WorldWideScience

Sample records for non-linear shallow water

  1. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  2. Non-linear analysis in Light Water Reactor design

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation

  3. Caribbean shallow water Corallimorpharia

    NARCIS (Netherlands)

    Hartog, J.C.den

    1980-01-01

    The present paper comprises a review of the Caribbean shallow water Corallimorpharia. Six species, belonging to four genera and three families are treated, including Pseudocorynactis caribbeorum gen. nov. spec. nov., a species with tentacular acrospheres containing the largest spirocysts ever

  4. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  5. Shallow Water Acoustics Studies

    Science.gov (United States)

    2017-11-19

    LE O CEAN RAPHIC I TITUTI Appli d Oc:ean Physics and E11gi1i,ering Depar1111,11t vember 9, 2017 Dr. Robert Headrick ffice of Naval Resear h, ode...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Applied Ocean Physics and Engineering Department...2015). [3] J.F. Lynch and A.E. Newhall, "Shallow water acoustics", book chapter in "Practical Underwater Acoustics," L. Bjorno, T. Neighbors, and D

  6. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  7. A nested observation and model approach to non linear groundwater surface water interactions.

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.

    2009-04-01

    Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential

  8. Optimal Allocation of the Irrigation Water Through a Non Linear Mathematical Model

    Directory of Open Access Journals (Sweden)

    P. Rubino

    2008-09-01

    Full Text Available A study on the optimal allocation of the irrigation water among 9 crops (autumnal and spring sugar beet, spring and summer grain maize, dry and shell bean, eggplant, pepper and processing tomato has been carried out, utilizing experimental data of yield response to irrigation obtained in different years in Southern Italy (Policoro MT, 40° 12’ Northern Lat.; 16° 40’Western Long.. Fitting Mitscherlich’s equation modified by Giardini and Borin to the experimental data of each crop, the curve response parameters have been calculated: A = maximum achievable yield in the considered area (t ha-1; b = extra-irrigation water used by the crop (m3 ha-1; c = water action factor (ha m- 3; K, calculated only for tomato crop. ,decreasing factor due to the water exceeding the optimal seasonal irrigation volume (100% of the Crop Maximum Evapotranspiration less effective rainfall, ETMlr. The A values, using the prices of the agricultural produces and the irrigation water tariffs applied by the Consorzio Irriguo della Capitanata, have been converted in Value of Production (VP less the fixed and variable irrigation costs (VPlic. The equation parameters were used in a non linear mathematical model written in GAMS (General Algebraic Modelling System, in order to define the best irrigation water allocation amongst the 9 crops across the entire range of water availability and the volume of maximum economical advantage, hypothesising that each crop occupied the same surface (1 ha. This seasonal irrigation volume, that corresponded to the maximum total VPlic, was equal to 37000 m3. Moreover, the model allowed to define the best irrigation water distribution among the crops also for total available volumes lower than that of maximum economical advantage (37000 m3. Finally, it has been underlined that the vegetable crops should be irrigated with seasonal irrigation volumes equal to 100% of the ETM, whereas the summer and spring maize and the autumnal and spring

  9. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  10. The shallow water equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Mead, J.L.

    2004-01-01

    Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations

  11. GEOtop, a model with coupled water and energy budgets and non linear hydrological interactions. (Invited)

    Science.gov (United States)

    Endrizzi, S.; Gruber, S.; Dall'Amico, M.; Rigon, R.

    2013-12-01

    This contribution describes the new version of GEOtop which emerges after almost eight years of development from the original version. GEOtop now integrate the 3D Richards equation with a new numerical method; improvements were made on the treatment of surface waters by using the shallow water equation. The freezing-soil module was greatly improved, and the evapotranspiration -vegetation modelling is now based on a double layer scheme. Here we discuss the rational of each choice that was made, and we compare the differences between the actual solutions and the old solutions. In doing we highlight the issues that we faced during the development, including the trade-off between complexity and simplicity of the code, the requirements of a shared development, the different branches that were opened during the evolution of the code, and why we think that a code like GEOtop is indeed necessary. Models where the hydrological cycle is simplified can be built on the base of perceptual models that neglects some fundamental aspects of the hydrological processes, of which some examples are presented. At the same time, also process-based models like GEOtop can indeed neglect some fundamental process: but this is made evident with the comparison with measurements, especially when data are imposed ex-ante, instead than calibrated.

  12. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A

  13. Shallow water tides

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    stream_size 3 stream_content_type text/plain stream_name Trg_Calculat_Water_Depth_Chart_Datum_1991_22.pdf.txt stream_source_info Trg_Calculat_Water_Depth_Chart_Datum_1991_22.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  14. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  15. Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant

    Science.gov (United States)

    Alsova, O. K.; Artamonova, A. V.

    2018-05-01

    This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.

  16. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  17. Modelling of Non-Linear Pilot Disinfection Water System: A Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Naoufel ZITOUNI

    2012-08-01

    Full Text Available The ultraviolet (UV irradiations are used to solve the bacteriological problem of the drinking water quality. A discharge-gas lamp is used to produce this type of irradiation. The UV lamp is fed by photovoltaic (PV energy via electronic ballast composed by an inverter, a transformer and resonant circuit (RLC. The aim of this work is to give a useful global model of the system. In particular, we introduce the complicated UV lamp model and the water disinfection kinetics, where the radiant energy flux emitted by the discharge-gas lamp and the arc voltage are a complex functions of the current and time. This system is intended to be mainly used in rural zones, the photovoltaic modules as source of energy is an adequate solution. To optimise the power transfer from the PV array to ballast and UV lamp, a Maximum Power Point Tracking (MPPT device may be located between PV array and the loads. In this paper, we developed a bond-graph model which gives the water quality from UV flow, gas type, pressure, lamp current and geometrical characteristic. Finally reliable simulations are established and compared with experimental tests.

  18. Rogue waves in shallow water

    Science.gov (United States)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  19. Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method

    Science.gov (United States)

    Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan

    2018-01-01

    Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.

  20. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  1. Transient Localization in Shallow Water Environments

    National Research Council Canada - National Science Library

    Brune, Joachim

    1998-01-01

    .... A full-wave PE model is used to produce broadband replicas. Both model-generated synthetic signals, which provide baseline results, and measured pulses in a shallow water environment are analyzed...

  2. Justification of Shallow-Water Theory

    Science.gov (United States)

    Ostapenko, V. V.

    2018-01-01

    The basic conservation laws of shallow-water theory are derived from multidimensional mass and momentum integral conservation laws describing the plane-parallel flow of an ideal incompressible fluid above the horizontal bottom. This conclusion is based on the concept of hydrostatic approximation, which generalizes the concept of long-wavelength approximation and is used for justifying the applicability of the shallow-water theory in the simulation of wave flows of fluid with hydraulic bores.

  3. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  4. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  5. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  6. Floating offshore wind turbines for shallow waters

    NARCIS (Netherlands)

    Bulder, B.H.; Henderson, A.; Huijsmans, R.H.M.; Peeringa, J.M.; Pierik, J.T.G.; Snijders, E.J.B.; Hees, M.Th. van; Wijnants, G.H.; Wolf, M.J.

    2003-01-01

    Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters of Northern Europe. Many projects are planned or are in the phase of construction on the North Sea and the Baltic Sea. All projects that are planned have a water depth up to approximately

  7. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    Science.gov (United States)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  8. Non linear microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here

  9. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio......The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community....... The TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency...

  10. On the complex non-linear interaction between bacteria and redox dynamics in sediments and its effects on water quality

    Science.gov (United States)

    Sanchez-Vila, X.; Rubol, S.; Fernandez-Garcia, D.

    2011-12-01

    Despite the fact that the prognoses on the availability of resources related to different climate scenarios have been already formulated, the complex hydrological and biogeochemical reactions taking place in different compartments in natural environmental media are poorly understood, especially regarding the interactions between water bodies, and the reactions taking place at soil-water interfaces. Amongst them, the inter-relationship between hydrology, chemistry and biology has important implications in natural (rivers, lakes) and man-made water facilities (lagoons, artificial recharge pounds, reservoirs, slow infiltration systems, etc). The consequences involve environment, economic, social and health-risk aspects. At the current stage, only limited explanations are available to understand the implications of these relationships on ecosystem services, water quality and water quantity. Therefore, there is an urgent need to seek a full understanding of these physical-biogeochemical processes in water-bodies, sediments and biota and its implications in ecological and health risk. We present a soil column experiment and a mathematical model which aim to study the mutual interplay between water and bacteria activity in porous media, the corresponding dynamics and the feedback on nutrient cycling by using a multidisciplinary approach.

  11. Exploring C-water-temperature interactions and non-linearities in soils through developments in process-based models

    Science.gov (United States)

    Esteban Moyano, Fernando; Vasilyeva, Nadezda; Menichetti, Lorenzo

    2016-04-01

    Soil carbon models developed over the last couple of decades are limited in their capacity to accurately predict the magnitudes and temporal variations in observed carbon fluxes and stocks. New process-based models are now emerging that attempt to address the shortcomings of their more simple, empirical counterparts. While a spectrum of ideas and hypothetical mechanisms are finding their way into new models, the addition of only a few processes known to significantly affect soil carbon (e.g. enzymatic decomposition, adsorption, Michaelis-Menten kinetics) has shown the potential to resolve a number of previous model-data discrepancies (e.g. priming, Birch effects). Through model-data validation, such models are a means of testing hypothetical mechanisms. In addition, they can lead to new insights into what soil carbon pools are and how they respond to external drivers. In this study we develop a model of soil carbon dynamics based on enzymatic decomposition and other key features of process based models, i.e. simulation of carbon in particulate, soluble and adsorbed states, as well as enzyme and microbial components. Here we focus on understanding how moisture affects C decomposition at different levels, both directly (e.g. by limiting diffusion) or through interactions with other components. As the medium where most reactions and transport take place, water is central en every aspect of soil C dynamics. We compare results from a number of alternative models with experimental data in order to test different processes and parameterizations. Among other observations, we try to understand: 1. typical moisture response curves and associated temporal changes, 2. moisture-temperature interactions, and 3. diffusion effects under changing C concentrations. While the model aims at being a process based approach and at simulating fluxes at short time scales, it remains a simplified representation using the same inputs as classical soil C models, and is thus potentially

  12. Deep Water, Shallow Water: Marine Animal Homes.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  13. Optimal ship forms for minimum total resistance in shallow water

    OpenAIRE

    Zhao, Lian-en

    1984-01-01

    Optimal ship forms for minimum total resistance in shallow water Optimal ship forms for minimum total resistance in shallow water: An attempt is made to obtain shallow-water optimal ship forms for total resistance by means of "tent" function representation under the constraints that the main dimensions of the ship and the water-line area were kept constant. The objective function in the quadratic programming is the sum of wave-making resistance calculated by Sretenski's formula and viscou...

