WorldWideScience

Sample records for non-linear system analysis

  1. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  2. Comparison of modal spectral and non-linear time history analysis of a piping system

    International Nuclear Information System (INIS)

    Gerard, R.; Aelbrecht, D.; Lafaille, J.P.

    1987-01-01

    A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)

  3. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  4. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  5. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  6. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  7. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  8. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  9. Development of non-linear vibration analysis code for CANDU fuelling machine

    International Nuclear Information System (INIS)

    Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.

    1988-01-01

    This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)

  10. Non linear stability analysis of parallel channels with natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish Mani; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2016-12-01

    Highlights: • Nonlinear instabilities in natural circulation loop are studied. • Generalized Hopf points, Sub and Supercritical Hopf bifurcations are identified. • Bogdanov–Taken Point (BT Point) is observed by nonlinear stability analysis. • Effect of parameters on stability of system is studied. - Abstract: Linear stability analysis of two-phase flow in natural circulation loop is quite extensively studied by many researchers in past few years. It can be noted that linear stability analysis is limited to the small perturbations only. It is pointed out that such systems typically undergo Hopf bifurcation. If the Hopf bifurcation is subcritical, then for relatively large perturbation, the system has unstable limit cycles in the (linearly) stable region in the parameter space. Hence, linear stability analysis capturing only infinitesimally small perturbations is not sufficient. In this paper, bifurcation analysis is carried out to capture the non-linear instability of the dynamical system and both subcritical and supercritical bifurcations are observed. The regions in the parameter space for which subcritical and supercritical bifurcations exist are identified. These regions are verified by numerical simulation of the time-dependent, nonlinear ODEs for the selected points in the operating parameter space using MATLAB ODE solver.

  11. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  12. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  13. Controllability of non-linear systems: generic singularities and their stability

    International Nuclear Information System (INIS)

    Davydov, Alexey A; Zakalyukin, Vladimir M

    2012-01-01

    This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

  14. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  15. On the stability of non-linear systems

    International Nuclear Information System (INIS)

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  16. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  18. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  19. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  20. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  1. A comparison between linear and non-linear analysis of flexible pavements

    Energy Technology Data Exchange (ETDEWEB)

    Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    1995-12-31

    Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.

  2. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  3. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  4. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations

    International Nuclear Information System (INIS)

    Valat, J.

    1960-12-01

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [fr

  5. Painlevйe analysis and integrability of two-coupled non-linear ...

    Indian Academy of Sciences (India)

    the Painlevйe property. In this case the system is expected to be integrable. In recent years more attention is paid to the study of coupled non-linear oscilla- ... Painlevйe analysis. To be self-contained, in §2 we briefly outline the salient features.

  6. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  7. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  8. A parametric FE modeling of brake for non-linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed,Ibrahim; Fatouh, Yasser [Automotive and Tractors Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Aly, Wael [Refrigeration and Air-Conditioning Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt)

    2013-07-01

    A parametric modeling of a drum brake based on 3-D Finite Element Methods (FEM) for non-contact analysis is presented. Many parameters are examined during this study such as the effect of drum-lining interface stiffness, coefficient of friction, and line pressure on the interface contact. Firstly, the modal analysis of the drum brake is also studied to get the natural frequency and instability of the drum to facilitate transforming the modal elements to non-contact elements. It is shown that the Unsymmetric solver of the modal analysis is efficient enough to solve this linear problem after transforming the non-linear behavior of the contact between the drum and the lining to a linear behavior. A SOLID45 which is a linear element is used in the modal analysis and then transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining for contact analysis study. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties. Firstly, the region of contact is not known based on the boundary conditions such as line pressure, and drum and friction material specs. Secondly, these contact problems need to take the friction into consideration. Finally, it showed a good distribution of the nodal reaction forces on the slotted lining contact surface and existing of the slot in the middle of the lining can help in wear removal due to the friction between the lining and the drum. Accurate contact stiffness can give a good representation for the pressure distribution between the lining and the drum. However, a full contact of the front part of the slotted lining could occur in case of 20, 40, 60 and 80 bar of piston pressure and a partially contact between the drum and lining can occur in the rear part of the slotted lining.

  9. On the stability of non-linear systems; Sur la stabilite des systemes non-lineaires

    Energy Technology Data Exchange (ETDEWEB)

    Guelman, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, services scientifiques

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [French] Dans ce travail, on etudie la stabilite absolue des systemes non lineaires utilisant la deuxieme methode de Liapounov en tenant compte des resultats acquis a partir des travaux de V.M. Popov. On fait d'abord un expose des resultats deja etablis, en particulier en ce qui concerne les criteres frequentiels de stabilite absolue pour le cas d'un systeme de commande automatique comportant une seule non linearite. On a prolonge ces resultats jusqu'a l'etablissement de l'existence d'une parabole limite. On fait ensuite une nouvelle utilisation des methodes etudiees, etablissant des criteres de stabilite absolue pour un systeme comportant un type different de non linearite. On etudie enfin les resultats obtenus, dans l'optique de la conjecture de Aizerman. (auteur)

  10. Genetic design of interpolated non-linear controllers for linear plants

    International Nuclear Information System (INIS)

    Ajlouni, N.

    2000-01-01

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  11. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  12. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Science.gov (United States)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. non-linear model are compared to those

  13. A review on prognostic techniques for non-stationary and non-linear rotating systems

    Science.gov (United States)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  14. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  15. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    of an equivalent linearization techni que and substituting the non-analytical non-linearity in the original system by the cubic form in the pertinent state variables. The response moments are evaluated for the equivalent systems with the help of a generalized Ito's differential rule. The analytical results...

  16. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  17. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  18. Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)

    International Nuclear Information System (INIS)

    Dubinskii, Yu A; Osipenko, A S

    2000-01-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented

  19. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  20. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  1. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  2. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  3. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  4. On modulated complex non-linear dynamical systems

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  5. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  6. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  7. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  8. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...... is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation...

  9. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  10. Non linear seismic analysis of charge/discharge machine

    International Nuclear Information System (INIS)

    Dostal, M.; Trbojevic, V.M.; Nobile, M.

    1987-01-01

    The main conclusions of the seismic analysis of the Latina CDM are: i. The charge machine has been demonstrated to be capable of withstanding the effects of a 0.1 g earthquake. Stresses and displacements were all within allowable limits and the stability criteria were fully satisfied for all positions of the cross-travel bogie on the gantry. ii. Movements due to loss of friction between the cross-travel bogie wheels and the rail was found to be small, i.e. less than 2 mm for all cases considered. The modes of rocking of the fixed and hinged legs preclude any possibility of excessive movement between the long travel bogie wheels and the rail. iii. The non-linear analysis incorporating contact and friction has given more realistic results than any of the linear verification analyses. The method of analysis indicates that even the larger structures can be efficiently solved on a mini computer for a long forcing input (16 s). (orig.)

  11. Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)

    Science.gov (United States)

    Dubinskii, Yu A.; Osipenko, A. S.

    2000-02-01

    Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.

  12. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  13. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  14. INTRANS. A computer code for the non-linear structural response analysis of reactor internals under transient loads

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The 'INTRANS' system is a general purpose computer code, designed to perform linear and non-linear structural stress and deflection analysis of impacting or non-impacting nuclear reactor internals components coupled with reactor vessel, shield building and external as well as internal gapped spring support system. This paper describes in general a unique computational procedure for evaluating the dynamic response of reactor internals, descretised as beam and lumped mass structural system and subjected to external transient loads such as seismic and LOCA time-history forces. The computational procedure is outlined in the INTRANS code, which computes component flexibilities of a discrete lumped mass planar model of reactor internals by idealising an assemblage of finite elements consisting of linear elastic beams with bending, torsional and shear stiffnesses interacted with external or internal linear as well as non-linear multi-gapped spring support system. The method of analysis is based on the displacement method and the code uses the fourth-order Runge-Kutta numerical integration technique as a basis for solution of dynamic equilibrium equations of motion for the system. During the computing process, the dynamic response of each lumped mass is calculated at specific instant of time using well-known step-by-step procedure. At any instant of time then, the transient dynamic motions of the system are held stationary and based on the predicted motions and internal forces of the previous instant. From which complete response at any time-step of interest may then be computed. Using this iterative process, the relationship between motions and internal forces is satisfied step by step throughout the time interval

  15. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  16. A Homotopy-Perturbation analysis of the non-linear contaminant ...

    African Journals Online (AJOL)

    In this research work, a Homotopy-perturbation analysis of a nonlinear contaminant flow equation with an initial continuous point source is provided. The equation is characterized by advection, diffusion and adsorption. We assume that the adsorption term is modeled by Freudlich Isotherm. We provide an approximation of ...

  17. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  18. Signals and transforms in linear systems analysis

    CERN Document Server

    Wasylkiwskyj, Wasyl

    2013-01-01

    Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7.  The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to...

  19. Single-nary philosophy for non-linear study of mechanics of materials

    International Nuclear Information System (INIS)

    Tran, C.

    2005-01-01

    Non-linear study of mechanics of materials is formulated in this paper as a problem of meta-intelligent system analysis. Non-linearity will be singled out as an important concept for understanding of high-order complex systems. Through single-nary thinking, which will be represented in this work, we introduce a modification of Aristotelian philosophy using modal logic and multi-valued logic (these logics we call 'high-order' logic). Next, non-linear cause - effect relations are expressed through non-additive measures and multiple-information aggregation principles based on fuzzy integration. The study of real time behaviors, required experiences and intuition, will be realized using truth measures (non-additive measures) and a procedure for information processing in intelligence levels. (author)

  20. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  1. Non-Markovian linear response theory for quantum open systems and its applications.

    Science.gov (United States)

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  2. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  3. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  4. Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system

    Science.gov (United States)

    Kim, Euiyoung; Cho, Maenghyo

    2017-11-01

    In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.

  5. Some mathematical problems in non-linear Physics

    International Nuclear Information System (INIS)

    1983-01-01

    The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs

  6. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.

  7. Real time computer control of a nonlinear Multivariable System via Linearization and Stability Analysis

    International Nuclear Information System (INIS)

    Raza, K.S.M.

    2004-01-01

    This paper demonstrates that if a complicated nonlinear, non-square, state-coupled multi variable system is smartly linearized and subjected to a thorough stability analysis then we can achieve our design objectives via a controller which will be quite simple (in term of resource usage and execution time) and very efficient (in terms of robustness). Further the aim is to implement this controller via computer in a real time environment. Therefore first a nonlinear mathematical model of the system is achieved. An intelligent work is done to decouple the multivariable system. Linearization and stability analysis techniques are employed for the development of a linearized and mathematically sound control law. Nonlinearities like the saturation in actuators are also been catered. The controller is then discretized using Runge-Kutta integration. Finally the discretized control law is programmed in a computer in a real time environment. The programme is done in RT -Linux using GNU C for the real time realization of the control scheme. The real time processes, like sampling and controlled actuation, and the non real time processes, like graphical user interface and display, are programmed as different tasks. The issue of inter process communication, between real time and non real time task is addressed quite carefully. The results of this research pursuit are presented graphically. (author)

  8. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  9. Considering system non-linearity in transmission pricing

    International Nuclear Information System (INIS)

    Oloomi-Buygi, M.; Salehizadeh, M. Reza

    2008-01-01

    In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)

  10. The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection

    Science.gov (United States)

    Franzen, J.

    1994-01-01

    The superposition of higher order multipole fields on the basic quadrupole field in ion traps generates a non-harmonic oscillator system for the ions. Fourier analyses of simulated secular oscillations in non-linear ion traps, therefore, not only reveal the sideband frequencies, well-known from the Mathieu theory, but additionally a commonwealth of multipole-specific overtones (or higher harmonics), and corresponding sidebands of overtones. Non-linear resonances occur when the overtone frequencies match sideband frequencies. It can be shown that in each of the resonance conditions, not just one overtone matches one sideband, instead, groups of overtones match groups of sidebands. The generation of overtones is studied by Fourier analysis of computed ion oscillations in the direction of thez axis. Even multipoles (octopole, dodecapole, etc.) generate only odd orders of higher harmonics (3, 5, etc.) of the secular frequency, explainable by the symmetry with regard to the planez = 0. In contrast, odd multipoles (hexapole, decapole, etc.) generate all orders of higher harmonics. For all multipoles, the lowest higher harmonics are found to be strongest. With multipoles of higher orders, the strength of the overtones decreases weaker with the order of the harmonics. Forz direction resonances in stationary trapping fields, the function governing the amplitude growth is investigated by computer simulations. The ejection in thez direction, as a function of timet, follows, at least in good approximation, the equation wheren is the order of multipole, andC is a constant. This equation is strictly valid for the electrically applied dipole field (n = 1), matching the secular frequency or one of its sidebands, resulting in a linear increase of the amplitude. It is valid also for the basic quadrupole field (n = 2) outside the stability area, giving an exponential increase. It is at least approximately valid for the non-linear resonances by weak superpositions of all higher odd

  11. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... point process has not independent increments the state vector of the system, consisting of the generalized displacements and velocities, is not a Markov process. Initially it is shown how the indicated systems can be converted to an equivalent Poisson driven system at the expense of introducing...... additional discrete-valued state variables for which the stochastic equations are also formulated....

  12. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  14. Three dimensional non-linear cracking analysis of prestressed concrete containment vessel

    International Nuclear Information System (INIS)

    Al-Obaid, Y.F.

    2001-01-01

    The paper gives full development of three-dimensional cracking matrices. These matrices are simulated in three-dimensional non-linear finite element analysis adopted for concrete containment vessels. The analysis includes a combination of conventional steel, the steel line r and prestressing tendons and the anisotropic stress-relations for concrete and concrete aggregate interlocking. The analysis is then extended and is linked to cracking analysis within the global finite element program OBAID. The analytical results compare well with those available from a model test. (author)

  15. Theoretical analysis of balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....

  16. Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.

    2005-01-01

    A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations

  17. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  18. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  19. Gain scheduling for non-linear time-delay systems using approximated model

    NARCIS (Netherlands)

    Pham, H.T.; Lim, J.T

    2012-01-01

    The authors investigate a regulation problem of non-linear systems driven by an exogenous signal and time-delay in the input. In order to compensate for the input delay, they propose a reduction transformation containing the past information of the control input. Then, by utilising the Euler

  20. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  1. Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique

    International Nuclear Information System (INIS)

    Peng, Y.-F.

    2009-01-01

    The cerebellar model articulation controller (CMAC) is a non-linear adaptive system with built-in simple computation, good generalization capability and fast learning property. In this paper, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive CMAC and H ∞ control technique is proposed for a class of chaotic systems with unknown system dynamics and external disturbance. In the proposed control system, an adaptive backstepping cerebellar model articulation controller (ABCMAC) is used to mimic an ideal backstepping control (IBC), and a robust H ∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H ∞ control theory, so that the stability of the closed-loop system and H ∞ tracking performance can be guaranteed. Finally, three application examples, including a Duffing-Holmes chaotic system, a Genesio chaotic system and a Sprott circuit system, are used to demonstrate the effectiveness and performance of proposed robust control technique.

  2. Noise and non-linearities in high-throughput data

    International Nuclear Information System (INIS)

    Nguyen, Viet-Anh; Lió, Pietro; Koukolíková-Nicola, Zdena; Bagnoli, Franco

    2009-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets

  3. Linear dynamical quantum systems analysis, synthesis, and control

    CERN Document Server

    Nurdin, Hendra I

    2017-01-01

    This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...

