amount of data is transferred to each data center over a wide area network (WAN). This results in increased power consumption in the WAN. A distributed computing network (DCN), such as a content delivery network, can reduce the traffic from/to the data center, thereby decreasing the power consumed in the WAN. In this paper, we focus on the energy-saving aspect of the DCN and evaluate its effectiveness, especially considering traffic locality, i.e., the amount of traffic related to the geographical vicinity. We first formulate the problem of optimizing the DCN power consumption and describe the DCN in detail. Then, numerical evaluations show that, when there is strong traffic locality and the router has ideal energy proportionality, the system's power consumption is reduced to about 50% of the power consumed in the case where a DCN is not used; moreover, this advantage becomes even larger (up to about 30%) when the data center is located farthest from the center of the network topology.

  3. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    Science.gov (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  4. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  5. Multiobjective memetic estimation of distribution algorithm based on an incremental tournament local searcher.

    Science.gov (United States)

    Yang, Kaifeng; Mu, Li; Yang, Dongdong; Zou, Feng; Wang, Lei; Jiang, Qiaoyong

    2014-01-01

    A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.

  6. Multiobjective Memetic Estimation of Distribution Algorithm Based on an Incremental Tournament Local Searcher

    Directory of Open Access Journals (Sweden)

    Kaifeng Yang

    2014-01-01

    Full Text Available A novel hybrid multiobjective algorithm is presented in this paper, which combines a new multiobjective estimation of distribution algorithm, an efficient local searcher and ε-dominance. Besides, two multiobjective problems with variable linkages strictly based on manifold distribution are proposed. The Pareto set to the continuous multiobjective optimization problems, in the decision space, is a piecewise low-dimensional continuous manifold. The regularity by the manifold features just build probability distribution model by globally statistical information from the population, yet, the efficiency of promising individuals is not well exploited, which is not beneficial to search and optimization process. Hereby, an incremental tournament local searcher is designed to exploit local information efficiently and accelerate convergence to the true Pareto-optimal front. Besides, since ε-dominance is a strategy that can make multiobjective algorithm gain well distributed solutions and has low computational complexity, ε-dominance and the incremental tournament local searcher are combined here. The novel memetic multiobjective estimation of distribution algorithm, MMEDA, was proposed accordingly. The algorithm is validated by experiment on twenty-two test problems with and without variable linkages of diverse complexities. Compared with three state-of-the-art multiobjective optimization algorithms, our algorithm achieves comparable results in terms of convergence and diversity metrics.

  7. To the non-local theory of cold nuclear fusion.

    Science.gov (United States)

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.

  8. (Non-) homomorphic approaches to denoise intensity SAR images with non-local means and stochastic distances

    Science.gov (United States)

    Penna, Pedro A. A.; Mascarenhas, Nelson D. A.

    2018-02-01

    The development of new methods to denoise images still attract researchers, who seek to combat the noise with the minimal loss of resolution and details, like edges and fine structures. Many algorithms have the goal to remove additive white Gaussian noise (AWGN). However, it is not the only type of noise which interferes in the analysis and interpretation of images. Therefore, it is extremely important to expand the filters capacity to different noise models present in li-terature, for example the multiplicative noise called speckle that is present in synthetic aperture radar (SAR) images. The state-of-the-art algorithms in remote sensing area work with similarity between patches. This paper aims to develop two approaches using the non local means (NLM), developed for AWGN. In our research, we expanded its capacity for intensity SAR ima-ges speckle. The first approach is grounded on the use of stochastic distances based on the G0 distribution without transforming the data to the logarithm domain, like homomorphic transformation. It takes into account the speckle and backscatter to estimate the parameters necessary to compute the stochastic distances on NLM. The second method uses a priori NLM denoising with a homomorphic transformation and applies the inverse Gamma distribution to estimate the parameters that were used into NLM with stochastic distances. The latter method also presents a new alternative to compute the parameters for the G0 distribution. Finally, this work compares and analyzes the synthetic and real results of the proposed methods with some recent filters of the literature.

  9. Syntactic processing is distributed across the language system.

    Science.gov (United States)

    Blank, Idan; Balewski, Zuzanna; Mahowald, Kyle; Fedorenko, Evelina

    2016-02-15

    Language comprehension recruits an extended set of regions in the human brain. Is syntactic processing localized to a particular region or regions within this system, or is it distributed across the entire ensemble of brain regions that support high-level linguistic processing? Evidence from aphasic patients is more consistent with the latter possibility: damage to many different language regions and to white-matter tracts connecting them has been shown to lead to similar syntactic comprehension deficits. However, brain imaging investigations of syntactic processing continue to focus on particular regions within the language system, often parts of Broca's area and regions in the posterior temporal cortex. We hypothesized that, whereas the entire language system is in fact sensitive to syntactic complexity, the effects in some regions may be difficult to detect because of the overall lower response to language stimuli. Using an individual-subjects approach to localizing the language system, shown in prior work to be more sensitive than traditional group analyses, we indeed find responses to syntactic complexity throughout this system, consistent with the findings from the neuropsychological patient literature. We speculate that such distributed nature of syntactic processing could perhaps imply that syntax is inseparable from other aspects of language comprehension (e.g., lexico-semantic processing), in line with current linguistic and psycholinguistic theories and evidence. Neuroimaging investigations of syntactic processing thus need to expand their scope to include the entire system of high-level language processing regions in order to fully understand how syntax is instantiated in the human brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS; RAOUL, GAË L

    2010-01-01

    .r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive

  11. Stable bounce and inflation in non-local higher derivative cosmology

    International Nuclear Information System (INIS)

    Biswas, Tirthabir; Koshelev, Alexey S.; Mazumdar, Anupam; Vernov, Sergey Yu.

    2012-01-01

    One of the greatest problems of primordial inflation is that the inflationary space-time is past-incomplete. This is mainly because Einstein's GR suffers from a space-like Big Bang singularity. It has recently been shown that ghost-free, non-local higher-derivative ultra-violet modifications of Einstein's gravity may be able to resolve the cosmological Big Bang singularity via a non-singular bounce. Within the framework of such non-local cosmological models, we are going to study both sub- and super-Hubble perturbations around an inflationary trajectory which is preceded by the Big Bounce in the past, and demonstrate that the inflationary trajectory has an ultra-violet completion and that perturbations do not suffer from any pathologies

  12. A distributed scheduling algorithm for heterogeneous real-time systems

    Science.gov (United States)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  13. Automatic fault diagnosis in PV systems with distributed MPPT

    International Nuclear Information System (INIS)

    Solórzano, J.; Egido, M.A.