  14. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  15. Analysis of the Numerical Solution of the Shallow Water Equations

    National Research Council Canada - National Science Library

    Hamrick, Thomas

    1997-01-01

    .... The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.

  16. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  17. Simulation of Irregular Waves and Wave Induced Loads on Wind Power Plants in Shallow Water

    Energy Technology Data Exchange (ETDEWEB)

    Trumars, Jenny [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Water Environment Transport

    2004-05-01

    The essay gives a short introduction to waves and discusses the problem with non-linear waves in shallow water and how they effect an offshore wind energy converter. The focus is on the realisation of non-linear waves in the time domain from short-term statistics in the form of a variance density spectrum of the wave elevation. For this purpose the wave transformation from deep water to the near to shore site of a wind energy farm at Bockstigen has been calculated with the use of SWAN (Simulating Waves Near Shore). The result is a wave spectrum, which can be used as input to the realisation. The realisation of waves is done by perturbation theory to the first and second-order. The properties calculated are the wave elevation, water particle velocity and acceleration. The wave heights from the second order perturbation equations are higher than those from the first order perturbation equations. This is also the case for the water particle kinematics. The increase of variance is significant between the first order and the second order realisation. The calculated wave elevation exhibits non-linear features as the peaks become sharper and the troughs flatter. The resulting forces are calculated using Morison's equation. For second order force and base moment there is an increase in the maximum values. The force and base moment are largest approximately at the zero up and down crossing of the wave elevation. This indicates an inertia dominated wave load. So far the flexibility and the response of the structure have not been taken into account. They are, however, of vital importance. For verification of the wave model the results will later on be compared with measurements at Bockstigen off the coast of Gotland in the Baltic Sea.

  18. Deep and shallow water effects on developing preschoolers' aquatic skills.

    Science.gov (United States)

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (pdeep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  19. Shallow-water loading tides in Japan from superconducting gravimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Hoyer, J.L.

    2004-01-01

    energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres. they are still able to Generate a loading...... signal at gravity sites located several hundred kilometres inland. In particular, the S-3, S-4 and S-5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant...

  20. Shallow-water Benthic Habitats in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...

  1. Modeling shallow water flows using the discontinuous Galerkin method

    CERN Document Server

    Khan, Abdul A

    2014-01-01

    Replacing the Traditional Physical Model Approach Computational models offer promise in improving the modeling of shallow water flows. As new techniques are considered, the process continues to change and evolve. Modeling Shallow Water Flows Using the Discontinuous Galerkin Method examines a technique that focuses on hyperbolic conservation laws and includes one-dimensional and two-dimensional shallow water flows and pollutant transports. Combines the Advantages of Finite Volume and Finite Element Methods This book explores the discontinuous Galerkin (DG) method, also known as the discontinuous finite element method, in depth. It introduces the DG method and its application to shallow water flows, as well as background information for implementing and applying this method for natural rivers. It considers dam-break problems, shock wave problems, and flows in different regimes (subcritical, supercritical, and transcritical). Readily Adaptable to the Real World While the DG method has been widely used in the fie...

  2. Shallow waters: social science research in South Africa's marine ...

    African Journals Online (AJOL)

    Shallow waters: social science research in South Africa's marine ... certain issues and social interactions in the marine environment but this work is limited ... Keywords: coastal development, economics, governance, human dimensions, society

  3. Shallow-Water Benthic Habitats of Southwest Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  4. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.

    2011-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity

  5. The development of a non-linear autoregressive model with exogenous input (NARX) to model climate-water clarity relationships: reconstructing a historical water clarity index for the coastal waters of the southeastern USA

    Science.gov (United States)

    Lee, Cameron C.; Sheridan, Scott C.; Barnes, Brian B.; Hu, Chuanmin; Pirhalla, Douglas E.; Ransibrahmanakul, Varis; Shein, Karsten

    2017-10-01

    The coastal waters of the southeastern USA contain important protected habitats and natural resources that are vulnerable to climate variability and singular weather events. Water clarity, strongly affected by atmospheric events, is linked to substantial environmental impacts throughout the region. To assess this relationship over the long-term, this study uses an artificial neural network-based time series modeling technique known as non-linear autoregressive models with exogenous input (NARX models) to explore the relationship between climate and a water clarity index (KDI) in this area and to reconstruct this index over a 66-year period. Results show that synoptic-scale circulation patterns, weather types, and precipitation all play roles in impacting water clarity to varying degrees in each region of the larger domain. In particular, turbid water is associated with transitional weather and cyclonic circulation in much of the study region. Overall, NARX model performance also varies—regionally, seasonally and interannually—with wintertime estimates of KDI along the West Florida Shelf correlating to the actual KDI at r > 0.70. Periods of extreme (high) KDI in this area coincide with notable El Niño events. An upward trend in extreme KDI events from 1948 to 2013 is also present across much of the Florida Gulf coast.

  6. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  7. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  8. Flexible riser global analysis for very shallow water

    OpenAIRE

    Karegar, Sadjad

    2013-01-01

    Master's thesis in Offshore technology Flexible risers are widely used for a range of water depths and can accommodate large floater motions when using a buoyant system. A wide range of buoyancy solutions have been developed for very shallow water (e.g. 30-50 m), shallow water (e.g. 90-110 m) and semi-deep water (e.g. 300-400 m) and in the ranges between these depths. Flexible risers can have different configurations. These different solutions have different characteristics which influe...

  9. Activation and chemical analysis of drinking water from shallow aquifers

    International Nuclear Information System (INIS)

    Sharma, H.K.; Mittal, V.K.; Sahota, H.S.

    1991-01-01

    In most of the Indian cities drinking water is drawn from shallow aqiufers with the help of hand pumps. These shallow aquifers get easilyl polluted. In the present work we have measured 20 trace elements using Neutron Activation Analysis (NAA) and 8 chemical parameters using standard chemical methods of drinking water drawn from Rajpura city. It was found that almost all water samples are highly polluted. We attribute this to unplaned disposal of industrial and domestic waste over a period of many decades. (author) 11 refs.; 1 fig.; 1 tab

  10. Improving Multi-Objective Management of Water Quality Tipping Points: Revisiting the Classical Shallow Lake Problem

    Science.gov (United States)

    Quinn, J. D.; Reed, P. M.; Keller, K.

    2015-12-01

    Recent multi-objective extensions of the classical shallow lake problem are useful for exploring the conceptual and computational challenges that emerge when managing irreversible water quality tipping points. Building on this work, we explore a four objective version of the lake problem where a hypothetical town derives economic benefits from polluting a nearby lake, but at the risk of irreversibly tipping the lake into a permanently polluted state. The trophic state of the lake exhibits non-linear threshold dynamics; below some critical phosphorus (P) threshold it is healthy and oligotrophic, but above this threshold it is irreversibly eutrophic. The town must decide how much P to discharge each year, a decision complicated by uncertainty in the natural P inflow to the lake. The shallow lake problem provides a conceptually rich set of dynamics, low computational demands, and a high level of mathematical difficulty. These properties maximize its value for benchmarking the relative merits and limitations of emerging decision support frameworks, such as Direct Policy Search (DPS). Here, we explore the use of DPS as a formal means of developing robust environmental pollution control rules that effectively account for deeply uncertain system states and conflicting objectives. The DPS reformulation of the shallow lake problem shows promise in formalizing pollution control triggers and signposts, while dramatically reducing the computational complexity of the multi-objective pollution control problem. More broadly, the insights from the DPS variant of the shallow lake problem formulated in this study bridge emerging work related to socio-ecological systems management, tipping points, robust decision making, and robust control.

  11. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.

    Science.gov (United States)

    Vilardi, Giorgio; Mpouras, Thanasis; Dermatas, Dimitris; Verdone, Nicola; Polydera, Angeliki; Di Palma, Luca

    2018-06-01

    Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the q max values decreased less than 50% with respect to the first use) even after three cycles of use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    International Nuclear Information System (INIS)

    Warneford, Emma S.; Dellar, Paul J.

    2014-01-01

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  13. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  14. Shallow Water Laser Bathymetry: Accomplishments and Applications

    Science.gov (United States)

    2016-05-12

    effective characterization of underwater topography to depths as great as 50 meters, depending on water clarity, has triggered a number of research...developed specifically to detect underwater mines , such as the Airborne Laser Radar Mine Sensor (ALARMS) built by Optech for the U.S. Defense...borne mine detection based upon an earlier proven ALB receiver configuration, was developed from urgent requirements related to the Persian Gulf War

  15. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  16. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  17. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  18. Symmetric truncations of the shallow-water equations

    International Nuclear Information System (INIS)

    Rouhi, A.; Abarbanel, H.D.I.

    1993-01-01

    Conservation of potential vorticity in Eulerian fluids reflects particle interchange symmetry in the Lagrangian fluid version of the same theory. The algebra associated with this symmetry in the shallow-water equations is studied here, and we give a method for truncating the degrees of freedom of the theory which preserves a maximal number of invariants associated with this algebra. The finite-dimensional symmetry associated with keeping only N modes of the shallow-water flow is SU(N). In the limit where the number of modes goes to infinity (N→∞) all the conservation laws connected with potential vorticity conservation are recovered. We also present a Hamiltonian which is invariant under this truncated symmetry and which reduces to the familiar shallow-water Hamiltonian when N→∞. All this provides a finite-dimensional framework for numerical work with the shallow-water equations which preserves not only energy and enstrophy but all other known conserved quantities consistent with the finite number of degrees of freedom. The extension of these ideas to other nearly two-dimensional flows is discussed

  19. A fast-response shallow-water tide gauge

    International Nuclear Information System (INIS)

    Cavaleri, L.; Curiotto, S.

    1979-01-01

    The authors describe the characteristics of a fast-response tide gauge suitable for shallow-water conditions. Its time constant is of the order of minutes. Wind waves are filtered better than 99% in the (0/10) s interval. The tide gauge has now been operative for three years on an oceanographic tower in the open sea. (author)

  20. Shallow-water spinal injuries – devastating but preventable | Vlok ...

    African Journals Online (AJOL)

    Objective. To evaluate the demographics, clinical features and outcomes of shallow-water diving injuries in an acute spinal cord injury (ASCI) unit. Materials and methods. All patients admitted to the ASCI unit with diving-related injuries were entered into the study. Data regarding demographics, injury profile and subsequent ...