  4. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  5. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  6. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    Science.gov (United States)

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  7. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  8. Approximate Forward Difference Equations for the Lower Order Non-Stationary Statistics of Geometrically Non-Linear Systems subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....

  9. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  10. Controllability analysis of decentralised linear controllers for polymeric fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2005-10-10

    This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)

  11. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  12. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    International Nuclear Information System (INIS)

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references

  13. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  14. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quantitative Assessment of Arrhythmia Using Non-linear Approach: A Non-invasive Prognostic Tool

    Science.gov (United States)

    Chakraborty, Monisha; Ghosh, Dipak

    2018-04-01

    Accurate prognostic tool to identify severity of Arrhythmia is yet to be investigated, owing to the complexity of the ECG signal. In this paper, we have shown that quantitative assessment of Arrhythmia is possible using non-linear technique based on "Hurst Rescaled Range Analysis". Although the concept of applying "non-linearity" for studying various cardiac dysfunctions is not entirely new, the novel objective of this paper is to identify the severity of the disease, monitoring of different medicine and their dose, and also to assess the efficiency of different medicine. The approach presented in this work is simple which in turn will help doctors in efficient disease management. In this work, Arrhythmia ECG time series are collected from MIT-BIH database. Normal ECG time series are acquired using POLYPARA system. Both time series are analyzed in thelight of non-linear approach following the method "Rescaled Range Analysis". The quantitative parameter, "Fractal Dimension" (D) is obtained from both types of time series. The major finding is that Arrhythmia ECG poses lower values of D as compared to normal. Further, this information can be used to access the severity of Arrhythmia quantitatively, which is a new direction of prognosis as well as adequate software may be developed for the use of medical practice.

  16. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  17. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  18. Perturbation analysis of linear control problems

    International Nuclear Information System (INIS)

    Petkov, Petko; Konstantinov, Mihail

    2017-01-01

    The paper presents a brief overview of the technique of splitting operators, proposed by the authors and intended for perturbation analysis of control problems involving unitary and orthogonal matrices. Combined with the technique of Lyapunov majorants and the implementation of the Banach and Schauder fixed point principles, it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis problems. Among them are the reduction of linear systems into orthogonal canonical forms, the feedback synthesis problem and pole assignment problem in particular, as well as other important problems in control theory and linear algebra. Key words: perturbation analysis, canonical forms, feedback synthesis

  19. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  20. Non-linearities in Holocene floodplain sediment storage

    Science.gov (United States)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    that a strong multifractality is present in the scaling relationship between sediment storage and catchment area, depending on geomorphic landscape properties. Extrapolation of data from one spatial scale to another inevitably leads to large errors: when only the data of the upper floodplains are considered, a regression analysis results in an overestimation of total floodplain deposition for the entire catchment of circa 115%. This example demonstrates multifractality and related non-linearity in scaling relationships, which influences extrapolations beyond the initial range of measurements. These different examples indicate how traditional extrapolation techniques and assumptions in sediment budget studies can be challenged by field data, further complicating our understanding of these systems. Although simplifications are often necessary when working on large spatial scale, such non-linearities may form challenges for a better understanding of system behavior.

  1. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  2. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  3. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations; Sur la stabilite, les solutions periodiques et la resolution de certaines categories d'equations et systemes d'equations differentielles couplees non lineaires apparaissant dans les oscillations betatroniques

    Energy Technology Data Exchange (ETDEWEB)

    Valat, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de trouver des solutions generales. Pour les

  4. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  5. Non-linear frequency response of non-isothermal adsorption controlled by micropore diffusion with variable diffusivity

    Directory of Open Access Journals (Sweden)

    MENKA PETKOVSKA

    2000-12-01

    Full Text Available The concept of higher order frequency response functions (FRFs is used for the analysis of non-linear adsorption kinetics on a particle scale, for the case of non-isothermal micropore diffusion with variable diffusivity. Six series of FRFs are defined for the general non-isothermal case. A non-linerar mathematical model is postulated and the first and second order FRFs derived and simulated. A variable diffusivity influences the shapes of the second order FRFs relating the sorbate concentration in the solid phase and t he gas pressure significantly, but they still keep their characteristics which can be used for discrimination of this from other kinetic mechanisms. It is also shown that first and second order particle FRFs offter sufficient information for an easy and fast estimation of all model parameters, including those defining the system non-linearity.

  6. Analyzing systemic risk using non-linear marginal expected shortfall and its minimum spanning tree

    Science.gov (United States)

    Song, Jae Wook; Ko, Bonggyun; Chang, Woojin

    2018-02-01

    The aim of this paper is to propose a new theoretical framework for analyzing the systemic risk using the marginal expected shortfall (MES) and its correlation-based minimum spanning tree (MST). At first, we develop two parametric models of MES with their closed-form solutions based on the Capital Asset Pricing Model. Our models are derived from the non-symmetric quadratic form, which allows them to consolidate the non-linear relationship between the stock and market returns. Secondly, we discover the evidences related to the utility of our models and the possible association in between the non-linear relationship and the emergence of severe systemic risk by considering the US financial system as a benchmark. In this context, the evolution of MES also can be regarded as a reasonable proxy of systemic risk. Lastly, we analyze the structural properties of the systemic risk using the MST based on the computed series of MES. The topology of MST conveys the presence of sectoral clustering and strong co-movements of systemic risk leaded by few hubs during the crisis. Specifically, we discover that the Depositories are the majority sector leading the connections during the Non-Crisis period, whereas the Broker-Dealers are majority during the Crisis period.

  7. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  8. Non-cooperative stochastic differential game theory of generalized Markov jump linear systems

    CERN Document Server

    Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning

    2017-01-01

    This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...

  9. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice

    Directory of Open Access Journals (Sweden)

    Federico Chella

    2017-05-01

    Full Text Available Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz, the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST. The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of

  10. The non-linear paradigm: The climate system as an egg box''

    International Nuclear Information System (INIS)

    Iversen, Trond

    2000-01-01

    The article is the last of three dealing with the problems of climatic forecasting. It presents various ways of applying models and points out that regarding the climate system as non-linear and chaotic may be useful for interpreting observations and models. Some applications of the paradigm are presented. The emphasis is on climatic changes due to energy and human activities

  11. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  12. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  13. Stochastic Parameter Estimation of Non-Linear Systems Using Only Higher Order Spectra of the Measured Response

    Science.gov (United States)

    Vasta, M.; Roberts, J. B.

    1998-06-01

    Methods for using fourth order spectral quantities to estimate the unknown parameters in non-linear, randomly excited dynamic systems are developed. Attention is focused on the case where only the response is measurable and the excitation is unmeasurable and known only in terms of a stochastic process model. The approach is illustrated through application to a non-linear oscillator with both non-linear damping and stiffness and with excitation modelled as a stationary Gaussian white noise process. The methods have applications in studies of the response of structures to random environmental loads, such as wind and ocean wave forces.

  14. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  15. Non-Linear Detection for Joint Space-Frequency Block Coding and Spatial Multiplexing in OFDM-MIMO Systems

    DEFF Research Database (Denmark)

    Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank

    2005-01-01

    (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared......In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...

  16. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  17. Linear Quantum Systems: Non-Classical States and Robust Stability

    Science.gov (United States)

    2016-06-29

    modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability

  18. The BL-QMR algorithm for non-Hermitian linear systems with multiple right-hand sides

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R.W. [AT& T Bell Labs., Murray Hill, NJ (United States)

    1996-12-31

    Many applications require the solution of multiple linear systems that have the same coefficient matrix, but differ in their right-hand sides. Instead of applying an iterative method to each of these systems individually, it is potentially much more efficient to employ a block version of the method that generates iterates for all the systems simultaneously. However, it is quite intricate to develop robust and efficient block iterative methods. In particular, a key issue in the design of block iterative methods is the need for deflation. The iterates for the different systems that are produced by a block method will, in general, converge at different stages of the block iteration. An efficient and robust block method needs to be able to detect and then deflate converged systems. Each such deflation reduces the block size, and thus the block method needs to be able to handle varying block sizes. For block Krylov-subspace methods, deflation is also crucial in order to delete linearly and almost linearly dependent vectors in the underlying block Krylov sequences. An added difficulty arises for Lanczos-type block methods for non-Hermitian systems, since they involve two different block Krylov sequences. In these methods, deflation can now occur independently in both sequences, and consequently, the block sizes in the two sequences may become different in the course of the iteration, even though they were identical at the beginning. We present a block version of Freund and Nachtigal`s quasi-minimal residual method for the solution of non-Hermitian linear systems with single right-hand sides.

  19. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  20. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  1. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  2. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  3. Non-linear optical techniques and optical properties of condensed molecular systems

    Science.gov (United States)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  4. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  5. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  6. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  7. Non-linear adjustment to purchasing power parity: an analysis using Fourier approximations

    OpenAIRE

    Juan-Ángel Jiménez-Martín; M. Dolores Robles Fernández

    2005-01-01

    This paper estimates the dynamics of adjustment to long run purchasing power parity (PPP) using data for 18 mayor bilateral US dollar exchange rates, over the post-Bretton Woods period, in a non-linear framework. We use new unit root and cointegration tests that do not assume a specific non-linear adjustment process. Using a first-order Fourier approximation, we find evidence of non-linear mean reversion in deviations from both absolute and relative PPP. This first-order Fourier approximation...

  8. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  9. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  10. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  11. Using system theory and energy methods to prove existence of non-linear PDE's

    NARCIS (Netherlands)

    Zwart, H.J.

    2015-01-01

    In this discussion paper we present an idea of combining techniques known from systems theory with energy estimates to show existence for a class of non-linear partial differential equations (PDE's). At the end of the paper a list of research questions with possible approaches is given.

  12. Non-linear operation of nanomechnical systems combining photothermal excitation and magneto-motive detection

    International Nuclear Information System (INIS)

    Koenig, Daniel R; Metzger, Constanze; Camerer, Stephan; Kotthaus, Joerg P

    2006-01-01

    We present a non-linear operation of a nanomechanical beam resonator by photothermal excitation at 4 K. The resonators dimensions are 10 μm in length, 200 nm in width, and 200 nm in height. The actuation mechanism is based on a pulsed diode laser focused onto the centre of the beam resonator. Thermally induced stress caused by the different thermal expansion coefficients of the bi-layer system periodically deflects the resonator. Magnetomotively detected amplitudes up to 150 nm are reached at the fundamental resonance mode at a frequency of 8.9 MHz. Furthermore, the third eigenmode of the resonator at a frequency 36 MHz is also excited. We conclude that the photothermal excitation at 4 K should be applicable up to the GHz regime, the operation in the non-linear regime can be used for performance enhancement of nanomechanical systems, and the combination of photothermal excitation and magneto-motive detection avoids undesired cross talk

  13. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  14. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  15. Detection of non-milk fat in milk fat by gas chromatography and linear discriminant analysis.

    Science.gov (United States)

    Gutiérrez, R; Vega, S; Díaz, G; Sánchez, J; Coronado, M; Ramírez, A; Pérez, J; González, M; Schettino, B

    2009-05-01

    Gas chromatography was utilized to determine triacylglycerol profiles in milk and non-milk fat. The values of triacylglycerol were subjected to linear discriminant analysis to detect and quantify non-milk fat in milk fat. Two groups of milk fat were analyzed: A) raw milk fat from the central region of Mexico (n = 216) and B) ultrapasteurized milk fat from 3 industries (n = 36), as well as pork lard (n = 2), bovine tallow (n = 2), fish oil (n = 2), peanut (n = 2), corn (n = 2), olive (n = 2), and soy (n = 2). The samples of raw milk fat were adulterated with non-milk fats in proportions of 0, 5, 10, 15, and 20% to form 5 groups. The first function obtained from the linear discriminant analysis allowed the correct classification of 94.4% of the samples with levels <10% of adulteration. The triacylglycerol values of the ultrapasteurized milk fats were evaluated with the discriminant function, demonstrating that one industry added non-milk fat to its product in 80% of the samples analyzed.

  16. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  17. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  18. A New Method for Non-linear and Non-stationary Time Series Analysis:
    The Hilbert Spectral Analysis

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...

  19. Nonlinear dynamics and control strategies: On a energy harvester vibrating system with a linear form to non-ideal motor torquet

    Directory of Open Access Journals (Sweden)

    de Pontes B. R.

    2012-07-01

    Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.

  20. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  1. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  2. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    Science.gov (United States)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  3. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  4. The oscillatory behavior of heated channels: an analysis of the density effect. Part I. The mechanism (non linear analysis). Part II. The oscillations thresholds (linearized analysis)

    International Nuclear Information System (INIS)

    Boure, J.

    1967-01-01

    The problem of the oscillatory behavior of heated channels is presented in terms of delay-times and a density effect model is proposed to explain the behavior. The density effect is the consequence of the physical relationship between enthalpy and density of the fluid. In the first part non-linear equations are derived from the model in a dimensionless form. A description of the mechanism of oscillations is given, based on the analysis of the equations. An inventory of the governing parameters is established. At this point of the study, some facts in agreement with the experiments can be pointed out. In the second part the start of the oscillatory behavior of heated channels is studied in terms of the density effect. The threshold equations are derived, after linearization of the equations obtained in Part I. They can be solved rigorously by numerical methods to yield: -1) a relation between the describing parameters at the onset of oscillations, and -2) the frequency of the oscillations. By comparing the results predicted by the model to the experimental behavior of actual systems, the density effect is very often shown to be the actual cause of oscillatory behaviors. (author) [fr

  5. Dynamic linearization system for a radiation gauge

    International Nuclear Information System (INIS)

    Panarello, J.A.

    1977-01-01

    The linearization system and process converts a high resolution non-linear analog input signal, representative of the thickness of an object, into a high resolution linear analog output signal suitable for use in driving a variety of output devices. The system requires only a small amount of memory for storing pre-calculated non-linear correction coefficients. The system channels the input signal to separate circuit paths so that it may be used directly to; locate an appropriate correction coefficient; develop a correction term after an appropriate correction coefficient is located; and develop a linearized signal having the same high resolution inherent in the input signal. The system processes the linearized signal to compensate for the possible errors introduced by radiation source noise. The processed linearized signal is the high resolution linear analog output signal which accurately represents the thickness of the object being gauged

  6. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  7. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    Full Text Available Abstract Background Non-linear dielectric spectroscopy (NLDS of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar

  8. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  9. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  10. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  11. Linear and nonlinear analysis of high-power rf amplifiers

    International Nuclear Information System (INIS)

    Puglisi, M.

    1983-01-01

    After a survey of the state variable analysis method the final amplifier for the CBA is analyzed taking into account the real beam waveshape. An empirical method for checking the stability of a non-linear system is also considered

  12. Linear system theory

    Science.gov (United States)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  13. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  14. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    Science.gov (United States)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  15. Perfect commuting-operator strategies for linear system games

    Science.gov (United States)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  16. Social inequality, lifestyles and health - a non-linear canonical correlation analysis based on the approach of Pierre Bourdieu.

    Science.gov (United States)

    Grosse Frie, Kirstin; Janssen, Christian

    2009-01-01

    Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.

  17. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    Science.gov (United States)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  18. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  19. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  20. Stability analysis of linear switching systems with time delays

    International Nuclear Information System (INIS)

    Li Ping; Zhong Shouming; Cui Jinzhong

    2009-01-01

    The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.

