WorldWideScience

Sample records for non-linear ultrasound nlu

  1. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  2. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  3. Understanding of Materials State and its Degradation using Non-Linear Ultrasound Approaches for Lamb Wave Propagation

    Science.gov (United States)

    2015-05-31

    welded as well as HAZ region. Nonlinear Ultrasonic (NLU) is also now used to characterise the creep damage. Sony Baby et al. used the NLU technique...Šohaj, R Foret, “Microstructural stability of 316TI/P92 and 17242/P91 weld joints”, METAL 2011, 18th – 20th May 2011, Brno, Czech Republic, EU. [60] P J...harmonic generation”, J. Appl. Phys., 81(7); 2957-2962 (1997). [63] G E Dieter, Mechanical Metallurgy , McGraw-Hill Book Co., 1988 [64] J H Cantrell, and W

  4. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  5. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  6. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    International Nuclear Information System (INIS)

    Haar, Gail ter

    2008-01-01

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients

  7. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    .3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS......) with a linear array transducer. The second harmonic imaging is obtained by a pulse inversion technique. The received data is beamformed by the SASB using a Beamformation Toolbox. In the measurements the lateral resolution at -6 dB is improved by 66% compared to the conventional imaging algorithm. There is also...... a 35% improvement for the lateral resolution at -6 dB compared with the sole harmonic imaging and a 46% improvement compared with merely using the SASB....

  8. Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized....... The signal-to-noise-ratio can in this way be optimized. The waveform design is based on least squares optimization. A desired amplitude spectrum is chosen, hereafter the phase spectrum is chosen, so that the instantaneous frequency takes on the form of a third order polynomial. The finite energy waveform...

  9. Correction of Non-Linear Propagation Artifact in Contrast-Enhanced Ultrasound Imaging of Carotid Arteries: Methods and in Vitro Evaluation.

    Science.gov (United States)

    Yildiz, Yesna O; Eckersley, Robert J; Senior, Roxy; Lim, Adrian K P; Cosgrove, David; Tang, Meng-Xing

    2015-07-01

    Non-linear propagation of ultrasound creates artifacts in contrast-enhanced ultrasound images that significantly affect both qualitative and quantitative assessments of tissue perfusion. This article describes the development and evaluation of a new algorithm to correct for this artifact. The correction is a post-processing method that estimates and removes non-linear artifact in the contrast-specific image using the simultaneously acquired B-mode image data. The method is evaluated on carotid artery flow phantoms with large and small vessels containing microbubbles of various concentrations at different acoustic pressures. The algorithm significantly reduces non-linear artifacts while maintaining the contrast signal from bubbles to increase the contrast-to-tissue ratio by up to 11 dB. Contrast signal from a small vessel 600 μm in diameter buried in tissue artifacts before correction was recovered after the correction. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  11. Non-invasive ambient pressure estimation using non-linear ultrasound contrast agents

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup

    Many attempts to find a non-invasive procedure to measure the blood pressure locally in the body have been made. This dissertation focuses on the approaches which utilize highly compressible ultrasound contrast agents as ambient pressure sensors. The literature within the topic has been reviewed...

  12. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    Science.gov (United States)

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Non-contact ultrasound techniques

    International Nuclear Information System (INIS)

    Khazali Mohd Zin

    2001-01-01

    Non-contact ultrasound plays significant role in material characterisation and inspection. Unlike conventional ultrasonic techniques, non-contact ultrasonic is mostly applicable to areas where the former has its weaknesses and limitations. It is interesting to note that the non-contact ultrasonic technique has an important significant application in industry. The technique is signified by the fact that the object to be inspected is further away from the ultrasonic source, no couplant is needed and inconsistent pressure between the transducer and the specimen can be eliminated. The paper discusses some of the non-contact ultrasound technique and its applications. (Author)

  14. Ethical analysis of non-medical fetal ultrasound.

    Science.gov (United States)

    Leung, John Lai Yin; Pang, Samantha Mei Che

    2009-09-01

    Obstetric ultrasound is the well-recognized prenatal test used to visualize and determine the condition of a pregnant woman and her fetus. Apart from the clinical application, some businesses have started promoting the use of fetal ultrasound machines for nonmedical reasons. Non-medical fetal ultrasound (also known as 'keepsake' ultrasound) is defined as using ultrasound to view, take a picture, or determine the sex of a fetus without a medical indication. Notwithstanding the guidelines and warnings regarding ultrasound safety issued by governments and professional bodies, the absence of scientifically proven physical harm to fetuses from this procedure seems to provide these businesses with grounds for rapid expansion. However, this argument is too simplistic because current epidemiological evidence is not synchronous with advancing ultrasound technology. As non-medical fetal ultrasound has aroused very significant public attention, a thorough ethical analysis of this topic is essential. Using a multifaceted approach, we analyse the ethical perspective of non-medical fetal ultrasound in terms of the expectant mother, the fetus and health professionals. After applying four major theories of ethics and principles (the precautionary principle; theories of consequentialism and impartiality; duty-based theory; and rights-based theories), we conclude that obstetric ultrasound practice is ethically justifiable only if the indication for its use is based on medical evidence. Non-medical fetal ultrasound can be considered ethically unjustifiable. Nevertheless, the ethical analysis of this issue is time dependent owing to rapid advancements in ultrasound technology and the safety issue. The role of health professionals in ensuring that obstetric ultrasound is an ethically justifiable practice is also discussed.

  15. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    frequencies must be performed. Combining it with Field II, the generation of non-linear simulation for any geometry with any excitation array transducer becomes feasible. The purpose of this paper is to make a general pulsed simulation software using the modified ASA. Linear and phased array transducers......The optimization of non-linear ultrasound imaging should in a first step be based on simulation, as this makes parameter studies considerably easier than making transducer prototypes. Such a simulation program should be capable of simulating non-linear pulsed fields for arbitrary transducer...... geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  16. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  17. Mechanics of ultrasound elastography

    Science.gov (United States)

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  18. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  19. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  20. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  1. Contrast-enhanced Ultrasound for Non-tumor Liver Diseases

    Directory of Open Access Journals (Sweden)

    H Maruyama

    2012-03-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is a simple, safe and reliable technique for the clinical management of patients with various liver diseases. Although the major target of the technique may be focal hepatic lesions, it is also effective for the diagnosis of non-tumor liver diseases, such as grading hepatic fibrosis, characterization of chronic liver diseases and diagnosis of portal vein thrombosis. This review article aimed to overview the recent application of CEUS in the assessment of non-tumor liver diseases. Keywords: Cirrhosis, contrast agent, fibrosis, idiopathic portal hypertension, microbubble, portal vein thrombosis, ultrasound.

  2. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  3. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  4. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    Science.gov (United States)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  5. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    -linear propagation. The speed of sound is calculated from the instantaneous pressure of the pulse and the nonlinearity B/A parameter of the medium. The harmonic field is found by introducing a number of virtual planes in front of the aperture and then propagating the pulse using Burgers' solution between the planes....... Simulations on the acoustical axis of an array transducer were performed and compared to measurements made in a water tank. A 3 MHz convex array transducer with a pitch of 0.53 mm and a height of 13 mm was used. The electronic focus was at 45 mm and 16 elements were used for emission. The emitted pressure...... was 1.4 MPa measured 6 mm from the aperture by a Force Institute MH25-5 needle hydrophone in a water bath. The build-up of higher harmonics can here be predicted accurately up to the 5th harmonic. The second harmonic is simulated with an accuracy of ±2.6 dB and the third harmonic with ±2 dB compared...

  6. Genetic design of interpolated non-linear controllers for linear plants

    International Nuclear Information System (INIS)

    Ajlouni, N.

    2000-01-01

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  7. [Size of testes and epididymes in boys up to 17 years of life assessed by ultrasound method and method of external linear measurements].

    Science.gov (United States)

    Osemlak, Paweł

    2011-01-01

    1. Determination of the size of testes and epididymes on the right and left side, in healthy boys in various age groups with use of non-invasive ultrasound examination method and the method of external linear measurements. 2. Determination of age, when intensive growth of testicular and epididymal size starts. 3. Determination whether there are statistically significant differences between the size of the right and the left testis, as well as between the right and left epididymis. 4. Evaluation of the ultrasound method and method of external linear measurements in their use for scientific investigations. 309 boys, aged from 1 day to 17 years of life, treated in the Clinical Department of Paediatric Surgery and Traumatology of the Medical University in Lublin from 2009 to 2010 due to diseases needed to be treated surgically, but not the scrotum, were examined in this study. No pathologies influencing the development of genital organs were found in these boys. Dimension of the testes was studied with ultrasound method and with method of external linear measurements. Dimension of epididymes was only examined with ultrasound method. In every age group the author calculated mean arithmetical values for: testiscular length, thickness, width and volume, as well as epididymal depth and basis. With consideration of standard deviation (X+/-1 SD) it was possible to define the range of dimension of healthy testes and epididymes and their change with age. Final dimensions of the right and left testis as well as of the right and left epididymis were compared. Dimensions of the testis on the same side of body acquired with the ultrasound method and acquired with the method of external linear measurements were compared. Statistical work-up with Wilcoxon test for two dependent groups was implemented. Ultrasound evaluation pointed to intensive 2.5-times increase in testicular length and width, and 2-times increase in testicular thickness in boys aged 10 to 17 years. Mean volume of

  8. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  9. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  10. Thyroid nodule classification using ultrasound elastography via linear discriminant analysis.

    Science.gov (United States)

    Luo, Si; Kim, Eung-Hun; Dighe, Manjiri; Kim, Yongmin

    2011-05-01

    The non-surgical diagnosis of thyroid nodules is currently made via a fine needle aspiration (FNA) biopsy. It is estimated that somewhere between 250,000 and 300,000 thyroid FNA biopsies are performed in the United States annually. However, a large percentage (approximately 70%) of these biopsies turn out to be benign. Since the aggressive FNA management of thyroid nodules is costly, quantitative risk assessment and stratification of a nodule's malignancy is of value in triage and more appropriate healthcare resources utilization. In this paper, we introduce a new method for classifying the thyroid nodules based on the ultrasound (US) elastography features. Unlike approaches to assess the stiffness of a thyroid nodule by visually inspecting the pseudo-color pattern in the strain image, we use a classification algorithm to stratify the nodule by using the power spectrum of strain rate waveform extracted from the US elastography image sequence. Pulsation from the carotid artery was used to compress the thyroid nodules. Ultrasound data previously acquired from 98 thyroid nodules were used in this retrospective study to evaluate our classification algorithm. A classifier was developed based on the linear discriminant analysis (LDA) and used to differentiate the thyroid nodules into two types: (I) no FNA (observation-only) and (II) FNA. Using our method, 62 nodules were classified as type I, all of which were benign, while 36 nodules were classified as Type-II, 16 malignant and 20 benign, resulting in a sensitivity of 100% and specificity of 75.6% in detecting malignant thyroid nodules. This indicates that our triage method based on US elastography has the potential to substantially reduce the number of FNA biopsies (63.3%) by detecting benign nodules and managing them via follow-up observations rather than an FNA biopsy. Published by Elsevier B.V.

  11. Non-Invasive In Vivo Ultrasound Temperature Estimation

    Science.gov (United States)

    Bayat, Mahdi

    could result in significant artifacts. The first part of this thesis addresses the first limitation by introducing the Recursive Echo Strain Filter (RESF) as a new temperature reconstruction model which largely corrects for the spatial inconsistencies resulting from the infinitesimal model. The performance of this model is validated using the data collected during sub therapeutic temperature changes in the tissue mimicking phantom as well as ex vivo tissue blocks. The second part of this thesis deals with in vivo ultrasound thermography. Tissue deformations caused by natural motions (e.g. respiration, gasping, blood pulsation etc) can create non-thermal changes to the ultrasound echoes which are not accounted for in the derivation of physical model for temperature estimation. These fluctuations can create severe artifacts in the estimated temperature field. Using statistical signal processing techniques an adaptive method is presented which takes advantage of the localized and global availability of these interference patterns and use this data to enhance the estimated temperature in the region of interest. We then propose a model based technique for continuous tracking of temperature in the presence of natural motion and deformation. The method uses the direct discretization of the transient bioheat equation to derive a state space model of temperature change. This model is then used to build a linear estimator based on the Kalman filtering capable of robust estimation of temperature change in the presence of tissue motion and deformation. The robustness of the adaptive and model-based models in removing motion and deformation artifacts is demonstrated using data from in vivo experiments. Both methods are shown to provide effective cancellation of the artifacts with minimal effect on the expected temperature dynamics.

  12. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles

    Science.gov (United States)

    Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen

    2016-01-01

    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408

  13. [Ultrasound in the management of non-melanoma skin cancer].

    Science.gov (United States)

    Hernández Ibáñez, C; Aguilar Bernier, M; de Troya Martín, M

    2015-11-01

    Cutaneous ultrasound plays an important role in the study and management of non-melanoma skin cancer. Among other factors, this technique contributes to the diagnosis and differential diagnosis of these tumours, the establishment of their size and relation to neighbouring structures, the delimitation of surgical margins, and the detection of subclinical and recurrent lesions. The present article analyses the role of cutaneous ultrasound in the field of non-melanoma skin cancer (basal and squamous cell carcinomas, lymphomas and dermatofibrosarcoma) through a literature review. Copyright © 2015 Academia Española de Dermatología y Venereología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  15. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  16. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  17. Simulation of Second Harmonic Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2010-01-01

    A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second...... harmonic component based on ASA and Field II, and to compare with results from the simulation program Abersim. A linear array transducer with a center frequency of 4 MHz and 64 active elements is used as the transmitting source. The initial plane is 5 mm away from the transducer surface...

  18. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  19. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  20. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....

  1. Ultrasound cavitation versus cryolipolysis for non-invasive body contouring.

    Science.gov (United States)

    Mahmoud ELdesoky, Mohamed Taher; Mohamed Abutaleb, Enas ELsayed; Mohamed Mousa, Gihan Samir

    2015-08-24

    The demand for non-surgical and non-invasive devices is continuous and increasing. Such devices have gradually gained ground in the reduction of localised fat and the improvement of body contouring. The study aimed to compare the effects of ultrasound cavitation and cryolipolysis on localised abdominal fat. In total, 60 participants with a body mass index (BMI) over 30 kg/m 2 , whose age ranged between 25 and 45 years, were included. The participants were randomly assigned to three groups of 20 each, using ultrasound cavitation and diet, cryolipolysis and diet, and diet only (the control group), respectively. Measures were bodyweight, BMI, waist circumference and suprailiac skinfold were measured at the beginning of the study and 2 months later. The three groups showed significant improvements in all measured variables after 2 months. There was no statistically significant difference in bodyweight or in BMI among the groups after treatment. However, the groups using ultrasound cavitation and cryolipolysis showed better post-treatment improvement than the diet-only group in waist circumference and suprailiac skinfold. There was no statistically significant difference post-treatment between the cavitation and cryolipolysis groups in waist circumference or suprailiac skinfold. Both ultrasound cavitation and cryolipolysis are safe and effective for the reduction of abdominal fat thickness and for abdominal contouring. © 2015 The Australasian College of Dermatologists.

  2. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  3. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  4. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  5. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  6. Imaging of common bile duct by linear endoscopic ultrasound

    Institute of Scientific and Technical Information of China (English)

    Malay; Sharma; Amit; Pathak; Abid; Shoukat; Chittapuram; Srinivasan; Rameshbabu; Akash; Ajmera; Zeeshn; Ahamad; Wani; Praveer; Rai

    2015-01-01

    Imaging of common bile duct(CBD) can be done by many techniques. Endoscopic retrograde cholangiopancreaticography is considered the gold standard for imaging of CBD. A standard technique of imaging of CBD by endoscopic ultrasound(EUS) has not been specifically described. The available descriptions mention different stations of imaging from the stomach and duodenum. The CBD lies closest to duodenum and choice of imaging may be restricted to duodenum for many operators. Generally most operators prefer multi station imaging during EUS and the choice of selecting the initial station varies from operator to operator. Detailed evaluation of CBD is frequently the main focus of imaging during EUS and in such situations multi station imaging with a high-resolution ultrasound scanner may provide useful information. Examination of the CBD is one of the primary indications for doing an EUS and it can be done from five stations:(1) the fundus of stomach;(2) body of stomach;(3) duodenal bulb;(4) descending duodenum; and(5) antrum. Following down the upper 1/3rd of CBD can do imaging of entire CBD from the liver window and following up the lower 1/3rd of CBD can do imaging of entire CBD from the pancreatic window. This article aims at simplifying the techniques of imaging of CBD by linear EUS.

  7. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  8. Synthesis of Laboratory Ultrasound Contrast Agents

    Directory of Open Access Journals (Sweden)

    Jaemin Oh

    2013-10-01

    Full Text Available Ultrasound Contrast Agents (UCAs were developed to maximize reflection contrast so that organs can be seen clearly in ultrasound imaging. UCAs increase the signal to noise ratio (SNR by linear and non-linear mechanisms and thus help more accurately visualize the internal organs and blood vessels. However, the UCAs on the market are not only expensive, but are also not optimized for use in various therapeutic research applications such as ultrasound-aided drug delivery. The UCAs fabricated in this study utilize conventional lipid and albumin for shell formation and perfluorobutane as the internal gas. The shape and density of the UCA bubbles were verified by optical microscopy and Cryo SEM, and compared to those of the commercially available UCAs, Definity® and Sonovue®. The size distribution and characteristics of the reflected signal were also analyzed using a particle size analyzer and ultrasound imaging equipment. Our experiments indicate that UCAs composed of spherical microbubbles, the majority of which were smaller than 1 um, were successfully synthesized. Microbubbles 10 um or larger were also identified when different shell characteristics and filters were used. These laboratory UCAs can be used for research in both diagnoses and therapies.

  9. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo

    Science.gov (United States)

    Downs, Matthew E.; Lee, Stephen A.; Yang, Georgiana; Kim, Seaok; Wang, Qi; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.

  10. Non-rigid ultrasound image registration using generalized relaxation labeling process

    Science.gov (United States)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  11. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  12. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  13. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  14. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  15. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  16. Non-linear realization of α0 -extended supersymmetry

    International Nuclear Information System (INIS)

    Nishino, Hitoshi

    2000-01-01

    As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time

  17. Modeling of ultrasound transducers

    DEFF Research Database (Denmark)

    Bæk, David

    This Ph.D. dissertation addresses ultrasound transducer modeling for medical ultrasound imaging and combines the modeling with the ultrasound simulation program Field II. The project firstly presents two new models for spatial impulse responses (SIR)s to a rectangular elevation focused transducer...... (REFT) and to a convex rectangular elevation focused transducer (CREFT). These models are solvable on an analog time scale and give exact smooth solutions to the Rayleigh integral. The REFT model exhibits a root mean square (RMS) error relative to Field II predictions of 0.41 % at 3400 MHz, and 1.......37 % at 100MHz. The CREFT model exhibits a RMS deviation of 0.01 % relative to the exact numerical solution on a CREFT transducer. A convex non-elevation focused, a REFT, and a linear flat transducer are shown to be covered with the CREFT model as well. Pressure pulses calculated with a one...

  18. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  19. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  20. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  1. Point-of-care ultrasound education for non-physician clinicians in a resource-limited emergency department.