  1. Acoustic MIMO communications in a very shallow water channel

    Science.gov (United States)

    Zhou, Yuehai; Cao, Xiuling; Tong, Feng

    2015-12-01

    Underwater acoustic channels pose significant difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple input multiple output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.

  2. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  3. Sediment distribution and composition on the shallow water ...

    African Journals Online (AJOL)

    Sediments of the shallow water carbonate basin in Zanzibar channel were investigated for composition and grain size distribution. The surface sediment composition was dominated by carbonate sands (with CaCO3 > 30%), except in the area adjacent to mainland coastline and a thin lobe which projects from Ruvu River to ...

  4. Advection within shallow pore waters of a coastal lagoon, Florida

    Science.gov (United States)

    Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel

    2004-01-01

    Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.

  5. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  6. Shallow water equations: viscous solutions and inviscid limit

    Science.gov (United States)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  7. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  8. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    Science.gov (United States)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  9. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  10. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  11. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  12. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  13. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  14. Theoretical Model of Acoustic Wave Propagation in Shallow Water

    Directory of Open Access Journals (Sweden)

    Kozaczka Eugeniusz

    2017-06-01

    Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.

  15. Shallow-water vortex equilibria and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Plotka, H; Dritschel, D G, E-mail: hanna@mcs.st-andrews.ac.uk, E-mail: dgd@mcs.st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2011-12-22

    We first describe the equilibrium form and stability of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L{sub D} called the 'Rossby deformation length' relating the strength of stratification to that of the background rotation rate. Specifically, L{sub D} = c/f where c={radical}gH is a characteristic gravity-wave speed, g is gravity (or 'reduced' gravity in a two-layer context where one layer is infinitely deep), H is the mean active layer depth, and f is the Coriolis frequency (here constant). We next introduce ageostrophic effects by using the full shallow-water model to generate what we call 'quasi-equilibria'. These equilibria are not strictly steady, but radiate such weak gravity waves that they are steady for all practical purposes. Through an artificial ramping procedure, we ramp up the potential vorticity anomaly of the fluid particles in our quasi-geostrophic equilibria to obtain shallow-water quasi-equilibria at finite Rossby number. We show a few examples of these states in this paper.

  16. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    Science.gov (United States)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  17. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  18. Assessing Tsunami Vulnerabilities of Geographies with Shallow Water Equations

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong

    2012-01-01

    Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to showcase ideas.

  19. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  20. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  1. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Jacob Sharvit; Nizan Salomonski; Roger Alimi; Hovav Zafrir; Tsuriel Ram Cohen; Boris Ginzburg; Eyal Weiss

    2007-01-01

    The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of ...

  2. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    OpenAIRE

    Weiss, Eyal; Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km sout...

  3. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  4. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  5. Non-dispersive traveling waves in inclined shallow water channels

    International Nuclear Information System (INIS)

    Didenkulova, Ira; Pelinovsky, Efim

    2009-01-01

    Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.

  6. High-resolution geophysical characterization of shallow-water wetlands

    DEFF Research Database (Denmark)

    Mansoor, N; Slater, L; Artigas, F

    2006-01-01

    , with data-acquisition rates exceeding10 km of line 12 000 data points per 8-hr field day.We applied this procedure to an urban wetland that is affectedby point and nonpoint sources of pollution.We used aone-dimensional, laterally constrained inversion algorithmto invert the apparent-conductivity data set......We describe a procedure for rapid characterization ofshallow-water, contaminated wetlands. Terrain-conductivityTC, vertical-magnetic-gradiometry, and surface-waterchemistrydata were obtained from a shallow-draft paddleboatoperable in as little as 0.3 m of water. Measurementswere taken every 2 s...... obtained from theTC survey and to create a pseudo-2D image of sediment conductivity.The continuously recorded surface-water depthand conductivity values were input as a priori information inthe inversion.We used soil chemistry determined for 28 sedimentsamples collected from the site, as well...

  7. Nitrate pollution of shallow ground water in chaj doab

    International Nuclear Information System (INIS)

    Hussain, S. D.; Akram, W.; Ahmad, M.; Rafiq, M.

    2000-01-01

    Chaj Doab is an interfluvial tract of land bounded by the rivers Chenab and Jhelum. Agriculture is the main economic activity in the area. In order to increase crop production,. natural and industrial fertilizers are excessively used. Shallow groundwater is the main source of water for domestic and agricultural usage. Nitrate in the soil is carried to the groundwater by precolating water. Concentration of nitrate in groundwater which used to be less than 3 mg/l has crossed the WHO limit of 45 mg/l at several places principally due to the excessive use of fertilizers. In order to avoid serious consequences of nitrate pollution of groundwater, application of fertilizers will have to be judiciously practiced. (author)

  8. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  10. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  11. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  12. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  13. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    Science.gov (United States)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  14. Holocene Lake and Shallow Water Sediments at Mograt Island, Sudan

    Directory of Open Access Journals (Sweden)

    Dittrich Annett

    2017-06-01

    Full Text Available This paper presents the results of stratigraphic excavation and soil studies carried out at Mograt Island, the largest of the Nilotic islands in Sudan. Due to its restricted insular environments, Holocene alluvial deposits were observed to be interlocked with archaeological remains of different periods, allowing for a combined chronostratigraphic approach to study both cultural and climatic events. To better understand the environmental context through soil components and pedological features at a microscopic scale, soil block samples were accordingly collected and studied by the application of soil micromorphology. This approach provides insights into the history of Nile terrace aggradation through the suspension of Nile sediment loads under stillwater conditions as well as of the periodical establishment of shallow water pools at the islands′ plateaus by the surface run-off from local rains. Since these patterns vary significantly from the present situation, they offer a key to the scenario in which specific early agricultural and animal herding practices evolved.

  15. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  16. Non-linear Capital Taxation Without Commitment

    OpenAIRE

    Emmanuel Farhi; Christopher Sleet; Iván Werning; Sevin Yeltekin

    2012-01-01

    We study efficient non-linear taxation of labour and capital in a dynamic Mirrleesian model incorporating political economy constraints. Policies are chosen sequentially over time, without commitment. Our main result is that the marginal tax on capital income is progressive, in the sense that richer agents face higher marginal tax rates. Copyright , Oxford University Press.

  17. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  18. Detection in shallow water using broadband-DORT

    Science.gov (United States)

    Fromm, David M.; Gaumond, Charles F.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    The decomposition of the time-reversal operator (DORT) [Prada et al., J. Acoust. Soc. Am. 99, 2067-2076 (1996)] has been extended into a coherent, broadband method. Broadband DORT has also been shown to isolate resolvable scatterers at various depths and ranges in a bistatic, active sonar in shallow water. Results are shown from the application of DORT to sea data taken in an area south of Hudson Canyon off the New Jersey coast during Geoclutter II. The vertical source/receiver array with 56 hydrophones spanning the water column was operated between 3.0 and 3.5 kHz. The elements were divided into four groups, with each group acting as a coherent, broadside source. Two methods were used for exciting the separate channels. One method was the use of subsequent LFMs and the other was the use of simultaneous transmission of four pseudorandom-noise signals. The target was a midwater column echo-repeater. Results are compared with modeling based on in situ environmental measurements during the experiment. [The authors acknowledge signal-processing expertise from Dr. Ning Xiang, University of Mississippi, and ENS Alan Meyer, LLNL, support from Dr. Jeff Simmen, ONR, and assistance from Dr. Charles Holland, ARL/PSU. Work supported by ONR.

  19. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Science.gov (United States)

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m. PMID:28903191

  20. Wave forces on cylinder submerged horizontally in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H; Sasaki, K; Kobayashi, T; Nomura, N; Kawabe, H; Sugimoto, H

    1976-12-01

    To estimate the wave forces on offshore and/or coastal structures, the ideal method is undoubtedly to obtain the more accurate solution of hydrodynamic equations under suitable boundary conditions. However, in practice, it is difficult to introduce precise solutions under present technical levels because some important problems still remain. Among them is the unsteady boundary layers with separation around the objects. Consequently, every effort is being made in this field to approximate these conditions. Among these approximations, the Diffraction Wave Theory and the Morrison's Method are the most famous means in practice, although both still have some problems. Some problems with the traditional Finite Amplitude Wave Theories such as Stokes and Cnoidal Wave Theories are examined, and by applying additional computed results to the Morrison's formula, the estimated formula for wave forces on a cylinder submerged horizontally in shallow water is introduced. Subsequently, the applicability of the formula and also the specific characteristics of wave forces on a horizontally settled cylinder are investigated in detail, attaching first importance to the distinctions from the vertically settled cylinder, based on the comparison of computed results with experimental results. The experiments were carried out on two different diameters of cylinder, 70 mm and 140 mm, and bottom slopes of the experimental tanks, /sup 1///sub 100/ and /sup 1///sub 30/, under various conditions varying water depth, wave period, wave height and also setting position of cylinder.

  1. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    Directory of Open Access Journals (Sweden)

    Jacob Sharvit

    2007-09-01

    Full Text Available The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primarypurpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960.A magnetic map of the survey area (3.5 km2 on a 0.5 m grid was created revealing theanomalies at sub-meter accuracy. For each investigated target location a correspondingferro-metallic item was dug out, one of which turned to be very similar to a part of thecrashed airplane. The accuracy of location was confirmed by matching the position of theactual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m.

  2. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  3. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  4. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  5. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  6. Littoral zones in shallow lakes. Contribution to water quality in relation to water level regime

    NARCIS (Netherlands)

    Sollie, S.

    2007-01-01

    Littoral zones with emergent vegetation are very narrow or even lacking in Dutch shallow lakes due to a combination of changed water level regime and unfavorable shore morphometry. These zones are important as a habitat for plants and animals, increasing species diversity. It has also been

  7. 3D RANS simulations of shallow water effects on rudder hydrodynamic characteristics

    NARCIS (Netherlands)

    Liu, J.; Hekkenberg, R.G.