  1. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  2. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  3. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  4. Frost heave modelling of buried pipelines using non-linear Fourier finite elements

    International Nuclear Information System (INIS)

    Wan, R. G.; You, R.

    1998-01-01

    Numerical analysis of the response of a three-dimensional soil-pipeline system in a freezing environment using non-linear Fourier finite elements was described as an illustration of the effectiveness of this technique in analyzing plasticity problems. Plastic deformations occur when buried pipeline is under the action of non-uniform frost heave. The three-dimensional frost heave which develops over time including elastoplastic deformations of the soil and pipe are computed. The soil heave profile obtained in the numerical analysis was consistent with experimental findings for similar configurations. 8 refs., 8 figs

  5. Non-linear phenomena in electronic systems consisting of coupled single-electron oscillators

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    2008-01-01

    This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-electron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation. Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system consisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscillator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible attractors and takes one of them determined by initial conditions

  6. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  7. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  8. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  9. Development of non-linear TWB parts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.

    2005-07-01

    New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)

  10. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet.

    Science.gov (United States)

    Brown, A M

    2001-06-01

    The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.

  11. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  12. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    International Nuclear Information System (INIS)

    Diaz del Coz, J.J.; Nieto, P.J. Garcia; Rodriguez, A. Martin; Martinez-Luengas, A. Lozano; Biempica, C. Betegon

    2006-01-01

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown

  13. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Del Coz Diaz, J.J.; Rodriguez, A. Martin; Martinez-Luengas, A. Lozano; Biempica, C. Betegon [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Nieto, P.J. Garcia [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2006-06-15

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown. [Author].

  14. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz del Coz, J.J. [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain)]. E-mail: juanjo@constru.uniovi.es; Nieto, P.J. Garcia [Departamento de Matematicas, Facultad de Ciencias, C/Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Rodriguez, A. Martin [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Martinez-Luengas, A. Lozano [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain); Biempica, C. Betegon [Department of Construction, University of Oviedo, Edificio Departamental Viesques No 7, Dpcho. 7.1.02 Campus de Viesques, 33204 Gijon, Asturias (Spain)

    2006-06-15

    The finite element method (FEM) is applied to the non-linear complex heat transfer analysis of light concrete hollow brick walls. The non-linearity is due to the radiation boundary condition inside the inner holes of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the conductivity mortar and two values for the brick. Finally, the numerical and experimental results are compared and a good agreement is shown.

  15. Forecasting the EMU inflation rate: Linear econometric vs. non-linear computational models using genetic neural fuzzy systems

    DEFF Research Database (Denmark)

    Kooths, Stefan; Mitze, Timo Friedel; Ringhut, Eric

    2004-01-01

    This paper compares the predictive power of linear econometric and non-linear computational models for forecasting the inflation rate in the European Monetary Union (EMU). Various models of both types are developed using different monetary and real activity indicators. They are compared according...

  16. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  17. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  18. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....

  19. On the efficacy of linear system analysis of renal autoregulation in rats

    DEFF Research Database (Denmark)

    Chon, K H; Chen, Y M; Holstein-Rathlou, N H

    1993-01-01

    In order to assess the linearity of the mechanisms subserving renal blood flow autoregulation, broad-band arterial pressure fluctuations at three different power levels were induced experimentally and the resulting renal blood flow responses were recorded. Linear system analysis methods were...

  20. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  1. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available . In contrast to certain other applications in complexity theory, these non-linear solutions are characterized by great stability. To go beyond the dominant non-perturbative solution one has to consider the source term as well. The parameter freedom...

  2. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  3. Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions

    International Nuclear Information System (INIS)

    Albeverio, S; Khrennikov, A Yu; Shelkovich, V M

    2005-01-01

    We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed

  4. Evaluation of correlated digital back propagation and extended Kalman filtering for non-linear mitigation in PM-16-QAM WDM systems

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2017-01-01

    We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.

  5. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.

    2011-01-01

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  6. Interior-Point Method for Non-Linear Non-Convex Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2004-01-01

    Roč. 11, č. 5-6 (2004), s. 431-453 ISSN 1070-5325 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : non-linear programming * interior point methods * indefinite systems * indefinite preconditioners * preconditioned conjugate gradient method * merit functions * algorithms * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.727, year: 2004

  7. EABOT - Energetic analysis as a basis for robust optimization of trigeneration systems by linear programming

    International Nuclear Information System (INIS)

    Piacentino, A.; Cardona, F.

    2008-01-01

    The optimization of synthesis, design and operation in trigeneration systems for building applications is a quite complex task, due to the high number of decision variables, the presence of irregular heat, cooling and electric load profiles and the variable electricity price. Consequently, computer-aided techniques are usually adopted to achieve the optimal solution, based either on iterative techniques, linear or non-linear programming or evolutionary search. Large efforts have been made in improving algorithm efficiency, which have resulted in an increasingly rapid convergence to the optimal solution and in reduced calculation time; robust algorithm have also been formulated, assuming stochastic behaviour for energy loads and prices. This paper is based on the assumption that margins for improvements in the optimization of trigeneration systems still exist, which require an in-depth understanding of plant's energetic behaviour. Robustness in the optimization of trigeneration systems has more to do with a 'correct and comprehensive' than with an 'efficient' modelling, being larger efforts required to energy specialists rather than to experts in efficient algorithms. With reference to a mixed integer linear programming model implemented in MatLab for a trigeneration system including a pressurized (medium temperature) heat storage, the relevant contribute of thermoeconomics and energo-environmental analysis in the phase of mathematical modelling and code testing are shown

  8. Study of the 'non-Abelian' current algebra of a non-linear σ-model

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2006-01-01

    A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established

  9. LINEAR AND NON-LINEAR ANALYSES OF CABLE-STAYED STEEL FRAME SUBJECTED TO SEISMIC ACTIONS

    Directory of Open Access Journals (Sweden)

    Marko Đuran

    2017-01-01

    Full Text Available In this study, linear and non-linear dynamic analyses of a cable-stayed steel frame subjected to seismic actions are performed. The analyzed cable-stayed frame is the main supporting structure of a wide-span sports hall. Since the complex dynamic behavior of cable-stayed structures results in significant geometric nonlinearity, a nonlinear time history analysis is conducted. As a reference, an analysis using the European standard approach, the so-called linear modal response spectrum method, is also performed. The analyses are conducted for different seismic actions considering dependence on the response spectrums for various ground types and the corresponding artificially generated accelerograms. Despite fundamental differences between the two analyses, results indicate that the modal response spectrum analysis is surprisingly consistent with the internal forces and bending moment distributions of the nonlinear time history analysis. However, significantly smaller values of bending moments, internal forces, and displacements are obtained with the response spectrum analysis.

  10. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  11. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  12. Weak regularizability and pole assignment for non-square linear systems

    Czech Academy of Sciences Publication Activity Database

    Korotka, Tetiana; Loiseau, J. J.; Zagalak, Petr

    2012-01-01

    Roč. 48, č. 6 (2012), s. 1065-1088 ISSN 0023-5954 R&D Projects: GA ČR GAP103/12/2431 Keywords : linear systems * linear state feedback * pole assignment Subject RIV: BC - Control Systems Theory Impact factor: 0.619, year: 2012 http://library.utia.cas.cz/separaty/2013/AS/korotka-0386325.pdf

  13. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    1979-01-01

    Feedback control systems for non-linear simulation of operational transients in LMFBRs are developed. The models include (1) the reactor power control and rod drive mechanism, (2) sodium flow control and pump drive system, (3) steam generator flow control and valve actuator dynamics, and (4) the supervisory control. These models have been incorporated into the SSC code using a flexible approach, in order to accommodate some design dependent variations. The impact of system nonlinearity on the control dynamics is shown to be significant for severe perturbations. Representative result for a 10 cent and 25 cent step insertion of reactivity and a 10% ramp change in load in 40 seconds demonstrate the suitability of this model for study of operational transients without scram in LMFBRs

  14. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  15. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Directory of Open Access Journals (Sweden)

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  16. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  17. Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis

    International Nuclear Information System (INIS)

    Huber, K.A.; Hugins, M.S.

    1983-01-01

    Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity

  18. Econometrics analysis of consumer behaviour: a linear expenditure system applied to energy

    International Nuclear Information System (INIS)

    Giansante, C.; Ferrari, V.

    1996-12-01

    In economics literature the expenditure system specification is a well known subject. The problem is to define a coherent representation of consumer behaviour through functional forms easy to calculate. In this work it is used the Stone-Geary Linear Expenditure System and its multi-level decision process version. The Linear Expenditure system is characterized by an easy calculating estimation procedure, and its multi-level specification allows substitution and complementary relations between goods. Moreover, the utility function separability condition on which the Utility Tree Approach is based, justifies to use an estimation procedure in two or more steps. This allows to use an high degree of expenditure categories disaggregation, impossible to reach the Linear Expediture System. The analysis is applied to energy sectors

  19. Stress analysis of liners for prestressed concrete reactor pressure vessels with regard to non-linear behaviour of liner material and of anchor-characteristics

    International Nuclear Information System (INIS)

    Oberpichler, R.; Schnellenbach, G.

    1975-01-01

    The thin liner attached by anchors like a membrane to the interior wall of a prestressed concrete reactor pressure vessel (PCRV) has to provide the leak-tightness of the vessel. Furthermore the liner may serve as internal shuttering for placing of concrete as well as a support for the cooling system. The two-dimensional behaviour of the liner is investigated with regard to non-linear anchor-characteristics and non-linear material behaviour of the liner. The analysis is based on a plane stress model under the assumption of a membrane state of the liner. Calculations are performed by the dynamic relaxation method. With the aid of available non-linear stress-strain diagrams, describing the post-buckling behaviour, individual panels are considered as buckled ones. The adjacent unbuckled panels are calculated on other non-linear diagrams. Strains and stresses in the liner and additional shear loads in the anchors can be calculated with arbitrary sizing and spacing of the anchors. With respect to the parameters they are easily controlled. Since actual loads on the liner are defined by the PCRV-behaviour, an economical and safe design is possible. Finally an extreme case is calculated to assess the maximum value of the shear-forces assuming zero post-buckling capacity for the buckled panel. (Auth.)

  20. Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis

    Science.gov (United States)

    Plata, Carlos; Prados, Antonio

    2017-10-01

    We analyse the emergence of Kovacs-like memory effects in athermal systems within the linear response regime. This is done by starting from both the master equation for the probability distribution and the equations for the physically relevant moments. The general results are applied to a general class of models with conserved momentum and non-conserved energy. Our theoretical predictions, obtained within the first Sonine approximation, show an excellent agreement with the numerical results.

  1. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  2. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    Science.gov (United States)

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed

  5. Synchronization of Two Non-Identical Coupled Exciters in a Non-Resonant Vibrating System of Linear Motion. Part II: Numeric Analysis

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2009-01-01

    Full Text Available The paper focuses on the quantitative analysis of the coupling dynamic characteristics of two non-identical exciters in a non-resonant vibrating system. The load torque of each motor consists of three items, including the torque of sine effect of phase angles, that of coupling sine effect and that of coupling cosine effect. The torque of frequency capture results from the torque of coupling cosine effect, which is equal to the product of the coupling kinetic energy, the coefficient of coupling cosine effect, and the sine of phase difference of two exciters. The motions of the system excited by two exciters in the same direction make phase difference close to π and that in opposite directions makes phase difference close to 0. Numerical results show that synchronous operation is stable when the dimensionless relative moments of inertia of two exciters are greater than zero and four times of their product is greater than the square of their coefficient of coupling cosine effect. The stability of the synchronous operation is only dependent on the structural parameters of the system, such as the mass ratios of two exciters to the vibrating system, and the ratio of the distance between an exciter and the centroid of the system to the equivalent radius of the system about its centroid.

  6. Recursive and non-linear logistic regression: moving on from the original EuroSCORE and EuroSCORE II methodologies.

    Science.gov (United States)

    Poullis, Michael

    2014-11-01

    EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non-significant. The original EuroSCORE and the EuroSCORE II risk models do not have adequate ROC and Hosmer

  7. Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-linear kinetic-spectrophotometric data.

    Science.gov (United States)

    Schenone, Agustina V; Culzoni, María J; Marsili, Nilda R; Goicoechea, Héctor C

    2013-06-01

    The performance of MCR-ALS was studied in the modeling of non-linear kinetic-spectrophotometric data acquired by a stopped-flow system for the quantitation of tartrazine in the presence of brilliant blue and sunset yellow FCF as possible interferents. In the present work, MCR-ALS and U-PCA/RBL were firstly applied to remove the contribution of unexpected components not included in the calibration set. Secondly, a polynomial function was used to model the non-linear data obtained by the implementation of the algorithms. MCR-ALS was the only strategy that allowed the determination of tartrazine in test samples accurately. Therefore, it was applied for the analysis of tartrazine in beverage samples with minimum sample preparation and short analysis time. The proposed method was validated by comparison with a chromatographic procedure published in the literature. Mean recovery values between 98% and 100% and relative errors of prediction values between 4% and 9% were indicative of the good performance of the method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”

    Directory of Open Access Journals (Sweden)

    Refat Aljumily

    2015-09-01

    Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed

  9. Stability and response bounds of non-conservative linear systems

    DEFF Research Database (Denmark)

    Pommer, Christian

    2003-01-01

    For a linear system of second order differential equations the stability is studied by Lyapunov's direct method. The Lyapunov matrix equation is solved and a sufficient condition for stability is expressed by the system matrices. For a system which satisfies the condition for stability the Lyapunov...

  10. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  11. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  12. Non-linear thermal fluctuations in a diode

    NARCIS (Netherlands)

    Kampen, N.G. van

    As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being

  13. Parameters and Fractional Differentiation Orders Estimation for Linear Continuous-Time Non-Commensurate Fractional Order Systems

    KAUST Repository

    Belkhatir, Zehor; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.

  14. Parameters and Fractional Differentiation Orders Estimation for Linear Continuous-Time Non-Commensurate Fractional Order Systems

    KAUST Repository

    Belkhatir, Zehor

    2017-05-31

    This paper proposes a two-stage estimation algorithm to solve the problem of joint estimation of the parameters and the fractional differentiation orders of a linear continuous-time fractional system with non-commensurate orders. The proposed algorithm combines the modulating functions and the first-order Newton methods. Sufficient conditions ensuring the convergence of the method are provided. An error analysis in the discrete case is performed. Moreover, the method is extended to the joint estimation of smooth unknown input and fractional differentiation orders. The performance of the proposed approach is illustrated with different numerical examples. Furthermore, a potential application of the algorithm is proposed which consists in the estimation of the differentiation orders of a fractional neurovascular model along with the neural activity considered as input for this model.