    2013-01-01

    Highlights: • An automatic failure diagnosis procedure for PV systems with DMPPT is presented. • The different failures diagnosed and their effects on the PV systems are described. • No use of irradiance and temperature sensors decreasing the cost of the system. • Voltage and current analysis to diagnose different failures. • Hot-spots, localized dirt, shading, module degradation and cable losses diagnosis. - Abstract: This work presents a novel procedure for fault diagnosis in PV systems with distributed maximum power point tracking at module level—power optimizers (DC/DC) or micro-inverters (DC/AC). Apart from the power benefits obtained when an irregular irradiance distribution is present, this type of systems permit the monitoring of the PV plant parameters at the module level: voltage and current at the working power point. With these parameters, a prototype diagnosis tool has been developed in Matlab and it has been experimentally verified in a real rooftop PV generator by applying different failures. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity. This system does not require the use of irradiance or temperature sensors, except for the generalized dirt failure, reducing the cost of installation, especially important in small PV systems

  14. HERUS: the far-IR/submm spectral energy distributions of local ULIRGs and photometric atlas

    Science.gov (United States)

    Clements, D. L.; Pearson, C.; Farrah, D.; Greenslade, J.; Bernard-Salas, Jeronimo; González-Alfonso, E.; Afonso, J.; Efstathiou, A.; Rigopoulou, D.; Lebouteiller, V.; Hurley, P. D.; Spoon, H.

    2018-04-01

    We present the Herschel-SPIRE photometric atlas for a complete flux limited sample of 43 local ultraluminous infrared galaxies (ULIRGs), selected at 60 μm by IRAS, as part of the HERschel ULIRG Survey (HERUS). Photometry observations were obtained using the SPIRE instrument at 250, 350, and 500 μm. We describe these observations, present the results, and combine the new observations with data from IRAS to examine the far-infrared spectral energy distributions (SEDs) of these sources. We fit the observed SEDs of HERUS objects with a simple parametrized modified blackbody model, where temperature and emissivity β are free parameters. We compare the fitted values to those of non-ULIRG local galaxies, and find, in agreement with earlier results, that HERUS ULIRGs have warmer dust (median temperature T = 37.9 ± 4.7 K compared to 21.3 ± 3.4 K) but a similar β distribution (median β = 1.7 compared to 1.8) to the Herschel reference sample (HRS, Cortese et al. 2014) galaxies. Dust masses are found to be in the range of 107.5-109 M⊙, significantly higher than that of HRS sources. We compare our results for local ULIRGs with higher redshift samples selected at 250 and 850 μm. These latter sources generally have cooler dust and/or redder 100-to-250 μm colours than our 60 μm-selected ULIRGs. We show that this difference may in part be the result of the sources being selected at different wavelengths rather than being a simple indication of rapid evolution in the properties of the population.

  15. Study on introduction of SN transition type FCL into distribution systems

    International Nuclear Information System (INIS)

    Kameda, Hideyuki; Uemura, Satoshi; Ichinose, Ataru

    2013-01-01

    Highlights: •We describe the arrangement of SNFCL into a present and a future distribution system. •The FCLs near loop-switches can prevent a blackout against a fault within the loop. •The FCLs enable us to enhance the flexibility of the system configuration. -- Abstract: The suitable introduction method of SN transition type superconducting fault current limiter (SNFCL) into a typical 6.6-kVdistribution system in Japan is described. A present distribution system is operated in the radial configuration and aged equipment with the isolated neutral system. An introduction of the FCLs into this system could expect to become a countermeasure against a short-circuit when introducing distributed generations in a future looped distribution system, the entire system will go into a blackout without any countermeasures, when a fault occurs within the looped system. But the introduction of the FCLs is expected to localize a blackout and to enhance the flexibility of a system configuration. In order to achieve the above-mentioned purposes of the introduction of the FCLs, the setting method of the parameters which a user should set is proposed using the transient analysis model of the SNFCL which we have ever developed

  16. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali; Bialek, Tom

    2017-06-27

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  17. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  18. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  19. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  20. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    Science.gov (United States)

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  1. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  2. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  3. Experimental non-classicality of an indivisible quantum system.

    Science.gov (United States)

    Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton

    2011-06-22

    In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.

  4. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    International Nuclear Information System (INIS)

    Kim, Isaac H.

    2011-01-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  5. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    Science.gov (United States)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  6. Vanishing of local non-Gaussianity in canonical single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We study the production of observable primordial local non-Gaussianity in two opposite regimes of canonical single field inflation: attractor (standard single field slow-roll inflation) and non attractor (ultra slow-roll inflation). In the attractor regime, the standard derivation of the bispectrum's squeezed limit using co-moving coordinates gives the well known Maldacena's consistency relation fNL = 5 (1‑ns) / 12. On the other hand, in the non-attractor regime, the squeezed limit offers a substantial violation of this relation given by fNL = 5/2. In this work we argue that, independently of whether inflation is attractor or non-attractor, the size of the observable primordial local non-Gaussianity is predicted to be fNLobs = 0 (a result that was already understood to hold in the case of attractor models). To show this, we follow the use of the so-called Conformal Fermi Coordinates (CFC), recently introduced in the literature. These coordinates parametrize the local environment of inertial observers in a perturbed FRW spacetime, allowing one to identify and compute gauge invariant quantities, such as n-point correlation functions. Concretely, we find that during inflation, after all the modes have exited the horizon, the squeezed limit of the 3-point correlation function of curvature perturbations vanishes in the CFC frame, regardless of the inflationary regime. We argue that such a cancellation should persist after inflation ends.

  7. The structure of the clouds distributed operating system

    Science.gov (United States)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data

  8. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  9. Non-statistical behavior of coupled optical systems

    International Nuclear Information System (INIS)

    Perez, G.; Pando Lambruschini, C.; Sinha, S.; Cerdeira, H.A.

    1991-10-01

    We study globally coupled chaotic maps modeling an optical system, and find clear evidence of non-statistical behavior: the mean square deviation (MSD) of the mean field saturates with respect to increase in the number of elements coupled, after a critical value, and its distribution is clearly non-Gaussian. We also find that the power spectrum of the mean field displays well defined peaks, indicating a subtle coherence among different elements, even in the ''turbulent'' phase. This system is a physically realistic model that may be experimentally realizable. It is also a higher dimensional example (as each individual element is given by a complex map). Its study confirms that the phenomena observed in a wide class of coupled one-dimensional maps are present here as well. This gives more evidence to believe that such non-statistical behavior is probably generic in globally coupled systems. We also investigate the influence of parametric fluctuations on the MSD. (author). 10 refs, 7 figs, 1 tab

  10. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  11. Radiation-induced systemic and local bone tumors: Two types of late effects with possible different origins?