    2016-01-01

    An accurate estimation of the rudder forces and moments is essential for manoeuvrability prediction. Previous research has shown that ships have different manoeuvring performance in deep and shallow water. Before considering the rudder’s contribution to shallow water manoeuvring, it is meaningful to

  8. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  9. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  10. Rotating magnetic shallow water waves and instabilities in a sphere

    Science.gov (United States)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  11. Multiple time-reversed guide-sources in shallow water

    Science.gov (United States)

    Gaumond, Charles F.; Fromm, David M.; Lingevitch, Joseph F.; Gauss, Roger C.; Menis, Richard

    2003-10-01

    Detection in a monostatic, broadband, active sonar system in shallow water is degraded by propagation-induced spreading. The detection improvement from multiple spatially separated guide sources (GSs) is presented as a method to mitigate this degradation. The improvement of detection by using information in a set of one-way transmissions from a variety of positions is shown using sea data. The experimental area is south of the Hudson Canyon off the coast of New Jersey. The data were taken using five elements of a time-reversing VLA. The five elements were contiguous and at midwater depth. The target and guide source was an echo repeater positioned at various ranges and at middepth. The transmitted signals were 3.0- to 3.5-kHz LFMs. The data are analyzed to show the amount of information present in the collection, a baseline probability of detection (PD) not using the collection of GS signals, the improvement in PD from the use of various sets of GS signals. The dependence of the improvement as a function of range is also shown. [The authors acknowledge support from Dr. Jeffrey Simmen, ONR321OS, and the chief scientist Dr. Charles Holland. Work supported by ONR.

  12. Water quality assessment in a shallow lake used for tourism

    Directory of Open Access Journals (Sweden)

    Dembowska Ewa A.

    2015-12-01

    Full Text Available The routine evaluation of water quality is limited to lakes with the largest area. In Poland, only lakes with an area exceeding 50 hectares are monitored by the State Environmental Monitoring System. For many local communities, however, small lakes are more important. This applies mainly to areas with a small number of lakes, where even the smallest lakes are used for various purposes. This paper presents the results of phytoplankton analysis in a small and shallow lake used for recreation. The study was conducted at three sites located in different parts of the lake. A total of 122 algae taxa were identified in the phytoplankton, mainly diatoms and green algae. The most constant taxa in the lake were: Stephanodiscus hantzschii, Desmodesmus communis, Pediastrum tetras and Crucigenia tetrapedia. The average phytoplankton biomass was 37 mg l−1. The maximum biomass, almost 140 mg dm−3, was recorded in late July at the site located near the beach. At that time, there was a massive cyanobacterial bloom composed of Microcystis wesenbergii and Aphanizomenon issatschenkoi. Based on these studies, the lake should be classified as hypertrophic with bad ecological status. This lake should not be used for recreational purposes in the current state.

  13. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  14. Insights into Europa's Shallow Water Mobility from Thrace and Thera Macula

    Science.gov (United States)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-03-01

    Comparison of Thera and Thrace Macula shows evidence for shallow water mobility within Europa’s crust and places constraints on the timescales and direction of hydraulic water flow, as well as the material properties of the ice.

  15. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  16. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  17. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  18. 76 FR 59064 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Science.gov (United States)

    2011-09-23

    .... 101126522-0640-02] RIN 0648-XA722 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by [[Page 59065

  19. Development of non-linear TWB parts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.

    2005-07-01

    New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)

  20. Non linear effects in piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Gonnard, P.

    2002-02-01

    Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε T33 and the piezoelectric constant and nul for the voltage constant d33 and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.

    Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad εT33 y la constantes piezoléctrica d33 y nulos para la constante g33 y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.

  1. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  2. 76 FR 55276 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2011-09-07

    .... 101126522-0640-02] RIN 0648-XA680 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  3. 76 FR 39794 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2011-07-07

    .... 101126522-0640-02] RIN 0648-XA539 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... species catch (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors...

  4. 77 FR 42193 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2012-07-18

    .... 111207737-2141-02] RIN 0648-0648-XC112 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... third seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  5. 77 FR 33103 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2012-06-05

    .... 111207737-2141-02] RIN 0648-XC056 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... second seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  6. 77 FR 54837 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2012-09-06

    .... 111207737-2141-02] RIN 0648-XC204 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... fourth seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  7. 75 FR 38938 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Catcher...

    Science.gov (United States)

    2010-07-07

    .... 0910131362-0087-02] RIN 0648-XX31 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery for... (PSC) sideboard limit specified for the shallow-water species fishery for catcher/processors subject to...

  8. 75 FR 54290 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2010-09-07

    .... 0910131362-0087-02] RIN 0648-XY78 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water Species...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... apportionment of the Pacific halibut bycatch allowance specified for the shallow-water species fishery in the...

  9. 76 FR 57679 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Science.gov (United States)

    2011-09-16

    .... 101126522-0640-02] RIN 0648-XA704 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... apportionment of the 2011 Pacific halibut bycatch allowance specified for the trawl shallow-water species...

  10. 75 FR 56017 - Fisheries of the Exclusive Economic Zone Off Alaska; Shallow-Water Species by Vessels Using Trawl...

    Science.gov (United States)

    2010-09-15

    .... 0910131362-0087-02] RIN 0648-XZ06 Fisheries of the Exclusive Economic Zone Off Alaska; Shallow- Water Species... closure. SUMMARY: NMFS is opening directed fishing for shallow-water species by vessels using trawl gear... of the 2010 Pacific halibut bycatch allowance specified for the trawl shallow-water species fishery...

  11. 77 FR 19146 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species Fishery by Vessels...

    Science.gov (United States)

    2012-03-30

    .... 111207737-2141-02] RIN 0648-XB122 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...; closure. SUMMARY: NMFS is prohibiting directed fishing for species that comprise the shallow-water species... first seasonal apportionment of the Pacific halibut bycatch allowance specified for the shallow-water...

  12. 77 FR 12213 - Fisheries of the Economic Exclusive Zone Off Alaska; Shallow-Water Species by Amendment 80...

    Science.gov (United States)

    2012-02-29

    .... 101126522-0640-02] RIN 0648-XB044 Fisheries of the Economic Exclusive Zone Off Alaska; Shallow- Water...: NMFS is prohibiting directed fishing for species that comprise the shallow-water species fishery by... shallow-water species fishery by Amendment 80 vessels in the GOA has been reached. DATES: Effective 1200...

  13. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    Science.gov (United States)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  14. Image denoising using non linear diffusion tensors

    International Nuclear Information System (INIS)

    Benzarti, F.; Amiri, H.

    2011-01-01

    Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.

  15. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  16. Non linear self consistency of microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible

  17. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.

    2011-01-01

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  18. Shallow-water, nearshore current dynamics in Algoa Bay, South ...

    African Journals Online (AJOL)

    Nearshore currents play a vital role in the transport of eggs and larval stages of fish. However, little is known about their complexity and the implications for dispersal of fish larvae. The study describes the complexity of the shallow nearshore environment in eastern Algoa Bay, on the south-east coast of South Africa, and its ...

  19. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    Science.gov (United States)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  20. Block Fusion on Dynamically Adaptive Spacetree Grids for Shallow Water Waves

    KAUST Repository

    Weinzierl, Tobias; Bader, Michael; Unterweger, Kristof; Wittmann, Roland

    2014-01-01

    granular blocks. We study the fusion with a state-of-the-art shallow water solver at hands of an Intel Sandy Bridge and a Xeon Phi processor where we anticipate their reaction to selected block optimisation and vectorisation.

  1. Shallow-Water Benthic Habitats of Southwest Puerto Rico: Accuracy Assessment Site Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  2. Shallow-Water Benthic Habitats of Southwest Puerto Rico: Ground Validation Site Locations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  3. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_502736_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  4. Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_483895_PS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...

  5. Shallow-water Benthic Habitat Map (2013) for Coral Bay, St. John

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile contains information about the shallow-water (<40 meters) geology and biology of the seafloor in Coral Bay, St. John in the U.S. Virgin Islands...

  6. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  7. Groundwater fluxes in a shallow seasonal wetland pond: The effect of bathymetric uncertainty on predicted water and solute balances

    Science.gov (United States)

    Trigg, Mark A.; Cook, Peter G.; Brunner, Philip

    2014-09-01

    The successful management of groundwater dependent shallow seasonal wetlands requires a sound understanding of groundwater fluxes. However, such fluxes are hard to quantify. Water volume and solute mass balance models can be used in order to derive an estimate of groundwater fluxes within such systems. This approach is particularly attractive, as it can be undertaken using measurable environmental variables, such as; rainfall, evaporation, pond level and salinity. Groundwater fluxes estimated from such an approach are subject to uncertainty in the measured variables as well as in the process representation and in parameters within the model. However, the shallow nature of seasonal wetland ponds means water volume and surface area can change rapidly and non-linearly with depth, requiring an accurate representation of the wetland pond bathymetry. Unfortunately, detailed bathymetry is rarely available and simplifying assumptions regarding the bathymetry have to be made. However, the implications of these assumptions are typically not quantified. We systematically quantify the uncertainty implications for eight different representations of wetland bathymetry for a shallow seasonal wetland pond in South Australia. The predictive uncertainty estimation methods provided in the Model-Independent Parameter Estimation and Uncertainty Analysis software (PEST) are used to quantify the effect of bathymetric uncertainty on the modelled fluxes. We demonstrate that bathymetry can be successfully represented within the model in a simple parametric form using a cubic Bézier curve, allowing an assessment of bathymetric uncertainty due to measurement error and survey detail on the derived groundwater fluxes compared with the fixed bathymetry models. Findings show that different bathymetry conceptualisations can result in very different mass balance components and hence process conceptualisations, despite equally good fits to observed data, potentially leading to poor management

  8. The "shallow-waterness" of the wave climate in European coastal regions

    Science.gov (United States)

    Håkon Christensen, Kai; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind

    2017-07-01

    In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from eight selected stations. There is a strong seasonal dependence and high values are typically associated with winter storms, indicating that shallow water wave effects can occasionally be important even in the deeper parts of the shelf seas otherwise dominated by deep water waves.

  9. Remote sensing estimation of colored dissolved organic matter (CDOM) in optically shallow waters

    Science.gov (United States)

    Li, Jiwei; Yu, Qian; Tian, Yong Q.; Becker, Brian L.