    Science.gov (United States)

    Stolz, Lori A; Muruganandan, Krithika M; Bisanzo, Mark C; Sebikali, Mugisha J; Dreifuss, Bradley A; Hammerstedt, Heather S; Nelson, Sara W; Nayabale, Irene; Adhikari, Srikar; Shah, Sachita P

    2015-08-01

    To describe the outcomes and curriculum components of an educational programme to train non-physician clinicians working in a rural, Ugandan emergency department in the use of POC ultrasound. The use of point-of-care ultrasound was taught to emergency care providers through lectures, bedsides teaching and hands-on practical sessions. Lectures were tailored to care providers' knowledge base and available therapeutic means. Every ultrasound examination performed by these providers was recorded over 4.5 years. Findings of these examinations were categorised as positive, negative, indeterminate or procedural. Other radiologic studies ordered over this same time period were also recorded. A total of 22,639 patients were evaluated in the emergency department by emergency care providers, and 2185 point-of-care ultrasound examinations were performed on 1886 patients. Most commonly used were the focused assessment with sonography in trauma examination (53.3%) and echocardiography (16.4%). Point-of-care ultrasound studies were performed more frequently than radiology department-performed studies. Positive findings were documented in 46% of all examinations. We describe a novel curriculum for point-of-care ultrasound education of non-physician emergency practitioners in a resource-limited setting. These non-physician clinicians integrated ultrasound into clinical practice and utilised this imaging modality more frequently than traditional radiology department imaging with a large proportion of positive findings. © 2015 John Wiley & Sons Ltd.

  2. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  3. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  4. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  5. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  6. Incidentally detection of non-palpable testicular nodules at scrotal ultrasound: What is new?

    Directory of Open Access Journals (Sweden)

    Massimo Valentino

    2014-12-01

    Full Text Available The increased use of ultrasound in patients with urological and andrological symptoms has given an higher detection of intra-testicular nodules. Most of these lesions are hypoechoic and their interpretation is often equivocal. Recently, new ultrasound techniques have been developed alongside of B-mode and color-Doppler ultrasound. Although not completely standardized, contrast-enhanced ultrasound (CEUS and tissue elastography (TE, added to traditional ultrasonography, can provide useful information about the correct interpretation of incidentally detected non-palpable testicular nodules. The purpose of this review article is to illustrate these new techniques in the patient management.

  7. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  8. Renal Ultrasound in the Diagnosis of the Non-functioning Kidney

    International Nuclear Information System (INIS)

    Kang, Ik Won; Suh, Jeong Soo

    1982-01-01

    Renal ultrasound is independent of renal function and capable of renal imaging in impaired or dysplastic renal diseases. Authors reviewed renal ultrasonographic findings of 36 cases which showed non-visualization in intravenous pyelography from Feb. 1979 to Sep. 1982 at Seoul National university Hospital. The results are as follows: 1. Causes of non-visualization of the kidney in IVP were unilateral hydronephrosis(18 cases), renal tuberculosis(7), renal failure(6), renal agenesis(3), tumor(1),and pyonephrosis(1) 2. The sonographic findings were diagnostic in all the cases of unilateral hydronephrosis, renal agenesis and renal tumor. 3. The sonographic findings were not diagnostic but suggestive in more than half cases of renal tuberculosis. 4. Renal ultrasound was not helpful in the diagnosis of renal failure, but useful in delineation of renal size and shape

  9. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  10. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  11. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  12. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  13. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Soman, N R; Marsh, J N; Lanza, G M; Wickline, S A [Washington University School of Medicine, Consortium for Translational Research in Advanced Imaging and Nanomedicine, CTRAIN, Campus Box 8215, St Louis, MO 63110 (United States)], E-mail: saw@wuphys.wustl.edu

    2008-05-07

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  14. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    International Nuclear Information System (INIS)

    Soman, N R; Marsh, J N; Lanza, G M; Wickline, S A

    2008-01-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles

  15. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Science.gov (United States)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  16. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  17. Ultrasound generation with high power and coil only EMAT concepts.

    Science.gov (United States)

    Rueter, Dirk; Morgenstern, Tino

    2014-12-01

    Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  19. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  20. The development of a practical and uncomplicated predictive equation to determine liver volume from simple linear ultrasound measurements of the liver

    International Nuclear Information System (INIS)

    Childs, Jessie T.; Thoirs, Kerry A.; Esterman, Adrian J.

    2016-01-01

    This study sought to develop a practical and uncomplicated predictive equation that could accurately calculate liver volumes, using multiple simple linear ultrasound measurements combined with measurements of body size. Penalized (lasso) regression was used to develop a new model and compare it to the ultrasonic linear measurements currently used clinically. A Bland–Altman analysis showed that the large limits of agreement of the new model render it too inaccurate to be of clinical use for estimating liver volume per se, but it holds value in tracking disease progress or response to treatment over time in individuals, and is certainly substantially better as an indicator of overall liver size than the ultrasonic linear measurements currently being used clinically. - Highlights: • A new model to calculate liver volumes from simple linear ultrasound measurements. • This model was compared to the linear measurements currently used clinically. • The new model holds value in tracking disease progress or response to treatment. • This model is better as an indicator of overall liver size.

  1. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  2. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  3. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  4. The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection

    Science.gov (United States)

    Franzen, J.

    1994-01-01

    The superposition of higher order multipole fields on the basic quadrupole field in ion traps generates a non-harmonic oscillator system for the ions. Fourier analyses of simulated secular oscillations in non-linear ion traps, therefore, not only reveal the sideband frequencies, well-known from the Mathieu theory, but additionally a commonwealth of multipole-specific overtones (or higher harmonics), and corresponding sidebands of overtones. Non-linear resonances occur when the overtone frequencies match sideband frequencies. It can be shown that in each of the resonance conditions, not just one overtone matches one sideband, instead, groups of overtones match groups of sidebands. The generation of overtones is studied by Fourier analysis of computed ion oscillations in the direction of thez axis. Even multipoles (octopole, dodecapole, etc.) generate only odd orders of higher harmonics (3, 5, etc.) of the secular frequency, explainable by the symmetry with regard to the planez = 0. In contrast, odd multipoles (hexapole, decapole, etc.) generate all orders of higher harmonics. For all multipoles, the lowest higher harmonics are found to be strongest. With multipoles of higher orders, the strength of the overtones decreases weaker with the order of the harmonics. Forz direction resonances in stationary trapping fields, the function governing the amplitude growth is investigated by computer simulations. The ejection in thez direction, as a function of timet, follows, at least in good approximation, the equation wheren is the order of multipole, andC is a constant. This equation is strictly valid for the electrically applied dipole field (n = 1), matching the secular frequency or one of its sidebands, resulting in a linear increase of the amplitude. It is valid also for the basic quadrupole field (n = 2) outside the stability area, giving an exponential increase. It is at least approximately valid for the non-linear resonances by weak superpositions of all higher odd

  5. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  6. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  7. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  8. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  9. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  10. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  11. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  12. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  14. Relative ultrasound energy measurement circuit

    OpenAIRE

    Gustafsson, E.Martin I.; Johansson, Jonny; Delsing, Jerker

    2005-01-01

    A relative ultrasound energy estimation circuit has been designed in a standard 0.35-μm CMOS process, to be a part of a thumb size internet connected wireless ultrasound measurement system. This circuit measures the relative energy between received ultrasound pulses, and presents an output signal that is linear to the received energy. Post-layout simulations indicate 7 bit linearity for 500 mV input signals, 5 μsec startup and stop times, 2.6 mW power consumption during active state. The acti...

  15. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  16. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  17. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  18. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  19. Two-dimensional mapping of needle visibility with linear and curved array for ultrasound-guided interventional procedure

    Science.gov (United States)

    Susanti, Hesty; Suprijanto, Kurniadi, Deddy

    2018-02-01

    Needle visibility in ultrasound-guided technique has been a crucial factor for successful interventional procedure. It has been affected by several factors, i.e. puncture depth, insertion angle, needle size and material, and imaging technology. The influences of those factors made the needle not always well visible. 20 G needles of 15 cm length (Nano Line, facet) were inserted into water bath with variation of insertion angles and depths. Ultrasound measurements are performed with BK-Medical Flex Focus 800 using 12 MHz linear array and 5 MHz curved array in Ultrasound Guided Regional Anesthesia mode. We propose 3 criteria to evaluate needle visibility, i.e. maximum intensity, mean intensity, and the ratio between minimum and maximum intensity. Those criteria were then depicted into representative maps for practical purpose. The best criterion candidate for representing the needle visibility was criterion 1. Generally, the appearance pattern of the needle from this criterion was relatively consistent, i.e. for linear array, it was relatively poor visibility in the middle part of the shaft, while for curved array, it is relatively better visible toward the end of the shaft. With further investigations, for example with the use of tissue-mimicking phantom, the representative maps can be built for future practical purpose, i.e. as a tool for clinicians to ensure better needle placement in clinical application. It will help them to avoid the "dead" area where the needle is not well visible, so it can reduce the risks of vital structures traversing and the number of required insertion, resulting in less patient morbidity. Those simple criteria and representative maps can be utilized to evaluate general visibility patterns of the needle in vast range of needle types and sizes in different insertion media. This information is also important as an early investigation for future research of needle visibility improvement, i.e. the development of beamforming strategies and

  20. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  1. Noise and non-linearities in high-throughput data

    International Nuclear Information System (INIS)

    Nguyen, Viet-Anh; Lió, Pietro; Koukolíková-Nicola, Zdena; Bagnoli, Franco

    2009-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets

  2. Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials.

    Science.gov (United States)

    Gosálbez, J; Wright, W M D; Jiang, W; Carrión, A; Genovés, V; Bosch, I

    2018-08-01

    In this paper, the study of frequency-dependent ultrasonic attenuation in strongly heterogeneous cementitious materials is addressed. To accurately determine the attenuation over a wide frequency range, it is necessary to have suitable excitation techniques. We have analysed two kinds of ultrasound techniques: contact ultrasound and airborne non-contact ultrasound. The mathematical formulation for frequency-dependent attenuation has been established and it has been revealed that each technique may achieve similar results but requires specific different calibration processes. In particular, the airborne non-contact technique suffers high attenuation due to energy losses at the air-material interfaces. Thus, its bandwidth is limited to low frequencies but it does not require physical contact between transducer and specimen. In contrast, the classical contact technique can manage higher frequencies but the measurement depends on the pressure between the transducer and the specimen. Cement specimens have been tested with both techniques and frequency attenuation dependence has been estimated. Similar results were achieved at overlapping bandwidth and it has been demonstrated that the airborne non-contact ultrasound technique could be a viable alternative to the classical contact technique. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Non-invasive Estimation of Pressure Changes using 2-D Vector Velocity Ultrasound: An Experimental Study with In-Vivo Examples

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Villagómez Hoyos, Carlos Armando; Møller, Niclas Dechau

    2018-01-01

    and at the aortic valve of two healthy volunteers. Ultrasound measurements were performed using the experimental scanner SARUS, in combination with an 8MHz linear array transducer for experimental scans and a carotid scan, whereas a 3.5MHz phased array probe was employed for a scan of an aortic valve. Measured 2-D......A non-invasive method for estimating intravascular pressure changes using 2-D vector velocity is presented. The method was first validated on computational fluid dynamics (CFD) data, and with catheter measurements on phantoms. Hereafter, the method was tested in-vivo at the carotid bifurcation...

  4. Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression

    NARCIS (Netherlands)

    D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)

    2013-01-01

    textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the

  5. Contributions to ultrasound monitoring of the process of milk curdling.

    Science.gov (United States)

    Jiménez, Antonio; Rufo, Montaña; Paniagua, Jesús M; Crespo, Abel T; Guerrero, M Patricia; Riballo, M José

    2017-04-01

    Ultrasound evaluation permits the state of milk being curdled to be determined quickly and cheaply, thus satisfying the demands faced by today's dairy product producers. This paper describes the non-invasive ultrasonic method of in situ monitoring the changing physical properties of milk during the renneting process. The basic objectives of the study were, on the one hand, to confirm the usefulness of conventional non-destructive ultrasonic testing (time-of-flight and attenuation of the ultrasound waves) in monitoring the process in the case of ewe's milk, and, on the other, to include other ultrasound parameters which have not previously been considered in studies on this topic, in particular, parameters provided by the Fast Fourier Transform technique. The experimental study was carried out in a dairy industry environment on four 52-l samples of raw milk in which were immersed 500kHz ultrasound transducers. Other physicochemical parameters of the raw milk (pH, dry matter, protein, Gerber fat test, and lactose) were measured, as also were the pH and temperature of the curdled samples simultaneously with the ultrasound tests. Another contribution of this study is the linear correlation analysis of the aforementioned ultrasound parameters and the physicochemical properties of the curdled milk. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  7. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  8. Kidney anomalies diagnosed by prenatal ultrasound screening and associated non-urinary malformations

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Olsen, Morten Smærup; Sunde, Lone

    2016-01-01

    ObjectivesTo estimate the prevalence of kidney anomalies at second trimester ultrasound screening, and furthermore, to investigate pregnancy outcomes and the pattern of additional malformations. MethodsWe previously identified all women attending second-trimester ultrasound scans in Denmark between...... of non-urinary malformations, comparing the prevalences in infants with and without prenatally diagnosed kidney anomalies. ResultsThe prevalence of fetuses with kidney anomalies at second trimester scans was 11.4 per 10000 fetuses. Among the 412 fetuses identified, 127 pregnancies were terminated....... For live born children the prevalence of additional non-urinary malformations was four times higher (95% CI: 3-5) compared with the prevalence among children without prenatal kidney anomalies. Digestive system anomalies were particularly prevalent. ConclusionThese population-based data provide additional...

  9. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  10. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  11. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  12. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  13. Focused ultrasound in ophthalmology

    Directory of Open Access Journals (Sweden)

    Silverman RH

    2016-09-01

    Full Text Available Ronald H Silverman1,2 1Department of Ophthalmology, Columbia University Medical Center, 2F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA Abstract: The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via cilio-destruction, tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. Keywords: ophthalmic ultrasound, ultrasound biomicroscopy (UBM, high-intensity focused ultrasound (HIFU, ultrafast imaging, Doppler imaging 

  14. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  15. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  16. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  17. Validity of purchasing power parity for selected Latin American countries: Linear and non-linear unit root tests

    Directory of Open Access Journals (Sweden)

    Claudio Roberto Fóffano Vasconcelos

    2016-01-01

    Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.

  18. Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Fumiya; Ando, Keita, E-mail: kando@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-11-15

    Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

  19. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  20. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  1. Linear and Non-Linear Piezoresistance Coefficients in Cubic Semiconductors. I. Theoretical Formulations

    Science.gov (United States)

    Durand, S.; Tellier, C. R.

    1996-02-01

    This paper constitutes the first part of a work devoted to applications of piezoresistance effects in germanium and silicon semiconductors. In this part, emphasis is placed on a formal explanation of non-linear effects. We propose a brief phenomenological description based on the multi-valleys model of semiconductors before to adopt a macroscopic tensorial model from which general analytical expressions for primed non-linear piezoresistance coefficients are derived. Graphical representations of linear and non-linear piezoresistance coefficients allows us to characterize the influence of the two angles of cut and of directions of alignment. The second part will primarily deal with specific applications for piezoresistive sensors. Cette publication constitue la première partie d'un travail consacré aux applications des effets piézorésistifs dans les semiconducteurs germanium et silicium. Cette partie traite essentiellement de la modélisation des effets non-linéaires. Après une description phénoménologique à partir du modèle de bande des semiconducteurs nous développons un modèle tensoriel macroscopique et nous proposons des équations générales analytiques exprimant les coefficients piézorésistifs non-linéaires dans des repères tournés. Des représentations graphiques des variations des coefficients piézorésistifs linéaires et non-linéaires permettent une pré-caractérisation de l'influence des angles de coupes et des directions d'alignement avant l'étude d'applications spécifiques qui feront l'objet de la deuxième partie.

  2. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  3. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  4. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  5. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  6. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  7. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  8. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  9. Optimization of piezoelectric cantilever energy harvesters including non-linear effects

    International Nuclear Information System (INIS)

    Patel, R; McWilliam, S; Popov, A A

    2014-01-01

    This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)

  10. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  11. Non-thrombotic Abnormalities on Lower Extremity Venous Duplex Ultrasound Examinations

    Directory of Open Access Journals (Sweden)

    Adhikari, Srikar

    2015-03-01

    Full Text Available Introduction: Emergency physician-performed compression ultrasonography focuses primarily on the evaluation of the proximal veins of the lower extremity in patients with suspected deep venous thrombosis (DVT. A detailed sonographic evaluation of lower extremity is not performed. The objective of this study was to determine the prevalence of non-thrombotic findings on comprehensive lower extremity venous duplex ultrasound (US examinations performed on emergency department (ED patients. Methods: We performed a retrospective six-year review of an academic ED’s records of adult patients who underwent a comprehensive lower extremity duplex venous US examination for the evaluation of DVT. The entire US report was thoroughly reviewed for non-thrombotic findings. Results: We detected non-thrombotic findings in 263 (11%, 95% CI [9.5-11.9%] patients. Among the non-thrombotic findings, venous valvular incompetence (81, 30% was the most frequent, followed by cyst/mass (41, 15%, lymphadenopathy (33, 12%, phlebitis (12, 4.5%, hematoma (8, 3%, cellulitis (1, 0.3% and other (6, 2.2%. Conclusion: In our study, we detected a variety of non-thrombotic abnormalities on comprehensive lower extremity venous duplex US examinations performed on ED patients. Some of these abnormalities could be clinically significant and potentially be detected with point-of-care lower extremity US examinations if the symptomatic region is evaluated. In addition to assessment of the proximal veins for DVT, we recommend sonographic evaluation of the symptomatic area in the lower extremity when performing point-of-care ultrasound examinations to identify non-thrombotic abnormalities that may require immediate intervention or close follow up. [West J Emerg Med. 2015;16(2:250–254.

  12. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  13. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  14. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  15. Steato-Score: Non-Invasive Quantitative Assessment of Liver Fat by Ultrasound Imaging.

    Science.gov (United States)

    Di Lascio, Nicole; Avigo, Cinzia; Salvati, Antonio; Martini, Nicola; Ragucci, Monica; Monti, Serena; Prinster, Anna; Chiappino, Dante; Mancini, Marcello; D'Elia, Domenico; Ghiadoni, Lorenzo; Bonino, Ferruccio; Brunetto, Maurizia R; Faita, Francesco

    2018-05-04

    Non-alcoholic fatty liver disease is becoming a global epidemic. The aim of this study was to develop a system for assessing liver fat content based on ultrasound images. Magnetic resonance spectroscopy measurements were obtained in 61 patients and the controlled attenuation parameter in 54. Ultrasound images were acquired for all 115 participants and used to calculate the hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization. The Steato-score was obtained by combining these five parameters. Magnetic resonance spectroscopy measurements were significantly correlated with hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization; Steato-score was dependent on hepatic/renal ratio, attenuation rate and diaphragm visualization. Area under the receiver operating characteristic curve was equal to 0.98, with 89% sensitivity and 94% specificity. Controlled attenuation parameter values were significantly correlated with hepatic/renal ratio, attenuation rate, diaphragm visualization and Steato-score; the area under the curve was 0.79. This system could be a valid alternative as a non-invasive, simple and inexpensive assessment of intrahepatic fat. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  17. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  18. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound

    Science.gov (United States)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2017-12-01

    Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to

  19. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  20. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  1. Non-linear realizations of supersymmetry with off-shell central charges

    International Nuclear Information System (INIS)

    Santos Filho, P.B.; Oliveira Rivelles, V. de.