  15. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  16. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  17. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  18. Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems

    Czech Academy of Sciences Publication Activity Database

    Kiguradze, I.; Šremr, Jiří

    2011-01-01

    Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573

  19. Control system analysis for the perturbed linear accelerator rf system

    CERN Document Server

    Sung Il Kwon

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

  20. CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM

    International Nuclear Information System (INIS)

    SUNG-IL KWON; AMY H. REGAN

    2002-01-01

    This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller

  1. Punctuated equilibrium in a non-linear system of action

    NARCIS (Netherlands)

    J.S. Timmermans (Jos)

    2008-01-01

    textabstractColeman's equilibrium model of social development, the Linear System of Action, is extended to cover the dynamics of societal transitions. The model implemented has the characteristics of a dissipative system. A variation and selection algorithm favoring the retention of relatively

  2. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    Science.gov (United States)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one

  3. Non-linear sliding mode control of the lower extremity exoskeleton based on human–robot cooperation

    Directory of Open Access Journals (Sweden)

    Shiqiang Zhu

    2016-10-01

    Full Text Available This article presents a human–robot cooperation controller towards the lower extremity exoskeleton which aims to improve the tracking performance of the exoskeleton and reduce the human–robot interaction force. Radial basis function neural network is introduced to model the human–machine interaction which can better approximate the non-linear relationship than the general impedance model. A new method to calculate the inverse Jacobian matrix is presented. Compared to traditional damped least squares method, the novel method is proved to be able to avoid the orientation change of the velocity of the human–robot interaction point by the simulation result. This feature is very important in human–robot system. Then, an improved non-linear robust sliding mode controller is designed to promote the tracking performance considering system uncertainties and model errors, where a new non-linear integral sliding surface is given. The stability analysis of the proposed controller is performed using Lyapunov stability theory. Finally, the novel methods are applied to the swing leg control of the lower extremity exoskeleton, its effectiveness is validated by simulation and comparative experiments.

  4. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    International Nuclear Information System (INIS)

    Anderies, J M; Carpenter, S R; Steffen, Will; Rockström, Johan

    2013-01-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries. (letter)

  5. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

    Science.gov (United States)

    Anderies, J. M.; Carpenter, S. R.; Steffen, Will; Rockström, Johan

    2013-12-01

    We present a minimal model of land use and carbon cycle dynamics and use it to explore the relationship between non-linear dynamics and planetary boundaries. Only the most basic interactions between land cover and terrestrial, atmospheric, and marine carbon stocks are considered in the model. Our goal is not to predict global carbon dynamics as it occurs in the actual Earth System. Rather, we construct a conceptually reasonable heuristic model of a feedback system between different carbon stocks that captures the qualitative features of the actual Earth System and use it to explore the topology of the boundaries of what can be called a ‘safe operating space’ for humans. The model analysis illustrates the existence of dynamic, non-linear tipping points in carbon cycle dynamics and the potential complexity of planetary boundaries. Finally, we use the model to illustrate some challenges associated with navigating planetary boundaries.

  6. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  7. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  8. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  9. Some mathematical problems in non-linear Physics; Algunos problemas matematicos en fisica no-lineal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs.

  10. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  11. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    Science.gov (United States)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  12. Advanced analysis technique for the evaluation of linear alternators and linear motors

    Science.gov (United States)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  13. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  14. Non linear realizations of SU(2) x U(1) in the MSSM model independent analysis and g - 2 of W bosons

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo; Ferrara, Sergio; Masiero, Antonio; Porrati, Massimo

    1993-01-01

    We perform a model-independent analysis of the spontaneously broken phase of an $SU(2)\\times U(1)$ supersymmetric gauge theory, by using a non-linear parametrization of the Goldstone sector of the theory. The non-linear variables correspond to an $SL(2,C)$ superfield matrix in terms of which a non-linear Lagrangian can be constructed, and the pattern of supersymmetry breaking investigated. The supersymmetric order parameter is the V.E.V. of the neutral pseudo-Goldstone boson. Some applications of this technique are considered, in relation to the minimal supersymmetric standard model, and to determine the $g-2$ of the $W$-bosons in the limit of large top mass.

  15. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  16. Non-linear realization of α0 -extended supersymmetry

    International Nuclear Information System (INIS)

    Nishino, Hitoshi

    2000-01-01

    As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time

  17. Regression of non-linear coupling of noise in LIGO detectors

    Science.gov (United States)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  18. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...

  19. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  20. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  1. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  2. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  3. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  4. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  5. Non-linear analysis of solid propellant burning rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)

    2000-07-01

    The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)

  6. Image denoising using non linear diffusion tensors

    International Nuclear Information System (INIS)

    Benzarti, F.; Amiri, H.

    2011-01-01

    Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.

  7. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  8. Homogenized approach for the non linear dynamic analysis of entire masonry buildings by means of rigid plate elements and damaging interfaces

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the analysis of entire 3D masonry structures adopting a Rigid Body and Spring-Mass (HRBSM) model. A series of non linear static and dynamic analyses are conducted with respect to two structures with technical relevance. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  9. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Science.gov (United States)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-08-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  10. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    International Nuclear Information System (INIS)

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-01-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  11. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong; Jia, Wantao [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2016-08-15

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.

  12. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  13. Study of the linear and non-linear coupling of the LH wave to the tokamak plasmas

    International Nuclear Information System (INIS)

    Preynas, M.

    2012-10-01

    In order to achieve long pulse operation with a tokamak, additional heating and current drive systems are necessary. High frequency antennas, which deliver several megawatts of power to the plasma, are currently used in several tokamaks. Moreover, a good control of the coupling of the wave launched by the antenna to the edge plasma is required to optimize the efficiency of heating and current drive LH systems. However, non-linear effects which depend on the level of injected power in the plasma strongly damage the coupling of the LH wave at particular edge parameters (density and temperature profiles). Results presented in the manuscript deal with the study of the linear and non-linear coupling of the LH wave to the plasma. In the framework of the commissioning of the Passive Active Multijunction antenna in 2009 on the Tore Supra tokamak aiming at validating the LH system suggested for ITER, the characterisation of its coupling properties was realized from low power experiments. The experimental results, which are compared with the linear coupling code ALOHA, have validated the theoretical predictions of good coupling at edge plasma density around the cut-off density. Besides, the ponderomotive effect is clearly identified as responsible for the deterioration in the coupling of the wave, which is measured under particular edge plasma conditions. A theoretical model combining the coupling of the LH wave with the ponderomotive force is suggested to explain the experimental observations. Thus, a new full wave code (named PICCOLO-2D) was developed and results from simulations validate the working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling on Tore Supra. (author)

  14. Geometrically and material non-linear analysis of bubble condenser steel structure

    International Nuclear Information System (INIS)

    Gyoergyi, J.; Lenkei, P.

    2003-01-01

    In frame of the project funded by the European Commission (EC) through the Phare and Tacis Programmes experimentally investigate the behaviour of the bubble condenser system (BCS) during phenomena induced by postulated design basis accidents (DBA). The bubble condenser steel structure consists of 12 trays. To enable the Bubble Condenser Test Prototype to be representative of the majority of trays and sections, it was decided to model a typical tray. The test results demonstrate the integrity of the standard tray pressure retaining boundary (side wall, face wall, ceiling and bottom) against a differential pressure (30 kPa). The stability of the side wall and the face wall of tray level 12 was not assured for this differential pressure. The thermal-hydraulic tests demonstrate that the maximum differential pressure across the tray walls in the case of Large Break Loss of Coolant Accident (LBLOCA) is 20 kPa. We have got from the experiences the differential pressure in function of time. The results of the approximate calculations showed the effect of nonlinearly. In case of calculation by FEM model we have done the elastic and linear analyses, and calculated with the geometrically and material non-linearity. (author)

  15. A comparative analysis of Serbian phonemes: Linear and non-linear models/Uporedna analiza fonema srpskog jezika: linearni i nelinearni modeli

    Directory of Open Access Journals (Sweden)

    Danijela D. Protić

    2014-10-01

    Full Text Available This paper presents the results of a comparative analysis of Serbian phonemes. The characteristics of vowels are quasi-periodicity and clearly visible formants. Non-vowels are short-term quasi-periodical signals having a low power excitation signal. For the purpose of this work, speech production systems were modelled with linear AR models and the corresponding non-linear models, based feed-forward neural networks with one hidden-layer. Sum squared error minimization as well as the back-propagation algorithm were used to train models. The selection of the optimal model was based on two stopping criteria: the normalized mean squares test error and the final prediction error. The Levenberg-Marquart method was used for the Hessian matrix calculation. The Optimal Brain Surgeon method was used for pruning. The generalization properties, based on the time-domain and signal spectra of outputs at hidden-layer neurons, are presented. / U radu je prikazana analiza karakteristika vokala i nevokala srpskog jezika. Vokale karakteriše kvaziperiodičnost i spektar snage signala sa dobro uočljivim formantima. Nevokale karakteriše kratkotrajna kvaziperiodičnost i mala snaga pobudnog signala. Vokali i nevokali modelovani su linearnim AR modelima i odgovarajućim nelinearnim modelima koji su generisani kao feed-forward neuronska mreža sa jednim skrivenim slojem. U procesu modelovanja korišćena je minimizacija srednje kvadratne greške sa propagacijom unazad, a kriterijum izbora optimalnog modela jeste zaustavljanje obučavanja, kada normalizovana srednja kvadratna test greška ili finalna greška predikcije dostignu minimalnu vrednost. LM metod korišćen je za proračun inverzne Hessianove matrice, a za pruning je upotrebljen Optimal Brain Surgeon. Prikazana su generalizaciona svojstva signala u vremenskom i frekvencijskom domenu, a kroskorelacionom analizom utvrđen je odnos signala na izlazima neurona skrivenog sloja.

  16. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  17. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  18. Large Spatial and Temporal Separations of Cause and Effect in Policy Making - Dealing with Non-linear Effects

    Science.gov (United States)

    McCaskill, John

    There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.

  19. Observer design for non linear systems: application to automatic fault detection in process engineering; Synthese d'observateurs pour les systemes non lineaires. Application a la detection automatique de pannes en genie des procedes

    Energy Technology Data Exchange (ETDEWEB)

    Armanet, F.

    1999-04-01

    This thesis describes some theoretical contributions in state observer design for non linear systems and the conception of an automatic fault detector system for a petrochemical process. The first chapter is an overview of the observer theory for non linear systems. The second chapter presents a new methodology of high gain observer design for single-output U-uniformly observable systems. It consists in calculate a symmetric positive definite matrix which allows the design of an high gain observer which is exponentially converging. This observer is applied to estimate the concentrations in a perfectly mixed tank reactor with a kinetic scheme corresponding to the conversion of a product A onto a product B which is also converting onto a product C. In the third chapter, the use of high gain observer is extended for systems which are not uniformly observable but all admissible inputs are locally regularly persistent. A characterization of some of this class of inputs is given and an application for the preceding reactor illustrates this theory. The fourth chapter includes a summary of the observer used in residual generator design for linear and non linear systems. Two examples of automatic fault detector using these methods are describes. In annexed documents, a detailed study of the process modeling and the main observability properties are presented. (author)

  20. Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics

    NARCIS (Netherlands)

    Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong

    An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally

  1. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  2. Stability, performance and sensitivity analysis of I.I.D. jump linear systems

    Science.gov (United States)

    Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven

    2018-06-01

    This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.

  3. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  4. Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle

    International Nuclear Information System (INIS)

    Sardanyes, Josep

    2009-01-01

    Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold

  5. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  6. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  7. Non-linear model predictive supervisory controller for building, air handling unit with recuperator and refrigeration system with heat waste recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2016-01-01

    . The retrieved heat excess can be stored in the water tank. For this purpose the charging and the discharging water loops has been designed. We present the non-linear model of the above described system and a non-linear model predictive supervisory controller that according to the received price signal......, occupancy information and ambient temperature minimizes the operation cost of the whole system and distributes set points to local controllers of supermarkets subsystems. We find that when reliable information about the high price period is available, it is profitable to use the refrigeration system...... to generate heat during the low price period, store it and use it to substitute the conventional heater during the high price period....

  8. Analysis of Linear Hybrid Systems in CLP

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...

  9. A non-linear discrete transform for pattern recognition of discrete chaotic systems

    International Nuclear Information System (INIS)

    Karanikas, C.; Proios, G.

    2003-01-01

    It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter

  10. A non-linear discrete transform for pattern recognition of discrete chaotic systems

    CERN Document Server

    Karanikas, C

    2003-01-01

    It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.

  11. Application of an iterative methodology for cross-section and variance/covariance data adjustment to the analysis of fast spectrum systems accounting for non-linearity

    International Nuclear Information System (INIS)

    Pelloni, Sandro

    2014-01-01

    Highlights: • Our data adjustment is based on a Generalized Linear Least-Squares approach. • The computed sensitivity coefficients are converged within an iterative procedure. • The corresponding multistep adjustment thus accounts for non-linearity. • It provides a more accurate simulation of fast-spectrum experiments. - Abstract: The data assimilation benchmark launched by the “Subgroup 33” on “Methods and issues for the combined use of integral experiments and covariance data” of the Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee is recalculated by means of a multistep adjustment procedure using the deterministic code system ERANOS in conjunction with a dedicated Generalized Linear Least-Squares approach based on the Bayesian parameter estimation method. Nuclear data in terms of multi-group cross-sections as well as their variances and covariances, are adjusted for 11 nuclides, namely 10 B, 16 O, 23 Na, 56 Fe, 52 Cr, 58 Ni, 235 U, 238 U, 239 Pu, 240 Pu and 241 Pu and 6 nuclear reactions which are elastic and inelastic scattering, lumped (n,2n) and (n,3n), capture, fission and ν ¯ . The adjustment is carried out by making use of experimental data for 19 integral parameters obtained in 7 different fast spectrum systems. In the determination of a posteriori values for these integral parameters including effective multiplication factors, spectral indices and void effects, along with their nuclear data uncertainty, the required adjusted data for these nuclides and reactions are generated in conjunction with pre-computed sensitivity coefficients of the analytical integral parameters to the nuclear data to adjust. The suggested multistep scheme aims at accounting for non-linear effects. Correspondingly, the sensitivity coefficients are recalculated within an iterative procedure on the basis of the a posteriori analytical values and adjusted cross-sections. The adjustment is thus repeated

  12. Non-linear thermal and structural analysis of a typical spent fuel silo

    International Nuclear Information System (INIS)

    Alvarez, L.M.; Mancini, G.R.; Spina, O.A.F.; Sala, G.; Paglia, F.

    1993-01-01

    A numerical method for the non-linear structural analysis of a typical reinforced concrete spent fuel silo under thermal loads is proposed. The numerical time integration was performed by means of a time explicit axisymmetric finite-difference numerical operator. An analysis was made of influences by heat, viscoelasticity and cracking upon the concrete behaviour between concrete pouring stage and the first period of the silo's normal operation. The following parameters were considered for the heat generation and transmission process: Heat generated during the concrete's hardening stage, Solar radiation effects, Natural convection, Spent-fuel heat generation. For the modelling of the reinforced concrete behaviour, use was made of a simplified formulation of: Visco-elastic effects, Thermal cracking, Steel reinforcement. A comparison between some experimental temperature characteristic values obtained from the numerical integration process and empirical data obtained from a 1:1 scaled prototype was also carried out. (author)

  13. Asymptotic analysis of a stochastic non-linear nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; Sancho, J.M.

    1986-01-01

    The asymptotic behaviour of a stochastic non-linear nuclear reactor modelled by a master equation is analysed in two different limits: the thermodynamic limit and the zero-neutron-source limit. In the first limit a finite steady neutron density is obtained. The second limit predicts the neutron extinction. The interplay between these two limits is studied for different situations. (author)

  14. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  15. Social complexity, modernity and suicide: an assessment of Durkheim's suicide from the perspective of a non-linear analysis of complex social systems.