    International Nuclear Information System (INIS)

    Mueller, W.A.; Luz, A.; Linzner, U.

    1994-01-01

    Bone sarcomas may be induced throughout the skeleton (systemic) in mice by relatively low internal α-particle doses that are distributed over the whole skeleton. The induction of local (periosteal) bone sarcomas after paratibial deposition of insoluble radiocolloids required much higher doses, and in addition high energies of emitted particles. Paratibial deposition of α-particle-emitting radiocolloids of 227 Th and 228 Th resulted in formation of both local and systemic bone sarcomas. The latter were most probably induced by the released radium daughters of the thorium isotopes and were distributed about the skeleton. Paratibial injections with β-particle emitters 144 Ce+ 144 Pr (29 kBq per mouse) showed an incidence of local bone sarcomas of more than 80%. An estimation of the local effective doses led to values of more than 1000 Gy for the β-particle emitter 144 Ce and around 150 Gy for the thorium isotopes. Thus induction of local bone sarcomas required doses considerably greater than those needed for systemic bone sarcomas. The local induction of bone sarcomas has been reported for high-energy β particles using similar high doses of 144 Ce+ 144 Pr in rats and for external 90 Sr+ 90 Y irradiation in mice. We conclude that the processes involved in the induction of local and systemic bone sarcomas by radiation may be quite different. 35 refs., 1 fig., 3 tabs

  12. Distributed collaborative processing in wireless sensor networks with application to target localization and beamforming

    OpenAIRE

    Béjar Haro, Benjamín

    2013-01-01

    Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of es...

  13. Integrated Nationwide Electronic Health Records system: Semi-distributed architecture approach.

    Science.gov (United States)

    Fragidis, Leonidas L; Chatzoglou, Prodromos D; Aggelidis, Vassilios P

    2016-11-14

    The integration of heterogeneous electronic health records systems by building an interoperable nationwide electronic health record system provides undisputable benefits in health care, like superior health information quality, medical errors prevention and cost saving. This paper proposes a semi-distributed system architecture approach for an integrated national electronic health record system incorporating the advantages of the two dominant approaches, the centralized architecture and the distributed architecture. The high level design of the main elements for the proposed architecture is provided along with diagrams of execution and operation and data synchronization architecture for the proposed solution. The proposed approach effectively handles issues related to redundancy, consistency, security, privacy, availability, load balancing, maintainability, complexity and interoperability of citizen's health data. The proposed semi-distributed architecture offers a robust interoperability framework without healthcare providers to change their local EHR systems. It is a pragmatic approach taking into account the characteristics of the Greek national healthcare system along with the national public administration data communication network infrastructure, for achieving EHR integration with acceptable implementation cost.

  14. 'Non-local' response of RTP ohmic plasmas to peripheral perturbations

    International Nuclear Information System (INIS)

    Galli, P.; Gorini, G.; Mantica, P.; Hogeweij, G.M.D.; Kloe, J. de; Lopes Cardozo, N.J.

    1999-01-01

    A 'non-local' response of the plasma core triggered by peripheral plasma perturbations other than laser ablation is found in the RTP tokamak. Oblique pellet injection (OPI) has been used to induce fast cooling of the peripheral plasma. In response, an inward cold pulse (T e drop) and a slightly delayed core T e rise are observed. A somewhat similar 'non-local' response is observed when the peripheral plasma is heated by modulated electron cyclotron heating or by fast current ramps, i.e. the core temperature drops in response to the peripheral heating. The plasma conditions for the occurrence of the 'non-local' response have been investigated. The core T e rise following OPI is associated with the formation of a large temperature gradient in the region 1 e rise is largest at low electron density and for large pellet deposition radii. Above a critical density the T e rise disappears and only the (weaker) drop in core T e is observed. Time dependent transport simulations show that the propagation of the inward cold pulse is consistent with local transport, while the core T e rise is a slower phenomenon requiring a large transient drop of χ e in the region 1 < q < 2. (author)

  15. Energy distribution system operator in interaction with social actors : Three cases

    NARCIS (Netherlands)

    Steenhuisen, B.M.; Veeneman, W.W.; Van Doorn, L.; Van Breen, H.

    2012-01-01

    A publicly owned Dutch energy distribution system operator (DSO) interacts during local infrastructure projects with its direct stakeholders to maximize utility in the public interest. These projects are about replacing, relocating, removing or reconstructing parts of the gas and electricity

  16. Challenges in Upscaling Geomorphic Transport Laws: Scale-dependence of Local vs. Non-local Formalisms and Derivation of Closures (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.

    2010-12-01

    Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.

  17. Self-adaptive change detection in streaming data with non-stationary distribution

    KAUST Repository

    Zhang, Xiangliang; Wang, Wei

    2010-01-01

    Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non

  18. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  19. A Self-Organizing Incremental Neural Network based on local distribution learning.

    Science.gov (United States)

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Local polynomial Whittle estimation covering non-stationary fractional processes

    DEFF Research Database (Denmark)

    Nielsen, Frank

    to the non-stationary region. By approximating the short-run component of the spectrum by a polynomial, instead of a constant, in a shrinking neighborhood of zero we alleviate some of the bias that the classical local Whittle estimators is prone to. This bias reduction comes at a cost as the variance is in...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....

  1. Non-Supramenable Groups Acting on Locally Compact Spaces

    DEFF Research Database (Denmark)

    Kellerhals, Julian; Monod, Nicolas; Rørdam, Mikael

    2013-01-01

    Supramenability of groups is characterised in terms of invariant measures on locally compact spaces. This opens the door to constructing interesting crossed product $C^*$-algebras for non-supramenable groups. In particular, stable Kirchberg algebras in the UCT class are constructed using crossed ...

  2. Planning Systems for Distributed Operations

    Science.gov (United States)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  3. The Newcastle connection: A software subsystem for constructing distributed UNIX systems

    International Nuclear Information System (INIS)

    Randell, B.

    1985-01-01

    The Newcastle connection is a software subsystem that can be added to each of a set of physically interconnected UNIX or UNIX look-alike systems, so as to construct a distributed system which is functionally indistinguishable at both the user and the program level from a conventional single-processor UNIX system. The techniques used are applicable to a variety and multiplicity of both local and wide area networks, and enable all issues of inter-processor communication, network protocols, etc., to be hidden. A brief account is given of experience with such distributed systems, the first of which was constructed in 1982 using a set of PDP11s running UNIX Version 7, and connected by a Cambridge Ring - since this date the Connection has been used to construct distributed systems based on various other computers and versions of UNIX, both at Newcastle and elsewhere. The final sections compare our scheme to various precursor schemes and discuss its potential relevance to other operating systems. (orig.)