    1985-01-01

    A new class of non-linear realizations of the extended supersymmetry algebra with central charges is presented. They were obtained by applying the technique of dimensional reduction by Legendre transformation to a non-linear realization without central charges in one higher dimension. As a result an off-shell central charge is obtained. The non-linear lagrangian is the same as is the case of vanishing central charge. On-shell the central charge vanishes so this non-linear realization differs from that without central charges only off-shell. It is worked in two dimensions and its extension to higher dimensions is discussed. (Author) [pt

  2. Inflammatory activity in Crohn disease: ultrasound findings.

    Science.gov (United States)

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  3. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  4. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  5. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  6. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  7. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  8. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  9. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  10. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  11. Frequency-domain full-waveform inversion with non-linear descent directions

    Science.gov (United States)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a

  12. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  13. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  14. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  15. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  16. Non-linearity aspects in the design of submarine pipelines

    NARCIS (Netherlands)

    Fernández, M.L.

    1981-01-01

    An arbitrary attempt has been made to classify and discuss some non-linearity aspects related to design, construction and operation of submarine pipelines. Non-linearities usually interrelate and take part of a comprehensive design, making difficult to quantify their individual influence or

  17. Ultrasound based evaluation of hepatic steatosis and fibrosis in hepatitis c non-responders

    International Nuclear Information System (INIS)

    Sohail, S.; Aziz, S.

    2013-01-01

    To determine the accuracy of ultrasound in the diagnosis and grading of steatosis and fibrosis in Hepatitis C (HCV) patients not responding to ribavarin-interferon therapy. Study Design: A cross-sectional, analytical study. Place and Duration of Study: Radiology Department, Civil Hospital, Karachi, from March 2008 to August 2010. Methodology: Patients with positive HCV RNA despite 24 weeks ribavarin-interferon therapy (non-responders) were subjected to ultrasound and biopsy prior to institution of pegylated interferon therapy for detection and grading of steatosis and fibrosis. Using histopathology as the gold standard, sensitivity, specificity, negative and positive predictive values for ultrasound were determined. Results: The sensitivity of ultrasound for hepatic steatosis was 90.9% for no steatosis (NS), 100% for moderate and gross steatosis and 84.4% for mild steatosis with 100% specificity. The senitivity for fibrosis was 25% for no fibrosis, 100% for mild fibrosis, 89.74% for moderate fibrosis and 100% for gross fibrosis. The overall accuracy for detection of steatosis was 95.39% and that for fibrosis was 98.02%. Hepatic vein showed increased dampening of flow with advancing grades of steatosis and fibrosis. Conclusion: Ultrasound has a high accuracy in the diagnosis and grading of steatosis and fibrosis in HCV nonresponders. Mild fibrosis may confound the diagnosis of mild steatosis. (author)

  18. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  19. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  20. Mathematical problems in non-linear Physics: some results

    International Nuclear Information System (INIS)

    1979-01-01

    The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)

  1. Realistic deformable 3D numeric phantom for transcutaneous ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Fernando Mitsuyama; Moraes, Matheus Cardoso; Furuie, Sergio Shiguemi, E-mail: fernando.okara@gmail.com [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Engenharia

    2017-01-15

    Introduction: Numerical phantoms are important tools to design, calibrate and evaluate several methods in various image-processing applications, such as echocardiography and mammography. We present a framework for creating ultrasound numerical deformable phantoms based on Finite Element Method (FEM), Linear Isomorphism and Field II. The proposed method considers that the scatterers map is a property of the tissue; therefore, the scatterers should move according to the tissue strain. Methods: First, a volume representing the target tissue is loaded. Second, parameter values, such as Young's Modulus, scatterers density, attenuation and scattering amplitudes are inserted for each different regions of the phantom. Then, other parameters related to the ultrasound equipment, such as ultrasound frequency and number of transducer elements, are also defined in order to perform the ultrasound acquisition using Field II. Third, the size and position of the transducer and the pressures that are applied against the tissue are defined. Subsequently, FEM is executed and deformation is computed. Next, 3D linear isomorphism is performed to displace the scatterers according to the deformation. Finally, Field II is carried out to generate the non-deformed and deformed ultrasound data. Results: The framework is evaluated by comparing strain values obtained the numerical simulation and from the physical phantom from CIRS. The mean difference between both phantoms is lesser than 10%. Conclusion: The acoustic and deformation outcomes are similar to those obtained using a physical phantom. This framework led to a tool, which is available online and free of charges for educational and research purposes. (author)

  2. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  3. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  4. The non-linear Perron-Frobenius theorem : Perturbations and aggregation

    NARCIS (Netherlands)

    Dietzenbacher, E

    The dominant eigenvalue and the corresponding eigenvector (or Perron vector) of a non-linear eigensystem are considered. We discuss the effects upon these, of perturbations and of aggregation of the underlying mapping. The results are applied to study the sensivity of the outputs in a non-linear

  5. Contributions to ultrasounds applications in non-destructive tests on materials used in nuclear technologies

    International Nuclear Information System (INIS)

    Stanica, V.

    1979-01-01

    The problems expounded in the paper, besides servjng the practical purpose generated by the need to perform quality tests on fuel element compounds by means of the ultrasounds method, are also interesting to ultrasounds non-destructive tests applied in all industry branches as they assert the necessity of passing from manual to automation tests carried out by installations which should record the signals caused by failures, both to increase the productivjty and especially to transform it into an objective, effective test. (author)

  6. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  7. SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA

    OpenAIRE

    Tanuj Kumar Pandey; Vinod Kumar

    2014-01-01

    The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...

  8. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  9. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    Science.gov (United States)

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  10. Development of non-linear vibration analysis code for CANDU fuelling machine

    International Nuclear Information System (INIS)

    Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.

    1988-01-01

    This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)

  11. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  12. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  13. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  14. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  15. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  16. Non-invasive Renal Denervation: Update on External Ultrasound Approaches.

    Science.gov (United States)

    Schmieder, Roland E; Ott, Christian; Bramlage, Peter

    2016-06-01

    In the last decade, intravenous renal denervation (RDN) has emerged as an alternative to pharmacological treatment in patients with resistant hypertension, but currently involves an invasive and technically challenging procedure. The Surround Sound™ system utilises externally delivered ultrasound to achieve RDN using a completely non-invasive, automated real-time tracking system coupled with a therapeutic delivery module thereby addressing these limitations. A brief history, technical overview and summary of preclinical and clinical studies of the KonaMedical Surround Sound™ system are presented. A literature search using the terms "renal denervation", "resistant hypertension" and "external ultrasound" was performed using PubMed, and references retrieved were selected based on relevancy and year of publication (date range 1991-2015). The Surround Sound™ system appears to be a promising approach to RDN which eliminates several of the factors currently limiting the intravenous approach. So far, it has demonstrated efficacy for reducing blood pressure in resistant hypertension patients with minimal adverse effects. Several double-blind, sham-controlled clinical trials are currently underway to confirm the validity of these findings.

  17. The non-linear power spectrum of the Lyman alpha forest

    International Nuclear Information System (INIS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula

  18. Is a linear probe helpful in diagnosing diseases of pulmonary interstitial spaces?

    Directory of Open Access Journals (Sweden)

    Natalia Buda

    2017-06-01

    Full Text Available In a lung ultrasound examination, interstitial lung lesions are visible as numerous B-line artifacts, and are best recorded with the use of a convex probe. Interstitial lung lesions may result from many conditions, including cardiogenic pulmonary oedema, non-cardiogenic pulmonary oedema, or interstitial lung disease. Hence difficulties in the differential diagnostics of the above clinical conditions. This article presents cases of patients suffering from interstitial lung lesions discovered in the course of lung ultrasound examination. The patients were examined with a 3.5–5.0 MHz convex probe and a 7.0–11.0 MHz linear probe. Ultrasound images have been analysed, and differences in the imaging with both probes in patients with interstitial lung lesions have been detailed. The use of a linear probe in patients with interstitial lung lesions (discovered with a convex or a micro-convex probe provides additional information on the source of the origin of the lesions.

  19. Non linear characterisation of optical components of a high power laser chain

    International Nuclear Information System (INIS)

    Santran, Stephane

    2000-01-01

    This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr

  20. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Kim, Jin-Yeon [Georgia Inst. of Technology, Atlanta, GA (United States); Qu, Jisnmin [Northwestern Univ., Evanston, IL (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wall, Joe [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  1. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    International Nuclear Information System (INIS)

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-01-01

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor - a sensor that can continuously monitor a material's damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks

  2. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  3. Non-linear imaging condition to image fractures as non-welded interfaces

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2014-01-01

    Hydraulic properties of a fractured reservoir are often controlled by large fractures. In order to seismically detect and characterize them, a high-resolution imaging method is necessary. We apply a non-linear imaging condition to image fractures, considered as non-welded interfaces. We derive the

  4. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  5. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, G.; Moses, W.W. [Lawrence Berkeley Laboratory, Berkeley, CA 94720-8119 (United States); Singh, J. [Faculty of EHS, B-41, Charles Darwin University, Darwin NT 0909 (Australia); Vasil' ev, A.N., E-mail: anvasiliev@rambler.r [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Williams, R.T. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2009-12-15

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  6. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    International Nuclear Information System (INIS)

    Bizarri, G.; Moses, W.W.; Singh, J.; Vasil'ev, A.N.; Williams, R.T.

    2009-01-01

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  7. Linear and non-linear calculations of the hose instability in the ion-focused regime

    International Nuclear Information System (INIS)

    Buchanan, H.L.

    1982-01-01

    A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data

  8. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  9. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-07

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  10. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  11. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  12. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  13. Ultrasound-enhanced mass transfer in Halal compared with non-Halal chicken.

    Science.gov (United States)

    Leal-Ramos, Martha Y; Alarcon-Rojo, Alma D; Mason, Timothy J; Paniwnyk, Larysa; Alarjah, Mohammed

    2011-01-15

    Halal foods are often perceived as wholesome products that are specially selected and processed to achieve the highest standards of quality. In this study, dye penetration from an aqueous solution of methylene blue (1 mol L(-1)) was used as a model for the marination process of Halal and non-Halal chicken breast. The effect of dye penetration was evaluated by three techniques: (1) the mass of methylene blue solution in the samples was quantified by mass gain, (2) the amount of dye absorbed was determined by spectroscopy and (3) the penetration distance of dye inside the samples was measured. For non-Halal meat, ultrasound increased the amount of dye inside the samples by 6 and 13% after 15 and 30 min respectively. The effect on Halal meat was much more pronounced, with an increase in dye uptake of over 60% being observed for both time periods. Dye penetration is an indication of meat permeability and so can be used as an estimate of marinading of meat. Thus the use of high-power ultrasound has potential in poultry-processing methods, in particular that of Halal chicken marination. Copyright © 2010 Society of Chemical Industry.

  14. On the stability of non-linear systems

    International Nuclear Information System (INIS)

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  15. A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.

    Science.gov (United States)

    Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong

    2017-12-01

    Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.

  16. Some aspects of non-linear semi-groups

    International Nuclear Information System (INIS)

    Plant, A.T.

    1976-01-01

    Some simpler theorems in the theory of non-linear semi-groups of non-reflexive Banach spaces are proved, with the intention to introduce the reader to this active field of research. Flow invariance, in particular for Lipschitz generators, and contraction semi-groups are discussed in some detail. (author)

  17. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  18. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  19. Extrinsic contribution to the non-linearity in a PZT disc

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rafel [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Albareda, Alfons [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Garcia, Jose E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Tiana, Jordi [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Ringgaard, Erling [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark); Wolny, Wanda W [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark)

    2004-10-07

    Non-linear increases in elastic, piezoelectric (direct and reverse) and dielectric coefficients have been measured under a high electrical field or under high mechanical stress. The permittivity and reverse piezoelectric coefficient can be measured by applying a high voltage at a low frequency, while the elastic compliance and direct piezoelectric coefficient can be measured at the first radial resonance frequency in order to apply a high stress. The non-linear behaviour has been analysed at the radial resonance of a disc. In all the materials tested, the results show that there is a close relation between the non-linear increments of the different coefficients. An empirical model has been proposed in order to describe and understand these relations. It is assumed that either the strain or the electrical displacement is produced by intrinsic and extrinsic processes, but only the latter, which consist mainly in the motion of domain walls, contribute to the non-linearity. The model enables us to find the domain wall contribution to elastic, piezoelectric and dielectric non-linearities, and allows us to compare the amplitudes of the fields and stresses that produce the same displacement of domain walls.

  20. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  1. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  2. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  3. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  4. Non-linearities in Holocene floodplain sediment storage

    Science.gov (United States)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  5. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  6. [Ultrasound findings in rhabdomyolysis].

    Science.gov (United States)

    Carrillo-Esper, Raúl; Galván-Talamantes, Yazmin; Meza-Ayala, Cynthia Margarita; Cruz-Santana, Julio Alberto; Bonilla-Reséndiz, Luis Ignacio

    Rhabdomyolysis is defined as skeletal muscle necrosis. Ultrasound assessment has recently become a useful tool for the diagnosis and monitoring of muscle diseases, including rhabdomyolysis. A case is presented on the ultrasound findings in a patient with rhabdomyolysis. To highlight the importance of ultrasound as an essential part in the diagnosis in rhabdomyolysis, to describe the ultrasound findings, and review the literature. A 30 year-old with post-traumatic rhabdomyolysis of both thighs. Ultrasound was performed using a Philips Sparq model with a high-frequency linear transducer (5-10MHz), in low-dimensional scanning mode (2D), in longitudinal and transverse sections at the level of both thighs. The images obtained showed disorganisation of the orientation of the muscle fibres, ground glass image, thickening of the muscular fascia, and the presence of anechoic areas. Ultrasound is a useful tool in the evaluation of rhabdomyolysis. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  8. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  9. Common-User Land Transportation Management in the Layered, Non-Linear, Non-Contiguous Battlefield

    National Research Council Canada - National Science Library

    Strobel, Lawrence E

    2005-01-01

    .... Current multinational counterinsurgency warfare occurs in a layered, non-linear, non-contiguous battle space, making management of ground transportation assets even more critical than in conventional warfare...

  10. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  11. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  12. Ultrasound for initial evaluation and triage of clinically suspicious soft-tissue masses

    International Nuclear Information System (INIS)

    Lakkaraju, A.; Sinha, R.; Garikipati, R.; Edward, S.; Robinson, P.

    2009-01-01

    Aim: To evaluate the efficacy of ultrasound as a first-line investigation in patients with a clinical soft-tissue mass. Methods: Three hundred and fifty-eight consecutive patients (155 male, 203 female, mean age 48 years) referred from primary and secondary care with soft-tissue masses underwent ultrasound evaluation. Five radiologists performed ultrasound using a 10-15 MHz linear transducer and recorded the referrer diagnosis, history, lesion size, anatomical location and depth, internal echogenicity, external margins (well-defined rim or infiltrative), and vascularity on power Doppler (absent or present, if present the pattern was listed as either linear or disorganized). A provisional ultrasound diagnosis was made using one of eight categories. Benign categories (categories 1-5) were referred back to a non-sarcoma specialist or original referrer for observation. Indeterminate or possible sarcomas (categories 6-8) were referred for magnetic resonance imaging (MRI) within 14 days. Additionally category 8 lesions were referred to the regional sarcoma service. Institutional and regional database follow-up was performed. Results: Two hundred and eighty-four of the 358 (79%) lesions were classified as benign (categories 1-5). On follow-up 15 of the 284 patients were re-referred but none (284/284) had a malignancy on follow-up (24-30 months). Overall at ultrasound 33 lesions were larger than 5 cm, 42 lesions were deep to deep fascia with 20 showing both features. In this subgroup of 95 patients there were six malignant tumours with the rest benign. Seventy-three of the 358 patients underwent MRI; the results of which indicated that there were 60 benign or non-tumours, 10 possible sarcomas, and three indeterminate lesions. Overall six of 12 (6/358, 1.68% of total patients) lesions deemed to represent possible sarcomas on imaging were sarcomas. Conclusion: Ultrasound is an effective diagnostic triage tool for the evaluation of soft-tissue masses referred from primary

  13. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  14. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  15. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  16. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    Science.gov (United States)

    2013-07-01

    Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro, Ultrasound in medicine & biology 1995; 21: 841-8. 3. Dalecki D...doxorubicin, focused ultrasound , HIFU, prostate cancer I. INTRODUCTION Pulsed high-intensity focused ultrasound (pFUS) is able to create acoustic cavitation ... ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D

  17. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model

    Science.gov (United States)

    Zhao, Da-wei; Tian, Meng; Yang, Jian-zheng; Du, Peng; Bi, Jie; Zhu, Xinjian

    2016-01-01

    The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups—the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1–3 (grade 0–1, grade 0–2, and grade 1–2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3–4; all, P hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma. PMID:27633577

  18. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  19. Contrast-enhanced ultrasound study of primary hepatic angiosarcoma: A pitfall of non-enhancement

    International Nuclear Information System (INIS)

    Wang, Liang; Lv, Ke; Chang, Xiao-Yan; Xia, Yu; Yang, Zhi-Ying; Jiang, Yu-Xin; Dai, Qing; Tan, Li; Li, Jian-Chu

    2012-01-01

    Highlights: ► The contrast-enhanced ultrasound (CEUS) characteristics of primary hepatic angiosarcoma (PHA) in three patients were retrospectively analyzed. ► PHA appeared similar peripheral enhancement pattern in our series. ► Non-necrotic tumor tissue of PHA unexpectedly demonstrated non-enhancement on CEUS. ► It may be associated with the very low velocity of blood flow in the central region of tumors. ► This interesting finding warrants further investigations, particularly on intratumoral hemodynamics. -- Abstract: Objective: To investigate the contrast-enhanced ultrasound (CEUS) characteristics of primary hepatic angiosarcoma (PHA). Methods: The sonographic findings and CEUS images of PHA in three patients were retrospectively analyzed. Results: In our study, 3 cases of PHA (2 multiple nodules and 1 solitary mass) showed similar enhancement pattern on CEUS, characterized by remarkable central non-enhancement and peripheral irregular enhancement in the arterial and portal phase, and complete wash-out in the late phase. Furthermore, we unexpectedly found that abundant neoplastic tissues were present in the central area of non-enhancement on pathological evaluation. Based on literature review, we supposed that the unusual finding may be associated with the very low velocity of blood flow in the central region of tumors. Conclusion: CEUS could well depict PHA with some common features, which may provide valuable clues in diagnosis of this rare disease. And non-necrotic tumor tissue of PHA could also demonstrate non-enhancement on CEUS, which warrant further investigations

  20. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  1. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  2. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  3. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  4. An efficient formulation for linear and geometric non-linear membrane elements

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    Full Text Available Utilizing the straingradient notation process and the free formulation, an efficient way of constructing membrane elements will be proposed. This strategy can be utilized for linear and geometric non-linear problems. In the suggested formulation, the optimization constraints of insensitivity to distortion, rotational invariance and not having parasitic shear error are employed. In addition, the equilibrium equations will be established based on some constraints among the strain states. The authors' technique can easily separate the rigid body motions, and those belong to deformational motions. In this article, a novel triangular element, named SST10, is formulated. This element will be used in several plane problems having irregular mesh and complicated geometry with linear and geometrically nonlinear behavior. The numerical outcomes clearly demonstrate the efficiency of the new formulation.

  5. Potential of coded excitation in medical ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Athanasios; Gammelmark, Kim; Jørgensen, C. H.