    2017-06-01

    It is not well understood how bottom reflectance of optically shallow waters affects the algorithm performance of colored dissolved organic matters (CDOM) retrieval. This study proposes a new algorithm that considers bottom reflectance in estimating CDOM absorption from optically shallow inland or coastal waters. The field sampling was conducted during four research cruises within the Saginaw River, Kawkawlin River and Saginaw Bay of Lake Huron. A stratified field sampling campaign collected water samples, determined the depth at each sampling location and measured optical properties. The sampled CDOM absorption at 440 nm broadly ranged from 0.12 to 8.46 m-1. Field sample analysis revealed that bottom reflectance does significantly change water apparent optical properties. We developed a CDOM retrieval algorithm (Shallow water Bio-Optical Properties algorithm, SBOP) that effectively reduces uncertainty by considering bottom reflectance in shallow waters. By incorporating the bottom contribution in upwelling radiances, the SBOP algorithm was able to explain 74% of the variance of CDOM values (RMSE = 0.22 and R2 = 0.74). The bottom effect index (BEI) was introduced to efficiently separate optically shallow and optically deep waters. Based on the BEI, an adaptive approach was proposed that references the amount of bottom effect in order to identify the most suitable algorithm (optically shallow water algorithm [SBOP] or optically deep water algorithm [QAA-CDOM]) to improve CDOM estimation (RMSE = 0.22 and R2 = 0.81). Our results potentially help to advance the capability of remote sensing in monitoring carbon pools at the land-water interface.

  10. Flow and coherent structures around circular cylinders in shallow water

    Science.gov (United States)

    Zeng, Jie; Constantinescu, George

    2017-06-01

    Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid

  11. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  12. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    Science.gov (United States)

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  13. Hydrochemistry of shallow groundwater and surface water in the ...

    African Journals Online (AJOL)

    judevom

    chemical characteristics of the water,. (2) define the factors that control major ion chemistry, and (3) evaluate their suitability for drinking and irrigation. The data will provide a hydrochemical baseline data for water quality assessment, management, ...

  14. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  15. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  16. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  17. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    Energy Technology Data Exchange (ETDEWEB)

    Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  18. Water management of humid area shallow land burial sites

    International Nuclear Information System (INIS)

    Schulz, R.K.

    1984-01-01

    During the seasonal year 1983-1984, the first year of a lysimeter based water balance study was carried out at the Maxey Flats low level waste disposal site. The water input to the system, rainfall, and the fate of that water: runoff, deep percolation, and evapotranspiration was measured. About 20% of the water input (rainfall) was disposed of as surface runoff. About one-half of the input water was removed by evapotranspiration. Approximately 30% of the rainfall ended up as deep percolation water. Varying management procedures of the fescue crop and substitution of an alfalfa crop had little effect on deep water percolation. In about one-half of the months (winter-spring), excess water was present in the profile so that deep percolation occurred. As a result, a technique of bio-engineering management was formulated to increase run-off while maintaining evapo-transpiration so as to minimize (or eliminate) deep percolation. Demonstration of that technique is now underway. In other investigations at the Maxey Flats site, the 3 H concentration in the transpiration stream of fescue grass grown on trench caps has been measured monthly for the past year and one-half. 3 H concentrations in the transpiration stream were up to 1000 times higher in the dry periods compared to winter, although the trench water remained fairly constant at about 15 feet below the surface, indicating plant water uptake from that depth

  19. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  20. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  1. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  2. SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA

    OpenAIRE

    Tanuj Kumar Pandey; Vinod Kumar

    2014-01-01

    The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...

  3. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  4. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  5. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

    Directory of Open Access Journals (Sweden)

    Sudi Mungkasi

    2016-01-01

    Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

  6. Combined effects of climate change and bank stabilization on shallow water habitats of chinook salmon.

    Science.gov (United States)

    Jorgensen, Jeffrey C; McClure, Michelle M; Sheer, Mindi B; Munn, Nancy L

    2013-12-01

    Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the

  7. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  8. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  9. The geostrophic velocity field in shallow water over topography

    Science.gov (United States)

    Charnock, Henry; Killworth, Peter D.

    1998-01-01

    A recent note (Hopkins, T.S., 1996. A note on the geostrophic velocity field referenced to a point. Continental Shelf Research 16, 1621-1630) suggests a method for evaluating absolute pressure gradients in stratified water over topography. We demonstrate that this method requires no along-slope bottom velocity, in contradiction to what is usually observed, and that mass is not conserved.

  10. The Shallow-water Octocorallia of the West Indian Region

    NARCIS (Netherlands)

    Bayer, Frederick M.

    1961-01-01

    The alcyonarian fauna of the West Indies is prolific and conspicuous and has been known for many years, with the natural result that a great many more species have been described than actually exist. The deep-water fauna, which received little attention prior to the work of VERRILL, was thoroughly

  11. Optimizing Acquisition Parameters for MASW in Shallow Water

    NARCIS (Netherlands)

    Diaferia, G.; Kruiver, P.P.; Drijkoningen, G.G.

    2013-01-01

    Analogous to the use of Rayleigh waves in MASW on land, Scholte waves can be used to derive shear wave velocity profiles for the subsurface under water. These profiles are useful for dredging operations, offshore wind farms, oil rigs and pipelines. We have determined the optimal acquisition set up

  12. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  13. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  14. Non-linearity aspects in the design of submarine pipelines

    NARCIS (Netherlands)

    Fernández, M.L.

    1981-01-01

    An arbitrary attempt has been made to classify and discuss some non-linearity aspects related to design, construction and operation of submarine pipelines. Non-linearities usually interrelate and take part of a comprehensive design, making difficult to quantify their individual influence or

  15. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  16. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  19. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  20. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  1. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    Reverberation Experiment 2005 (OREX-05); 0.6−5 kHz • Deep Water o Scotian Continental Rise, August 1993 (19 sites)  Low -Frequency Active 11 (LFA 11...reprocessed cross-CST- experiment results are shown (along with some physics -based model comparisons) in Figs. 9.A-2 and 9.A-3 (Gauss et al., 2008...Backscattering Measured Off the Carolina Coast During Littoral Warfare Advanced Development 98-4 Experiment ,” NRL Memorandum Report 7140- -98-8339

  2. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  3. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  4. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  5. Coastal changes, caused by a shallow water sanddam in front of the Delfland coast

    NARCIS (Netherlands)

    Bakker, W.T.; Delver, G.

    1986-01-01

    Along tht coastline at Ter Heijde, near Delft, a dam parallel to the coast in shallow water will be constructed havlng a horizontal crest at the level NAP -3 m on the landward side, merging into the existing coastal profile and having on the seaward side a slope 1:20. The dam will have a length of

  6. Analysis of shallow water experimental acoustic data including normal mode model comparisons

    NARCIS (Netherlands)

    McHugh, R.; Simons, D.G.

    2000-01-01

    Ss part of a propagation model validation exercise experimental acoustic and oceanographic data was collected from a shallow-water, long-range channel, off the west coast of Scotland. Temporal variability effects in this channel were assessed through visual inspection of stacked plots, each of which

  7. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NARCIS (Netherlands)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-01-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in

  8. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  9. Shallow-water Mysidacea from the Lesser Antilles and other Caribbean regions

    NARCIS (Netherlands)

    Brattegard, Torleiv

    1975-01-01

    This report is the seventh in a series of papers dealing with Mysidacea (Crustacea) from shallow water in the tropical and warm-temperate areas of the western Atlantic (BRATTEGARD 1969, 1970a, 1970b, 1973, 1974a, 1974b). Five of these are dealing with material collected by the author in southern

  10. Vitellibacter nionensis sp. nov., isolated from shallow water hydrothermal vent of Espalamaca, Azores.

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C; Yoon, J; Dastager, S.G.; Liu, Q.; Khieu, T.-N.; Son, C; Li, W.-J; Colaco, A.

    A novel, Gram-negative, non-motile, rod-shaped yellow pigmented bacterium, designated VBW088T was isolated from shallow water hydrothermal vent of Espalamaca, Azores. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain VBW088...

  11. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour; Oppelstrup, Jesper

    2018-01-01

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary

  12. Gas-charged sediments in shallow waters off Redi along the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subbaraju, L.V.; Wagle, B.G.

    This study reports the occurrence of gas-charged sediments in the nearshore areas of the west coast of India. High resolution shallow seismic reflection profiles on the nearshore area along central west coast of India, at water depths of 11-18 m...

  13. A new carnivorous shallow-water sponge from McMurdo Sound, Antarctica (Porifera, Poecilosclerida)

    NARCIS (Netherlands)

    van Soest, R.W.M.; Baker, B.J.

    2011-01-01

    A new shallow-water representative of the carnviorous sponge genus Asbestopluma is described from the southernmost Antarctic region of McMurdo Sound. Asbestopluma (Asbestopluma) vaceleti n.sp. is a white, thin, sparingly branched sponge fringed by filaments along its entire length, with a slight

  14. NONLINEAR EVOLUTION OF GLOBAL HYDRODYNAMIC SHALLOW-WATER INSTABILITY IN THE SOLAR TACHOCLINE

    International Nuclear Information System (INIS)

    Dikpati, Mausumi

    2012-01-01

    We present a fully nonlinear hydrodynamic 'shallow-water' model of the solar tachocline. The model consists of a global spherical shell of differentially rotating fluid, which has a deformable top, thus allowing motions in radial directions along with latitudinal and longitudinal directions. When the system is perturbed, in the course of its nonlinear evolution it can generate unstable low-frequency shallow-water shear modes from the differential rotation, high-frequency gravity waves, and their interactions. Radiative and overshoot tachoclines are characterized in this model by high and low effective gravity values, respectively. Building a semi-implicit spectral scheme containing very low numerical diffusion, we perform nonlinear evolution of shallow-water modes. Our first results show that (1) high-latitude jets or polar spin-up occurs due to nonlinear evolution of unstable hydrodynamic shallow-water disturbances and differential rotation, (2) Reynolds stresses in the disturbances together with changing shell thickness and meridional flow are responsible for the evolution of differential rotation, (3) disturbance energy primarily remains concentrated in the lowest longitudinal wavenumbers, (4) an oscillation in energy between perturbed and unperturbed states occurs due to evolution of these modes in a nearly dissipation-free system, and (5) disturbances are geostrophic, but occasional nonadjustment in geostrophic balance can occur, particularly in the case of high effective gravity, leading to generation of gravity waves. We also find that a linearly stable differential rotation profile remains nonlinearly stable.

  15. Spatial and temporal variation of surface waves in shallow waters along the eastern Arabian Sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.

    We studied the spatial and temporal variation of surface waves along the eastern Arabian Sea during 2011 and 2012. Measured directional wave data at two shallow water locations and re-analysis datasets (ERA-Interim) at 0.751 intervals at four...