  4. Non-local electron transport validation using 2D DRACO simulations

    Science.gov (United States)

    Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim

    2012-10-01

    Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  5. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  6. Observation of multi-channel non-local transport in J-TEXT plasmas

    Science.gov (United States)

    Shi, Yuejiang; Chen, Zhongyong; Yang, Zhoujun; Shi, Peng; Zhao, Kaijun; Diamond, Patrick H.; Kwon, JaeMin; Yan, Wei; Zhou, Hao; Pan, Xiaoming; Cheng, Zhifeng; Chen, Zhiping; Yang, SeongMoo; Zhang, Chi; Li, Da; Dong, Yunbo; Wang, Lu; Ding, YongHua; Liang, Yunfeng; Hahn, SangHee; Jhang, HoGun; Na, Yong-Su

    2018-04-01

    In cold pulse experiments in J-TEXT, not only are rapid electron temperature increases in the core observed, but also steep rises in the inner density are found. Moreover, some evidence of acceleration of the core toroidal rotation is also observed during the non-local transport process of electron temperature. These new findings of cold pulse experiments in J-TEXT suggest that turbulence spreading is a possible mechanism for the non-local transport dynamics.

  7. THE STRESS STATE OF THE RADIALLY INHOMOGENEOUS HEMISPHERICAL SHELL UNDER LOCALLY DISTRIBUTED VERTICAL LOAD

    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich

    2018-01-01

    Full Text Available Subject: one of the promising trends in the development of structural mechanics is the development of methods for solving problems in the theory of elasticity for bodies with continuous inhomogeneity of any deformation characteristics: these methods make it possible to use the strength of the material most fully. In this paper, we consider the two-dimensional problem for the case when a vertical, locally distributed load acts on the hemisphere and the inhomogeneity is caused by the influence of the temperature field. Research objectives: derive governing system of equations in spherical coordinates for determination of the stress state of the radially inhomogeneous hemispherical shell under locally distributed vertical load. Materials and methods: as a mechanical model, we chose a thick-walled reinforced concrete shell (hemisphere with inner and outer radii a and b, respectively, b > a. The shell’s parameters are a = 3.3 m, b = 4.5 m, Poisson’s ratio ν = 0.16; the load parameters are f = 10MPa - vertical localized load distributed over the outer face, θ0 = 30°, temperature on the internal surface of the shell Ta = 500 °C, temperature on the external surface of the shell Tb = 0 °C. The resulting boundary-value problem (a system of differential equations with variable coefficients is solved using the Maple software package. Results: maximal compressive stresses σr with allowance for material inhomogeneity are reduced by 10 % compared with the case when the inhomogeneity is ignored. But it is not so important compared with a 3-fold decrease in the tensile stress σθ on the inner surface and a 2-fold reduction in the tensile stress σθ on the outer surface of the hemisphere as concretes generally have a tensile strength substantially smaller than the compressive strength. Conclusions: the method presented in this article makes it possible to reduce the deformation characteristics of the material, i.e. it leads to a reduction in stresses

  8. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  9. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System.

    Science.gov (United States)

    Xiong, Lian; Yang, Liu; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-14

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay.

  10. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  11. Impact of SONET digital cross-connect system architecture on distributed restoration

    International Nuclear Information System (INIS)

    Wu, Tsong-ho; Kobrinski, H.; Lakshman, T.V.

    1994-01-01

    The viability of distributed control restoration using Digital Cross-Connect Systems (DC's) depends on its capability for restoring services within specified time requirements, and its economics for providing restoration compared to other alternatives. In this paper, we report a Bellcore study for the impact of the DCS architecture on distributed restoration. This study concludes that currently proposed distributed control DCS self-healing schemes may not meet the 2-s restoration objective for large metropolitan Local Exchange Carrier's networks, regardless of the distributed algorithm used, if the present DCS system architecture which uses serial message processing and serial path cross-connection remains unchanged. This paper also discusses several DCS architecture enhancement options, including a parallel processing/cross-connect DCS architecture, which may improve the service restoration time. 20 refs

  12. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    Science.gov (United States)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  13. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2001-01-01

    In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker

  14. Boson spectra and correlations for thermal locally equilibrium systems

    International Nuclear Information System (INIS)

    Sinyukov, Y.M.

    1999-01-01

    The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)

  15. World-wide distribution automation systems

    International Nuclear Information System (INIS)

    Devaney, T.M.

    1994-01-01

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems

  16. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  17. Real-time definition of non-randomness in the distribution of genomic events.

    Directory of Open Access Journals (Sweden)

    Ulrich Abel

    Full Text Available Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed within a genome. So far, computer simulations were required for statistical inferences on the distribution of sequence motifs. Here, we show that these analyses are possible using an analytical, mathematical approach. For the assessment of non-randomness, our calculations only require information including genome size, number of (sampled sequence motifs and distance parameters. We have developed computer programs evaluating our analytical formulas for the real-time determination of expected values and p-values. This approach permits a flexible cluster definition that can be applied to most effectively identify non-random or non-uniform sequence motif distribution. As an example, we show the effectivity and reliability of our mathematical approach in clinical retroviral vector integration site distribution.

  18. Distributed Operating Systems

    NARCIS (Netherlands)

    Mullender, Sape J.

    1987-01-01

    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups. In this paper, an overview of recent research in distributed systems is given. In turn, the

  19. Non-reversible evolution of quantum chaotic system. Kinetic description

    International Nuclear Information System (INIS)

    Chotorlishvili, L.; Skrinnikov, V.

    2008-01-01

    It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration

  20. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  1. Pervasive Electricity Distribution System

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Tahir

    2017-06-01

    Full Text Available Now a days a country cannot become economically strong until and unless it has enough electrical power to fulfil industrial and domestic needs. Electrical power being the pillar of any country’s economy, needs to be used in an efficient way. The same step is taken here by proposing a new system for energy distribution from substation to consumer houses, also it monitors the consumer consumption and record data. Unlike traditional manual Electrical systems, pervasive electricity distribution system (PEDS introduces a fresh perspective to monitor the feeder line status at distribution and consumer level. In this system an effort is taken to address the issues of electricity theft, manual billing, online monitoring of electrical distribution system and automatic control of electrical distribution points. The project is designed using microcontroller and different sensors, its GUI is designed in Labview software.

  2. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Xianguo Li

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers. (Author)

  3. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Li Xianguo

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers

  4. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    Science.gov (United States)

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  5. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  6. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  7. Risk analysis for a local gas distribution network

    International Nuclear Information System (INIS)

    Peters, J.W.