    2000-01-01

    Improvement in SNR and/or penetration depth can be achieved in medical ultrasoundby using long coded waveforms, in a similar manner as in radars or sonars.However, the time-bandwidth product (TB) improvement, and thereby SNRimprovement is considerably lower in medical ultrasound, due...... codes have a larger bandwidth than the transducerin a typical medical ultrasound system can drive, a more careful code designhas been proven essential. Simulation results are also presented forcomparison.This paper presents an improved non-linear FM signal appropriatefor ultrasonic applications. The new...... coded waveform exhibits distinctfeatures, that make it very attractive in the implementation of codedultrasound systems. The range resolution that can be achieved is comparableto that of a conventional system, depending on the transducer's bandwidth andcan even be better for broad-band transducers...

  6. Effect of Linear and Non-linear Resistance Exercise on Anaerobic Performance among Young Women

    OpenAIRE

    Homa Esmaeili; Ali Reza Amani; Taher Afsharnezhad

    2015-01-01

    The main goals of strength training are improving muscle strength, power and muscle endurance. The objective of the current study is to compare two popular linear and nonlinear resistance exercises interventions on the anaerobic power.  Previous research has shown differences intervention by the linear and non-linear resistance exercise in performance and strength in male athletes. By the way there are not enough data regarding female subjects. Eighteen young women subjects participated in th...

  7. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  8. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage.

    Science.gov (United States)

    Monteiro, Sara H M C; Silva, Eric Keven; Alvarenga, Verônica O; Moraes, Jeremias; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant'Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G

    2018-04-01

    This study presents the emerging high-intensity ultrasound (HIUS) processing as a non-thermal alternative to high-temperature short-time pasteurization (HTST). Chocolate milk beverage (CMB) was subjected to different ultrasound energy densities (0.3-3.0 kJ/cm 3 ), as compared to HTST pasteurization (72 °C/15 s) aimed to verify the effect of the HIUS processing on the microbiological and physicochemical characteristics of the beverage. The application of HIUS at an energy density of 3.0 kJ/cm 3 was able to reduce 3.56 ± 0.02 logarithmic cycles in the total aerobic counts. In addition, the ultrasound energy density affected the physical properties of the beverage as the size distribution of fat globule and rheological behavior, as well as the chemical properties such as antioxidant activity, ACE inhibitory activity, fatty acid profile, and volatile profile. In general, the different energetic densities used as a non-thermal method of pasteurization of CMB were more effective when compared to the conventional pasteurization by HTST, since they improved the microbiological and physicochemical quality, besides preserving the bioactive compounds and the nutritional quality of the product. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  10. Study of the 'non-Abelian' current algebra of a non-linear σ-model

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2006-01-01

    A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established

  11. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  12. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  13. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  14. Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”

    Directory of Open Access Journals (Sweden)

    Refat Aljumily

    2015-09-01

    Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed

  15. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  16. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  17. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  18. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  19. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  20. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  1. E11 and the non-linear dual graviton

    Science.gov (United States)

    Tumanov, Alexander G.; West, Peter

    2018-04-01

    The non-linear dual graviton equation of motion as well as the duality relation between the gravity and dual gravity fields are found in E theory by carrying out E11 variations of previously found equations of motion. As a result the equations of motion in E theory have now been found at the full non-linear level up to, and including, level three, which contains the dual graviton field. When truncated to contain fields at levels three and less, and the spacetime is restricted to be the familiar eleven dimensional space time, the equations are equivalent to those of eleven dimensional supergravity.

  2. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed

  3. Single-nary philosophy for non-linear study of mechanics of materials

    International Nuclear Information System (INIS)

    Tran, C.

    2005-01-01

    Non-linear study of mechanics of materials is formulated in this paper as a problem of meta-intelligent system analysis. Non-linearity will be singled out as an important concept for understanding of high-order complex systems. Through single-nary thinking, which will be represented in this work, we introduce a modification of Aristotelian philosophy using modal logic and multi-valued logic (these logics we call 'high-order' logic). Next, non-linear cause - effect relations are expressed through non-additive measures and multiple-information aggregation principles based on fuzzy integration. The study of real time behaviors, required experiences and intuition, will be realized using truth measures (non-additive measures) and a procedure for information processing in intelligence levels. (author)

  4. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  5. Non linear microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here

  6. Non linear effects in piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Gonnard, P.

    2002-02-01

    Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε T33 and the piezoelectric constant and nul for the voltage constant d33 and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.

    Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad εT33 y la constantes piezoléctrica d33 y nulos para la constante g33 y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.

  7. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  8. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  9. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  10. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography.

    Science.gov (United States)

    Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel

    2016-10-01

    Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will

  11. Interior-Point Method for Non-Linear Non-Convex Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2004-01-01

    Roč. 11, č. 5-6 (2004), s. 431-453 ISSN 1070-5325 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : non-linear programming * interior point methods * indefinite systems * indefinite preconditioners * preconditioned conjugate gradient method * merit functions * algorithms * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.727, year: 2004

  12. Thermal-Induced Non-linearity of Ag Nano-fluid Prepared using γ-Radiation Method

    International Nuclear Information System (INIS)

    Esmaeil Shahriari; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Elias Saion

    2011-01-01

    The non-linear refractive index of Ag nano-fluids prepared by γ-radiation method was investigated using a single beam z-scan technique. Under CW 532 nm laser excitation with power output of 40 mW, the Ag nano-fluids showed a large thermal-induced non-linear refractive index. In the present work it was determined that the non-linear refractive index for Ag nano-fluids is -4.80x10 -8 cm 2 / W. The value of Δn 0 was calculated to be -2.05x10 -4 . Our measurements also confirmed that the non-linear phenomenon was caused by the self-defocusing process making them good candidates for non linear optical devices. (author)

  13. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  14. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  15. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  16. Non-linear Capital Taxation Without Commitment

    OpenAIRE

    Emmanuel Farhi; Christopher Sleet; Iván Werning; Sevin Yeltekin

    2012-01-01

    We study efficient non-linear taxation of labour and capital in a dynamic Mirrleesian model incorporating political economy constraints. Policies are chosen sequentially over time, without commitment. Our main result is that the marginal tax on capital income is progressive, in the sense that richer agents face higher marginal tax rates. Copyright , Oxford University Press.

  17. Non-linear assessment and deficiency of linear relationship for healthcare industry

    Science.gov (United States)

    Nordin, N.; Abdullah, M. M. A. B.; Razak, R. C.

    2017-09-01

    This paper presents the development of the non-linear service satisfaction model that assumes patients are not necessarily satisfied or dissatisfied with good or poor service delivery. With that, compliment and compliant assessment is considered, simultaneously. Non-linear service satisfaction instrument called Kano-Q and Kano-SS is developed based on Kano model and Theory of Quality Attributes (TQA) to define the unexpected, hidden and unspoken patient satisfaction and dissatisfaction into service quality attribute. A new Kano-Q and Kano-SS algorithm for quality attribute assessment is developed based satisfaction impact theories and found instrumentally fit the reliability and validity test. The results were also validated based on standard Kano model procedure before Kano model and Quality Function Deployment (QFD) is integrated for patient attribute and service attribute prioritization. An algorithm of Kano-QFD matrix operation is developed to compose the prioritized complaint and compliment indexes. Finally, the results of prioritized service attributes are mapped to service delivery category to determine the most prioritized service delivery that need to be improved at the first place by healthcare service provider.

  18. Sphaleron in a non-linear sigma model

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1989-08-01

    We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

  19. Development of non-linear TWB parts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.

    2005-07-01

    New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)

  20. Applicability of refined Born approximation to non-linear equations

    International Nuclear Information System (INIS)

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  1. Attenuation measurements of ultrasound in a kaolin-water slurry. A linear dependence upon frequency

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Mai, J.L.; Good, M.S.

    1993-01-01

    The attenuation of ultrasound through a kaolin-water slurry was measured for frequencies ranging from 0.5 to 3.0 MHz. The maximum concentration of the slurry was for a weight percentage of 44% (or a volume fraction of 0.24). The goal of these measurements was to assess the feasibility of using ultrasonic attenuation to determine the concentration of a slurry of known composition. The measurements were obtained by consecutively adding kaolin to the slurry and measuring the attenuation at each concentration. After reaching a maximum concentration a dilution technique was used, in which an amount of slurry was removed and water was added, to obtain the attenuation as a function of the concentration. The dilution technique was the more effective method to obtain calibration data. These measurements were carried out using two transducers, having a center frequency of 2.25 MHz, separated by 0.1016m (4.0 in.). The maximum attenuation measured in these experiments was about 100Np/m, but the experimental apparatus has the capability of measuring a larger attenuation if the distance between the two transducers is decreased. For a given frequency, the data show that ln V/V 0 depends linearly upon the volume fraction (V is the received voltage for the slurry and V 0 is that obtained for water). This indicated that each particle acts independently in attenuating ultrasound. 12 refs., 7 figs., 3 tabs

  2. Ultrasound-guided sclerotherapy for benign non-thyroid cystic mass in the neck

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    Surgical excision has traditionally been the treatment of choice for benign non-thyroid cystic neck masses, including lymphatic malformation, ranula, branchial cleft cyst, thyroglossal duct cyst, and parathyroid cyst. However, there is a tendency toward recurrence after surgery, and surgery may be accompanied by complications, including nerve injuries, vascular injuries, and scar formation. Ultrasound-guided sclerotherapy using various agents has been challenged and successfully applied as an alternative treatment for benign non-thyroid cystic neck masses. This report reviews the available sclerosing agents and describes the applications of sclerotherapy to the treatment of benign cystic masses in the neck.

  3. Ultrasound-guided sclerotherapy for benign non-thyroid cystic mass in the neck

    Directory of Open Access Journals (Sweden)

    Ji-hoon Kim

    2014-04-01

    Full Text Available Surgical excision has traditionally been the treatment of choice for benign non-thyroid cystic neck masses, including lymphatic malformation, ranula, branchial cleft cyst, thyroglossal duct cyst, and parathyroid cyst. However, there is a tendency toward recurrence after surgery, and surgery may be accompanied by complications, including nerve injuries, vascular injuries, and scar formation. Ultrasound-guided sclerotherapy using various agents has been challenged and successfully applied as an alternative treatment for benign non-thyroid cystic neck masses. This report reviews the available sclerosing agents and describes the applications of sclerotherapy to the treatment of benign cystic masses in the neck.

  4. Ultrasound-guided sclerotherapy for benign non-thyroid cystic mass in the neck

    International Nuclear Information System (INIS)

    Kim, Ji Hoon

    2014-01-01

    Surgical excision has traditionally been the treatment of choice for benign non-thyroid cystic neck masses, including lymphatic malformation, ranula, branchial cleft cyst, thyroglossal duct cyst, and parathyroid cyst. However, there is a tendency toward recurrence after surgery, and surgery may be accompanied by complications, including nerve injuries, vascular injuries, and scar formation. Ultrasound-guided sclerotherapy using various agents has been challenged and successfully applied as an alternative treatment for benign non-thyroid cystic neck masses. This report reviews the available sclerosing agents and describes the applications of sclerotherapy to the treatment of benign cystic masses in the neck.

  5. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  6. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  7. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  8. Can ultrasound be helpful in selecting optimal management methods for pregnancies complicated by placental non-trophpblastic tumors?

    Directory of Open Access Journals (Sweden)

    Nabil Abdalla

    2017-06-01

    Full Text Available Placental chorioangioma is the most common subtype of non-trophoblastic placental tumors. Other subtypes are very rare and usually associated with an uneventful course of pregnancy. Most chorioangiomas are small and of no clinical significance. Giant chorioangiomas may be associated with serious fetal and maternal complications. So far, no established ultrasound guidelines are available for the management of placental non-trophoblastic tumors. This may be attributed to the rarity of the disease entity and its different clinical features and complications. In this article, the role of ultrasound findings such as the tumor’s size, vascularity, feeding vessels, amniotic fluid and location of the placenta in the diagnosis, treatment and follow up of these tumors is presented relying on up-todate literature review. Conservative management with serial ultrasound examinations can be an adequate method for monitoring small uncomplicated tumors. Ultrasound-guided procedures such as amnioreduction and cordocentesis can be used for amelioration of complications. Chorioangioma-specific treatment is reserved for complicated cases in the second trimester of pregnancy when prematurity is a matter of concern. Endoscopic laser ablation is indicated when the feeding vessel is superficial and small. Interstitial laser ablation is helpful when the placenta is located in the anterior uterine wall. Ligation of the feeding vessels is preferred when they are large. Alcohol injection should be performed away from the vasculature to prevent toxicity. Microcoils should be inserted as near as possible to the tumor to prevent collateral formation. Ultrasound is also a method of choice for monitoring the effectiveness of these procedures.

  9. A comparison between linear and non-linear analysis of flexible pavements

    Energy Technology Data Exchange (ETDEWEB)

    Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    1995-12-31

    Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.

  10. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  11. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    International Nuclear Information System (INIS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-01-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results. (paper)

  12. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits.

    Science.gov (United States)

    Sedlic, Filip; Kovac, Zdenko

    2017-10-01

    Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term "mirror J-shaped curves" for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits

    Directory of Open Access Journals (Sweden)

    Filip Sedlic

    2017-10-01

    Full Text Available Finite disarrangements of important (vital physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise. Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.

  14. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  15. Regression of non-linear coupling of noise in LIGO detectors

    Science.gov (United States)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  16. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    Science.gov (United States)

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  17. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  18. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  19. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    Full Text Available Abstract Background Non-linear dielectric spectroscopy (NLDS of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar

  20. New classical r-matrices from integrable non-linear sigma-models

    International Nuclear Information System (INIS)

    Laartz, J.; Bordemann, M.; Forger, M.; Schaper, U.

    1993-01-01

    Non-linear sigma models on Riemannian symmetric spaces constitute the most general class of classical non-linear sigma models which are known to be integrable. Using the current algebra structure of these models their canonical structure is analyzed and it is shown that their non-ultralocal fundamental Poisson bracket relation is governed by a field dependent non antisymmetric r-matrix obeying a dynamical Yang Baxter equation. The fundamental Poisson bracket relations and the r-matrix are derived explicitly and a new kind of algebra is found that is supposed to replace the classical Yang Baxter algebra governing the canonical structure of ultralocal models. (Author) 9 refs

  1. Non-Linear Fibres for Widely Tunable Femtosecond Fibre Lasers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard

    and numerically. For the intermodal four-wave mixing experiment an alternative version of the Generalised Non-Linear Schrödinger Equation is derived, which includes the correct dispersion of the transverse field. It is observed that the alternative version of the Generalised Non-Linear Schrödinger Equation......, as opposed to the commonly used version, is able to reproduce the intermodal four-wave mixing experiment. The relation between the intramodal self-phase modulation and the intramodal Raman effect is determined from experimental measurements on a number of step-index fibres. The Raman fraction is found...

  2. Non- invasive in vivo analysis of a murine aortic graft using high resolution ultrasound microimaging

    International Nuclear Information System (INIS)

    Rowinska, Zuzanna; Zander, Simone; Zernecke, Alma; Jacobs, Michael; Langer, Stephan; Weber, Christian; Merx, Marc W.; Koeppel, Thomas A.

    2012-01-01

    Introduction: As yet, murine aortic grafts have merely been monitored histopathologically. The aim of our study was to examine how these grafts can be monitored in vivo and non-invasively by using high-resolution ultrasound microimaging to evaluate function and morphology. A further aim was to prove if this in vivo monitoring can be correlated to immunohistological data that indicates graft integrity. Methods: Murine infrarenal aortic isografts were orthotopically transplanted into 14 female mice (C57BL/6-Background) whereas a group of sham-operated animals (n = 10) served as controls. To assess the graft morphology and hemodynamics, we examined the mice over a post-operative period of 8 weeks with a sophisticated ultrasound system (Vevo 770, Visual Sonics). Results: The non-invasive graft monitoring was feasible in all transplanted mice. We could demonstrate a regular post-transplant graft function and morphology, such as anterior/posterior wall displacement and wall thickness. Mild alterations of anterior wall motion dynamics could only be observed at the site of distal graft anastomosis (8 weeks after grafting (transplant vs. sham mice: 0.02 mm ± 0.01 vs. 0.03 mm ± 0.01, p < 0.05). However, the integrity of the entire graft wall could be confirmed by histopathological evaluation of the grafts. Conclusions: With regard to graft patency, function and morphology, high resolution ultrasound microimaging has proven to be a valuable tool for longitudinal, non-invasive, in vivo graft monitoring in this murine aortic transplantation model. Consequently, this experimental animal model provides an excellent basis for molecular and pharmacological studies using genetically engineered mice.

  3. A review on prognostic techniques for non-stationary and non-linear rotating systems

    Science.gov (United States)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  4. Non-linear adjustment to purchasing power parity: an analysis using Fourier approximations

    OpenAIRE

    Juan-Ángel Jiménez-Martín; M. Dolores Robles Fernández

    2005-01-01

    This paper estimates the dynamics of adjustment to long run purchasing power parity (PPP) using data for 18 mayor bilateral US dollar exchange rates, over the post-Bretton Woods period, in a non-linear framework. We use new unit root and cointegration tests that do not assume a specific non-linear adjustment process. Using a first-order Fourier approximation, we find evidence of non-linear mean reversion in deviations from both absolute and relative PPP. This first-order Fourier approximation...

  5. Genomic prediction based on data from three layer lines using non-linear regression models.

    Science.gov (United States)

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

  6. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  7. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter...

  8. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  9. Validation of Individual Non-Linear Predictive Pharmacokinetic ...

    African Journals Online (AJOL)

    3Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Republic of Serbia ... Purpose: To evaluate the predictive performance of phenytoin multiple dosing non-linear pharmacokinetic ... status epilepticus affects an estimated 152,000 ..... causal factors, i.e., infection, inflammation, tissue.

  10. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1994-01-01

    It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref

  11. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  12. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  13. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    Science.gov (United States)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  14. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  15. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  16. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    Science.gov (United States)

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  18. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  19. Finiteness of Ricci flat supersymmetric non-linear sigma-models

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)

  20. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...

  1. A parametric FE modeling of brake for non-linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed,Ibrahim; Fatouh, Yasser [Automotive and Tractors Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Aly, Wael [Refrigeration and Air-Conditioning Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt)

    2013-07-01

    A parametric modeling of a drum brake based on 3-D Finite Element Methods (FEM) for non-contact analysis is presented. Many parameters are examined during this study such as the effect of drum-lining interface stiffness, coefficient of friction, and line pressure on the interface contact. Firstly, the modal analysis of the drum brake is also studied to get the natural frequency and instability of the drum to facilitate transforming the modal elements to non-contact elements. It is shown that the Unsymmetric solver of the modal analysis is efficient enough to solve this linear problem after transforming the non-linear behavior of the contact between the drum and the lining to a linear behavior. A SOLID45 which is a linear element is used in the modal analysis and then transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining for contact analysis study. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties. Firstly, the region of contact is not known based on the boundary conditions such as line pressure, and drum and friction material specs. Secondly, these contact problems need to take the friction into consideration. Finally, it showed a good distribution of the nodal reaction forces on the slotted lining contact surface and existing of the slot in the middle of the lining can help in wear removal due to the friction between the lining and the drum. Accurate contact stiffness can give a good representation for the pressure distribution between the lining and the drum. However, a full contact of the front part of the slotted lining could occur in case of 20, 40, 60 and 80 bar of piston pressure and a partially contact between the drum and lining can occur in the rear part of the slotted lining.