    Science.gov (United States)

    Condorelli, Rosalia

    2016-01-01

    Can we share even today the same vision of modernity which Durkheim left us by its suicide analysis? or can society 'surprise us'? The answer to these questions can be inspired by several studies which found that beginning the second half of the twentieth century suicides in western countries more industrialized and modernized do not increase in a constant, linear way as modernization and social fragmentation process increases, as well as Durkheim's theory seems to lead us to predict. Despite continued modernizing process, they found stabilizing or falling overall suicide rate trends. Therefore, a gradual process of adaptation to the stress of modernization associated to low social integration levels seems to be activated in modern society. Assuming this perspective, the paper highlights as this tendency may be understood in the light of the new concept of social systems as complex adaptive systems, systems which are able to adapt to environmental perturbations and generate as a whole surprising, emergent effects due to nonlinear interactions among their components. So, in the frame of Nonlinear Dynamical System Modeling, we formalize the logic of suicide decision-making process responsible for changes at aggregate level in suicide growth rates by a nonlinear differential equation structured in a logistic way, and in so doing we attempt to capture the mechanism underlying the change process in suicide growth rate and to test the hypothesis that system's dynamics exhibits a restrained increase process as expression of an adaptation process to the liquidity of social ties in modern society. In particular, a Nonlinear Logistic Map is applied to suicide data in a modern society such as the Italian one from 1875 to 2010. The analytic results, seeming to confirm the idea of the activation of an adaptation process to the liquidity of social ties, constitutes an opportunity for a more general reflection on the current configuration of modern society, by relating the

  16. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  17. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  18. Renormalization a la BRS of the non-linear σ-model

    International Nuclear Information System (INIS)

    Blasi, A.; Collina, R.

    1987-01-01

    We characterize the non-linear O(N+1) σ-model in an arbitrary parametrization with a nihilpotent BRS operator obtained from the symmetry transformation by the use of anticommuting parameters. The identity can be made compatible with the presence of a mass term in the model, so we can analyze its stability and prove that the model is anomaly free. This procedure avoids many problems encountered in the conventional analysis; in particular the introduction of an infinite number of sources coupled to the successive variations of the field is not necessary and the linear O(N) symmetry is respected as a consequence of the identity. The approach may provide useful in discussing the renormalizability of a wider class of models with non-linear symmetries. (orig.)

  19. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  20. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  1. Balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  2. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  3. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  4. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  5. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  6. Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks

    OpenAIRE

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-01

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confi...

  7. Algorithm for Non-proportional Loading in Sequentially Linear Analysis

    NARCIS (Netherlands)

    Yu, C.; Hoogenboom, P.C.J.; Rots, J.G.; Saouma, V.; Bolander, J.; Landis, E.

    2016-01-01

    Sequentially linear analysis (SLA) is an alternative to the Newton-Raphson method for analyzing the nonlinear behavior of reinforced concrete and masonry structures. In this paper SLA is extended to load cases that are applied one after the other, for example first dead load and then wind load. It

  8. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Science.gov (United States)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  9. Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

    Science.gov (United States)

    Ying, Xiaoguo; Lin, Han; Hui, Guohua

    2015-01-01

    Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

  10. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  11. Sparse signals recovered by non-convex penalty in quasi-linear systems.

    Science.gov (United States)

    Cui, Angang; Li, Haiyang; Wen, Meng; Peng, Jigen

    2018-01-01

    The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.

  12. An equivalent frequency approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    Science.gov (United States)

    Giaccu, Gian Felice

    2018-05-01

    Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.

  13. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  14. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  15. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  16. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry

    Science.gov (United States)

    Yacoot, Andrew; Cross, Nigel

    2003-01-01

    X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.

  17. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  18. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    Science.gov (United States)

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  20. Linear and non-linear optics of nano-scale 2‧,7‧dichloro-fluorescein/FTO optical system: Bandgap and dielectric analysis

    Science.gov (United States)

    Iqbal, Javed; Yahia, I. S.; Zahran, H. Y.; AlFaify, S.; AlBassam, A. M.; El-Naggar, A. M.

    2016-12-01

    2‧,7‧ dichloro-Fluorescein (DCF) is a promising organic semiconductor material in different technological aspects such as solar cell, photodiode, Schottky diode. DCF thin film/conductive glass (FTO glass) was prepared by a low-cost spin coating technique. The spectrophotometric data such as the absorbance, reflectance and transmittance were cogitated in the 350-2500 nm wavelength range, at the normal incidence. The absorption (n) and linear refractive indices (k) were computed using the Fresnel's equations. The optical band gap was evaluated and it was found that there is two band gap described as follows: (1) It is related to the band gap of FTO/glass which is equal 3.4 eV and (2) the second one is related to the absorption edge of DCF equals 2.25 eV. The non-linear parameters such as the refractive index (n2) and optical susceptibility χ(3) were evaluated by the spectroscopic method based on the refractive index. Both (n2) and χ(3) increased rapidly on increasing the wavelength with redshift absorption. Our work represents a new idea about using FTO glass for a new generation of the optical device and technology.

  1. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  2. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  3. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.

  4. Classification of acute stress using linear and non-linear heart rate variability analysis derived from sternal ECG

    DEFF Research Database (Denmark)

    Tanev, George; Saadi, Dorthe Bodholt; Hoppe, Karsten

    2014-01-01

    Chronic stress detection is an important factor in predicting and reducing the risk of cardiovascular disease. This work is a pilot study with a focus on developing a method for detecting short-term psychophysiological changes through heart rate variability (HRV) features. The purpose of this pilot...... study is to establish and to gain insight on a set of features that could be used to detect psychophysiological changes that occur during chronic stress. This study elicited four different types of arousal by images, sounds, mental tasks and rest, and classified them using linear and non-linear HRV...

  5. Noise analysis of fluid-valve system in a linear compressor using CAE

    International Nuclear Information System (INIS)

    Lee, Jun Ho; Jeong, Weui Bong; Kim, Dang Ju

    2009-01-01

    A linear compressor in a refrigerator uses piston motion to transfer refrigerant so its efficiency is higher than a previous reciprocal compressor. Because of interaction between refrigerant and valves system in the linear compressor, however, noise has been a main issue. In spite of doing many experimental researches, there is no way to rightly predict the noise. In order to solve this limitation, the CAE analysis is applied. For giving credit to these computational data, all of the data are experimentally validated.

  6. Xenon spatial oscillation in nuclear power reactors:an analytical approach through non linear modal analysis

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-01-01

    It was proponed recently to apply an extension of Lyapunov's first method to the non-linear regime, known as non-linear modal analysis (NMA), to the study of space-time problems in nuclear reactor kinetics, nuclear power plant dynamics and nuclear power plant instrumentation and control(1). The present communication shows how to apply NMA to the study of Xenon spatial oscillations in large nuclear reactors. The set of non-linear modal equations derived by J. Lewins(2) for neutron flux, Xenon concentration and Iodine concentration are discussed, and a modified version of these equations is taken as a starting point. Using the methods of singular perturbation theory a slow manifold is constructed in the space of mode amplitudes. This allows the reduction of the original high dimensional dynamics to a low dimensional one. It is shown how the amplitudes of the first mode for neutron flux field, temperature field and concentrations of Xenon and Iodine fields can have a stable steady state value while the corresponding amplitudes of the second mode oscillates in a stable limit cycle. The extrapolated dimensions of the reactor's core are used as bifurcation parameters. Approximate analytical formulae are obtained for the critical values of this parameters( below which the onset of oscillations is produced), for the period and for the amplitudes of the above mentioned oscillations. These results are applied to the discussion of neutron flux and temperature excursions in critical locations of the reactor's core. The results of NMA can be validated from the results obtained applying suitable computer codes, using homogenization theory(3) to link the complex heterogeneous model of the codes with the simplified mathematical model used for NMA

  7. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    International Nuclear Information System (INIS)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge

    2014-01-01

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  8. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  9. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  10. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Science.gov (United States)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  11. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  12. Non-linear belt transient analysis. A hybrid model for numerical belt conveyor simulation

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A. [Scientific Solutions, Inc., Aurora, CO (United States)

    2008-07-01

    Frictional and rolling losses along a running conveyor are discussed due to their important influence on wave propagation during starting and stopping. Hybrid friction models allow belt rubber losses and material flexing to be included in the initial tension calculations prior to any dynamic analysis. Once running tensions are defined, a numerical integration method using non-linear stiffness gradients is used to generate transient forces during starting and stopping. A modified Euler integration technique is used to simulate the entire starting and stopping cycle in less than 0.1 seconds. The procedure enables a faster scrutiny of unforeseen conveyor design issues such as low belt tension zones and high forces at drives. (orig.)

  13. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  14. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  15. Time dependent non-extinction probability for prompt critical systems

    International Nuclear Information System (INIS)

    Gregson, M. W.; Prinja, A. K.

    2009-01-01

    The time dependent non-extinction probability equation is presented for slab geometry. Numerical solutions are provided for a nested inner/outer iteration routine where the fission terms (both linear and non-linear) are updated and then held fixed over the inner scattering iteration. Time dependent results are presented highlighting the importance of the injection position and angle. The iteration behavior is also described as the steady state probability of initiation is approached for both small and large time steps. Theoretical analysis of the nested iteration scheme is shown and highlights poor numerical convergence for marginally prompt critical systems. An acceleration scheme for the outer iterations is presented to improve convergence of such systems. Theoretical analysis of the acceleration scheme is also provided and the associated decrease in computational run time addressed. (authors)

  16. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  17. New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides.

    Science.gov (United States)

    Liu, Bo; Lu, Wenlian; Chen, Tianping

    2012-01-01

    In this paper, we study synchronization of networks of linearly coupled dynamical systems. The node dynamics of the network can be very general, which may not satisfy the QUAD condition. We derive sufficient conditions for synchronization, which can be regarded as extensions of previous results. These results can be employed to networks of coupled systems, of which, in particular, the node dynamics have non-Lipschitz or even discontinuous right-hand sides. We also give several corollaries where the synchronization of some specific non-QUAD systems can be deduced. As an application, we propose a scheme to realize synchronization of coupled switching systems via coupling the signals which drive the switchings. Examples with numerical simulations are also provided to illustrate the theoretical results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Non-Linear Multi-Physics Analysis and Multi-Objective Optimization in Electroheating Applications

    Czech Academy of Sciences Publication Activity Database

    di Barba, P.; Doležel, Ivo; Mognaschi, M. E.; Savini, A.; Karban, P.

    2014-01-01

    Roč. 50, č. 2 (2014), s. 7016604-7016604 ISSN 0018-9464 Institutional support: RVO:61388998 Keywords : coupled multi-physics problems * finite element method * non-linear equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.386, year: 2014

  19. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Senthilkumar, M.; Das, N.C.

    2005-01-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl 2 O 3 ZrO 2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers. (orig.)

  20. Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression

    NARCIS (Netherlands)

    D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)

    2013-01-01

    textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the

  1. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D; Keesman, K.J.; Zwart, Heiko J.

    In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state space

  2. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D.; Keesman, K.J.; Zwart, H.

    2006-01-01

    Abstract In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state

  3. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 fractional Laplacian in one dimension. In particular, we answer affirmatively an open question...... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized...

  4. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  5. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    mode number is 1. Consistent with linear and non-linear MHD calculations this leads to the conclusion that the dominant toroidal mode number from the linear to the non-linear phase has a transition from intermediate (n∼10) to low values (n∼1). Thi structural transition emphasizes the need to approach the question of ELM-sizes non-linearly. Furthermore the question is raised, whether the interaction of this modified non-linear perturbation and the conducting wall leads to a temporary saturation of the perturbation. Dominant magnetic perturbations are compared with ELM signatures typically observed earlier (coherent ELM precursors) or later (ELM filaments) in order to obtain information and understanding of the ELM evolution. The transport during ELMs is characterized by a competition between parallel transport to the divertor and transport in radially ejected ELM filaments. The analysis method diagnostic mapping, which has been developed in the course of this thesis, allows to carry out an improved correlation of dominant magnetic perturbations and ELM filaments. The resulting observation of propagation of both features in different perpendicular directions is understood as a consequence of the strong perpendicular rotation shear in this radial region. Furthermore dominant magnetic perturbations have characteristics of a trigger for the radial propagation of ELM filaments. The results gathered in the framework of this thesis enable the development of a picture of the processes during ELMs, which is more complete than any before. It is expected that this will contribute to a further extended understanding of ELMs and methods to mitigate them and to an ELM model, which is capable of reliably predicting ELM sizes and evolution.

  6. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    mode number is 1. Consistent with linear and non-linear MHD calculations this leads to the conclusion that the dominant toroidal mode number from the linear to the non-linear phase has a transition from intermediate (n{approx}10) to low values (n{approx}1). Thi structural transition emphasizes the need to approach the question of ELM-sizes non-linearly. Furthermore the question is raised, whether the interaction of this modified non-linear perturbation and the conducting wall leads to a temporary saturation of the perturbation. Dominant magnetic perturbations are compared with ELM signatures typically observed earlier (coherent ELM precursors) or later (ELM filaments) in order to obtain information and understanding of the ELM evolution. The transport during ELMs is characterized by a competition between parallel transport to the divertor and transport in radially ejected ELM filaments. The analysis method diagnostic mapping, which has been developed in the course of this thesis, allows to carry out an improved correlation of dominant magnetic perturbations and ELM filaments. The resulting observation of propagation of both features in different perpendicular directions is understood as a consequence of the strong perpendicular rotation shear in this radial region. Furthermore dominant magnetic perturbations have characteristics of a trigger for the radial propagation of ELM filaments. The results gathered in the framework of this thesis enable the development of a picture of the processes during ELMs, which is more complete than any before. It is expected that this will contribute to a further extended understanding of ELMs and methods to mitigate them and to an ELM model, which is capable of reliably predicting ELM sizes and evolution.

  7. Accuracy of Linear Measurements in Stitched Versus Non-Stitched Cone Beam Computed Tomography Images

    International Nuclear Information System (INIS)

    Srimawong, P.; Krisanachinda, A.; Chindasombatjaroen, J.

    2012-01-01

    Cone beam computed tomography images are useful in clinical dentistry. Linear measurements are necessary for accurate treatment planning.Therefore, the accuracy of linear measurements on CBCT images is needed to be verified. Current program called stitching program in Kodak 9000C 3D systems automatically combines up to three localized volumes to construct larger images with small voxel size.The purpose of this study was to assess the accuracy of linear measurements from stitched and non-stitched CBCT images in comparison to direct measurements.This study was performed in 10 human dry mandibles. Gutta-percha rods were marked at reference points to obtain 10 vertical and horizontal distances. Direct measurements by digital caliper were served as gold standard. All distances on CBCT images obtained by using and not using stitching program were measured, and compared with direct measurements.The intraclass correlation coefficients (ICC) were calculated.The ICC of direct measurements were 0.998 to 1.000.The ICC of intraobserver of both non-stitched CBCT images and stitched CBCT images were 1.000 indicated strong agreement made by a single observer.The intermethod ICC between direct measurements vs non-stitched CBCT images and direct measurements vs stitched CBCT images ranged from 0.972 to 1.000 and 0.967 to 0.998, respectively. No statistically significant differences between direct measurements and stitched CBCT images or non-stitched CBCT images (P > 0.05). The results showed that linear measurements on non-stitched and stitched CBCT images were highly accurate with no statistical difference compared to direct measurements. The ICC values in non-stitched and stitched CBCT images and direct measurements of vertical distances were slightly higher than those of horizontal distances. This indicated that the measurements in vertical orientation were more accurate than those in horizontal orientation. However, the differences were not statistically significant. Stitching

  8. Designing and optimising anaerobic digestion systems: A multi-objective non-linear goal programming approach

    International Nuclear Information System (INIS)

    Nixon, J.D.