    1991-01-01

    Cost control and service reliability are popular topics when discussing strategic issues facing local distribution companies (LDCs) in the 1990s. The ability to provide secure and uninterrupted gas service is crucial for growth and company image, both with the public and regulatory agencies. At the same time, the industry is facing unprecedented competition from alternate fuels, and cost control is essential for maintaining a competitive edge in the market. On the surface, it would appear that cost control and service reliability are contradictory terms. Improvement in service reliability should cost something, or does it? Risk analysis can provide the answer from a distribution design perspective. From a gas distribution engineer's perspective, projects such as loops, backfeeds and even valve placement are designed to reduce, minimize and/or eliminate potential customer outages. These projects improve service reliability by acting as backups should a failure occur on a component of the distribution network. These contingency projects are cost-effective but their longterm benefit or true value is under question. Their purpose is to maintain supply to an area in the distribution network in the event of a failure somewhere else. Two phrases, potential customer outages and in the event of failure, identify uncertainty

  8. Post- and interseismic deformation due to both localized and distributed creep at depth (Invited)

    Science.gov (United States)

    Hetland, E. A.; Zhang, G.; Hines, T.

    2013-12-01

    There are two end-member representations of the ductile lithosphere (i.e., the lower crust and uppermost mantle) commonly used in models of post- and interseismic deformation around strike-slip faults: either (1) laterally homogeneous ductile layers, with sharp contrasts in rheological properties between the layers, in which creep is distributed; or (2) discrete extensions of the fault at depth in which creep is fully localized. The most realistic representation of the ductile lithosphere on earthquake cycle time scales likely falls between these two end-members. Researchers have considered both distributed and localized creep when interpreting post- and interseismic deformation, although the two mechanisms are most commonly treated separately, with the localized creep often approximated by kinematic slip on planar faults. There are a few noteworthy models that considered the feedback between both distributed and localized creep, although those models were largely constrained to 2D geometries of infinite length faults. The thickness of shear zones in the ductile lithosphere may be comparable to the locking depth of the fault, and the existence of a deep shear zone does not preclude the possibility that some distributed creep occurs in the surrounding lithosphere. Furthermore, variations in rheology, including both rheological models and their parameters, may be more subtle than the discrete contrasts typically assumed. In this presentation, we consider models of postseismic deformation following a finite length, strike-slip fault, as well as models of interseismic deformation around an infinite length strike-slip fault. Both sets of models are capable of localized and distributed creep at depth, and use Maxwell viscoelasticity. We show that the horizontal surface velocities during the early postseismic period are most sensitive to the viscosity of the shear zone; however during much of the interseismic period the shear zone is not apparent from the surface

  9. The Reviewing of Distributed Power Sources Impact on Fallout’s Localization in 22 kV Network

    Directory of Open Access Journals (Sweden)

    Peter Bracinik

    2008-01-01

    Full Text Available The aim of this paper is to point out some facts that will occur by fault localization in 22 kV networks after the implementation of distributed power sources, especially wind power plants. This paper describes possible connection of these sources into power system in regard to their rated output. It also presents short theoretical background for short circuit calculation in 22 kV network. Then several examples explaining how the point of wind power plant connection can influence network’s operation during short-circuits and consequential fault’s localization are described in the second part of this paper

  10. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    Science.gov (United States)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  11. Local System Matrix Compression for Efficient Reconstruction in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    T. Knopp

    2015-01-01

    Full Text Available Magnetic particle imaging (MPI is a quantitative method for determining the spatial distribution of magnetic nanoparticles, which can be used as tracers for cardiovascular imaging. For reconstructing a spatial map of the particle distribution, the system matrix describing the magnetic particle imaging equation has to be known. Due to the complex dynamic behavior of the magnetic particles, the system matrix is commonly measured in a calibration procedure. In order to speed up the reconstruction process, recently, a matrix compression technique has been proposed that makes use of a basis transformation in order to compress the MPI system matrix. By thresholding the resulting matrix and storing the remaining entries in compressed row storage format, only a fraction of the data has to be processed when reconstructing the particle distribution. In the present work, it is shown that the image quality of the algorithm can be considerably improved by using a local threshold for each matrix row instead of a global threshold for the entire system matrix.

  12. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit

    2014-07-28

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  13. A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families

    KAUST Repository

    Dutta, Subhajit; Genton, Marc G.

    2014-01-01

    Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.

  14. A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)

    2007-08-15

    We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.

  15. Modeling of parallel-plate regenerators with non-uniform plate distributions

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    plate spacing distributions are presented in order to understand the impact of spacing non-uniformity. Simulations of more realistic distributions where the plate spacings follow normal distributions are then discussed in order to describe the deviation of the performance of a regenerator relative...

  16. Non-local currents in 2D QFT: an alternative To - the quantum inverse scattering method

    International Nuclear Information System (INIS)

    Bernard, D.; Leclair, A.; Cornell Univ., Ithaca, NY

    1990-01-01

    The formalism based on non-local charges that we propose provides an alternative to the quantum inverse scattering method for solving integrable quantum field theories in 2D. The content of the paper is: 1. Introduction: historical background. 2. The NLC approach to 2D QFT: a summary. 3 Exchange algebras and on-shell conservation laws: why non-local charges are useful. 4. The lattice construction: the geometrical origin of non-local conserved currents. 5. The continuum construction: how to deal with non-local conserved currents. 6. Examples: Yangian and quantum group currents. 7 Conclusions: open problems. 22 refs., 4 figs

  17. Non-Local Sparse Image Inpainting for Document Bleed-Through Removal

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif

    2018-05-01

    Full Text Available Bleed-through is a frequent, pervasive degradation in ancient manuscripts, which is caused by ink seeped from the opposite side of the sheet. Bleed-through, appearing as an extra interfering text, hinders document readability and makes it difficult to decipher the information contents. Digital image restoration techniques have been successfully employed to remove or significantly reduce this distortion. This paper proposes a two-step restoration method for documents affected by bleed-through, exploiting information from the recto and verso images. First, the bleed-through pixels are identified, based on a non-stationary, linear model of the two texts overlapped in the recto-verso pair. In the second step, a dictionary learning-based sparse image inpainting technique, with non-local patch grouping, is used to reconstruct the bleed-through-contaminated image information. An overcomplete sparse dictionary is learned from the bleed-through-free image patches, which is then used to estimate a befitting fill-in for the identified bleed-through pixels. The non-local patch similarity is employed in the sparse reconstruction of each patch, to enforce the local similarity. Thanks to the intrinsic image sparsity and non-local patch similarity, the natural texture of the background is well reproduced in the bleed-through areas, and even a possible overestimation of the bleed through pixels is effectively corrected, so that the original appearance of the document is preserved. We evaluate the performance of the proposed method on the images of a popular database of ancient documents, and the results validate the performance of the proposed method compared to the state of the art.