  2. Using controlled attenuation parameter combined with ultrasound to survey non-alcoholic fatty liver disease in hemodialysis patients: A prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Yi-Hao Yen

    Full Text Available Controlled attenuation parameter (CAP is a non-invasive method for measuring hepatic steatosis (HS. Non-alcoholic fatty liver disease (NAFLD is closely related to cardiovascular diseases (CVDs. CVDs are the leading cause of morbidity and mortality in hemodialysis patients. The aim of this study was to investigate the prevalence of NAFLD in hemodialysis patients.We prospectively enrolled patients undergoing chronic hemodialysis, as well as patients with normal renal function who served as controls. The control group patients were referred by an endocrinologist to be tested for NAFLD; most of these patients had diabetes, hypertension, or dyslipidemia. We excluded those with excess alcohol intake, use of drugs known to induce HS, chronic viral hepatitis, or CAP failure. CAP ≥ 238 dB/m was used as a cutoff suggesting HS. An increased liver kidney contrast, as defined by ultrasound, was used to make the diagnosis of HS.Three hundred and forty-three hemodialysis patients and 252 control group patients were enrolled. Among the hemodialysis patients, 192 (56.0% had CAP- or ultrasound-identified HS compared with 91 (26.5% who only had ultrasound-identified HS (P<0.001. Among the control group patients, 212 (84.1% had CAP- or ultrasound-identified HS compared with 180 (71.4% who only had ultrasound-identified HS (P<0.001.The prevalence of NAFLD in the hemodialysis patients was 56%. The number of diagnoses of NAFLD made by using CAP combined with ultrasound was more than 2 times the number made with ultrasound alone in the hemodialysis patients. Therefore, we suggest the use of CAP combined with ultrasound to screen for NAFLD in hemodialysis patients.

  3. On a non-linear pseudodifferential boundary value problem

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong.

    1989-12-01

    A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs

  4. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations

    International Nuclear Information System (INIS)

    Valat, J.

    1960-12-01

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [fr

  5. Linear Text vs. Non-Linear Hypertext in Handheld Computers: Effects on Declarative and Structural Knowledge, and Learner Motivation

    Science.gov (United States)

    Son, Chanhee; Park, Sanghoon; Kim, Minjeong

    2011-01-01

    This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…

  6. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  7. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1996-01-01

    OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... rate and describes mainly linear correlations. Non-linear predictability is correlated with heart rate variability measured as the standard deviation of the R-R intervals and the respiratory activity expressed as power of the high-frequency band. The dynamics of heart rate variability changes suddenly...

  8. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature

    Directory of Open Access Journals (Sweden)

    Jianxia Sun

    2016-08-01

    Full Text Available As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200–500 W and treatment time (0–60 min. The degradation trend was consistent with first-order reaction kinetics (R2 > 0.9100. Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R2 = 0.8790, which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  9. Stability, Antioxidant Capacity and Degradation Kinetics of Pelargonidin-3-glucoside Exposed to Ultrasound Power at Low Temperature.

    Science.gov (United States)

    Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin

    2016-08-24

    As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.

  10. Effective connectivity between superior temporal gyrus and Heschl's gyrus during white noise listening: linear versus non-linear models.

    Science.gov (United States)

    Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia

    2012-04-01

    This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with

  11. Non-linear thermal fluctuations in a diode

    NARCIS (Netherlands)

    Kampen, N.G. van

    As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being

  12. A non-linear dissipative model of magnetism

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2010-01-01

    Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/

  13. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Quality control culture of diagnostic ultrasound parameters

    International Nuclear Information System (INIS)

    Andam, A.A.B; Addison, E.C.K.; Aggry-Smith, S.; Nani, E.K.

    2003-01-01

    A phantom, consisting of two phases, has been designed and constructed to mimic the human body. The phase one phantom was designed to mimic a a surface lesion in the human body and the phase two phantom designed to mimic a section of the whole body. Ultrasound scans of the phantom were acquired for various material in the phantom at six hospitals in Kumasi, Ghana. A linear array transducer with parallel beams having a convex probe and a 3.5 MHz ultrasound frequency were used to carry out the experiment. It was observed that the depth of penetration of ultrasound, which constitutes the maximum depth of visualization or sensitivity, is determined by the frequency of the transducer, the attenuation of the medium being imaged and the system settings. Uniformity and linearity of the machines investigated were found to be within clinically acceptable standards. Spatial resolution, comprising axial and lateral resolutions, was observed to be satisfactory for the machines tested. It was observed that lateral resolution improved with the narrowing of the beam width. The ultrasound scanners at the selected hospitals were found to be operating at the expected level of performance. This work highlights the importance of putting in place a locally based mechanism for quality control of diagnostic ultrasound machines (author)

  15. Sonomammography: An atlas of comparative breast ultrasound

    International Nuclear Information System (INIS)

    Guyer, B.P.; Dewsbury, K.C.

    1987-01-01

    This atlas of breast ultrasound is extensively illustrated and provides a short analytical text before each group of pathologies. Although based on B-scan techniques, there are numerous comparisons with sector scans and linear array scans. X-ray mammography and breast ultrasound is analyzed, based upon 2000 sonomammograms, showing how a more accurate pre-operation assessment can be made, and how unnecessary surgery can be reduced. Major features of this atlas include a detailed analysis of the appearances of breast lesions, extensive illustrations of the various pathologies (generally confirmed histologically), a close comparison of ultrasound with x-ray mammography, and illustrations of lesions by different ultrasound techniques

  16. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    Crum, Lawrence A

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  17. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  18. Re-examining the risk–return relationship in Europe: Linear or non-linear trade-off?

    OpenAIRE

    Salvador, Enrique; Floros, Christos; Arago, Vicent

    2014-01-01

    This paper analyzes the risk–return trade-off in Europe using recent data from 11 European stock markets. After relaxing the linear assumptions in the risk–return relationship by introducing a new approach that considers the current state of the market, we obtain significant evidence for a positive risk–return trade-off for low volatility states. However, this finding is reduced or even non-significant during periods of high volatility. Maintaining the linear assumption over the risk–return t...

  19. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  20. Non-renormalizability of supersymmetric non-linear sigma models in four dimensions

    International Nuclear Information System (INIS)

    Spence, B.

    1985-01-01

    The one-loop, on-shell, ultraviolet-divergent part of the effective action is calculated for the N=1 and 2 supersymmetric non-linear sigma models in four dimensions. These infinities cannot be absorbed into a redefinition of the bare Kaehler potential and the theories are not renormalizable. (orig.)

  1. Quantitative Assessment of Arrhythmia Using Non-linear Approach: A Non-invasive Prognostic Tool

    Science.gov (United States)

    Chakraborty, Monisha; Ghosh, Dipak

    2018-04-01

    Accurate prognostic tool to identify severity of Arrhythmia is yet to be investigated, owing to the complexity of the ECG signal. In this paper, we have shown that quantitative assessment of Arrhythmia is possible using non-linear technique based on "Hurst Rescaled Range Analysis". Although the concept of applying "non-linearity" for studying various cardiac dysfunctions is not entirely new, the novel objective of this paper is to identify the severity of the disease, monitoring of different medicine and their dose, and also to assess the efficiency of different medicine. The approach presented in this work is simple which in turn will help doctors in efficient disease management. In this work, Arrhythmia ECG time series are collected from MIT-BIH database. Normal ECG time series are acquired using POLYPARA system. Both time series are analyzed in thelight of non-linear approach following the method "Rescaled Range Analysis". The quantitative parameter, "Fractal Dimension" (D) is obtained from both types of time series. The major finding is that Arrhythmia ECG poses lower values of D as compared to normal. Further, this information can be used to access the severity of Arrhythmia quantitatively, which is a new direction of prognosis as well as adequate software may be developed for the use of medical practice.

  2. Non-linear development of secular gravitational instability in protoplanetary disks

    Science.gov (United States)

    Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.

    2018-01-01

    We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.

  3. Non-linear frequency response of non-isothermal adsorption controlled by micropore diffusion with variable diffusivity

    Directory of Open Access Journals (Sweden)

    MENKA PETKOVSKA

    2000-12-01

    Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.

  4. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  5. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  6. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  7. On the structure on non-local conservation laws in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Zamolodchikov, Al.B.

    1978-01-01

    The non-local conserved charges are supposed to satisfy a special multiplicative law in the space of asymptotic states of the non-linear sigma-model. This supposition leads to factorization equations for two-particle scattering matrix elements and determines to some extent the action of these charges in the asymptotic space. Their conservation turns out to be consistent with the factorized S-matrix of the non-linear sigma-model. It is shown also that the factorized sine-Gordon S-matrix is consistent with a similar family of conservation laws

  8. Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)

    International Nuclear Information System (INIS)

    Dubinskii, Yu A; Osipenko, A S

    2000-01-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented

  9. Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    OpenAIRE

    Muduli, P. K.; Pogoryelov, Ye.; Bonetti, S.; Consolo, G.; Mancoff, Fred; Åkerman, Johan

    2009-01-01

    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity ($d^{2}f/dI^{2}_{dc}$ being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.

  10. Infinite sets of conservation laws for linear and non-linear field equations

    International Nuclear Information System (INIS)

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  11. Quantum associative memory with linear and non-linear algorithms for the diagnosis of some tropical diseases.

    Science.gov (United States)

    Tchapet Njafa, J-P; Nana Engo, S G

    2018-01-01

    This paper presents the QAMDiagnos, a model of Quantum Associative Memory (QAM) that can be a helpful tool for medical staff without experience or laboratory facilities, for the diagnosis of four tropical diseases (malaria, typhoid fever, yellow fever and dengue) which have several similar signs and symptoms. The memory can distinguish a single infection from a polyinfection. Our model is a combination of the improved versions of the original linear quantum retrieving algorithm proposed by Ventura and the non-linear quantum search algorithm of Abrams and Lloyd. From the given simulation results, it appears that the efficiency of recognition is good when particular signs and symptoms of a disease are inserted given that the linear algorithm is the main algorithm. The non-linear algorithm helps confirm or correct the diagnosis or give some advice to the medical staff for the treatment. So, our QAMDiagnos that has a friendly graphical user interface for desktop and smart-phone is a sensitive and a low-cost diagnostic tool that enables rapid and accurate diagnosis of four tropical diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Compensation techniques for non-linearities in H-bridge inverters

    Directory of Open Access Journals (Sweden)

    Daniel Zammit

    2016-12-01

    Full Text Available This paper presents compensation techniques for component non-linearities in H-bridge inverters as those used in grid-connected photovoltaic (PV inverters. Novel compensation techniques depending on the switching device current were formulated to compensate for the non-linearities in inverter circuits caused by the voltage drops on the switching devices. Both simulation and experimental results will be presented. Testing was carried out on a PV inverter which was designed and constructed for this research. Very satisfactory results were obtained from all the compensation techniques presented, however the exact compensation method was the most effective, providing the highest reduction in harmonics.

  13. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  14. Non-linear excitation of gravitational radiation antennae

    International Nuclear Information System (INIS)

    Blair, D.G.

    1982-01-01

    A mechanism of non-linear excitation is proposed to explain observed excess noise in gravitational radiation antennae, driven by low frequency vibration. The mechanism is analogous to the excitation of a violin string by low frequency bowing. Numerical estimates for Weber bars suspended by cables are in good agreement with observations. (Auth.)

  15. Non-linearity in radiocaesium soil to plant transfer: fact or fiction?

    International Nuclear Information System (INIS)

    Beresford, N.A.; Scott, W.A.; Wright, S.M.

    2004-01-01

    The basis premise of many radiological assessments is the assumption that the transfer of many radionuclides from soil to herbage and hence animal derived food products is a positive linear relationship for a given set of ecological conditions. However, a number of authors have published results which they conclude demonstrate non-linear transfer of radiocaesium to plants and animals with transfer being highest when soil concentrations are lowest. Whilst we may expect non-linear transfer of radionuclides under homeostatic control or present in comparatively large chemical quantities there appears no credible hypothesis to support such an observation for radiocaesium. In this paper we review those articles which have reported non-linear radiocaesium transfer and also analyse novel data. Mechanisms for the observation as presented in the original works are critically assessed. For instance, some authors have speculated that radiocaesium root uptake is saturated. We suggest that this is unlikely as whilst saturation of root uptake of radiocaesium has been observed above 1.37 mg Cs + L -1 in growth solutions, concentrations of Cs + in soil solutions are typically -1 , and 1 MBq m -2 of 137 Cs will add only 0.3 mg Cs + m -2 . We discuss alternative hypotheses to explain the reported observations and suggest that sampling bias, countermeasure application and statistical chance all contribute to the reported non-linearity in radiocaesium transfer. (author)

  16. The feasibility of a targeted ultrasound contrast agent carrying genes and cell-penetrating peptides to hypoxic HUVEC

    International Nuclear Information System (INIS)

    Tian Ju; Wang Zhigang; Ren Jianli; Zhang Qingfeng; Liu Li

    2012-01-01

    Objective: To prepare an anti-P-selectin targeted ultrasound contrast agent carrying genes and cell-penetrating peptides (CPP) and to investigate its feasibility of delivery to hypoxic human umbilical vein endothelial cells (HUVEC). Methods: Anti-P-selectin targeted ultrasound contrast agent carrying a green fluorescent protein gene (pEGFP-N1) and CPP was prepared by mechanical vibration and carbodiimide techniques. The appearance, distribution, concentration and diameter of the ultrasound contrast agent were measured. The gene and CPP distribution on the agent was investigated using confocal laser scanning microscopy (CLSM). The efficiency of the ultrasound contrast agent to carry the gene and CPP was investigated by fluorospectrophotometry. HUVEC were cultured in vitro and hypoxic HUVEC were prepared using hydrogen peroxide (H 2 O 2 ). Hypoxic HUVEC were randomly assigned targeted ultrasound contrast agents and non-targeted ultrasound contrast agents for transfection. The transfection effect of green fluorescent protein in the two groups was observed using fluorescence microscopy and flow cytometry. T-test and linear correlation analysis were used for statistical analysis. Results: The average diameter of anti-P-selectin targeted ultrasound contrast agents carrying gene and CPP was (2.15 ±0.36) μm and the concentration was (1.58 ± 0.23) × 10 7 /ml.The results of CLSM showed that gene and CPP were distributed on the shell of the agent. The gene encapsulation efficiency was 28% (y=0.932x-0.09, r=0.993, P<0.05), and the CPP encapsulation efficiency was 25% (y=5.875x-0.81, r=0.987, P<0.05). EGFP expression was observed using fluorescence microscopy in targeted ultrasound contrast agents and non-targeted ultrasound contrast agents. The average transfection efficiencies of targeted ultrasound contrast agents and non-targeted ultrasound contrast agents were (18.74 ± 0.47) % and (15.34 ± 0.22) % after 24 h (t=10.923, P<0.001). Conclusions: The in vitro studies

  17. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  18. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    of an equivalent linearization techni que and substituting the non-analytical non-linearity in the original system by the cubic form in the pertinent state variables. The response moments are evaluated for the equivalent systems with the help of a generalized Ito's differential rule. The analytical results...

  19. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  20. Renormalization a la BRS of the non-linear σ-model

    International Nuclear Information System (INIS)

    Blasi, A.; Collina, R.

    1987-01-01

    We characterize the non-linear O(N+1) σ-model in an arbitrary parametrization with a nihilpotent BRS operator obtained from the symmetry transformation by the use of anticommuting parameters. The identity can be made compatible with the presence of a mass term in the model, so we can analyze its stability and prove that the model is anomaly free. This procedure avoids many problems encountered in the conventional analysis; in particular the introduction of an infinite number of sources coupled to the successive variations of the field is not necessary and the linear O(N) symmetry is respected as a consequence of the identity. The approach may provide useful in discussing the renormalizability of a wider class of models with non-linear symmetries. (orig.)

  1. General treatment of a non-linear gauge condition

    International Nuclear Information System (INIS)

    Malleville, C.

    1982-06-01

    A non linear gauge condition is presented in the frame of a non abelian gauge theory broken with the Higgs mechanism. It is shown that this condition already introduced for the standard SU(2) x U(1) model can be generalized for any gauge model with the same type of simplification, namely the suppression of any coupling of the form: massless gauge boson, massive gauge boson, unphysical Higgs [fr

  2. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement.

    Directory of Open Access Journals (Sweden)

    Hyunjung Christina Kim

    Full Text Available The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy. In parallel, in situ end-labelling (ISEL staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.

  3. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  4. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  5. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    Science.gov (United States)

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  6. Non-linear Springing Excitation Due to a Bidirectional Wave Field

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2005-01-01

    Significant springing vibrations in ships have recently been measured in a large ocean-going bulk carrier. So far calculations using various linear and non-linear hydrodynamic procedures have not been able to predict the measured responses. In the present paper it is shown that the springing...

  7. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  8. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  9. Non-parametric data predistortion for non-linear channels with memory

    OpenAIRE

    Piazza, Roberto; Shankar, Bhavani; Ottersten, Björn

    2013-01-01

    With the growing application of high order modulation techniques, the mitigation of the non-linear distortions introduced by the power amplification, has become a major issue in telecommunication. More sophisticated techniques to counteract the strong generated interferences need to be investigated in order to achieve the desired power and spectral efficiency. This work proposes a novel approach for the definition of a transmitter technique (predistortion) that outperforms the standard method...

  10. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  11. Study of the linear and non-linear coupling of the LH wave to the tokamak plasmas

    International Nuclear Information System (INIS)

    Preynas, M.

    2012-10-01

    In order to achieve long pulse operation with a tokamak, additional heating and current drive systems are necessary. High frequency antennas, which deliver several megawatts of power to the plasma, are currently used in several tokamaks. Moreover, a good control of the coupling of the wave launched by the antenna to the edge plasma is required to optimize the efficiency of heating and current drive LH systems. However, non-linear effects which depend on the level of injected power in the plasma strongly damage the coupling of the LH wave at particular edge parameters (density and temperature profiles). Results presented in the manuscript deal with the study of the linear and non-linear coupling of the LH wave to the plasma. In the framework of the commissioning of the Passive Active Multijunction antenna in 2009 on the Tore Supra tokamak aiming at validating the LH system suggested for ITER, the characterisation of its coupling properties was realized from low power experiments. The experimental results, which are compared with the linear coupling code ALOHA, have validated the theoretical predictions of good coupling at edge plasma density around the cut-off density. Besides, the ponderomotive effect is clearly identified as responsible for the deterioration in the coupling of the wave, which is measured under particular edge plasma conditions. A theoretical model combining the coupling of the LH wave with the ponderomotive force is suggested to explain the experimental observations. Thus, a new full wave code (named PICCOLO-2D) was developed and results from simulations validate the working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling on Tore Supra. (author)

  12. Linearization of non-commuting operators in the partition function

    International Nuclear Information System (INIS)

    Ahmed, M.

    1983-06-01

    A generalization of the Stratonovich-Hubbard scheme for evaluating the grand canonical partition function is given. The scheme involves linearization of products of non-commuting operators using the functional integral method. The non-commutivity of the operators leads to an additional term which can be absorbed in the single-particle Hamiltonian. (author)

  13. Linear and Non-Linear Dose-Response Functions Reveal a Hormetic Relationship Between Stress and Learning

    OpenAIRE

    Zoladz, Phillip R.; Diamond, David M.

    2008-01-01

    Over a century of behavioral research has shown that stress can enhance or impair learning and memory. In the present review, we have explored the complex effects of stress on cognition and propose that they are characterized by linear and non-linear dose-response functions, which together reveal a hormetic relationship between stress and learning. We suggest that stress initially enhances hippocampal function, resulting from amygdala-induced excitation of hippocampal synaptic plasticity, as ...