    2016-01-01

    This paper presents a method for optimising the design parameters of an anaerobic digestion (AD) system by using first-order kinetics and multi-objective non-linear goal programming. A model is outlined that determines the ideal operating tank temperature and hydraulic retention time, based on objectives for minimising levelised cost of electricity, and maximising energy potential and feedstock mass reduction. The model is demonstrated for a continuously stirred tank reactor processing food waste in two case study locations. These locations are used to investigate the influence of different environmental and economic climates on optimal conditions. A sensitivity analysis is performed to further examine the variation in optimal results for different financial assumptions and objective weightings. The results identify the conditions for the preferred tank temperature to be in the psychrophilic, mesophilic or thermophilic range. For a tank temperature of 35 °C, ideal hydraulic retention times, in terms of achieving a minimum levelised electricity cost, were found to range from 29.9 to 33 days. Whilst there is a need for more detailed information on rate constants for use in first-order models, multi-objective optimisation modelling is considered to be a promising option for AD design. - Highlights: • Nonlinear goal programming is used to optimise anaerobic digestion systems. • Multiple objectives are set including minimising the levelised cost of electricity. • A model is developed and applied to case studies for the UK and India. • Optimal decisions are made for tank temperature and retention time. • A sensitivity analysis is carried out to investigate different model objectives.

  9. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere

    OpenAIRE

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.

    2017-01-01

    Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-l...

  10. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  11. Application of perturbation theory to the non-linear vibration analysis of a string including the bending moment effects

    International Nuclear Information System (INIS)

    Esmaeilzadeh Khadem, S.; Rezaee, M.

    2001-01-01

    In this paper the large amplitude and non-linear vibration of a string is considered. The initial tension, lateral vibration amplitude, diameter and the modulus of elasticity of the string have main effects on its natural frequencies. Increasing the lateral vibration amplitude makes the assumption of constant initial tension invalid. In this case, therefore, it is impossible to use the classical equation of string with small amplitude transverse motion assumption. On the other hand, by increasing the string diameter, the bending moment effect will increase dramatically, and acts as an impressive restoring moment. Considering the effects of the bending moments, the nonlinear equation governing the large amplitude transverse vibration of a string is derived. The time dependent portion of the governing equation has the from of Duff ing equation is solved using the perturbation theory. The results of the analysis are shown in appropriate graphs, and the natural frequencies of the string due to the non-linear factors are compared with the natural frequencies of the linear vibration os a string without bending moment effects

  12. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  13. Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Subramanian Ramasamy

    2010-01-01

    Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.

  14. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  15. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  16. Linear and non-linear interdependence of EEG and HRV frequency bands in human sleep.

    Science.gov (United States)

    Chaparro-Vargas, Ramiro; Dissanayaka, P Chamila; Patti, Chanakya Reddy; Schilling, Claudia; Schredl, Michael; Cvetkovic, Dean

    2014-01-01

    The characterisation of functional interdependencies of the autonomic nervous system (ANS) stands an evergrowing interest to unveil electroencephalographic (EEG) and Heart Rate Variability (HRV) interactions. This paper presents a biosignal processing approach as a supportive computational resource in the estimation of sleep dynamics. The application of linear, non-linear methods and statistical tests upon 10 overnight polysomnographic (PSG) recordings, allowed the computation of wavelet coherence and phase locking values, in order to identify discerning features amongst the clinical healthy subjects. Our findings showed that neuronal oscillations θ, α and σ interact with cardiac power bands at mid-to-high rank of coherence and phase locking, particularly during NREM sleep stages.

  17. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  18. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  19. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...

  20. Non-linear unidimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Clemente, R.A.; Martin, P.

    1992-01-01

    An exact analytical solution for T e = T i and an approximate solution for T e ≠ T i have been obtained for the unidimensional non-linear Debye potential. The approximate expression is a solution of the Poisson equation obtained by expanding up to third order the Boltzmann's factors. The analysis shows that the effective Debye screening length can be quite different from the usual Debye length, when the potential to thermal energy ratio of the particles is not much smaller than unity. (author)

  1. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  2. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    International Nuclear Information System (INIS)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.

    2010-01-01

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.

  3. A new approach of binary addition and subtraction by non-linear ...

    Indian Academy of Sciences (India)

    optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.

  4. A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

    Science.gov (United States)

    Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K

    2013-12-01

    Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.

  5. Validity of purchasing power parity for selected Latin American countries: Linear and non-linear unit root tests

    Directory of Open Access Journals (Sweden)

    Claudio Roberto Fóffano Vasconcelos

    2016-01-01

    Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.

  6. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  7. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  8. Linear and Non-Linear Piezoresistance Coefficients in Cubic Semiconductors. I. Theoretical Formulations

    Science.gov (United States)

    Durand, S.; Tellier, C. R.

    1996-02-01

    This paper constitutes the first part of a work devoted to applications of piezoresistance effects in germanium and silicon semiconductors. In this part, emphasis is placed on a formal explanation of non-linear effects. We propose a brief phenomenological description based on the multi-valleys model of semiconductors before to adopt a macroscopic tensorial model from which general analytical expressions for primed non-linear piezoresistance coefficients are derived. Graphical representations of linear and non-linear piezoresistance coefficients allows us to characterize the influence of the two angles of cut and of directions of alignment. The second part will primarily deal with specific applications for piezoresistive sensors. Cette publication constitue la première partie d'un travail consacré aux applications des effets piézorésistifs dans les semiconducteurs germanium et silicium. Cette partie traite essentiellement de la modélisation des effets non-linéaires. Après une description phénoménologique à partir du modèle de bande des semiconducteurs nous développons un modèle tensoriel macroscopique et nous proposons des équations générales analytiques exprimant les coefficients piézorésistifs non-linéaires dans des repères tournés. Des représentations graphiques des variations des coefficients piézorésistifs linéaires et non-linéaires permettent une pré-caractérisation de l'influence des angles de coupes et des directions d'alignement avant l'étude d'applications spécifiques qui feront l'objet de la deuxième partie.

  9. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  10. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics.

    Science.gov (United States)

    Jain, Amit; Kuhls-Gilcrist, Andrew T; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2010-03-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks.

  11. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  12. Characterisation of the Effects of Sleep Deprivation on the Electroencephalogram Using Permutation Lempel–Ziv Complexity, a Non-Linear Analysis Tool

    Directory of Open Access Journals (Sweden)

    Pinar Deniz Tosun

    2017-12-01

    Full Text Available Specific patterns of brain activity during sleep and waking are recorded in the electroencephalogram (EEG. Time-frequency analysis methods have been widely used to analyse the EEG and identified characteristic oscillations for each vigilance state (VS, i.e., wakefulness, rapid-eye movement (REM and non-rapid-eye movement (NREM sleep. However, other aspects such as change of patterns associated with brain dynamics may not be captured unless a non-linear-based analysis method is used. In this pilot study, Permutation Lempel–Ziv complexity (PLZC, a novel symbolic dynamics analysis method, was used to characterise the changes in the EEG in sleep and wakefulness during baseline and recovery from sleep deprivation (SD. The results obtained with PLZC were contrasted with a related non-linear method, Lempel–Ziv complexity (LZC. Both measure the emergence of new patterns. However, LZC is dependent on the absolute amplitude of the EEG, while PLZC is only dependent on the relative amplitude due to symbolisation procedure and thus, more resistant to noise. We showed that PLZC discriminates activated brain states associated with wakefulness and REM sleep, which both displayed higher complexity, compared to NREM sleep. Additionally, significantly lower PLZC values were measured in NREM sleep during the recovery period following SD compared to baseline, suggesting a reduced emergence of new activity patterns in the EEG. These findings were validated using PLZC on surrogate data. By contrast, LZC was merely reflecting changes in the spectral composition of the EEG. Overall, this study implies that PLZC is a robust non-linear complexity measure, which is not dependent on amplitude variations in the signal, and which may be useful to further assess EEG alterations induced by environmental or pharmacological manipulations.

  13. Efficient Estimation of Extreme Non-linear Roll Motions using the First-order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    In on-board decision support systems efficient procedures are needed for real-time estimation of the maximum ship responses to be expected within the next few hours, given on-line information on the sea state and user defined ranges of possible headings and speeds. For linear responses standard...... frequency domain methods can be applied. To non-linear responses like the roll motion, standard methods like direct time domain simulations are not feasible due to the required computational time. However, the statistical distribution of non-linear ship responses can be estimated very accurately using...... the first-order reliability method (FORM), well-known from structural reliability problems. To illustrate the proposed procedure, the roll motion is modelled by a simplified non-linear procedure taking into account non-linear hydrodynamic damping, time-varying restoring and wave excitation moments...

  14. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aktaa, J., E-mail: jarir.aktaa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  15. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    International Nuclear Information System (INIS)

    Aktaa, J.; Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V.

    2014-01-01

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  16. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  17. An analytical study of non-linear behaviour of coupled 2+2x0.5 DOF electro-magneto-mechanical system by a method of multiple scales

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2013-01-01

    An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force...

  18. Calculation of relative tube/tube support plate displacements in steam generators under accident condition loads using non-linear dynamic analysis methodologies

    International Nuclear Information System (INIS)

    Smith, R.E.; Waisman, R.; Hu, M.H.; Frick, T.M.

    1995-01-01

    A non-linear analysis has been performed to determine relative motions between tubes and tube support plates (TSP) during a steam line break (SLB) event for steam generators. The SLB event results in blowdown of steam and water out of the steam generator. The fluid blowdown generates pressure drops across the TSPS, resulting in out-of-plane motion. The SLB induced pressure loads are calculated with a computer program that uses a drift-flux modeling of the two-phase flow. In order to determine the relative tube/TSP motions, a nonlinear dynamic time-history analysis is performed using a structural model that considers all of the significant component members relative to the tube support system. The dynamic response of the structure to the pressure loads is calculated using a special purpose computer program. This program links the various substructures at common degrees of freedom into a combined mass and stiffness matrix. The program accounts for structural non-linearities, including potential tube and TSP interaction at any given tube position. The program also accounts for structural damping as part of the dynamic response. Incorporating all of the above effects, the equations of motion are solved to give TSP displacements at the reduced set of DOF. Using the displacement results from the dynamic analysis, plate stresses are then calculated using the detailed component models. Displacements form the dynamic analysis are imposed as boundary conditions at the DOF locations, and the finite element program then solves for the overall distorted geometry. Calculations are also performed to assure that assumptions regarding elastic response of the various structural members and support points are valid

  19. Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching

    Directory of Open Access Journals (Sweden)

    Asmau M. Ahmed

    2017-07-01

    Full Text Available Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1 The mixing process should occur at macroscopic level and (2 Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model. Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms.

  20. Chaotic behaviour in the non-linear optimal control of unilaterally contacting building systems during earthquakes

    International Nuclear Information System (INIS)

    Liolios, A.A.; Boglou, A.K.

    2003-01-01

    The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-θ method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-convex linear complementarity problem is solved with a reduced number of unknowns

  1. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  2. Reduction of Linear Functional Systems using Fuhrmann's Equivalence

    Directory of Open Access Journals (Sweden)

    Mohamed S. Boudellioua

    2016-11-01

    Full Text Available Functional systems arise in the treatment of systems of partial differential equations, delay-differential equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional system containing fewer equations and fewer unknowns can generally simplify both the study of the structural properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on the reduction of under-determined linear functional systems to a single equation involving a single unknown. This equivalence transformation has been studied by a number of authors and has been shown to play an important role in the theory of linear functional systems.

  3. Optimization of piezoelectric cantilever energy harvesters including non-linear effects

    International Nuclear Information System (INIS)

    Patel, R; McWilliam, S; Popov, A A

    2014-01-01

    This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)

  4. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  5. Novel phenomena in one-dimensional non-linear transport in long quantum wires

    International Nuclear Information System (INIS)

    Morimoto, T; Hemmi, M; Naito, R; Tsubaki, K; Park, J-S; Aoki, N; Bird, J P; Ochiai, Y

    2006-01-01

    We have investigated the non-linear transport properties of split-gate quantum wires of various channel lengths. In this report, we present results on a resonant enhancement of the non-linear conductance that is observed near pinch-off under a finite source-drain bias voltage. The resonant phenomenon exhibits a strong dependence on temperature and in-plane magnetic field. We discuss the possible relationship of this phenomenon to the spin-polarized manybody state that has recently been suggested to occur in quasi-one dimensional systems

  6. A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication

    Science.gov (United States)

    Tillema, Erik; Gatza, Andrew

    2016-01-01

    We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…

  7. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems

    Science.gov (United States)

    Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe

    2017-09-01

    The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.

  8. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  9. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  10. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  11. Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek

    2007-01-01

    We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control

  12. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  14. Spectroscopic investigations using density functional theory on 2-methoxy- 4(phenyliminomethyl)phenol: A non linear optical material

    Science.gov (United States)

    Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.

    2018-03-01

    Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.

  15. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  16. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  17. Non-linear realizations of supersymmetry with off-shell central charges

    International Nuclear Information System (INIS)

    Santos Filho, P.B.; Oliveira Rivelles, V. de.

    1985-01-01

    A new class of non-linear realizations of the extended supersymmetry algebra with central charges is presented. They were obtained by applying the technique of dimensional reduction by Legendre transformation to a non-linear realization without central charges in one higher dimension. As a result an off-shell central charge is obtained. The non-linear lagrangian is the same as is the case of vanishing central charge. On-shell the central charge vanishes so this non-linear realization differs from that without central charges only off-shell. It is worked in two dimensions and its extension to higher dimensions is discussed. (Author) [pt

  18. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  19. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  20. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  1. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  2. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  3. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  4. Numerical solution of large sparse linear systems

    International Nuclear Information System (INIS)

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  5. Stability analysis of switched linear systems defined by graphs

    NARCIS (Netherlands)

    Athanasopoulos, N.; Lazar, M.

    2014-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching,

  6. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  7. Stability and vibration analysis of a complex flexible rotor bearing system

    Science.gov (United States)

    Villa, C.; Sinou, J.-J.; Thouverez, F.

    2008-07-01

    This paper presents the non-linear dynamic analysis of a flexible rotor having unbalanced and supported by ball bearings. The rolling element bearings are modeled as two degree of freedom elements where the kinematics of the rolling elements are taken into account, as well as the internal clearance and the Hertz contact non-linearity. In order to calculate the periodic response of this non-linear system, the harmonic balance method is used. This method is implemented with an exact condensation strategy to reduce the computational time. Moreover, the stability of the non-linear system is analyzed in the frequency-domain by a method based on a perturbation applied to the known harmonic solution in the time domain.