  18. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  19. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

    Directory of Open Access Journals (Sweden)

    T. Toncian

    2016-01-01

    Full Text Available The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.

  20. Non-locality and memory effects in grain dynamics on a 2D dusty plasma quasi-crystal

    International Nuclear Information System (INIS)

    Ratynskaia, S.; Rypdal, K.; Milovanov, A.; Rasmussen, J. J.; Knapek, C.; Morfill, G.

    2005-01-01

    By tuning RF-power and neutral gas pressure as control parameters in a dust plasma crystal experiment it is possible to obtain a state exhibiting rather high mobility of the dust grains through development of defects, yet maintaining the global hexagonal structure. The state exhibits higher mobility and smaller vertical structures along the rim and larger and more slowly moving and rotating crystalline domains in the core. It is different from the critical transition between the crystalline and liquid state. Trajectories of all particles in a cluster consisting of about 700 dust grains are tracked through 30.000 frames (time-steps). During this time the length of a grain trajectory is typically considerably greater than the linear size of the cluster. Variogram and rescaled range (R/S) analysis of time series of particle positions reveal super-diffusive behavior which, from a stochastic process viewpoint, often is ascribed to either long memory effects or to the presence of non-locality manifested as Levy flights giving rise to heavy algebraic tails in the position increment probability distribution function (PDF). The experimental PDF is non-gaussian, but the tails are not algebraic. The core of the PDF, however, has the shape of a truncated Levy distribution, which is shown to be stretched exponential of width that expands in time in a super-diffusive manner. Thus, super-diffusion could in principle occur without long-range time dependence in the increment time series and without algebraic tails in the PDF. Analysis of the core PDF and PDFs on different level of coarse gaining of the time series, combined with variogram and R/S analysis techniques, are employed to disentangle memory and non-locality effects. The results are discussed and interpreted in the framework of a fractional kinetics approach. (Author)

  1. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  2. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  3. Non-national citizens regarding local taxes in Alicante province (1994-2014 / Los ciudadanos no nacionales y los impuestos locales. La atención al contribuyente extranjero en la provincia de Alicante (1994-2014

    Directory of Open Access Journals (Sweden)

    Irene Belmonte Martín

    2014-10-01

    Full Text Available This study offers an overview of the relationship between non-national citizens in the Alicante province – as the dominant province for foreigners -and their input to local taxes- as principal economic resource for municipalities. First, it aims to describe the strategies of the local public tax agency (Suma Gestión Tributaria de la Diputación Provincial de Alicante to achieve better communication with non-national regarding the taxing system. Secondly, it explores the understanding of Suma´s processes for the non-national taxpayer. The motivation is that complete integration of foreigners, as citizens full of rights and duties, with mutual empowerment for the local government and citizens alike.

  4. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  5. Combining Generalized Renewal Processes with Non-Extensive Entropy-Based q-Distributions for Reliability Applications

    Directory of Open Access Journals (Sweden)

    Isis Didier Lins

    2018-03-01

    Full Text Available The Generalized Renewal Process (GRP is a probabilistic model for repairable systems that can represent the usual states of a system after a repair: as new, as old, or in a condition between new and old. It is often coupled with the Weibull distribution, widely used in the reliability context. In this paper, we develop novel GRP models based on probability distributions that stem from the Tsallis’ non-extensive entropy, namely the q-Exponential and the q-Weibull distributions. The q-Exponential and Weibull distributions can model decreasing, constant or increasing failure intensity functions. However, the power law behavior of the q-Exponential probability density function for specific parameter values is an advantage over the Weibull distribution when adjusting data containing extreme values. The q-Weibull probability distribution, in turn, can also fit data with bathtub-shaped or unimodal failure intensities in addition to the behaviors already mentioned. Therefore, the q-Exponential-GRP is an alternative for the Weibull-GRP model and the q-Weibull-GRP generalizes both. The method of maximum likelihood is used for their parameters’ estimation by means of a particle swarm optimization algorithm, and Monte Carlo simulations are performed for the sake of validation. The proposed models and algorithms are applied to examples involving reliability-related data of complex systems and the obtained results suggest GRP plus q-distributions are promising techniques for the analyses of repairable systems.

  6. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System

    Science.gov (United States)

    Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-01

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897

  7. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  8. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  9. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  10. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    Science.gov (United States)

    Fristensky, Brian

    2007-01-01

    Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy) is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment) graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere. PMID:17291351

  11. BIRCH: A user-oriented, locally-customizable, bioinformatics system

    Directory of Open Access Journals (Sweden)

    Fristensky Brian

    2007-02-01

    Full Text Available Abstract Background Molecular biologists need sophisticated analytical tools which often demand extensive computational resources. While finding, installing, and using these tools can be challenging, pipelining data from one program to the next is particularly awkward, especially when using web-based programs. At the same time, system administrators tasked with maintaining these tools do not always appreciate the needs of research biologists. Results BIRCH (Biological Research Computing Hierarchy is an organizational framework for delivering bioinformatics resources to a user group, scaling from a single lab to a large institution. The BIRCH core distribution includes many popular bioinformatics programs, unified within the GDE (Genetic Data Environment graphic interface. Of equal importance, BIRCH provides the system administrator with tools that simplify the job of managing a multiuser bioinformatics system across different platforms and operating systems. These include tools for integrating locally-installed programs and databases into BIRCH, and for customizing the local BIRCH system to meet the needs of the user base. BIRCH can also act as a front end to provide a unified view of already-existing collections of bioinformatics software. Documentation for the BIRCH and locally-added programs is merged in a hierarchical set of web pages. In addition to manual pages for individual programs, BIRCH tutorials employ step by step examples, with screen shots and sample files, to illustrate both the important theoretical and practical considerations behind complex analytical tasks. Conclusion BIRCH provides a versatile organizational framework for managing software and databases, and making these accessible to a user base. Because of its network-centric design, BIRCH makes it possible for any user to do any task from anywhere.