  14. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    International Nuclear Information System (INIS)

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  15. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    Science.gov (United States)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one

  16. Ultrasound and MRI findings in appendicular and truncal fat necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Philip [Leeds Teaching Hospitals, Department of Radiology, Leeds (United Kingdom); Leeds Teaching Hospitals, Musculoskeletal Centre, X-Ray Department, Chapel Allerton Hospital, Leeds (United Kingdom); Farrant, Joanna M.; McKie, Scott [Leeds Teaching Hospitals, Department of Radiology, Leeds (United Kingdom); Bourke, Grainne [Leeds Teaching Hospitals, Department of Plastic Surgery, Leeds (United Kingdom); Merchant, William [Leeds Teaching Hospitals, Department of Pathology, Leeds (United Kingdom); Horgan, Kieran J. [Leeds Teaching Hospitals, Department of Surgery, Leeds (United Kingdom)

    2008-03-15

    The objective was to evaluate ultrasound and MRI in clinical appendicular and truncal fat necrosis. Thirty-three patients (14 men, 19 women, median age 55, range 29-95) were retrospectively evaluated. Histologically, three groups were seen: Group 1 (n = 18) consisted of patients with subcutaneous masses with septal and extrinsic oedema; in Group 2 (n = 11) necrosis occurred within lipomatous tumours and little oedema; and in Group 3 (n = 4) there were large complex masses consistent with Morel-Lavallee lesions. Two experienced radiologists reviewed MR (n = 30) and ultrasound (n = 32) images with consensus agreement. MRI was performed on a 1.5T system with T1-weighted, T2-weighted fat-suppressed and T1-weighted fat-suppressed post-intravenous gadolinium sequences obtained in two orthogonal planes. Ultrasound (linear 5- to 13.5-MHz probe) was performed in the longitudinal and short axis. Anatomical position, size, shape (oval, linear, ill-defined), internal architecture (lobules, septi or stranding), intrinsic signal characteristics, presence of surrounding pseudocapsule, extrinsic linear stranding and vascularity (gadolinium enhancement or power Doppler) were recorded. Anatomical locations were buttock/thigh (n = 17), leg (n = 6), upper limb (n = 5) and thoracic/abdominal wall (n = 5) with the majority of lesions (30 out of 33) oval/linear in shape. On ultrasound and MRI most lesions showed internal fat lobules, intervening septi and a surrounding pseudocapsule. Fat necrosis can usually be identified as containing multiple fat lobules on ultrasound and MRI despite a varying degree of inflammatory change surrounding and within the mass. (orig.)

  17. Fitting and forecasting coupled dark energy in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  18. Fitting and forecasting coupled dark energy in the non-linear regime

    International Nuclear Information System (INIS)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications

  19. Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...

  20. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

    Science.gov (United States)

    de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2018-03-01

    Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

  1. Non-linear and non-symmetric exchange-rate adjustment: new evidence from medium and high inflation countries

    OpenAIRE

    Arghyrou, MG; Boinet, V; Martin, C

    2003-01-01

    This paper analyses a model of non-linear exchange rate adjustment that extends the literature by allowing asymmetric responses to over- and under-valuations. Applying the model to Greece and Turkey, we find that adjustment is asymmetric and that exchange rates depend on the sign as well as the magnitude of deviations, being more responsive to over-valuations than under-valuations. Our findings support and extend the argument that non-linear models of exchange rate adjustment c...

  2. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    Science.gov (United States)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  3. Heterotic non-linear sigma models with anti-de Sitter target spaces

    International Nuclear Information System (INIS)

    Michalogiorgakis, Georgios; Gubser, Steven S.

    2006-01-01

    We calculate the beta function of non-linear sigma models with S D+1 and AdS D+1 target spaces in a 1/D expansion up to order 1/D 2 and to all orders in α ' . This beta function encodes partial information about the spacetime effective action for the heterotic string to all orders in α ' . We argue that a zero of the beta function, corresponding to a worldsheet CFT with AdS D+1 target space, arises from competition between the one-loop and higher-loop terms, similarly to the bosonic and supersymmetric cases studied previously in [J.J. Friess, S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B 750 (2006) 111-141]. Various critical exponents of the non-linear sigma model are calculated, and checks of the calculation are presented

  4. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... the scattered photons. Even though the non-linearity also alters the pulse spectrum due to a four-wave mixing process, we demonstrate that input pulses with a Gaussian spectrum can be mapped to the output with up to 80 % fidelity. Using two identical two-level emitters, we propose a setup for a deterministic...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  5. Non Linear signa models probing the string structure

    International Nuclear Information System (INIS)

    Abdalla, E.

    1987-01-01

    The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt

  6. On projective invariants based on non-linear connections in a Finsler space I

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-05-01

    The projective transformations based on linear connections in a Finsler space have been studied by Berwald, Misra, Szabo, Matsumoto, Fukai and Yamada, Rastogi and others. In almost all these papers the emphasis has been on studying Finsler spaces of scalar curvature, Finsler spaces of constant curvature and Finsler spaces of zero curvature with the help of projective curvature tensors of Weyl and Douglas. In 1981, the author studied projective transformation in a Finsler space based on non-linear connections and obtained certain projective invariants. The aim of the present paper is to study Finsler spaces of scalar curvature, constant curvature and zero curvature with the help of non-linear connections and projective invariants obtained from non-linear connections. (author)

  7. Wrist ultrasound analysis of patients with early rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    J.A. Mendonça

    2011-01-01

    Full Text Available In the present study, we evaluated 42 wrists using the semi-quantitative scales power Doppler ultrasound (PDUS and gray scale ultrasound (GSUS with scores ranging from 0 to 3 and correlated the results with clinical, laboratory and radiographic data. Twenty-one patients (17 women and 4 men with rheumatoid arthritis according to criteria of the American College of Rheumatology were enrolled in the study from September 2008 to July 2009 at Universidade Estadual de Campinas (UNICAMP. The average disease duration was 14 months. The patients were 66.6% Caucasians and 33.3% non-Caucasians, with a mean age of 42 and 41 years, respectively. A dorsal longitudinal scan was performed by ultrasound on the radiocarpal and midcarpal joints using GE LOGIQ XP-linear ultrasound and a high frequency (8-10 MHz transducer. All patients were X-rayed, and the Larsen score was determined for the joints, with grades ranging from 0 to V. This study showed significant correlations between clinical, sonographic and laboratory data: GSUS and swollen right wrist (r = 0.546, GSUS of right wrist and swelling of left wrist (r = 0.511, PDUS of right wrist and pain in left wrist (r = 0.436, PDUS of right wrist and C-reactive protein (r = 0.466. Ultrasound can be considered a useful tool in the diagnosis of synovitis in early rheumatoid arthritis mainly when the anti-cyclic citrullinated peptide and rheumatoid factor are negative, and can lead to an early change in the therapeutic decision.

  8. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  9. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1990-07-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of Neural Network known as the multi-layer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author) 15 refs., 7 figs

  10. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.

  11. Asymptotic stability of linearly evolving non-stationary modes in a ...

    Indian Academy of Sciences (India)

    attention and it is believed to shed important light on the unresolved .... number assumption and is termed as the triple-deck theory. Having ... to analyse asymptotically the linear and weakly non-linear stability features of the station- ..... A numerical integration of equations (7–9) was implemented first to obtain the basic flow.

  12. Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks

    OpenAIRE

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-01

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confi...

  13. Predictive values of Bi-Rads categories 3, 4 and 5 in non-palpable breast masses evaluated by mammography, ultrasound and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Roveda Junior, Decio; Fleury, Eduardo de Castro Faria; Piato, Sebastiao; Oliveira, Vilmar Marques de; Rinaldi, Jose Francisco; Ferreira, Carlos Alberto Pecci

    2007-01-01

    Objective: To evaluate the predictive value of BI-RADS TM categories 3, 4 and 5 in non-palpable breast masses assessed by mammography, ultrasound and magnetic resonance imaging. Materials And Methods: Twenty-nine patients with BI-RADS categories 3, 4 and 5 non-palpable breast masses identified by mammograms were submitted to complementary ultrasound and magnetic resonance imaging studies, besides excisional biopsy. In total, 30 biopsies were performed. The lesions as well as their respective BI-RADS classification into 3, 4 and 5 were correlated with the histopathological results. The predictive values calculation was made by means of specific mathematical equations. Results: Negative predictive values for category 3 were: mammography, 69.23%; ultrasound, 70.58%; and magnetic resonance imaging, 100%. Positive predictive values for category 4 were: mammography, 63.63%; ultrasound, 50%; and magnetic resonance imaging, 30.76%. For category 5, positive predictive values were: mammography and ultrasound, 100%; and magnetic resonance imaging, 92.85%. Conclusion: For category 3, the negative predictive value of magnetic resonance imaging was high, and for categories 4 and 5, the positive predictive values of the three modalities were moderate. (author)

  14. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...... are carried out at much higher stress levels than present in a slope failure, this leads to the conclusion that the use of the non-linear criterion leads to a safer slope design...

  15. Reconstructions in ultrasound modulated optical tomography

    KAUST Repository

    Allmaras, Moritz; Bangerth, Wolfgang

    2011-01-01

    We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.

  16. REKLAMLARDA ÜNLÜ KULLANIMINDA CİNSİYETİN MARKA İMAJI ÜZERİNDEKİ ETKİSİ

    Directory of Open Access Journals (Sweden)

    Ceyda DENEÇLİ

    2015-09-01

    Full Text Available Özet.rünlerle ilişkili gerek kültürel gerekse faydacı anlamları tüketicilere aktarmaya yardımcı olan reklamlardatüketicileri ikna etmek amacıyla ünlü kullanımına yer verildiği g.rülmektedir. Tüketicilerin reklamdayer alan ünlü kişileri uzman, güvenilir, inanılır bulması, bu kişileri sevmesi, beğenmesi vb. faktörlertüketicilerin reklama karşı tutumlarını etkileyebilmekte ve bu durum tüketicilerin marka imajına ilişkindeğerlendirmelerinde farklılıklara neden olabilmektedir. Ancak reklamda yer alan ünlünün cinsiyeti dereklam mesajını alan bireylerin reklama karşı tutumlarında farklılıklara yol açabilmektedir. Çalışmadareklamlarda kullanılan ünlülerinin erkek ya da kadın olmasının marka imajı üzerindeki etkisinin belirlenmesiamaçlanmıştır. Araştırmada kadın ve erkek ünlünün yer aldığı iki reklam tüketicilere gösterilmiş vetüketicilerin reklama karşı tutumlarının marka imajına yönelik algılamalarındaki değişiklik üzerindekietkisi belirlenmiştir. Araştırmanın sonuçlarına göre reklamda ünlü kullanımının marka ile ilgili algıyıolumlu yönde etkilediği g.rülmektedir. Ayrıca reklamda yer alan ünlünün cinsiyetinin kadın olmasının,hem kadın hem erkek tüketicilerin marka imajına ilişkin değerlendirmelerini, reklamda kullanılan ünlününerkek olmasına göre daha olumlu etkilediği saptanmıştır.

  17. Local inversions in ultrasound-modulated optical tomography

    International Nuclear Information System (INIS)

    Bal, Guillaume; Moskow, Shari

    2014-01-01

    Ultrasound-modulated optical tomography is a hybrid imaging modality that aims to combine the high contrast of optical waves with the high resolution of ultrasound. We follow the model of the influence of ultrasound modulation on the light intensity measurements developed in Bal and Schotland (2010 Phys. Rev. Lett. 104 043902). We present sufficient conditions ensuring that the absorption and diffusion coefficients modeling light propagation can locally be uniquely and stably reconstructed from the corresponding available information. We present an iterative procedure to solve such a problem based on the analysis of linear elliptic systems of redundant partial differential equations. (paper)

  18. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Science.gov (United States)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. non-linear model are compared to those

  19. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  20. Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

    CERN Document Server

    Albacete, J L; Quiroga-Arias, P; Rojo, J

    2012-01-01

    The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

  1. Non-Linear MDT Drift Gases like Ar/CO2

    CERN Document Server

    Aleksa, Martin

    1998-01-01

    Detailed measurements and simulations have been performed, investigating the properties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements and compares them to other drift gases that have been simulated using GARFIELD, HEED and MAGBOLTZ.This note also describes systematic errors to be considered in the operation of precision drift chambers using such gases. In particular we analyze effects of background rate variations, gas-density changes, variations of the gas composition, autocalibration, magnetic field differences and non-concentricity of the wire. Their impact on the reconstructed muon momentum resolution was simulated with DICE/ATRECON.The different properties of linear and non-linear drift gases and their relative advantages and disadvantages are discussed in detail.

  2. f (T) Non-linear Massive Gravity and the Cosmic Acceleration

    International Nuclear Information System (INIS)

    Wu You; Chen Zu-Cheng; Wei Hao; Wang Jia-Xin

    2015-01-01

    Inspired by the f (R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f (T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f (T) theory. We then investigate the cosmological evolution of f (T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (w_d_e > −1) to the phantom-like one (w_d_e < −1) as redshift decreases. (paper)

  3. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  4. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  5. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 fractional Laplacian in one dimension. In particular, we answer affirmatively an open question...... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized...

  6. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  7. Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes

    Science.gov (United States)

    Manuel, Mario

    2012-10-01

    Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

  8. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  9. Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)

    Science.gov (United States)

    Dubinskii, Yu A.; Osipenko, A. S.

    2000-02-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.

  10. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Some mathematical problems in non-linear Physics

    International Nuclear Information System (INIS)

    1983-01-01

    The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs

  12. Fast non-linear extraction of plasma equilibrium parameters using a neural network mapping

    International Nuclear Information System (INIS)

    Lister, J.B.; Schnurrenberger, H.

    1991-01-01

    The shaping of non-circular plasmas requires a non-linear mapping between the measured diagnostic signals and selected equilibrium parameters. The particular configuration of neural network known as the multilayer perceptron provides a powerful and general technique for formulating an arbitrary continuous non-linear multi-dimensional mapping. This technique has been successfully applied to the extraction of equilibrium parameters from measurements of single-null diverted plasmas in the DIII-D tokamak; the results are compared with a purely linear mapping. The method is promising, and hardware implementation is straightforward. (author). 17 refs, 8 figs, 2 tab

  13. Non-Invasive Measurement of Pulsatile Intracranial Pressures Using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, Richard E.; Shuer, Lawrence M.; Cantrell, John H.; Cantrell, John H.; Hargens, Alan R.

    1997-01-01

    Early detection of elevated intracranial pressure (ICP) will aid clinical decision-making for head trauma, brain tumor and other cerebrovascular diseases. Conventional methods, however, require surgical procedures which take time and are accompanied by increased risk of infection. Accordingly we have developed and refined a new ultrasound device to measure skull movements which are known to occur in conjunction with altered ICP. The principle of this device is based upon pulse phase locked loop (PPLL), which enables us to detect changes in distance on the order of microns between an ultrasound transducer on one side of the skull and the opposite inner surface of the cranium. The present study was designed to verify this measurement technique in cadavera. Transcranial distance was increased in steps of 10 mmHg from zero to 50 mmHg by saline infusion into the lateral ventricle of two cadavera. In separate experiments, pulsations of ICP with the amplitudes of zero to 2 mmHg were generated by rhythmic injections of saline using a syringe. When the ICP was stepwise increased from zero to 50 mmHg, transcranial distance increased in proportion with the ICP increase (y=12 x - 76, r=0.938), where y is changes in transcranial distance in microns and x is ICP in mmHg. In the data recorded while ICP pulsations were generated, fast Fourier transform analysis demonstrated that cranial pulsations were clearly associated with ICP pulsations. The results indicate that changes in transcranial distance is linearly correlated with those in ICP, and also that the PPLL device has sufficient sensitivity to detect transcranial pulsations which occur in association with the cardiac cycle. By analyzing the magnitude of cranial pulsations, we may be able to estimate the pressure-volume index in the cranium. As a result, estimates of intracranial compliance may be possible by using the PPLL device. Further studies are necessary in normal subjects and patients.

  14. Non-linear DSGE Models and The Central Difference Kalman Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...

  15. Current algebra of classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Laartz, J.; Schaeper, U.

    1992-01-01

    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

  16. New computational method for non-LTE, the linear response matrix

    International Nuclear Information System (INIS)

    Fournier, K.B.; Grasiani, F.R.; Harte, J.A.; Libby, S.B.; More, R.M.; Zimmerman, G.B.

    1998-01-01

    My coauthors have done extensive theoretical and computational calculations that lay the ground work for a linear response matrix method to calculate non-LTE (local thermodynamic equilibrium) opacities. I will give briefly review some of their work and list references. Then I will describe what has been done to utilize this theory to create a computational package to rapidly calculate mild non-LTE emission and absorption opacities suitable for use in hydrodynamic calculations. The opacities are obtained by performing table look-ups on data that has been generated with a non-LTE package. This scheme is currently under development. We can see that it offers a significant computational speed advantage. It is suitable for mild non-LTE, quasi-steady conditions. And it offers a new insertion path for high-quality non-LTE data. Currently, the linear response matrix data file is created using XSN. These data files could be generated by more detailed and rigorous calculations without changing any part of the implementation in the hydro code. The scheme is running in Lasnex and is being tested and developed

  17. Signals for Non-Cummutative Interactions at Linear Colliders

    International Nuclear Information System (INIS)

    Rizzo, Thomas G.

    2001-01-01

    Recent theoretical results have demonstrated that non-commutative geometries naturally appear within the context of string/M-theory. One consequence of this possibility is that QED takes on a non-abelian nature due to the introduction of 3- and 4-point functions. In addition, each QED vertex acquires a momentum dependent phase factor. We parameterize the effects of non-commutative space-time co-ordinates and show that they lead to observable signatures in several 2 → 2 QED processes in e + e - collisions. In particular, we examine pair annihilation, Moller and Bhabha scattering, as well as γγ → γγ scattering and show that non-commutative scales of order a TeV can be probed at high energy linear colliders

  18. Signals for Non-Cummutative Interactions at Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2001-07-23

    Recent theoretical results have demonstrated that non-commutative geometries naturally appear within the context of string/M-theory. One consequence of this possibility is that QED takes on a non-abelian nature due to the introduction of 3- and 4-point functions. In addition, each QED vertex acquires a momentum dependent phase factor. We parameterize the effects of non-commutative space-time co-ordinates and show that they lead to observable signatures in several 2 {yields} 2 QED processes in e{sup +}e{sup -} collisions. In particular, we examine pair annihilation, Moller and Bhabha scattering, as well as {gamma}{gamma} {yields} {gamma}{gamma} scattering and show that non-commutative scales of order a TeV can be probed at high energy linear colliders.

  19. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    International Nuclear Information System (INIS)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge

    2014-01-01

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  20. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  1. Alternative theories of the non-linear negative mass instability

    International Nuclear Information System (INIS)

    Channell, P.J.