  8. Linear and Non-Linear Associations of Gonorrhea Diagnosis Rates with Social Determinants of Health

    Directory of Open Access Journals (Sweden)

    Hazel D. Dean

    2012-09-01

    Full Text Available Identifying how social determinants of health (SDH influence the burden of disease in communities and populations is critically important to determine how to target public health interventions and move toward health equity. A holistic approach to disease prevention involves understanding the combined effects of individual, social, health system, and environmental determinants on geographic area-based disease burden. Using 2006–2008 gonorrhea surveillance data from the National Notifiable Sexually Transmitted Disease Surveillance and SDH variables from the American Community Survey, we calculated the diagnosis rate for each geographic area and analyzed the associations between those rates and the SDH and demographic variables. The estimated product moment correlation (PMC between gonorrhea rate and SDH variables ranged from 0.11 to 0.83. Proportions of the population that were black, of minority race/ethnicity, and unmarried, were each strongly correlated with gonorrhea diagnosis rates. The population density, female proportion, and proportion below the poverty level were moderately correlated with gonorrhea diagnosis rate. To better understand relationships among SDH, demographic variables, and gonorrhea diagnosis rates, more geographic area-based estimates of additional variables are required. With the availability of more SDH variables and methods that distinguish linear from non-linear associations, geographic area-based analysis of disease incidence and SDH can add value to public health prevention and control programs.

  9. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  10. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  11. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  12. Frequency-domain full-waveform inversion with non-linear descent directions

    Science.gov (United States)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a

  13. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  14. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  15. Sliding mode control-based linear functional observers for discrete-time stochastic systems

    Science.gov (United States)

    Singh, Satnesh; Janardhanan, Sivaramakrishnan

    2017-11-01

    Sliding mode control (SMC) is one of the most popular techniques to stabilise linear discrete-time stochastic systems. However, application of SMC becomes difficult when the system states are not available for feedback. This paper presents a new approach to design a SMC-based functional observer for discrete-time stochastic systems. The functional observer is based on the Kronecker product approach. Existence conditions and stability analysis of the proposed observer are given. The control input is estimated by a novel linear functional observer. This approach leads to a non-switching type of control, thereby eliminating the fundamental cause of chatter. Furthermore, the functional observer is designed in such a way that the effect of process and measurement noise is minimised. Simulation example is given to illustrate and validate the proposed design method.

  16. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  17. Modeling and analysis of linear hyperbolic systems of balance laws

    CERN Document Server

    Bartecki, Krzysztof

    2016-01-01

    This monograph focuses on the mathematical modeling of distributed parameter systems in which mass/energy transport or wave propagation phenomena occur and which are described by partial differential equations of hyperbolic type. The case of linear (or linearized) 2 x 2 hyperbolic systems of balance laws is considered, i.e., systems described by two coupled linear partial differential equations with two variables representing physical quantities, depending on both time and one-dimensional spatial variable. Based on practical examples of a double-pipe heat exchanger and a transportation pipeline, two typical configurations of boundary input signals are analyzed: collocated, wherein both signals affect the system at the same spatial point, and anti-collocated, in which the input signals are applied to the two different end points of the system. The results of this book emerge from the practical experience of the author gained during his studies conducted in the experimental installation of a heat exchange cente...

  18. Calculations for BDAS Setpoint with Non-conservative Boron Dilution Analysis

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Kim, Yong Bae

    2014-01-01

    BDAS (Boron Dilution Alarm System) utilizes the ex-core detector instrumentation signals to detect a possible inadvertent boron dilution event during operation mode 3, 4, 5, 6. For boron dilution analysis, discrepancies in the active coolant volume and the assumed linearity of the ex-core instrumentation response were identified for CE type PWR and they were reported by NASL-04-02 These discrepancies have potential to impact to determine BDAS setpoint in a non-conservative manner Therefore, in this study, the calculation of BDAS setpoint with those discrepancies condition about OPR1000 was performed and analyzed for checking the safety of BDAS. The new BDAS setpoint is calculated with conservative condition which recommended from Westinghouse Electric Company. The setpoint of BDAS using non-linear ICRR curve decrease to about 5% compared to the setpoint of that using linear ICRR curve. And this effect of the non-linearity is to slightly delay the boron dilution alarm during the inadvertence boron dilution at mode 3, 4, and 5

  19. Non-linearity aspects in the design of submarine pipelines

    NARCIS (Netherlands)

    Fernández, M.L.

    1981-01-01

    An arbitrary attempt has been made to classify and discuss some non-linearity aspects related to design, construction and operation of submarine pipelines. Non-linearities usually interrelate and take part of a comprehensive design, making difficult to quantify their individual influence or

  20. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    Science.gov (United States)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  1. Analysis of the reactive power consumption and the harmonics in the network by the non-linear electrical loads

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.

  2. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    Directory of Open Access Journals (Sweden)

    Junaid Ahmad Khan

    2018-03-01

    Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer

  3. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  4. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  5. COMPARATIVE STUDY OF THREE LINEAR SYSTEM SOLVER APPLIED TO FAST DECOUPLED LOAD FLOW METHOD FOR CONTINGENCY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Syafii

    2017-03-01

    Full Text Available This paper presents the assessment of fast decoupled load flow computation using three linear system solver scheme. The full matrix version of the fast decoupled load flow based on XB methods used in this study. The numerical investigations are carried out on the small and large test systems. The execution time of small system such as IEEE 14, 30, and 57 are very fast, therefore the computation time can not be compared for these cases. Another cases IEEE 118, 300 and TNB 664 produced significant execution speedup. The superLU factorization sparse matrix solver has best performance and speedup of load flow solution as well as in contigency analysis. The invers full matrix solver can solved only for IEEE 118 bus test system in 3.715 second and for another cases take too long time. However for superLU factorization linear solver can solved all of test system in 7.832 second for a largest of test system. Therefore the superLU factorization linear solver can be a viable alternative applied in contingency analysis.

  6. Mathematical problems in non-linear Physics: some results

    International Nuclear Information System (INIS)

    1979-01-01

    The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)

  7. New approach to solve fully fuzzy system of linear equations using ...

    Indian Academy of Sciences (India)

    This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

  8. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  9. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramaswamy

    2011-01-01

    Full Text Available Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM or fluorescence-correlation spectroscopy (FCS to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  10. DIESYS—dynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges

    International Nuclear Information System (INIS)

    Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G

    2013-01-01

    Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)

  11. MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES

    Institute of Scientific and Technical Information of China (English)

    程乾生

    1990-01-01

    The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.

  12. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraulic...... Digital Displacement Machines (DDM) is complicated due to non-smooth machine behavior, where the dynamics comprises both analog, digital and non-linear elements. For a full stroke operated DDM the power throughput is altered in discrete levels based on the ratio of activated pressure chambers....... In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  13. Novel developments in linear modal description of piping system dynamic behavior

    International Nuclear Information System (INIS)

    Revesz, Z.

    1989-01-01

    Novel developments in dynamic analysis of piping systems are described. The ASME BPV Codes, 1986 describes methods that are considered as adequate to analyze piping systems under dynamic loading, and also states that the method described in the codes are not the only acceptable ones. With straightforward application of the principles and methods laid down in the code novel numerical techniques can be developed. These techniques allow to obtain correct, conservative estimates of the piping system response and to reduce the computed stresses the same time. Beyond that, the particular algorithm which is presented is also suitable to analyze systems which include non-linear (viscous) damping elements

  14. Fatigue damage estimation in non-linear systems using a combination of Monte Carlo simulation and the First Order Reliability Method

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    For non-linear systems the estimation of fatigue damage under stochastic loadings can be rather time-consuming. Usually Monte Carlo simulation (MCS) is applied, but the coefficient-of-variation (COV) can be large if only a small set of simulations can be done due to otherwise excessive CPU time...

  15. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. The non-linear Perron-Frobenius theorem : Perturbations and aggregation

    NARCIS (Netherlands)

    Dietzenbacher, E

    The dominant eigenvalue and the corresponding eigenvector (or Perron vector) of a non-linear eigensystem are considered. We discuss the effects upon these, of perturbations and of aggregation of the underlying mapping. The results are applied to study the sensivity of the outputs in a non-linear

  18. Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.

    Directory of Open Access Journals (Sweden)

    Marco Bardoscia

    Full Text Available We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.

  19. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  20. SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA

    OpenAIRE

    Tanuj Kumar Pandey; Vinod Kumar

    2014-01-01

    The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...

  1. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. A non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel.

    Science.gov (United States)

    Brown, Angus M

    2006-04-01

    The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.

  3. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    Science.gov (United States)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  4. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  5. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  6. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  7. The non-linear power spectrum of the Lyman alpha forest

    International Nuclear Information System (INIS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula

  8. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites.

    Science.gov (United States)

    Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain

    2016-10-01

    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Non linear characterisation of optical components of a high power laser chain

    International Nuclear Information System (INIS)

    Santran, Stephane

    2000-01-01

    This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr

  10. Stability analysis and stabilization strategies for linear supply chains

    Science.gov (United States)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  11. Beyer's non-linearity parameter (B/A) in benzylidene aniline Schiff base liquid crystalline systems

    International Nuclear Information System (INIS)

    Nagi Reddy, M.V.V.; Pisipati, V.G.K.M.; Madhavi Latha, D.; Datta Prasad, P.V.

    2011-01-01

    The non-linearity parameter B/A is estimated for a number of liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-n-alkyl anilines, popularly known as nO.m, where n and m are the aliphatic chains on either side of the rigid core, which can be varied from 1 to 18 to realize a number of LC materials with a variety LC phase variants. The B/A values are computed from both density and sound velocity data following standard relations reported in literature. This systematic study in a homologous series provides an opportunity to study how this parameter behaves with (1) either the alkoxy and/or alkyl chain number, (2) with the total chain number (n+m), (3) with increase in molecular weight and (4) whether the linear relations reported in literature either with αT [thermal expansion coefficient (α) and temperature (T)] and sound velocity (u) will hold good or not and if so to what extent. The results are discussed with the body of data available in literature on liquids, liquid mixtures and other LC materials. -- Research highlights: → The Bayer's non-linearity parameter (B/A) is estimated for the first time for a number liquid crystal materials of the type N-(p-n-alkoxy benzylidene)-p-nalkyl anilines. → The magnitude of B/A estimated from sound velocity data is higher compared to that estimated thermal expansion data. → The B/A value decreases with increase in molecular weight with an even odd fashion and reaches a minimum value and saturates. → These studies reveal that both the thermal expansion coefficient and sound velocity are the tools to estimate the non-linear parameter B/A in the case of liquid crystals.

  12. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  13. Non-linear imaging condition to image fractures as non-welded interfaces

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2014-01-01

    Hydraulic properties of a fractured reservoir are often controlled by large fractures. In order to seismically detect and characterize them, a high-resolution imaging method is necessary. We apply a non-linear imaging condition to image fractures, considered as non-welded interfaces. We derive the

  14. A convex optimization approach for solving large scale linear systems

    Directory of Open Access Journals (Sweden)

    Debora Cores

    2017-01-01

    Full Text Available The well-known Conjugate Gradient (CG method minimizes a strictly convex quadratic function for solving large-scale linear system of equations when the coefficient matrix is symmetric and positive definite. In this work we present and analyze a non-quadratic convex function for solving any large-scale linear system of equations regardless of the characteristics of the coefficient matrix. For finding the global minimizers, of this new convex function, any low-cost iterative optimization technique could be applied. In particular, we propose to use the low-cost globally convergent Spectral Projected Gradient (SPG method, which allow us to extend this optimization approach for solving consistent square and rectangular linear system, as well as linear feasibility problem, with and without convex constraints and with and without preconditioning strategies. Our numerical results indicate that the new scheme outperforms state-of-the-art iterative techniques for solving linear systems when the symmetric part of the coefficient matrix is indefinite, and also for solving linear feasibility problems.

  15. Linear perturbations of a self-similar solution of hydrodynamics with non-linear heat conduction

    International Nuclear Information System (INIS)

    Dubois-Boudesocque, Carine

    2000-01-01

    The stability of an ablative flow, where a shock wave is located upstream a thermal front, is of importance in inertial confinement fusion. The present model considers an exact self-similar solution to the hydrodynamic equations with non-linear heat conduction for a semi-infinite slab. For lack of an analytical solution, a high resolution numerical procedure is devised, which couples a finite difference method with a relaxation algorithm using a two-domain pseudo-spectral method. Stability of this solution is studied by introducing linear perturbation method within a Lagrangian-Eulerian framework. The initial and boundary value problem is solved by a splitting of the equations between a hyperbolic system and a parabolic equation. The boundary conditions of the hyperbolic system are treated, in the case of spectral methods, according to Thompson's approach. The parabolic equation is solved by an influence matrix method. These numerical procedures have been tested versus exact solutions. Considering a boundary heat flux perturbation, the space-time evolution of density, velocity and temperature are shown. (author) [fr

  16. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  17. An extended GS method for dense linear systems

    Science.gov (United States)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  18. Linearization of the Lorenz system

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Thio, Wesley

    2015-01-01

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation

  19. Linearization of the Lorenz system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunbiao, E-mail: goontry@126.com [School of Electronic & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Engineering Technology Research and Development Center of Jiangsu Circulation Modernization Sensor Network, Jiangsu Institute of Commerce, Nanjing 211168 (China); Sprott, Julien Clinton [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Thio, Wesley [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2015-05-08

    A partial and complete piecewise linearized version of the Lorenz system is proposed. The linearized versions have an independent total amplitude control parameter. Additional further linearization leads naturally to a piecewise linear version of the diffusionless Lorenz system. A chaotic circuit with a single amplitude controller is then implemented using a new switch element, producing a chaotic oscillation that agrees with the numerical calculation for the piecewise linear diffusionless Lorenz system. - Highlights: • A partial and complete piecewise linearized version of the Lorenz system are addressed. • The linearized versions have an independent total amplitude control parameter. • A piecewise linear version of the diffusionless Lorenz system is derived by further linearization. • A corresponding chaotic circuit without any multiplier is implemented for the chaotic oscillation.

  20. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, G.; Moses, W.W. [Lawrence Berkeley Laboratory, Berkeley, CA 94720-8119 (United States); Singh, J. [Faculty of EHS, B-41, Charles Darwin University, Darwin NT 0909 (Australia); Vasil' ev, A.N., E-mail: anvasiliev@rambler.r [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Williams, R.T. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2009-12-15

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  1. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    International Nuclear Information System (INIS)

    Bizarri, G.; Moses, W.W.; Singh, J.; Vasil'ev, A.N.; Williams, R.T.

    2009-01-01

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  2. Linear and non-linear calculations of the hose instability in the ion-focused regime

    International Nuclear Information System (INIS)

    Buchanan, H.L.

    1982-01-01

    A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data

  3. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  4. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  5. Analysis approach for common cause failure on non-safety digital control system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eungse [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The effects of common cause failure (CCF) on safety digital instrumentation and control (I and C) system had been considered in defense in depth and diversity coping analysis with safety analysis method. For the non-safety system, single failure had been considered for safety analysis. IEEE Std. 603-1991, Clause 5.6.3.1(2), 'Isolation' states that no credible failure on the non-safety side of an isolation device shall prevent any portion of a safety system from meeting its minimum performance requirements during and following any design basis event requiring that safety function. The software CCF is one of the credible failure on the non-safety side. In advanced digital I and C system, same hardware component is used for different control system and the defect in manufacture or common external event can generate CCF. Moreover, the non-safety I and C system uses complex software for its various function and software quality assurance for the development process is less severe than safety software for the cost effective design. Therefore the potential defects in software cannot be ignored and the effect of software CCF on non-safety I and C system is needed to be evaluated. This paper proposes the general process and considerations for the analysis of CCF on non-safety I and C system.