  16. A three-dimensional fixed grid model for shallow-water flow

    NARCIS (Netherlands)

    Bijvelds, M.D.J.P.

    1998-01-01

    In this report the implementation and testing of a numerical model that is based on a Cartesian fixed grid in vertical direction is described. The model uses the shallow-water equations and accounts for effects of stratification. In stratified environments, the terrain-following 0-transformation,

  17. Assemblage characteristics and diet of fish in the shallow coastal waters of James Ross Island, Antarctica

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Roche, Kevin Francis; Sedláček, I.; Všetičková, Lucie

    2016-01-01

    Roč. 39, č. 12 (2016), s. 2299-2309 ISSN 0722-4060 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Antarctic Peninsula * Fish assemblage structure * Notothenioidei * Shallow coastal waters * Ice pack * Czech Antarctic Station Subject RIV: EH - Ecology, Behaviour Impact factor: 1.949, year: 2016

  18. Advances in the ROBLINKS project on long-range shallow-water robust acoustic communciation links

    NARCIS (Netherlands)

    Gijzen, M.B. van; Walree, P.A. van; Cano, D.; Passerieux, J-M.; Waldhorst, A.; Weber, R.

    2000-01-01

    Within the ROBLINKS project waveforms and algorithms have been developed to establish robust underwater acoustic communication links with high data rates in shallow water. To evaluate the signalling schemes, a wide range of experiments has been performed during a sea trial that has been held in May

  19. The solution of the dam-break problem in the Porous Shallow water Equations

    Science.gov (United States)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  20. Central-Upwind Schemes for Two-Layer Shallow Water Equations

    KAUST Repository

    Kurganov, Alexander; Petrova, Guergana

    2009-01-01

    We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions

  1. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters

    Science.gov (United States)

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...

  2. Frequency-domain full-waveform inversion with non-linear descent directions

    Science.gov (United States)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a

  3. Atlantic Coast Hindcast, Shallow-Water, Significant Wave Information.

    Science.gov (United States)

    1983-01-01

    AULICS LAB N E JENSEN JAN 83 UNCLASSIFIED W SRF 21NL mEEohhohhhmhEE EhhhEmmhhmhEEEE 1111 .0= 128 llI Ir111-1 11111.6 MICROCOPY RESOLUTION TEST CHART...six data products: 1. Geographical variation in the wave climate :, 2. Twenty-year percent occurrence tables: (Continued) DD EUnclassified SECUmTY...PAOCleWff DO& MIew0O I]1 Preface In late 1976, a study to produce a wave climate for U. S. coastal waters was initiated at the U. S. Army Engineer

  4. Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain

    Science.gov (United States)

    Lin, Z.; Lin, W.; Pengfei, L.

    2015-05-01

    When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.

  5. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  6. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  7. Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D.; Jacobsen, Doug; Gunzburger, Max; Ju, Lili; Duda, Michael; Skamarock, William

    2011-11-01

    The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward

  8. Evaluation of shallow ground water use in command area of Dhoro Naro minor, Nawabshah

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2002-01-01

    Water supply data shows that the average supply of canal water to minor has been reduced to 30.9 cusecs (1.5 mm/day), which is about 41% (1.19mm/day) short of design supply due to water shortage in the system. To deal with water-short period and increase cultivation, the farmers (water users) have installed around 100 tube wells (from which 90 are functioning) to extract shallow ground water up to a depth of 40-50 feet (12.2-15.24m) having average discharge of tube well is 0.78 cusees (22 litres/sec). The water quality measured of these tube wells ranges between 371-8,858 PPM (0.58-13.9 dS/m). On average 3 hours/acre/week running of private tube wells contributes 0.5 mm/day to over come the shortage of water, which has resulted in 32% cropping intensity against 38% of design cropping intensity in spite of 41% short of designed supply of surface water. Moreover, the water table depth has gone down to an average depth of about 9.5 feet from the ground surface. Study has suggested that the pumping of these tube wells needs to be optimized to keep to water table depth up to 6 feet so as deterioration of shallow ground water be minimized and land be protected from secondary soil salinization. (author)

  9. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    -linear propagation. The speed of sound is calculated from the instantaneous pressure of the pulse and the nonlinearity B/A parameter of the medium. The harmonic field is found by introducing a number of virtual planes in front of the aperture and then propagating the pulse using Burgers' solution between the planes....... Simulations on the acoustical axis of an array transducer were performed and compared to measurements made in a water tank. A 3 MHz convex array transducer with a pitch of 0.53 mm and a height of 13 mm was used. The electronic focus was at 45 mm and 16 elements were used for emission. The emitted pressure...... was 1.4 MPa measured 6 mm from the aperture by a Force Institute MH25-5 needle hydrophone in a water bath. The build-up of higher harmonics can here be predicted accurately up to the 5th harmonic. The second harmonic is simulated with an accuracy of ±2.6 dB and the third harmonic with ±2 dB compared...

  10. How biological (fish) noise affects the performance of shallow water passive array system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.; Haris, K.; Vijayakumar, K.; Sundar, D.; Luis, R.A.A.; Mahanty, M.M.; Latha, G.

    =UTF-8 How biological (fish) noise affects the performance of shallow water passive array system William Fernandes, Bishwajit Chakraborty, K. Haris, K. Vijaykumar, D. Sundar, R.A.A. Luis CSIR-National Institute of Oceanography, Dona Paula... source distribution as well as the environmental parameters (i.e., water depth, sound speed profile, and seafloor properties). In a waveguide bounded by sea surface and seabed, multipath propagation prevails and the spatial structure of the noise...

  11. Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia) in Florida

    OpenAIRE

    Reimer, James Davis; Foord, Colin; Irei, Yuka

    2012-01-01

    Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, ...

  12. Non-linear phenomena in ionised media

    International Nuclear Information System (INIS)

    Oprescu, B.; Anghel, S.

    2004-01-01

    The aim of the present paper is to show, on experimental bases, that the occurrence of the microwaves in a plasma device is preceded by the formation of an unstable double layer, which, by exciting an ion-acoustic wave in the ionized gas column, permits the modulations of the electron speed within a beam of fast electrons crossing the gas. The starting point used in achieving this device was the following: to create an ionized medium (which can be obtained through the agency of the cylindrical cathode) in which a fast electron beam is injected at the same time as an unstable double layer form. Such a cathode capable of meeting the two conditions was first developed by G. G. Bratescu, D. Ciobotaru and G. Dima, namely, the cathode in semi-closed geometry. The experiments were carried out in water vapors under low pressure. (authors)

  13. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  14. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  15. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  16. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Hajigholizadeh

    2018-03-01

    Full Text Available The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  17. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  18. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  19. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  20. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  1. Sphaleron in a non-linear sigma model

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1989-08-01

    We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

  2. Alternative theories of the non-linear negative mass instability

    International Nuclear Information System (INIS)

    Channell, P.J.

    1974-01-01

    A theory non-linear negative mass instability is extended to include resistance. The basic assumption is explained physically and an alternative theory is offered. The two theories are compared computationally. 7 refs., 8 figs

  3. On a non-linear pseudodifferential boundary value problem

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong.

    1989-12-01

    A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs

  4. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    Science.gov (United States)

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  5. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  6. MODIS-derived spatiotemporal water clarity patterns in optically shallow FloridaKeys waters: A new approach to remove bottom contamination

    Science.gov (United States)

    Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...

  7. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  8. Non-linear realization of α0 -extended supersymmetry

    International Nuclear Information System (INIS)

    Nishino, Hitoshi

    2000-01-01

    As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time

  9. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  10. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  11. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  12. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  13. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    Science.gov (United States)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  14. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    International Nuclear Information System (INIS)

    Rostami, M.; Zeitlin, V.

    2016-01-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices. (paper)

  15. OpenMP performance for benchmark 2D shallow water equations using LBM

    Science.gov (United States)

    Sabri, Khairul; Rabbani, Hasbi; Gunawan, Putu Harry

    2018-03-01

    Shallow water equations or commonly referred as Saint-Venant equations are used to model fluid phenomena. These equations can be solved numerically using several methods, like Lattice Boltzmann method (LBM), SIMPLE-like Method, Finite Difference Method, Godunov-type Method, and Finite Volume Method. In this paper, the shallow water equation will be approximated using LBM or known as LABSWE and will be simulated in performance of parallel programming using OpenMP. To evaluate the performance between 2 and 4 threads parallel algorithm, ten various number of grids Lx and Ly are elaborated. The results show that using OpenMP platform, the computational time for solving LABSWE can be decreased. For instance using grid sizes 1000 × 500, the speedup of 2 and 4 threads is observed 93.54 s and 333.243 s respectively.

  16. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    Science.gov (United States)

    Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.

  17. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.

    Science.gov (United States)

    Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F

    2018-01-01

    The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.

  18. The shallow-water Asellota (Crustacea: Isopoda from the Beagle Channel: Preliminary taxonomic and zoogeographical results

    Directory of Open Access Journals (Sweden)

    Brenda Lía Doti

    2005-12-01

    Full Text Available The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens. The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.

  19. A shallow water model for the propagation of tsunami via Lattice Boltzmann method

    International Nuclear Information System (INIS)

    Zergani, Sara; Aziz, Z A; Viswanathan, K K

    2015-01-01

    An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory

  20. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    Science.gov (United States)

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.

  1. The Blind Identification of Multi-Inputs and Multi-Outputs Shallow-Water Acoustic Channel

    International Nuclear Information System (INIS)

    Li, R Y; Zhou, J H; Wang, L

    2006-01-01

    Blind channel identification/estimation is very important for object detection, trace, localization in the ocean acoustics. Time domain blind identification algorithm requiring exact length of the channel being identification. Due to the characteristics of the shallow-water channel, the length of channel impulse response sequence is uncertain, Hence a frequency domain method for the blind MIMO (Multiple-Input Multiple-Output) underwater identification based on higher order statistics (HOS) is used to estimate the original acoustic channel from received signals on hydrophones only, with the low signal to noise ratio (SNR). The simulation results in the acoustic environment proved this work is effective and efficient for blind identification of the shallow-water acoustic channel

  2. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage

    Science.gov (United States)

    Claes, Julien M.; Mallefet, Jérôme

    2010-01-01

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment. PMID:20410033

  3. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  4. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  5. Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials

    International Nuclear Information System (INIS)

    Wang Yun-Hu; Chen Yong

    2013-01-01

    We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method. (general)

  6. New records for the shallow-water chiton fauna (Mollusca, Polyplacophora of the Azores (NE Atlantic

    Directory of Open Access Journals (Sweden)

    Sérgio Ávila

    2013-06-01

    Full Text Available Published records, original data from recent field work on all of the islands of the Azores (NE Atlantic, and a revision of the entire mollusc collection deposited in the Department of Biology of the University of the Azores (DBUA were used to compile a checklist of the shallow-water Polyplacophora of the Azores. Lepidochitona cf. canariensis and Tonicella rubra are reported for the first time for this archipelago, increasing the recorded Azorean fauna to seven species.