    1974-01-01

    A theory non-linear negative mass instability is extended to include resistance. The basic assumption is explained physically and an alternative theory is offered. The two theories are compared computationally. 7 refs., 8 figs

  2. The effect of Moidal non-linear blending function for dual-energy CT on CT image quality

    International Nuclear Information System (INIS)

    Zhang Fan; Yang Li

    2011-01-01

    Objective: To compare the difference between linear blending and non-linear blending function for dual-energy CT, and to evaluate the effect on CT image quality. Methods: The model was made of a piece of fresh pork liver inserted with 5 syringes containing various concentrations of iodine solutions (16.3, 26.4, 48.7, 74.6 and 112.3 HU). Linear blending images were automatically reformatted after the model was scanned in the dual-energy mode. Non-linear blending images were reformatted using the software of optimal contrast in Syngo workstation. Images were divided into 3 groups, including linear blending group, non-linear blending group and 120 kV group. Contrast noise ratio (CNR) were measured and calculated respectively in the 3 groups and the different figure of merit (FOM) values between the groups were compared using one-way ANOVA. Twenty patients scanned in the dual-energy mode were randomly selected and the SNR of their liver, renal cortex, spleen, pancreas and abdominal aorta were measured. The independent sample t test was used to compare the difference of signal to noise ratio (SNR) between linear blending group and non linear blending group. Two readers' agreement score and single-blind method were used to investigate the conspicuity difference between linear blending group and non linear blending group. Results: With models of different CT values, the FOM values in non-linear blending group were 20.65± 8.18, 11.40±4.25, 1.60±0.82, 2.40±1.13, 45.49±17.86. In 74.6 HU and 112.3 HU models, the differences of the FOM values observed among the three groups were statistically significant (P<0.05), which were 0.30±0.06 and 14.43±4.59 for linear blending group, and 0.22±0.05 and 15.31±5.16 for 120 kV group. And non-linear blending group had a better FOM value. The SNR of renal cortex and abdominal aorta were 19.2±5.1 and 36.5±13.9 for non-linear blending group, while they were 12.4±3.8 and 22.6±7.0 for linear blending group. There were statistically

  3. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  4. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  5. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  6. Ultrasound and MR imaging of diabetic mastopathy

    International Nuclear Information System (INIS)

    Wong, K.T.; Tse, G.M.K.; Yang, W.T.

    2002-01-01

    AIM: To review the imaging findings of diabetic mastopathy, and document the colour flow ultrasound and MR imaging features in this benign condition. MATERIALS AND METHODS: Diabetic mastopathy was clinically and histologically diagnosed in eight lesions in six women. All six women underwent conventional mammography and high frequency grey-scale ultrasound. Colour flow ultrasound was performed additionally in six lesions in four women and MR imaging in four lesions in three women before biopsy. The imaging findings were reviewed and correlated with final histological diagnosis. RESULTS: Mammography showed regional asymmetric increased opacity with ill-defined margins in all lesions. A heterogeneously hypoechoic mass with ill-defined margins was identified on high frequency grey-scale ultrasound in all lesions. Marked posterior acoustic shadowing was present in seven of eight (88%) lesions. Six lesions interrogated with colour flow ultrasound showed absence of Doppler signal. MR imaging in three women revealed non-specific stromal enhancement. CONCLUSION: Diabetic mastopathy shows absence of Doppler signal on colour flow ultrasound and non-specific stromal enhancement on MR imaging. Wong K.T. et al. (2002)

  7. Remote tele-mentored ultrasound for non-physician learners using FaceTime: A feasibility study in a low-income country.

    Science.gov (United States)

    Robertson, Thomas E; Levine, Andrea R; Verceles, Avelino C; Buchner, Jessica A; Lantry, James H; Papali, Alfred; Zubrow, Marc T; Colas, L Nathalie; Augustin, Marc E; McCurdy, Michael T

    2017-08-01

    Ultrasound (US) is a burgeoning diagnostic tool and is often the only available imaging modality in low- and middle-income countries (LMICs). However, bedside providers often lack training to acquire or interpret US images. We conducted a study to determine if a remote tele-intensivist could mentor geographically removed LMIC providers to obtain quality and clinically useful US images. Nine Haitian non-physician health care workers received a 20-minute training on basic US techniques. A volunteer was connected to an intensivist located in the USA via FaceTime. The intensivist remotely instructed the non-physicians to ultrasound five anatomic sites. The tele-intensivist evaluated the image quality and clinical utility of performing tele-ultrasound in a LMIC. The intensivist agreed (defined as "agree" or "strongly agree" on a five-point Likert scale) that 90% (57/63) of the FaceTime images were high quality. The intensivist felt comfortable making clinical decisions using FaceTime images 89% (56/63) of the time. Non-physicians can feasibly obtain high-quality and clinically relevant US images using video chat software in LMICs. Commercially available software can connect providers in institutions in LMICs to geographically removed intensivists at a relatively low cost and without the need for extensive training of local providers. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  9. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  10. Determination of lesion size by ultrasound during radiofrequency catheter ablation.

    Science.gov (United States)

    Awad, S; Eick, O

    2003-01-01

    The catheter tip temperature that is used to control the radiofrequency generator output poorly correlates to lesion size. We, therefore, evaluated lesions created in vitro using a B-mode ultrasound imaging device as a potential means to assess lesion generation during RF applications non-invasively. Porcine ventricular tissue was immersed in saline solution at 37 degrees C. The catheter was fixed in a holder and positioned in a parallel orientation to the tissue with an array transducer (7.5 MHz) app. 3 cm above the tissue. Lesions were produced either in a temperature controlled mode with a 4-mm tip catheter with different target temperatures (50, 60, 70 and 80 degrees C, 80 W maximum output) or in a power controlled mode (25, 50 and 75 W, 20 ml/min irrigation flow) using an irrigated tip catheter. Different contact forces (0.5 N, 1.0 N) were tested, and RF was delivered for 60 s. A total of 138 lesions was produced. Out of these, 128 could be identified on the ultrasound image. The lesion depth and volume was on average 4.1 +/- 1.6 mm and 52 +/- 53 mm3 as determined by ultrasound and 3.9 +/- 1.7 mm and 52 +/- 55 mm3 as measured thereafter, respectively. A linear correlation between the lesion size determined by ultrasound and that measured thereafter was demonstrated with a correlation coefficient of r = 0.87 for lesion depth and r = 0.93 for lesion volume. We conclude that lesions can be assessed by B-mode ultrasound imaging.

  11. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  12. Linear and non-linear interdependence of EEG and HRV frequency bands in human sleep.

    Science.gov (United States)

    Chaparro-Vargas, Ramiro; Dissanayaka, P Chamila; Patti, Chanakya Reddy; Schilling, Claudia; Schredl, Michael; Cvetkovic, Dean

    2014-01-01

    The characterisation of functional interdependencies of the autonomic nervous system (ANS) stands an evergrowing interest to unveil electroencephalographic (EEG) and Heart Rate Variability (HRV) interactions. This paper presents a biosignal processing approach as a supportive computational resource in the estimation of sleep dynamics. The application of linear, non-linear methods and statistical tests upon 10 overnight polysomnographic (PSG) recordings, allowed the computation of wavelet coherence and phase locking values, in order to identify discerning features amongst the clinical healthy subjects. Our findings showed that neuronal oscillations θ, α and σ interact with cardiac power bands at mid-to-high rank of coherence and phase locking, particularly during NREM sleep stages.

  13. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  14. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  15. Non-linear effects and plasma heating by lower-hybrid waves in the Petula tokamak

    International Nuclear Information System (INIS)

    Briand, P.; Dupas, L.; Golovato, S.N.; Singh, C.M.; Melin, G.; Grelot, P.; Legardeur, R.; Zymanski, S.

    1979-01-01

    Lower hybrid waves were excited by a two-waveguide 'grill' (nsub(parallel) approximately 1-10, Esub(grill) approximately 3kVcm -1 , Psub(grill) approximately 5kWcm -2 ) at 1.25GHz, 3ms, 600kW. Plasma heating was observed separately as due to non-linear effects alone as well as to a combination of linear and non-linear mechanisms. (author)

  16. Study of two examples of non linear interaction of a laser wave with matter: laser-induced damage of dielectrics and non linear optical properties of organometallic molecules in solution

    International Nuclear Information System (INIS)

    Gaudry, Jean-Baptiste

    2000-01-01

    This research thesis reports the study of two mechanisms of non linear interaction of a laser wave with matter. More particularly, it reports the experimental investigation of non linear optical properties of organometallic molecules in solution, as well as the damage of perfect silica under laser irradiation by using simulation codes. As far as optical properties are concerned, the author highlights the influence of the electronic configuration of the metal present in the organometallic compound, and the influence of the ligand on the second-order non-linear response. As far as the simulation is concerned, some experimental results have been reproduced. This work can be useful for the investigation of the extrinsic damage of imperfect materials, and for the design of experiments of transient measurements of excited silica [fr

  17. Efficient Estimation of Extreme Non-linear Roll Motions using the First-order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    In on-board decision support systems efficient procedures are needed for real-time estimation of the maximum ship responses to be expected within the next few hours, given on-line information on the sea state and user defined ranges of possible headings and speeds. For linear responses standard...... frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using...... the first-order reliability method (FORM), well-known from structural reliability problems. To illustrate the proposed procedure, the roll motion is modelled by a simplified non-linear procedure taking into account non-linear hydrodynamic damping, time-varying restoring and wave excitation moments...

  18. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  19. Linear versus non-linear measures of temporal variability in finger tapping and their relation to performance on open- versus closed-loop motor tasks: comparing standard deviations to Lyapunov exponents.

    Science.gov (United States)

    Christman, Stephen D; Weaver, Ryan

    2008-05-01

    The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.

  20. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  1. Computer model for harmonic ultrasound imaging.

    Science.gov (United States)

    Li, Y; Zagzebski, J A

    2000-01-01

    Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.

  2. Comparison of modal spectral and non-linear time history analysis of a piping system

    International Nuclear Information System (INIS)

    Gerard, R.; Aelbrecht, D.; Lafaille, J.P.

    1987-01-01

    A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)

  3. A Diagnostic Ultrasound Imaging System

    International Nuclear Information System (INIS)

    Lee, Seong Woo

    1999-01-01

    The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result, their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result, the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described

  4. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...

  5. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  6. Seismic behavior of reinforced concrete structures: non linear calculation and experimental verification

    International Nuclear Information System (INIS)

    Gauvain, J.; Hoffmann, A.; Jeandidier, C.; Livolant, M.

    1978-01-01

    This study presents the tests of a reinforced concrete beam conducted by the Department of Mechanical and Thermal Studies at the Centre d'Etudes Nucleaires de Saclay, France. The actual behavior of nuclear power plant buildings submitted to seismic loads is generally non linear even for moderate seismic levels. The non-linearity is specially important for reinforced concrete type buildings. To estimate the safety factors when the building is designed by standard methods, accurate non linear calculations are necessary. For such calculations one of the most difficult point is to define a correct model for the behavior of a reinforced concrete beam subject to reversed loads. For that purpose, static and dynamic experimental tests on a shaking table have been carried out and a model reasonably accurate has been established and checked on the test results [fr

  7. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    Science.gov (United States)

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  8. Internal crisis in a second-order non-linear non-autonomous electronic oscillator

    International Nuclear Information System (INIS)

    Stavrinides, S.G.; Deliolanis, N.C.; Miliou, A.N.; Laopoulos, Th.; Anagnostopoulos, A.N.

    2008-01-01

    The internal crisis of a second-order non-linear non-autonomous chaotic electronic circuit is studied. The phase portraits consist of two interacting sub-attractors, a chaotic and a periodic one. Maximal Lyapunov exponents were calculated, for both the periodic and the chaotic waveforms, in order to confirm their nature. Transitions between the chaotic and the periodic sub-attractors become more frequent by increasing the circuit driving frequency. The frequency distribution of the corresponding laminar lengths and their average values indicate that an internal crisis takes place in this circuit, manifested in the intermittent behaviour of the corresponding orbits

  9. Non-Linear Metamodeling Extensions to the Robust Parameter Design of Computer Simulations

    Science.gov (United States)

    2016-09-15

    The combined-array RSM approach has been applied to a piston simulation [11] and an economic order quantity inventory model [12, 13]. A textbook ...are limited when applied to simulations. In the former case, the mean and variance models can be inadequate due to a high level of non-linearity...highly non-linear nature of typical simulations. In the multi-response RPD problem, the objective is to find the optimal control parameter levels

  10. High-resolution harmonics ultrasound imaging for non-invasive characterization of wound healing in a pre-clinical swine model.

    Directory of Open Access Journals (Sweden)

    Surya C Gnyawali

    Full Text Available This work represents the first study employing non-invasive high-resolution harmonic ultrasound imaging to longitudinally characterize skin wound healing. Burn wounds (day 0-42, on the dorsum of a domestic Yorkshire white pig were studied non-invasively using tandem digital planimetry, laser speckle imaging and dual mode (B and Doppler ultrasound imaging. Wound depth, as measured by B-mode imaging, progressively increased until day 21 and decreased thereafter. Initially, blood flow at the wound edge increased up to day 14 and subsequently regressed to baseline levels by day 21, when the wound was more than 90% closed. Coinciding with regression of blood flow at the wound edge, there was an increase in blood flow in the wound bed. This was observed to regress by day 42. Such changes in wound angiogenesis were corroborated histologically. Gated Doppler imaging quantitated the pulse pressure of the primary feeder artery supplying the wound site. This pulse pressure markedly increased with a bimodal pattern following wounding connecting it to the induction of wound angiogenesis. Finally, ultrasound elastography measured tissue stiffness and visualized growth of new tissue over time. These studies have elegantly captured the physiological sequence of events during the process of wound healing, much of which is anticipated based on certain dynamics in play, to provide the framework for future studies on molecular mechanisms driving these processes. We conclude that the tandem use of non-invasive imaging technologies has the power to provide unprecedented insight into the dynamics of the healing skin tissue.

  11. N=4 superconformal mechanics as a non linear realization

    International Nuclear Information System (INIS)

    Anabalon, Andres; Gomis, Joaquim; Kamimura, Kiyoshi; Zanelli, Jorge

    2006-01-01

    An action for a superconformal particle is constructed using the non linear realization method for the group PSU(1,1/2), without introducing superfields. The connection between PSU(1,1/2) and black hole physics is discussed. The lagrangian contains six arbitrary constants and describes a non-BPS superconformal particle. The BPS case is obtained if a precise relation between the constants in the lagrangian is verified, which implies that the action becomes kappa-symmetric

  12. On the stability of non-linear systems; Sur la stabilite des systemes non-lineaires

    Energy Technology Data Exchange (ETDEWEB)

    Guelman, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, services scientifiques

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [French] Dans ce travail, on etudie la stabilite absolue des systemes non lineaires utilisant la deuxieme methode de Liapounov en tenant compte des resultats acquis a partir des travaux de V.M. Popov. On fait d'abord un expose des resultats deja etablis, en particulier en ce qui concerne les criteres frequentiels de stabilite absolue pour le cas d'un systeme de commande automatique comportant une seule non linearite. On a prolonge ces resultats jusqu'a l'etablissement de l'existence d'une parabole limite. On fait ensuite une nouvelle utilisation des methodes etudiees, etablissant des criteres de stabilite absolue pour un systeme comportant un type different de non linearite. On etudie enfin les resultats obtenus, dans l'optique de la conjecture de Aizerman. (auteur)

  13. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available . In contrast to certain other applications in complexity theory, these non-linear solutions are characterized by great stability. To go beyond the dominant non-perturbative solution one has to consider the source term as well. The parameter freedom...

  14. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  15. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency

    International Nuclear Information System (INIS)

    Yamashita, Osamu

    2009-01-01

    The new thermal rate equations were built up by taking the linear and non-linear components in the temperature dependences of the Seebeck coefficient α, the electrical resistivity ρ and thermal conductivity κ of a thermoelectric (TE) material into the thermal rate equations on the assumption that their temperature dependences are expressed by a quadratic function of temperature T. The energy conversion efficiency η for a single TE element was formulated using the new thermal rate ones proposed here. By applying it to the high-performance half-Heusler compound, the non-linear component in the temperature dependence of α among those of the TE properties has the greatest effect on η, so that η/η 0 was increased by 11% under the condition of T = 510 K and ΔT = 440 K, where η 0 is a well-known conventional energy conversion efficiency. It was thus found that the temperature dependences of TE properties have a significant influence on η. When one evaluates the accurate achievement rate of η exp obtained experimentally for a TE generator, therefore, η exp should be compared with η the estimated from the theoretical expression proposed here, not with η 0 , particularly when there is a strong non-linearity in the temperature dependence of TE properties.

  16. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  17. LINEAR AND NON-LINEAR ANALYSES OF CABLE-STAYED STEEL FRAME SUBJECTED TO SEISMIC ACTIONS

    Directory of Open Access Journals (Sweden)

    Marko Đuran

    2017-01-01

    Full Text Available In this study, linear and non-linear dynamic analyses of a cable-stayed steel frame subjected to seismic actions are performed. The analyzed cable-stayed frame is the main supporting structure of a wide-span sports hall. Since the complex dynamic behavior of cable-stayed structures results in significant geometric nonlinearity, a nonlinear time history analysis is conducted. As a reference, an analysis using the European standard approach, the so-called linear modal response spectrum method, is also performed. The analyses are conducted for different seismic actions considering dependence on the response spectrums for various ground types and the corresponding artificially generated accelerograms. Despite fundamental differences between the two analyses, results indicate that the modal response spectrum analysis is surprisingly consistent with the internal forces and bending moment distributions of the nonlinear time history analysis. However, significantly smaller values of bending moments, internal forces, and displacements are obtained with the response spectrum analysis.

  18. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics

    NARCIS (Netherlands)

    Bosgra, S.; Vlaming, M.L.H.; Vaes, W.H.J.

    2015-01-01

    Non-linearities occur no more frequently between microdose and therapeutic dose studies than in therapeutic range ascending-dose studies. Most non-linearities are due to known saturable processes, and can be foreseen by integrating commonly available preclinical data. The guidance presented here may

  19. On modulated complex non-linear dynamical systems

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  20. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  1. On the non-linear scale of cosmological perturbation theory

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-04-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  2. On the non-linear scale of cosmological perturbation theory

    CERN Document Server

    Blas, Diego; Konstandin, Thomas

    2013-01-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  3. Linear Array Ultrasonic Testing Of A Thick Concrete Specimens For Non-Destructive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Univ. of Minnesota, Minneapolis, MN (United States); Zammerachi, Mattia [Univ. of Minnesota, Minneapolis, MN (United States); Ezell, N. Dianne Bull [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The University of Minnesota and Oak Ridge National Laboratory are collaborating on the design and construction of a concrete specimen with sufficient reinforcement density and cross-sectional size to represent a light water reactor (LWR) containment wall with various defects. The preliminary analysis of the collected data using extended synthetic aperture focussin technique (SAFT) reconstruction indicated a great potential of the ultrasound array technology for locating relatively shallow distresses. However, the resolution and reliability of the analysis is inversely proportional to the defect depth and the amount of reinforcement between the measurement point and the defect location. The objective of this round of testing is to evaluate repeatability of the obtained reconstructions from measurements with different frequencies as well as to examine the effect of the duration of the sending ultrasound signal on the resulting reconstructions. Two series of testing are performed in this study. The objective of the first series is to evaluate repeatability of the measurements and resulting reconstructed images. The measurements use three center frequencies. Five measurements are performed at each location with and without lifting the device. The analysis of the collected data suggested that a linear array ultrasound system can produce reliably repeatable reconstructions using 50 kHz signals for relatively shallow depths (less than 0.5 m). However, for reconstructions at the greater depths the use of lower frequency and/or signal filtering to reduce the effect of signal noise may be required. The objective of the second series of testing is to obtain measurements with various impulse signal durations. The entire grid on the smooth surface is tested with four different various impulse signal durations. An analysis of the resulting extended SAFT reconstructions suggested that Kirchhoff-based migration leads to easier interpreting reconstructions when shorter duration

  4. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Oscillation and non-oscillation criterion for Riemann–Weber type half-linear differential equations

    Directory of Open Access Journals (Sweden)

    Petr Hasil

    2016-08-01

    Full Text Available By the combination of the modified half-linear Prüfer method and the Riccati technique, we study oscillatory properties of half-linear differential equations. Taking into account the transformation theory of half-linear equations and using some known results, we show that the analysed equations in the Riemann–Weber form with perturbations in both terms are conditionally oscillatory. Within the process, we identify the critical oscillation values of their coefficients and, consequently, we decide when the considered equations are oscillatory and when they are non-oscillatory. As a direct corollary of our main result, we solve the so-called critical case for a certain type of half-linear non-perturbed equations.