  6. Chaotic behaviour in the non-linear optimal control of unilaterally contacting building systems during earthquakes

    CERN Document Server

    Liolios, A

    2003-01-01

    The paper presents a new numerical approach for a non-linear optimal control problem arising in earthquake civil engineering. This problem concerns the elastoplastic softening-fracturing unilateral contact between neighbouring buildings during earthquakes when Coulomb friction is taken into account under second-order instabilizing effects. So, the earthquake response of the adjacent structures can appear instabilities and chaotic behaviour. The problem formulation presented here leads to a set of equations and inequalities, which is equivalent to a dynamic hemivariational inequality in the way introduced by Panagiotopoulos [Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993]. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Wilson-theta method. The generally non-convex constitutive contact laws are piecewise linearized, and in each time-step a non-c...

  7. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  8. Experimental validation for calcul methods of structures having shock non-linearity

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1987-01-01

    For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr

  9. Non-stationary pre-envelope covariances of non-classically damped systems

    Science.gov (United States)

    Muscolino, G.

    1991-08-01

    A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.

  10. Post Critical Behaviour of a Simple Non-Linear System in a Cross Wind

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Pospíšil, Stanislav

    2011-01-01

    Roč. 18, 3/4 (2011), s. 193-201 ISSN 1802-1484 R&D Projects: GA AV ČR(CZ) IAA200710902; GA ČR(CZ) GA103/09/0094 Institutional research plan: CEZ:AV0Z20710524 Keywords : limit cycles * dynamic stability * post-critical effects * non-linear dynamics Subject RIV: JN - Civil Engineering

  11. Chaos and bifurcation of a flexible rotor supported by porous squeeze couple stress fluid film journal bearings with non-linear suspension

    International Nuclear Information System (INIS)

    Chang-Jian, C.-W.; Chen, C.-K.

    2008-01-01

    This study presents a dynamic analysis of a flexible rotor supported by two porous squeeze couple stress fluid film journal bearings with non-linear suspension. The dynamics of the rotor center and bearing center are studied. The analysis of the rotor-bearing system is investigated under the assumptions of non-Newtonian fluid and a short bearing approximation. The spatial displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The numerical results show that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional parameter l* and the permeability. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided

  12. Development of an efficient iterative solver for linear systems in FE structural analysis

    International Nuclear Information System (INIS)

    Saint-Georges, P.; Warzee, G.; Beauwens, R.; Notay, Y.

    1993-01-01

    The preconditioned conjugate gradient is a well-known and powerful method to solve sparse symmetric positive definite systems of linear equations. Such systems are generated by the finite element discretization in structural analysis but users of finite element in this context generally still rely on direct methods. It is our purpose in the present paper to highlight the improvement brought forward by some new preconditioning techniques and show that the preconditioned conjugate gradient method is more performant than any direct method. (author)

  13. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    Science.gov (United States)

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  14. Some aspects of non-linear semi-groups

    International Nuclear Information System (INIS)

    Plant, A.T.

    1976-01-01

    Some simpler theorems in the theory of non-linear semi-groups of non-reflexive Banach spaces are proved, with the intention to introduce the reader to this active field of research. Flow invariance, in particular for Lipschitz generators, and contraction semi-groups are discussed in some detail. (author)

  15. Non linear Euler-Poisson system. Part 1: global existence of low entropy solutions

    International Nuclear Information System (INIS)

    Cordier, S.

    1995-05-01

    In this work a 1-D model of electrons and ions plasma is considered. Electrons are supposed to be in Maxwell-Boltzmann thermodynamic equilibrium while ions are described with an isothermal flow model of charged particles submitted to a self-consistent electric field. A collision term between neutral particles and ions simulates the presence of neutral particles. This work demonstrates the existence of low entropy solutions for this simple model with arbitrary initial conditions. Most of the paper is devoted to the demonstration of this theorem and follows the successive steps: construction of a numerical scheme, recall of the classical properties of Riemann problem solutions using Glimm method, uniform estimations for the whole variation norm, and finally, convergence of the constructed solutions towards a low entropy solution for the non-linear Euler/Poisson system. Domains of application for this type of model are listed in the conclusion. (J.S.). 18 refs

  16. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  17. An analysis of hypercritical states in elastic and inelastic systems

    Science.gov (United States)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  18. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  19. Extrinsic contribution to the non-linearity in a PZT disc

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rafel [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Albareda, Alfons [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Garcia, Jose E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Tiana, Jordi [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Ringgaard, Erling [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark); Wolny, Wanda W [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark)

    2004-10-07

    Non-linear increases in elastic, piezoelectric (direct and reverse) and dielectric coefficients have been measured under a high electrical field or under high mechanical stress. The permittivity and reverse piezoelectric coefficient can be measured by applying a high voltage at a low frequency, while the elastic compliance and direct piezoelectric coefficient can be measured at the first radial resonance frequency in order to apply a high stress. The non-linear behaviour has been analysed at the radial resonance of a disc. In all the materials tested, the results show that there is a close relation between the non-linear increments of the different coefficients. An empirical model has been proposed in order to describe and understand these relations. It is assumed that either the strain or the electrical displacement is produced by intrinsic and extrinsic processes, but only the latter, which consist mainly in the motion of domain walls, contribute to the non-linearity. The model enables us to find the domain wall contribution to elastic, piezoelectric and dielectric non-linearities, and allows us to compare the amplitudes of the fields and stresses that produce the same displacement of domain walls.

  20. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  1. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Pojonk, Oliver; Rosic, Bojana V.; Zander, Elmar

    2014-01-01

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  2. Robust Linear Models for Cis-eQTL Analysis.

    Science.gov (United States)

    Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C

    2015-01-01

    Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.

  3. Stability analysis of switched linear systems defined by graphs

    OpenAIRE

    Athanasopoulos, Nikolaos; Lazar, Mircea

    2015-01-01

    We present necessary and sufficient conditions for global exponential stability for switched discrete-time linear systems, under arbitrary switching, which is constrained within a set of admissible transitions. The class of systems studied includes the family of systems under arbitrary switching, periodic systems, and systems with minimum and maximum dwell time specifications. To reach the result, we describe the set of rules that define the admissible transitions with a weighted directed gra...

  4. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  5. Revised VESCAL: Vessel calibration data analysis program. Improvement of a model for non-linear parts of annular and slab tanks

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi

    1995-05-01

    For the purpose of the nuclear material accountancy and control for NUCEF: the Nuclear Fuel Cycle Safety Engineering Research Facility, the vessel calibration data analysis program: VESCAL is revised, and a new model for non-linear parts of annular and slab tanks is added to the program. The new model has three unknown parameters, and liquid level is expressed as a square root function with respect to liquid volume. Using the new model, an accurate calibration function on the level and volume data for non-linear parts of annular and slab tanks can be obtained with the smaller number of unknown parameters, compared with a polynomial function model. As a result of benchmark tests for this revision, it was proved that numerical results computed with VESCAL well agreed with those by a statistical analysis program package which is widely used. In addition, the new model would be useful for carrying out data analyses on the vessel calibration at the other bulk handling facilities as well as at NUCEF. This paper describes summary of the program, computational methods and results of benchmark tests concerning this revision. (author)

  6. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  7. Linear supermultiplets and non-holomorphic gauge coupling functions

    International Nuclear Information System (INIS)

    Binetruy, P.; Grimm, R.; Girardi, G.

    1991-04-01

    The general couplings of linear multiplets, including Chern-Simons forms, to chiral matter as well as to the standard supergravity-matter system are constructed. Insisting on a canonically normalised Einstein term in particular the appearance of non-holomorphic gauge couplings are discussed and duality transformations in full generality are performed. The implications of these structures for the effective description of sigma model anomalies are presented with and without coupling to supergravity, following recent proposals of Derendinger, Ferrara, Kounnas and Zwirner and of Cardoso and Ovrut. (author) 14 refs

  8. Research on the multiple linear regression in non-invasive blood glucose measurement.

    Science.gov (United States)

    Zhu, Jianming; Chen, Zhencheng

    2015-01-01

    A non-invasive blood glucose measurement sensor and the data process algorithm based on the metabolic energy conservation (MEC) method are presented in this paper. The physiological parameters of human fingertip can be measured by various sensing modalities, and blood glucose value can be evaluated with the physiological parameters by the multiple linear regression analysis. Five methods such as enter, remove, forward, backward and stepwise in multiple linear regression were compared, and the backward method had the best performance. The best correlation coefficient was 0.876 with the standard error of the estimate 0.534, and the significance was 0.012 (sig. regression equation was valid. The Clarke error grid analysis was performed to compare the MEC method with the hexokinase method, using 200 data points. The correlation coefficient R was 0.867 and all of the points were located in Zone A and Zone B, which shows the MEC method provides a feasible and valid way for non-invasive blood glucose measurement.

  9. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  10. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  11. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  12. Bistable states of TM polarized non-linear waves guided by symmetric layered structures

    International Nuclear Information System (INIS)

    Mihalache, D.

    1985-04-01

    Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)

  13. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.

    2012-01-01

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  14. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    KAUST Repository

    Irincheeva, Irina

    2012-08-03

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  15. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  16. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  17. A Design of a Hybrid Non-Linear Control Algorithm

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2017-11-01

    Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

  18. Sparse Linear Solver for Power System Analysis Using FPGA

    National Research Council Canada - National Science Library

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  19. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  20. Sparse non-linear denoising: Generalization performance and pattern reproducibility in functional MRI

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping is typi...

  1. Common-User Land Transportation Management in the Layered, Non-Linear, Non-Contiguous Battlefield

    National Research Council Canada - National Science Library

    Strobel, Lawrence E

    2005-01-01

    .... Current multinational counterinsurgency warfare occurs in a layered, non-linear, non-contiguous battle space, making management of ground transportation assets even more critical than in conventional warfare...

  2. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  3. Structured Control of Affine Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervarying...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  4. On non-linear dynamics of coupled 1+1DOF versus 1+1/2DOF Electro-Mechanical System

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2014-01-01

    The electro-mechanical systems (EMS) are used from nano-/micro-scale (NEMS/MEMS) up to macro-scale applications. From mathematical view point, they are modelled with the second order differential equation (or a set of equations) for mechanical system, which is nonlinearly coupled with the second...... or the first order differential equation (or a set of equations) for electrical system, depending on properties of the electrical circuit. For the sake of brevity, we assume a 1DOF mechanical system, coupled to 1 or 1/2DOF electrical system (depending whether the capacitance is, or is not considered......). In the paper, authors perform a parametric study to identify operation regimes, where the capacitance term contributes to the non-linear behaviour of the coupled system. To accomplish this task, the classical method of multiple scales is used. The parametric study allows us to assess for which applications...

  5. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    Science.gov (United States)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  6. Solution of Large Systems of Linear Equations with Quadratic or Non-Quadratic Matrices and Deconvoiution of Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K

    1967-12-15

    The numerical deconvolution of spectra is equivalent to the solution of a (large) system of linear equations with a matrix which is not necessarily a square matrix. The demand that the square sum of the residual errors shall be minimum is not in general sufficient to ensure a unique or 'sound' solution. Therefore other demands which may include the demand for minimum square errors are introduced which lead to 'sound' and 'non-oscillatory' solutions irrespective of the shape of the original matrix and of the determinant of the matrix of the normal equations.

  7. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  8. Non-stationary hydrologic frequency analysis using B-spline quantile regression

    Science.gov (United States)

    Nasri, B.; Bouezmarni, T.; St-Hilaire, A.; Ouarda, T. B. M. J.

    2017-11-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic and water resources systems under the assumption of stationarity. However, with increasing evidence of climate change, it is possible that the assumption of stationarity, which is prerequisite for traditional frequency analysis and hence, the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extremes based on B-Spline quantile regression which allows to model data in the presence of non-stationarity and/or dependence on covariates with linear and non-linear dependence. A Markov Chain Monte Carlo (MCMC) algorithm was used to estimate quantiles and their posterior distributions. A coefficient of determination and Bayesian information criterion (BIC) for quantile regression are used in order to select the best model, i.e. for each quantile, we choose the degree and number of knots of the adequate B-spline quantile regression model. The method is applied to annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in the variable of interest and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for an annual maximum and minimum discharge with high annual non-exceedance probabilities.

  9. Quantifying the astronomical contribution to Pleistocene climate change: A non-linear, statistical approach

    Science.gov (United States)

    Crucifix, Michel; Wilkinson, Richard; Carson, Jake; Preston, Simon; Alemeida, Carlos; Rougier, Jonathan

    2013-04-01

    The existence of an action of astronomical forcing on the Pleistocene climate is almost undisputed. However, quantifying this action is not straightforward. In particular, the phenomenon of deglaciation is generally interpreted as a manifestation of instability, which is typical of non-linear systems. As a consequence, explaining the Pleistocene climate record as the addition of an astronomical contribution and noise-as often done using harmonic analysis tools-is potentially deceptive. Rather, we advocate a methodology in which non-linear stochastic dynamical systems are calibrated on the Pleistocene climate record. The exercise, though, requires careful statistical reasoning and state-of-the-art techniques. In fact, the problem has been judged to be mathematically 'intractable and unsolved' and some pragmatism is justified. In order to illustrate the methodology we consider one dynamical system that potentially captures four dynamical features of the Pleistocene climate : the existence of a saddle-node bifurcation in at least one of its slow components, a time-scale separation between a slow and a fast component, the action of astronomical forcing, and the existence a stochastic contribution to the system dynamics. This model is obviously not the only possible representation of Pleistocene dynamics, but it encapsulates well enough both our theoretical and empirical knowledge into a very simple form to constitute a valid starting point. The purpose of this poster is to outline the practical challenges in calibrating such a model on paleoclimate observations. Just as in time series analysis, there is no one single and universal test or criteria that would demonstrate the validity of an approach. Several methods exist to calibrate the model and judgement develops by the confrontation of the results of the different methods. In particular, we consider here the Kalman filter variants, the Particle Monte-Carlo Markov Chain, and two other variants of Sequential Monte

  10. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  11. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  12. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  13. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  14. An efficient formulation for linear and geometric non-linear membrane elements

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    Full Text Available Utilizing the straingradient notation process and the free formulation, an efficient way of constructing membrane elements will be proposed. This strategy can be utilized for linear and geometric non-linear problems. In the suggested formulation, the optimization constraints of insensitivity to distortion, rotational invariance and not having parasitic shear error are employed. In addition, the equilibrium equations will be established based on some constraints among the strain states. The authors' technique can easily separate the rigid body motions, and those belong to deformational motions. In this article, a novel triangular element, named SST10, is formulated. This element will be used in several plane problems having irregular mesh and complicated geometry with linear and geometrically nonlinear behavior. The numerical outcomes clearly demonstrate the efficiency of the new formulation.

  15. Effect of Linear and Non-linear Resistance Exercise on Anaerobic Performance among Young Women

    OpenAIRE

    Homa Esmaeili; Ali Reza Amani; Taher Afsharnezhad

    2015-01-01

    The main goals of strength training are improving muscle strength, power and muscle endurance. The objective of the current study is to compare two popular linear and nonlinear resistance exercises interventions on the anaerobic power.  Previous research has shown differences intervention by the linear and non-linear resistance exercise in performance and strength in male athletes. By the way there are not enough data regarding female subjects. Eighteen young women subjects participated in th...

  16. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    Science.gov (United States)

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  18. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  19. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  20. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    Science.gov (United States)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).