  12. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  13. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  14. Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Britton, Keith R.; Starkschall, George; Liu, Helen; Chang, Joe Y.; Bilton, Stephen; Ezhil, Muthuveni; John-Baptiste, Sandra C.; Kantor, Michael; Cox, James D.; Komaki, Ritsuko; Mohan, Radhe

    2009-01-01

    Purpose: To determine the effect of interfractional changes in anatomy on the target and normal tissue dose distributions during course of radiotherapy in non-small-cell lung cancer patients. Methods and Materials: Weekly respiration-correlated four-dimensional computed tomography scans were acquired for 10 patients. Original beam arrangements from conventional and inverse treatment plans were transferred into each of the weekly four-dimensional computed tomography data sets, and the dose distributions were recalculated. Dosimetric changes to the target volumes and relevant normal structures relative to the baseline treatment plans were analyzed by dose-volume histograms. Results: The overall difference in the mean ± standard deviation of the doses to 95% of the planning target volume and internal target volume between the initial and weekly treatment plans was -11.9% ± 12.1% and -2.5% ± 3.9%, respectively. The mean ± standard deviation change in the internal target volume receiving 95% of the prescribed dose was -2.3% ± 4.1%. The overall differences in the mean ± standard deviation between the initial and weekly treatment plans was 3.1% ± 6.8% for the total lung volume exceeding 20 Gy, 2.2% ± 4.8% for mean total lung dose, and 34.3% ± 43.0% for the spinal cord maximal dose. Conclusion: Serial four-dimensional computed tomography scans provided useful anatomic information and dosimetric changes during radiotherapy. Although the observed dosimetric variations were small, on average, the interfractional changes in tumor volume, mobility, and patient setup was sometimes associated with dramatic dosimetric consequences. Therefore, for locally advanced lung cancer patients, efforts to include image-guided treatment and to perform repeated imaging during the treatment course are recommended

  15. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Chongxing Zhang

    2018-02-01

    Full Text Available Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  16. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.

    Science.gov (United States)

    Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo

    2018-02-11

    Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  17. Connecting two jumplike unravelings for non-Markovian open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto (Finland)

    2011-09-15

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  18. Connecting two jumplike unravelings for non-Markovian open quantum systems

    International Nuclear Information System (INIS)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki

    2011-01-01

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  19. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  20. Regional Distribution Shifts Help Explain Local Changes in Wintering Raptor Abundance: Implications for Interpreting Population Trends

    Science.gov (United States)

    Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.

    2014-01-01

    Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as

  1. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends.

    Directory of Open Access Journals (Sweden)

    Neil Paprocki

    Full Text Available Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975-2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus and Golden Eagles (Aquila chrysaetos showed the fastest rate of change, with 8.41 km yr(-1 and 7.74 km yr(-1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally

  2. Discretization independence implies non-locality in 4D discrete quantum gravity

    Science.gov (United States)

    Dittrich, Bianca; Kamiński, Wojciech; Steinhaus, Sebastian

    2014-12-01

    The 4D Regge action is invariant under 5-1 and 4-2 Pachner moves, which define a subset of (local) changes of the triangulation. Given this fact, one might hope to find a local path integral measure that makes the quantum theory invariant under these moves and hence makes the theory partially triangulation invariant. We show that such a local invariant path integral measure does not exist for the 4D linearized Regge theory. To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge action. This geometric interpretation will allow us to prove that the determinant of the Hessian of the 4D Regge action does not factorize over four-simplices or subsimplices. It furthermore allows us to determine configurations where this Hessian vanishes, which only appears to be the case in degenerate backgrounds or if one allows for different orientations of the simplices. We suggest a non-local measure factor that absorbs the non-local part of the determinant of the Hessian under 5-1 moves as well as a local measure factor that is preserved for very special configurations.

  3. Discretization independence implies non-locality in 4D discrete quantum gravity

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Kamiński, Wojciech; Steinhaus, Sebastian

    2014-01-01

    The 4D Regge action is invariant under 5–1 and 4–2 Pachner moves, which define a subset of (local) changes of the triangulation. Given this fact, one might hope to find a local path integral measure that makes the quantum theory invariant under these moves and hence makes the theory partially triangulation invariant. We show that such a local invariant path integral measure does not exist for the 4D linearized Regge theory. To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge action. This geometric interpretation will allow us to prove that the determinant of the Hessian of the 4D Regge action does not factorize over four-simplices or subsimplices. It furthermore allows us to determine configurations where this Hessian vanishes, which only appears to be the case in degenerate backgrounds or if one allows for different orientations of the simplices. We suggest a non-local measure factor that absorbs the non-local part of the determinant of the Hessian under 5–1 moves as well as a local measure factor that is preserved for very special configurations. (paper)

  4. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  5. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  6. Data Locality via Coordinated Caching for Distributed Processing

    Science.gov (United States)

    Fischer, M.; Kuehn, E.; Giffels, M.; Jung, C.

    2016-10-01

    To enable data locality, we have developed an approach of adding coordinated caches to existing compute clusters. Since the data stored locally is volatile and selected dynamically, only a fraction of local storage space is required. Our approach allows to freely select the degree at which data locality is provided. It may be used to work in conjunction with large network bandwidths, providing only highly used data to reduce peak loads. Alternatively, local storage may be scaled up to perform data analysis even with low network bandwidth. To prove the applicability of our approach, we have developed a prototype implementing all required functionality. It integrates seamlessly into batch systems, requiring practically no adjustments by users. We have now been actively using this prototype on a test cluster for HEP analyses. Specifically, it has been integral to our jet energy calibration analyses for CMS during run 2. The system has proven to be easily usable, while providing substantial performance improvements. Since confirming the applicability for our use case, we have investigated the design in a more general way. Simulations show that many infrastructure setups can benefit from our approach. For example, it may enable us to dynamically provide data locality in opportunistic cloud resources. The experience we have gained from our prototype enables us to realistically assess the feasibility for general production use.

  7. Environmentally-adapted local energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Moe, N; Oefverholm, E [NUTEK, Stockholm (Sweden); Andersson, Owe [EKAN Gruppen (Sweden); Froste, H [Swedish Environmental Protection Agency, Stockholm (Sweden)

    1997-10-01

    Energy companies, municipalities, property companies, firms of consultants, environmental groups and individuals are examples of players working locally to shape environmentally adapted energy systems. These players have needed information making them better able to make decisions on cost-efficient, environmentally-adapted energy systems. This book answers many of the questions they have put. The volume is mainly based on Swedish handbooks produced by the Swedish National Board for Industrial and Technical Development, NUTEK, together with the Swedish Environmental Protection Agency. These handbooks have been used in conjunction with municipal energy planning, local Agenda 21 work, to provide a basis for deciding on concrete local energy systems. The contents in brief: -The book throws new light on the concept of energy efficiency; -A section on the environment compares how air-polluting emissions vary with different methods of energy production; -A section contains more than 40 ideas for measures which can be profitable, reduce energy consumption and the impact on the environment all at the same time; -The book gives concrete examples of new, alternative and environmentally-adapted local energy systems. More efficient use of energy is included as a possible change of energy system; -The greatest emphasis is laid upon alternative energy systems for heating. It may be heating in a house, block of flats, office building or school; -Finally, there are examples of environmentally-adapted local energy planning.