  7. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  8. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  9. New species and new records of bryozoans from shallow waters of Madeira Island.

    Science.gov (United States)

    Souto, Javier; Kaufmann, Manfred J; Canning-Clode, João

    2015-03-03

    Two new species of bryozoans encrusting subtidal rocks are described from the shallow waters of Madeira Island. We describe one cyclostome, Favosipora purpurea sp. nov., which represents the first record of this genus in the Atlantic Ocean, and one cheilostome, Rhynchozoon papuliferum sp. nov. In addition, one species, Beania maxilladentata, is recorded for the first time outside of Rio de Janeiro, Brazil. Six other species previously recorded in Madeira are redescribed to provide new data and SEM images.

  10. Shock modon: a new type of coherent structure in rotating shallow water.

    Science.gov (United States)

    Lahaye, Noé; Zeitlin, Vladimir

    2012-01-27

    We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.

  11. The geometrical acoustic method for calculating the echo of targets submerged in a shallow water waveguide

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; TANG Weilin; FAN Wei; FAN Jun

    2012-01-01

    A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength (ETS) in shallow water and the Target Strength (TS) in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target's scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.

  12. Study of reverberation pattern and its cancellation method in shallow water

    Directory of Open Access Journals (Sweden)

    Yang Shiuh-Kuang

    2007-01-01

    Full Text Available In shallow water, the primary limitation of the performance of active sonar is the reverberation that originates from volume and boundaries scattering as well as multi-path propagation. There­fore, reverberation cancelation is an important research topic for increasing the performance of active sonar in shallow water. In this research, the reverberation pattern is simulated using MAT­LAB software. The simulated frequency is 30-kHz in the research. There are two main aims of this work. The first is to create the signals that include the reverberation and the target. The second is to perform the reverberation cancelation for the active sonar in shallow water. The analysis of the reverberation for the spherical target is based on the propagation theory of image source, surface scattering of Rayleigh criterion of roughness, bottom scattering of Lambert’s Law, and multiple scattering. The signal containing the reverberation and the target is then compressed or enhanced by AGC (Automatic Gain Control. The echo of the target is then distinguished through the method of cross correlation. The follow­ing phenomena can be found: (a AGC can compress the signal in a specific dynamic range. (b cross correlation can be used to locate and distinguish the echoes of the target in a high reverberation environment.

  13. AIRBORNE LASER BATHYMETRY FOR DOCUMENTATION OF SUBMERGED ARCHAEOLOGICAL SITES IN SHALLOW WATER

    Directory of Open Access Journals (Sweden)

    M. Doneus

    2015-04-01

    Full Text Available Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.

  14. Persistence profile of polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water temperature and sediment–water partitioning characteristics

    International Nuclear Information System (INIS)

    Tansel, B.; Fuentes, C.; Sanchez, M.; Predoi, K.; Acevedo, M.

    2011-01-01

    Highlights: ► The half-lives of PAHs in the deep waters (over 1000 m) are about twice longer than the shallow areas (100–150 m). ► In the water column, anthracene levels can decrease by 50% within 1–2 days. ► The half-lives of the PAHs in the sediments are significantly longer than those in the water column. ► The half-life of pyrene in the shallow and deep sediments is 9 and 16 years, respectively. - Abstract: Persistence profiles of selected polyaromatic hydrocarbons (PAHs) were analyzed depending on temperature variations in the water column and water–sediment interactions in the Gulf of Mexico. The PAHs studied include anthracene, fluoranthene, pyrene, and chrysene. The half-lives of PAHs in the deep waters (over 1000 m) are about twice as long as those in the shallow areas (100–150 m), and almost 2.5 times as long as those in the top layer (0–10 m) of the water column. The half-lives of the PAHs in the sediments are significantly longer. Among the PAHs studied, chrysene is the most persistent in the water column, and pyrene is the most persistent in the sediments. The half-life of chrysene in the shallow and deep waters is over 2.5 and about 5 years, respectively. For pyrene, the half-life in the shallow and deep sediments is about 9 and 16 years, respectively.

  15. Correlating Mediterranean shallow water deposits with global Oligocene–Miocene stratigraphy and oceanic events☆

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E.; Brandano, Marco; Harzhauser, Mathias

    2013-01-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene–Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene–Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene–late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale. PMID:25844021

  16. Correlating Mediterranean shallow water deposits with global Oligocene-Miocene stratigraphy and oceanic events.

    Science.gov (United States)

    Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias

    2013-12-01

    Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO 3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.

  17. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  18. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    Science.gov (United States)

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  19. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  20. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  1. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  2. Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    Science.gov (United States)

    Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping

    2017-12-01

    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths 0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.

  3. Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water

    Science.gov (United States)

    Beneš, Petr; Kollárik, Róbert

    2011-12-01

    This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.

  4. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  5. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  6. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  7. Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models

    Science.gov (United States)

    Lin, Shangfei; Sheng, Jinyu

    2017-12-01

    Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.

  8. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  9. Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States

    Science.gov (United States)

    Nolan, Bernard T.; Hitt, Kerie J.

    2006-01-01

    Two nonlinear models were developed at the national scale to (1) predict contamination of shallow ground water (typically drinking. The new models have several advantages over previous national-scale approaches. First, they predict nitrate concentration (rather than probability of occurrence), which can be directly compared with water-quality criteria. Second, the models share a mechanistic structure that segregates nitrogen (N) sources and physical factors that enhance or restrict nitrate transport and accumulation in ground water. Finally, data were spatially averaged to minimize small-scale variability so that the large-scale influences of N loading, climate, and aquifer characteristics could more readily be identified. Results indicate that areas with high N application, high water input, well-drained soils, fractured rocks or those with high effective porosity, and lack of attenuation processes have the highest predicted nitrate concentration. The shallow groundwater model (mean square error or MSE = 2.96) yielded a coefficient of determination (R2) of 0.801, indicating that much of the variation in nitrate concentration is explained by the model. Moderate to severe nitrate contamination is predicted to occur in the High Plains, northern Midwest, and selected other areas. The drinking-water model performed comparably (MSE = 2.00, R2 = 0.767) and predicts that the number of users on private wells and residing in moderately contaminated areas (>5 to ≤10 mg/L nitrate) decreases by 12% when simulation depth increases from 10 to 50 m.

  10. Plant pigment types, distributions, and influences on shallow water submerged aquatic vegetation mapping

    Science.gov (United States)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert

    2004-11-01

    Development of robust protocols for use in mapping shallow water habitats using hyperspectral imagery requires knowledge of absorbing and scattering features present in the environment. These include, but are not limited to, water quality parameters, phytoplankton concentrations and species, submerged aquatic vegetation (SAV) species and densities, epiphytic growth on SAV, benthic microalgae and substrate reflectance characteristics. In the Indian River Lagoon, Fl. USA we conceptualize the system as having three possible basic layers, water column and SAV bed above the bottom. Each layer is occupied by plants with their associated light absorbing pigments that occur in varying proportions and concentrations. Phytoplankton communities are composed primarily of diatoms, dinoflagellates, and picoplanktonic cyanobacteria. SAV beds, including flowering plants and green, red, and brown macro-algae exist along density gradients ranging in coverage from 0-100%. SAV beds may be monotypic, or more typically, mixtures of the several species that may or may not be covered in epiphytes. Shallow water benthic substrates are colonized by periphyton communities that include diatoms, dinoflagellates, chlorophytes and cyanobacteria. Inflection spectra created form ASIA hyperspectral data display a combination of features related to water and select plant pigment absorption peaks.

  11. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  12. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  13. Noise and non-linearities in high-throughput data

    International Nuclear Information System (INIS)

    Nguyen, Viet-Anh; Lió, Pietro; Koukolíková-Nicola, Zdena; Bagnoli, Franco

    2009-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets

  14. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  15. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  16. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    Science.gov (United States)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder

  17. Maps of Shallow-water Banks in the Northwestern Hawaiian Islands Derived from Moderate Resolution Landsat Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (generally, less than 30 meters) bank areas in the Northwestern Hawaiian Islands were identified using semi-automated image analysis of Landsat 7 ETM+...

  18. Some exact solutions to the potential Kadomtsev-Petviashvili equation and to a system of shallow water wave equations

    International Nuclear Information System (INIS)

    Inan, Ibrahim E.; Kaya, Dogan

    2006-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the potential Kadomtsev-Petviashvili equation. Some exact solutions of the system of the shallow water wave equation were also found

  19. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  20. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  1. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  2. Non-Linear Fibres for Widely Tunable Femtosecond Fibre Lasers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard

    and numerically. For the intermodal four-wave mixing experiment an alternative version of the Generalised Non-Linear Schrödinger Equation is derived, which includes the correct dispersion of the transverse field. It is observed that the alternative version of the Generalised Non-Linear Schrödinger Equation......, as opposed to the commonly used version, is able to reproduce the intermodal four-wave mixing experiment. The relation between the intramodal self-phase modulation and the intramodal Raman effect is determined from experimental measurements on a number of step-index fibres. The Raman fraction is found...

  3. E11 and the non-linear dual graviton

    Science.gov (United States)

    Tumanov, Alexander G.; West, Peter

    2018-04-01

    The non-linear dual graviton equation of motion as well as the duality relation between the gravity and dual gravity fields are found in E theory by carrying out E11 variations of previously found equations of motion. As a result the equations of motion in E theory have now been found at the full non-linear level up to, and including, level three, which contains the dual graviton field. When truncated to contain fields at levels three and less, and the spacetime is restricted to be the familiar eleven dimensional space time, the equations are equivalent to those of eleven dimensional supergravity.