  6. Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis

    International Nuclear Information System (INIS)

    Huber, K.A.; Hugins, M.S.

    1983-01-01

    Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity

  7. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  8. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  9. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  10. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery

    Directory of Open Access Journals (Sweden)

    Vera ePaefgen

    2015-09-01

    Full Text Available Ultrasound is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents. There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular contrast agents enable functional analyses, e.g. to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles’ shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by ultrasound pulses to locally release the entrapped agent. Recent studies show that ultrasound contrast agents are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of ultrasound contrast agents and introduces the current clinical applications of contrast-enhanced ultrasound. Additionally, an overview of the recent developments in ultrasound probe design for functional and molecular diagnosis as well as for drug delivery is given.

  11. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  12. Performance of chest ultrasound in pediatric pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Claes, Anne-Sophie, E-mail: anso.claes@gmail.com [Departement of Radiology, Pediatric and Thoracic Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Clapuyt, Philippe, E-mail: philippe.clapuyt@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Menten, Renaud, E-mail: renaud.menten@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Michoux, Nicolas, E-mail: nicolas.michoux@uclouvain.be [Departement of Radiology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Dumitriu, Dana, E-mail: dana.dumitriu@uclouvain.be [Departement of Radiology, Pediatric Radiology Unit, Université Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium)

    2017-03-15

    Highlights: • Prospective comparison between chest X-ray and thoracic ultrasound for the detection of pneumonia in children. • Good correlation between X-ray and ultrasound for the detection and localization of pneumonia. • Thoracic ultrasound has an excellent negative predictive value (99%) for pediatric pneumonia. • Ultrasound may be used as a non-ionizing alternative to X-ray to exclude pneumonia in children. - Abstract: Objective: The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. Materials and methods: From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. Results: 143 children (mean age 3 years; limits between 8 days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4 mm; for consolidations visible on both techniques the mean size was 26 mm (p < 0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Conclusion: Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus

  13. Performance of chest ultrasound in pediatric pneumonia

    International Nuclear Information System (INIS)

    Claes, Anne-Sophie; Clapuyt, Philippe; Menten, Renaud; Michoux, Nicolas; Dumitriu, Dana

    2017-01-01

    Highlights: • Prospective comparison between chest X-ray and thoracic ultrasound for the detection of pneumonia in children. • Good correlation between X-ray and ultrasound for the detection and localization of pneumonia. • Thoracic ultrasound has an excellent negative predictive value (99%) for pediatric pneumonia. • Ultrasound may be used as a non-ionizing alternative to X-ray to exclude pneumonia in children. - Abstract: Objective: The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. Materials and methods: From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. Results: 143 children (mean age 3 years; limits between 8 days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4 mm; for consolidations visible on both techniques the mean size was 26 mm (p < 0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Conclusion: Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus

  14. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  15. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  16. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  17. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  18. A New Method for Non-linear and Non-stationary Time Series Analysis:
    The Hilbert Spectral Analysis

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...

  19. Co-registered photoacoustic, thermoacoustic, and ultrasound mouse imaging

    Science.gov (United States)

    Reinecke, Daniel R.; Kruger, Robert A.; Lam, Richard B.; DelRio, Stephen P.

    2010-02-01

    We have constructed and tested a prototype test bed that allows us to form 3D photoacoustic CT images using near-infrared (NIR) irradiation (700 - 900 nm), 3D thermoacoustic CT images using microwave irradiation (434 MHz), and 3D ultrasound images from a commercial ultrasound scanner. The device utilizes a vertically oriented, curved array to capture the photoacoustic and thermoacoustic data. In addition, an 8-MHz linear array fixed in a horizontal position provides the ultrasound data. The photoacoustic and thermoacoustic data sets are co-registered exactly because they use the same detector. The ultrasound data set requires only simple corrections to co-register its images. The photoacoustic, thermoacoustic, and ultrasound images of mouse anatomy reveal complementary anatomic information as they exploit different contrast mechanisms. The thermoacoustic images differentiate between muscle, fat and bone. The photoacoustic images reveal the hemoglobin distribution, which is localized predominantly in the vascular space. The ultrasound images provide detailed information about the bony structures. Superposition of all three images onto a co-registered hybrid image shows the potential of a trimodal photoacoustic-thermoacoustic-ultrasound small-animal imaging system.

  20. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  1. Non-linear collective phenomena in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E

    2004-01-01

    Dusty plasmas are unusual states of matter where the interactions between the dust grains can be collective and are not a sum of all pair particle interactions. This state of matter is appropriate to form non-linear dissipative collective self-organized structures. It is found that the potential around the grains can be over-screened leading to a new phenomenon-collective attraction of pairs of large charge grains of equal sign. The grain clouds can self-contract and their collapse is terminated at distances where the interaction becomes repulsive. The homogeneous dusty plasma distribution is universally unstable to form structures. The potential of the collective attraction is proportional to the square of the dimensionless parameter P = n d Z d /n i , where n d and n i are the average dust and ion densities, respectively, and Z d is the dust charge in units of electron charge. The collective attraction is determined by finite grain size and by the presence of absorption of plasma flux on grains. The physics of attraction is related to the space charge accumulation caused by collective flux disturbances. The collective attraction operates for systems with size larger than the mean free path for ion-dust absorption, the condition met in many existing low temperature dusty plasma experiments, in edge plasmas of fusion devices and in space dusty plasmas. The collective attraction exceeds the previously known non-collective attraction such as shadow attraction or wake attraction. The collective attraction can be responsible for pairing of dust grains (this process is completely classical in contrast to the known pairing in superconductivity) and can serve as the main process for the formation of more complicated dust complexes up to dust-plasma crystals. The equilibrium structures formed by collective attraction have universal properties and can exist in a limited domain of parameters (similar to the equilibrium balance known for stars). The balance conditions for

  2. Quantitative Analysis of Patellar Tendon Abnormality in Asymptomatic Professional “Pallapugno” Players: A Texture-Based Ultrasound Approach

    Directory of Open Access Journals (Sweden)

    Kristen M. Meiburger

    2018-04-01

    Full Text Available Abnormalities in B-mode ultrasound images of the patellar tendon often take place in asymptomatic athletes but it is still not clear if these modifications forego or can predict the development of tendinopathy. Subclinical tendinopathy can be arbitrarily defined as either (1 the presence of light structural changes in B-mode ultrasound images in association with mild neovascularization (determined with Power Doppler images or (2 the presence of moderate/severe structural changes with or without neovascularization. Up to now, the structural changes and neovascularization of the tendon are evaluated qualitatively by visual inspection of ultrasound images. The aim of this study is to investigate the capability of a quantitative texture-based approach to determine tendon abnormality of “pallapugno” players. B-mode ultrasound images of the patellar tendon were acquired in 14 players and quantitative texture parameters were calculated within a Region of Interest (ROI of both the non-dominant and the dominant tendon. A total of 90 features were calculated for each ROI, including 6 first-order descriptors, 24 Haralick features, and 60 higher-order spectra and entropy features. These features on the dominant and non-dominant side were used to perform a multivariate linear regression analysis (MANOVA and our results show that the descriptors can be effectively used to determine tendon abnormality and, more importantly, the occurrence of subclinical tendinopathy.

  3. Ultrasound call detection in capybara

    Directory of Open Access Journals (Sweden)

    Selene S.C. Nogueira

    2012-07-01

    Full Text Available The vocal repertoire of some animal species has been considered a non-invasive tool to predict distress reactivity. In rats ultrasound emissions were reported as distress indicator. Capybaras[ vocal repertoire was reported recently and seems to have ultrasound calls, but this has not yet been confirmed. Thus, in order to check if a poor state of welfare was linked to ultrasound calls in the capybara vocal repertoire, the aim of this study was to track the presence of ultrasound emissions in 11 animals under three conditions: 1 unrestrained; 2 intermediately restrained, and 3 highly restrained. The ultrasound track identified frequencies in the range of 31.8±3.5 kHz in adults and 33.2±8.5 kHz in juveniles. These ultrasound frequencies occurred only when animals were highly restrained, physically restrained or injured during handling. We concluded that these calls with ultrasound components are related to pain and restraint because they did not occur when animals were free of restraint. Thus we suggest that this vocalization may be used as an additional tool to assess capybaras[ welfare.

  4. Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon.

    Science.gov (United States)

    Madimenos, Felicia C; Snodgrass, J Josh; Blackwell, Aaron D; Liebert, Melissa A; Cepon, Tara J; Sugiyama, Lawrence S

    2011-01-01

    Minimal data on bone mineral density changes are available from populations in developing countries. Using calcaneal quantitative ultrasound (QUS) techniques, the current study contributes to remedying this gap in the literature by establishing a normative data set on the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. The paucity of bone mineral density (BMD) data from populations in developing countries partially reflects the lack of diagnostic resources in these areas. Portable QUS techniques now enable researchers to collect bone health data in remote field-based settings and to contribute normative data from developing regions. The main objective of this study is to establish normative QUS data for two Ecuadorian Amazonian populations-the indigenous Shuar and non-Shuar Colonos. The effects of ethnic group, sex, age, and body size on QUS parameters are also considered. A study cohort consisting of 227 Shuar and 261 Colonos (15-91 years old) were recruited from several small rural Ecuadorian communities in the Upano River Valley. Calcaneal QUS parameters were collected on the right heel of each participant using a Sahara bone sonometer. Three ultrasound generated parameters were employed: broadband ultrasound attenuation (BUA), speed of sound (SOS), and calculated heel BMD (hBMD). In both populations and sexes, all QUS values were progressively lower with advancing age. Shuar have significantly higher QUS values than Colonos, with most pronounced differences found between pre-menopausal Shuar and Colono females. Multiple regression analyses show that age is a key predictor of QUS while weight alone is a less consistent determinant. Both Shuar males and females display comparatively greater QUS parameters than other reference populations. These normative data for three calcaneal QUS parameters will be useful for predicting fracture risk and determining diagnostic QUS criteria of osteoporosis in non-industrialized populations in South America and

  5. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  6. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  7. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  8. Peri-implantitis: a complex condition with non-linear characteristics

    NARCIS (Netherlands)

    Papantonopoulos, G.H.; Gogos, C.; Housos, E.; Bountis, T.; Loos, B.G.

    2015-01-01

    Aim To cluster peri-implantitis patients and explore non-linear patterns in peri-implant bone levels. Materials and Methods Clinical and radiographic variables were retrieved from 94 implant-treated patients (340 implants, mean 7.1 ± 4.1 years in function). Kernel probability density estimations on

  9. The Non-Linear Relationship Between Fiscal Deficits And Inflation: Evidence From Africa

    Directory of Open Access Journals (Sweden)

    Abu Nurudeen

    2015-12-01

    Full Text Available Although, there is abundant research on the fiscal deficit-inflation relationship, little has been done to investigate the non-linear association between them, particularly in Africa. This study employs fixed-effects and GMM estimators to examine the non-linear relationship between deficits and inflation from 1999 to 2011 in 51 African economies, which are further grouped into high-inflation/low-income countries and moderate-inflation/middle-income countries. The results indicate that the deficit-inflation relationship is non-linear for the whole sample and sub-groups. For the whole sample, a percentage point increase in deficit results in a 0.25 percentage point increase in inflation rate, while the relationship becomes quantitatively greater once deficits reach 23% of GDP. The subsamples report different relationships. Although our results cannot be used as the base for generalization, we identify importance of grouping African countries according to their levels of inflation and/or income, rather than treating them as a homogeneous entity.

  10. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  11. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  12. Controllability of non-linear systems: generic singularities and their stability

    International Nuclear Information System (INIS)

    Davydov, Alexey A; Zakalyukin, Vladimir M

    2012-01-01

    This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

  13. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  14. Measurement of compartment elasticity using pressure related ultrasound: a method to identify patients with potential compartment syndrome.

    Science.gov (United States)

    Sellei, R M; Hingmann, S J; Kobbe, P; Weber, C; Grice, J E; Zimmerman, F; Jeromin, S; Gansslen, A; Hildebrand, F; Pape, H C

    2015-01-01

    PURPOSE OF THE STUDY Decision-making in treatment of an acute compartment syndrome is based on clinical assessment, supported by invasive monitoring. Thus, evolving compartment syndrome may require repeated pressure measurements. In suspected cases of potential compartment syndromes clinical assessment alone seems to be unreliable. The objective of this study was to investigate the feasibility of a non-invasive application estimating whole compartmental elasticity by ultrasound, which may improve accuracy of diagnostics. MATERIAL AND METHODS In an in-vitro model, using an artificial container simulating dimensions of the human anterior tibial compartment, intracompartmental pressures (p) were raised subsequently up to 80 mm Hg by infusion of saline solution. The compartmental depth (mm) in the cross-section view was measured before and after manual probe compression (100 mm Hg) upon the surface resulting in a linear compartmental displacement (Δd). This was repeated at rising compartmental pressures. The resulting displacements were related to the corresponding intra-compartmental pressures simulated in our model. A hypothesized relationship between pressures related compartmental displacement and the elasticity at elevated compartment pressures was investigated. RESULTS With rising compartmental pressures, a non-linear, reciprocal proportional relation between the displacement (mm) and the intra-compartmental pressure (mm Hg) occurred. The Pearson's coefficient showed a high correlation (r2 = -0.960). The intraobserver reliability value kappa resulted in a statistically high reliability (κ = 0.840). The inter-observer value indicated a fair reliability (κ = 0.640). CONCLUSIONS Our model reveals that a strong correlation between compartmental strain displacements assessed by ultrasound and the intra-compartmental pressure changes occurs. Further studies are required to prove whether this assessment is transferable to human muscle tissue. Determining the complete

  15. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. Non-linear growth: The road ahead for Indian IT outsourcing companies

    Directory of Open Access Journals (Sweden)

    Y.L.R. Moorthi

    2011-06-01

    Full Text Available Indian IT outsourcing companies (major among them being the SWITCH companies -- Satyam, Wipro, Infosys, TCS, Cognizant and HCL grew rapidly for more than a decade on low cost business process and IT outsourcing. With the bigger companies already reaching a high of 100,000 employees, they are now turning their attention to non-linear revenue (i.e. revenue less dependent on numbers or greater revenue earned per employee. For this they need to pursue ‘disruptive’ strategies which are distinctly different from the ‘incremental’ initiatives they adopted in the past to maintain linear revenue. This paper first outlines the disruptive and the incremental initiatives of the SWITCH companies and the road ahead for them. This is followed by an interview with S Gopalakrishnan, CEO and MD, Infosys Technologies who discusses the non-linear initiatives of the company and the challenges it faces in the field.

  17. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  18. Novel phenomena in one-dimensional non-linear transport in long quantum wires

    International Nuclear Information System (INIS)

    Morimoto, T; Hemmi, M; Naito, R; Tsubaki, K; Park, J-S; Aoki, N; Bird, J P; Ochiai, Y

    2006-01-01

    We have investigated the non-linear transport properties of split-gate quantum wires of various channel lengths. In this report, we present results on a resonant enhancement of the non-linear conductance that is observed near pinch-off under a finite source-drain bias voltage. The resonant phenomenon exhibits a strong dependence on temperature and in-plane magnetic field. We discuss the possible relationship of this phenomenon to the spin-polarized manybody state that has recently been suggested to occur in quasi-one dimensional systems

  19. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    Science.gov (United States)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  20. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  1. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  2. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  3. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus

    2012-11-01

    We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.

  4. Non-linear coupling of drift modes in a quadrupole

    International Nuclear Information System (INIS)

    Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.

    1990-01-01

    We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs

  5. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  6. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  7. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  8. Impact scores of invasive plants are biased by disregard of environmental co-variation and non-linearity

    Directory of Open Access Journals (Sweden)

    Jan Thiele

    2011-10-01

    Full Text Available Prioritisation of high-impact species is becoming increasingly important for management of introduced species (‘neobiota’ because of their growing number of which, however, only a small fraction has substantial impacts. Impact scores for prioritising species may be affected by the type of effect model used. Recent studies have shown that environmental co-variation and non-linearity may be significant for effect models of biological invasions. Here, we test for differences in impact scores between simple and complex effect models of three invasive plant species (Heracleum mantegazzianum, Lupinus polyphyllus, Rosa rugosa.We investigated the effects of cover percentages of the invasive plants on species richness of invaded communities using both simple linear effect models (‘basic models’ and more complex linear or non-linear models including environmental co-factors (‘full models’. Then, we calculated impact scores for each invasive species as the average reduction of species richness predicted by basic and full effect models.All three non-native species had negative effects on species richness, but the full effect models also indicated significant influence of habitat types. Heracleum mantegazzianum had uniform linear effects in all habitats, while effects of L. polyphyllus interacted strongly with habitat type, and R. rugosa showed a marked non-linear relationship. Impact scores were overestimated by basic effect models for H. mantegazzianum and R. rugosa due to disregard of habitat effects and non-linearity, respectively. In contrast, impact of L. polyphyllus was underestimated by the basic model that did not account for the strong interaction of invader cover and habitat type.We conclude that simple linear models will often yield inaccurate impact scores of non-native species. Hence, effect models should consider environmental co-variation and, if necessary, non-linearity of the effects of biological invasions on native ecosystems.

  9. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  10. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  11. Linear non scarring alopecia of the scalp: A rare manifestation of lupus panniculitis

    Directory of Open Access Journals (Sweden)

    Sandhyarani Kshetrimayum

    2016-01-01

    Full Text Available Alopecia in a linear pattern is very rare with only a few cases reported in the medical literature. We report a case of linear non scarring alopecia involving the scalp in a 17-year-old boy with a histological diagnosis of lupus panniculitis. We report this case because of its rarity and also the inclusion of this entity as one of the rare differential of non scarring alopecia.

  12. Non-linear unidimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Clemente, R.A.; Martin, P.

    1992-01-01

    An exact analytical solution for T e = T i and an approximate solution for T e ≠ T i have been obtained for the unidimensional non-linear Debye potential. The approximate expression is a solution of the Poisson equation obtained by expanding up to third order the Boltzmann's factors. The analysis shows that the effective Debye screening length can be quite different from the usual Debye length, when the potential to thermal energy ratio of the particles is not much smaller than unity. (author)

  13. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  14. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  15. Scattering of massless lumps and non-local charges in the two-dimensional classical non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.; Pohlmeyer, K.

    1977-09-01

    Finite energy solutions of the field equations of the non-linear sigma-model are shown to decay asymptotically into massless lumps. By means of a linear eigenvalue problem connected with the field equations we then find an infinite set of dynamical conserved charges. They, however, do not provide sufficient information to decode the complicated scattering of lumps. (orig.) [de

  16. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus; Sicat, Ronell Barrera; Beyer, Johanna; Krü ger, Jens J.; Mö ller, Torsten

    2012-01-01

    feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters

  17. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  18. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  19. Non linear dynamics of magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Meshcheriakov, D.

    2012-10-01

    In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for

  20. A Homotopy-Perturbation analysis of the non-linear contaminant ...

    African Journals Online (AJOL)

    In this research work, a Homotopy-perturbation analysis of a nonlinear contaminant flow equation with an initial continuous point source is provided. The equation is characterized by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of ...