  8. Thermal Distribution System | Energy Systems Integration Facility | NREL

    Science.gov (United States)

    Thermal Distribution System Thermal Distribution System The Energy Systems Integration Facility's . Photo of the roof of the Energy Systems Integration Facility. The thermal distribution bus allows low as 10% of its full load level). The 60-ton chiller cools water with continuous thermal control

  9. Prototyping the E-ELT M1 local control system communication infrastructure

    Science.gov (United States)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  10. Perturbation-induced emergence of Poisson-like behavior in non-Poisson systems

    International Nuclear Information System (INIS)

    Akin, Osman C; Grigolini, Paolo; Paradisi, Paolo

    2009-01-01

    The response of a system with ON–OFF intermittency to an external harmonic perturbation is discussed. ON–OFF intermittency is described by means of a sequence of random events, i.e., the transitions from the ON to the OFF state and vice versa. The unperturbed waiting times (WTs) between two events are assumed to satisfy a renewal condition, i.e., the WTs are statistically independent random variables. The response of a renewal model with non-Poisson ON–OFF intermittency, associated with non-exponential WT distribution, is analyzed by looking at the changes induced in the WT statistical distribution by the harmonic perturbation. The scaling properties are also studied by means of diffusion entropy analysis. It is found that, in the range of fast and relatively strong perturbation, the non-Poisson system displays a Poisson-like behavior in both WT distribution and scaling. In particular, the histogram of perturbed WTs becomes a sequence of equally spaced peaks, with intensity decaying exponentially in time. Further, the diffusion entropy detects an ordinary scaling (related to normal diffusion) instead of the expected unperturbed anomalous scaling related to the inverse power-law decay. Thus, an analysis based on the WT histogram and/or on scaling methods has to be considered with some care when dealing with perturbed intermittent systems

  11. Perspectives on the Direction of the Suncheon Bay National Garden from Local Residents and Non-Local Visitors

    Directory of Open Access Journals (Sweden)

    Moohan Kim

    2017-10-01

    Full Text Available As Korea’s first national garden, the Suncheon Bay National Garden is a major tourist attraction and a space of enjoyment for visitors. However, in 2016 its sudden establishment necessitates many discussions and measures, and requires that it seek direction based on current perceptions for its continued use in the future. This study begins a search for that direction by examining perspectives of local residents and non-local visitors on the relationships between visitors’ purposes, spatial needs, and required features. The research methodology included a survey administered to Suncheon residents and tourists on these factors. Results were analyzed by multiple correlation analysis and networking between the variables, and differences between Suncheon residents and non-local visitors were deduced; relationships among the factors were also verified. Both locals and visitors saw a need to emphasize garden experiences and education. The study also presents items that differ by respondent group. This study provides information that can be referred to when implementing management and plans for other national gardens.

  12. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    Science.gov (United States)

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  13. Non-local transport in a tokamak plasma divertor with recycling

    International Nuclear Information System (INIS)

    Abou-Assaleh, Z.; Petravic, M.; Vesey, R.

    1993-01-01

    The plasma transport, particle and energy fluxes, near the diverter plate with high recycling has been modeled by using an electron kinetic code (Fokker-Planck International) in conjunction with a two-fluid ambipolar code. We include the effects of ionization and excitation of the hydrogen atoms. The electron energy distribution calculated from the kinetic code shows a large deviation from Maxwellian especially near the plate. This deviation from Maxwellian is due to the non-local transport of the suprathermal electrons from the SOL, and due also to the absorption of the fast electrons by the target plate. The heat flux near the plate is shown to be nonlocal, in that it is not determined uniquely by the local plasma parameters. Therefore the classical transport coefficients in the fluid model must be modified by including a nonlocal effect to produce the kinetic results. The kinetic calculation is compared with those of the fluid code with different values of the electron heat flux limiter factor (f). To reduce the computer load, the initial condition we used corresponds to the equilibrium solution already found with the fluid code with f=0.2. The fluid and Fokker-Planck codes are relaxed until all transients associated with electron dynamics have disappeared. In section 2, we present the kinetic code. The fluid code is presented in section 3. The boundary conditions used in these simulations are given in section 4. Finally the results and conclusion of these simulations are presented in section 5

  14. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    Science.gov (United States)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  15. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  16. Non-local correlations within dynamical mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang

    2009-03-15

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  17. Non-local correlations within dynamical mean field theory

    International Nuclear Information System (INIS)

    Li, Gang

    2009-03-01

    The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)

  18. INTEGRATED MANAGEMENT SYSTEMS IN LOCAL PUBLIC ENTERPRIZE FOR PRODUCTION, DISTRIBUTION AND CLEANING OF WASTED WATER

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-06-01

    Full Text Available Appearance of large number of management systems, with different and sometimes divergent demands, needs reconsideration of their implementation strategies and their integration in one integrated management system (IMS. So defined IMS would be designed and implemented in different areas. In this paper is presented basic concept of integration of partical management systems in areas of quality (ISO 9001, environmental protection (ISO 14001, occupational health (ISO 18001, food safety (ISO 22000 and accreditation of laboratories (ISO17025/ISO17020. As a pilot organization is choosed local public enterprise for production, supply and drain of water.

  19. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    Science.gov (United States)

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  20. A non-local hidden-variable model that violates Leggett-type inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Zela, F de [Departamento de Ciencias, Seccion Fisica, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru)

    2008-12-19

    Recent experiments of Groeblacher et al proved the violation of a Leggett-type inequality that was claimed to be valid for a broad class of non-local hidden-variable theories. The impossibility of constructing a non-local and realistic theory, unless it entails highly counterintuitive features, seems thus to have been experimentally proved. This would bring us close to a definite refutation of realism. Indeed, realism was proved to be also incompatible with locality, according to a series of experiments testing Bell inequalities. The present paper addresses the said experiments of Groeblacher et al and presents an explicit, contextual and realistic, model that reproduces the predictions of quantum mechanics. It thus violates the Leggett-type inequality that was established with the aim of ruling out a supposedly broad class of non-local models. We can thus conclude that plausible contextual, realistic, models are still tenable. This restates the possibility of a future completion of quantum mechanics by a realistic and contextual theory which is not in a class containing only highly counterintuitive models. The class that was ruled out by the experiments of Groeblacher et al is thus proved to be a limited one, arbitrarily separating models that physically belong in the same class.