  4. On the stability of non-linear systems

    International Nuclear Information System (INIS)

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  5. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  6. Mathematical problems in non-linear Physics: some results

    International Nuclear Information System (INIS)

    1979-01-01

    The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)

  7. The acquisition of aquatic skills in preschool children: deep versus shallow water swimming lessons

    Directory of Open Access Journals (Sweden)

    Helena A Rocha

    2018-05-01

    Full Text Available One of the key factors in the swimming teaching-learning process seems to be the variation of water’s depth.However, there are almost no studies about this topic and the existing ones usually follow a basic approach and with no control of the educational program used. It was our purpose to determine the effect of deep versus shallow water differences on developing pre-schoolers’ aquatic skills after 6 months of practice. Twenty-one Portuguese school-aged children of both genders (4.70 ± 0.51 yrs., inexperienced in aquatic programs, participated in this study. The children were divided into two groups performing a similar aquatic program but in a different water depth: shallow water (n=10 and deep water (n=11. Each participant was evaluated twice for their aquatic readiness using an observation check list of 17 aquatic motor skills: during the first session (T0 and after six months of practice (two sessions per week with a total of 48 sessions (T1. The aquatic proficiency on each skill was compared between the groups and a stepwise discriminant analysis was conducted to predict the conditions with higher or lower aquatic competence. Results suggested that swimming practice contributed positively to improvements on several basic aquatic skills, in both groups. The results showed that shallow water group managed to acquire a higher degree of aquatic competence particularly in five basic aquatic skills (p< .05: breath control combined with face immersion and eye opening; horizontal buoyancy; body position at ventral gliding; body position at dorsal gliding; leg kick with breath control at ventral body position, without any flutter device. The discriminant function revealed a significant association between both groups and four included factors (aquatic skills (p< .001, accounting for 88% between group variability. The body position at ventral gliding was the main relevant predictor (r=0.535. Shallow water swimming lessons generated greater

  8. Non-Linear Optical Studies On Sol-Gel Derived Lead Chloride Crystals Using Z-Scan Technique

    OpenAIRE

    Rejeena, I; Lillibai, B; Toms, Roseleena; Nampoori, VP N; Radhakrishnan, P

    2014-01-01

    In this paper we report the preparation, optical characterization and non linear optical behavior of pure lead chloride crystals. Lead chloride samples subjected to UV and IR irradiation and electric and magnetic fields have also been investigated Optical nonlinearity in these lead chloride samples were determined using single beam and high sensitive Z-scan technique. Non linear optical studies of these materials in single distilled water show reverse saturable absorption which makes th...

  9. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  10. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  11. Hydrogeochemistry of karst underground waters at shallow depth in Guiyang City, Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    DONG Zhifen; ZHU Lijun; WU Pan; SHEN Zheng; FENG Zhiyong

    2005-01-01

    The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca 2+ and Mg 2+ are the dominant cations, accounting for 81%- 99.7% of the total, and HCO -3 and SO 2- 4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.

  12. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  13. The diversity and distribution of Holothuroidea in shallow waters of Baluran National Park, Indonesia

    Directory of Open Access Journals (Sweden)

    ARIF MOHAMMAD SIDDIQ

    2016-04-01

    Full Text Available Abstract. Siddiq AM, Atmowidi T, Qayim I. 2015. The diversity and distribution of Holothuroidea in shallow waters of Baluran National Park, Indonesia. Biodiversitas 17: 55-60. A study of the diversity and distribution of sea cucumber (Holothuroidea in shallow waters at Baluran National Park, East Java, Indonesia was carried out from July until September 2015. The method used in this study was systematic transect in low tide condition. Samples were collected by hands at intertidal sites. Identification of sea cucumber species based on morphological ossicles. Twenty one species of Holothuroidea belonging two orders and four families were found in this study. The most dominant family found was Holothuriidae (16 species, followed by Stichopodidae (2 species, Synaptidae (2 species, and Chiridotidae (1 spesies. Four species (Holothuria olivacea, H. verrucosa, Labidodemas rugosum, and Chiridota smirnovi are new record for Java waters and one species (H. papillifera is a new record for Indonesian waters. Two morphospecies (H. aff. macroperona and Stichopus cf. monotuberculatus need reconfirmation to species level. The highest abundance species of Holothuroidea was found at under rock with 15 species. Whereas, the highest number of individuals was found in seagrass areas with 5457 individuals. H. atra has extensive habitat distribution, such as seagrass, macroalgae, coral reef, dead coral, sand, and under rock.

  14. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  15. Nursery use of shallow habitats by epibenthic fishes in Maine nearshore waters

    Science.gov (United States)

    Lazzari, M. A.; Sherman, S.; Kanwit, J. K.

    2003-01-01

    Species richness and abundance of epibenthic fishes were quantified with daytime beam trawl tows in shallow water habitats during April-November 2000 of three mid-coast Maine estuaries: Casco Bay, Muscongus Bay and the Weskeag River. Five shallow (Gasterosteus aculeatus, Apeltes quadracus, Pungitius pungitius, Myoxocephalus aenaeus, and Cylcopterus lumpus. The fish community of mid-coast estuaries was dominated by young-of-the-year (YOY) and juvenile fishes and all of the habitat types function as nursery areas. Twelve species (38%) of commercial and recreational importance were collected in the three estuaries, but the percentage was higher in Casco Bay (44%) and the Weskeag River (46%). These species included Anguilla rostrata, Clupea harengus, Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis regia, Urophycis tenuis, Osmerus mordax, Macrozoarces americanus, Tautogolabrus adspersus, and Pleuronectes americanus. Four species, G. morhua, M. tomcod, P. virens, and U. tenuis were more common in spring than summer or autumn. P. americanus was most abundant in summer followed by spring and autumn. This study documents the importance of shallow estuarine areas in Maine as nurseries for these species.

  16. Snorkelling and trampling in shallow-water fringing reefs: Risk assessment and proposed management strategy

    Science.gov (United States)

    Hannak, Judith S.; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen

    2011-01-01

    Shallow reefs (reef flats tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors’ socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers – the target group for further education and skill training – were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive ‘ecotourism zone’ while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. PMID:21708420

  17. Snorkelling and trampling in shallow-water fringing reefs: risk assessment and proposed management strategy.

    Science.gov (United States)

    Hannak, Judith S; Kompatscher, Sarah; Stachowitsch, Michael; Herler, Jürgen

    2011-10-01

    Shallow reefs (reef flats impacted by growing tourism that includes swimmers, snorkellers and reef walkers but have largely been neglected in past studies. We selected a fringing reef along the lagoon of Dahab (Sinai, Egypt) as a model for a management strategy. Point-intercept line transects were used to determine substrate composition, coral community and condition, and the coral damage index (CDI) was applied. Approximately 84% of the coral colonies showed signs of damage such as breakage, partial mortality or algal overgrowth, especially affecting the most frequent coral genus Acropora. Questionnaires were used to determine the visitors' socio-economic background and personal attitudes regarding snorkelling, SCUBA-diving and interest in visiting a prospective snorkelling trail. Experiencing nature (97%) was by far the strongest motivation, and interest in further education about reef ecology and skill training was high. Less experienced snorkellers and divers--the target group for further education and skill training--were those most prepared to financially support such a trail. We therefore recommend a guided underwater snorkelling trail and restricting recreational use to a less sensitive 'ecotourism zone' while protecting the shallow reef flat. Artificial structures can complete the trail and offer the opportunity to snorkel over deeper areas at unfavourable tide or wind conditions. This approach provides a strategy for the management and conservation of shallow-water reefs, which are facing increasing human impact here and elsewhere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Current algebra of classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Laartz, J.; Schaeper, U.

    1992-01-01

    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

  19. Smoothing identification of systems with small non-linearities

    Czech Academy of Sciences Publication Activity Database

    Kozánek, Jan; Piranda, J.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 71-84 ISSN 0025-6455 R&D Projects: GA ČR GA101/00/1471 Institutional research plan: CEZ:AV0Z2076919 Keywords : identification * small non-linearities * smoothing methods Subject RIV: BI - Acoustics Impact factor: 0.237, year: 2003

  20. Non-linear excitation of gravitational radiation antennae

    International Nuclear Information System (INIS)

    Blair, D.G.

    1982-01-01

    A mechanism of non-linear excitation is proposed to explain observed excess noise in gravitational radiation antennae, driven by low frequency vibration. The mechanism is analogous to the excitation of a violin string by low frequency bowing. Numerical estimates for Weber bars suspended by cables are in good agreement with observations. (Auth.)

  1. Non Linear signa models probing the string structure

    International Nuclear Information System (INIS)

    Abdalla, E.

    1987-01-01

    The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt

  2. Non-linear variation of the beta function with momentum

    International Nuclear Information System (INIS)

    Parzen, G.

    1983-07-01

    A theory is presented for computing the non-linear dependence of the β-functions on momentum. Results are found for the quadratic term. The results of the theory are compared with computed results. A procedure is proposed for computing the strengths of the sextupole correctors to correct the dependence of the β-function on momentum

  3. Non-linear thermal fluctuations in a diode

    NARCIS (Netherlands)

    Kampen, N.G. van

    As an example of non-linear noise the fluctuations in a circuit consisting of a diode and a condenser C are studied. From the master equation for this system the following results are derived. 1. (i) The equilibrium distribution of the voltage is rigorously Gaussian, the average voltage being

  4. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  5. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  6. Validation of Individual Non-Linear Predictive Pharmacokinetic ...

    African Journals Online (AJOL)

    3Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Republic of Serbia ... Purpose: To evaluate the predictive performance of phenytoin multiple dosing non-linear pharmacokinetic ... status epilepticus affects an estimated 152,000 ..... causal factors, i.e., infection, inflammation, tissue.

  7. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  8. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  9. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  10. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  11. Non-linear coupling of drift modes in a quadrupole

    International Nuclear Information System (INIS)

    Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.

    1990-01-01

    We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs

  12. Some aspects of non-linear semi-groups

    International Nuclear Information System (INIS)

    Plant, A.T.

    1976-01-01

    Some simpler theorems in the theory of non-linear semi-groups of non-reflexive Banach spaces are proved, with the intention to introduce the reader to this active field of research. Flow invariance, in particular for Lipschitz generators, and contraction semi-groups are discussed in some detail. (author)

  13. Applicability of refined Born approximation to non-linear equations

    International Nuclear Information System (INIS)

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  14. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  15. About one non linear generalization of the compression reflection ...

    African Journals Online (AJOL)

    Both cases of stage and spiral iterations are considered. A geometrical interpretation of a convergence of a generalize method of iteration is brought, the case of stage and spiral iterations are considered. The formula for the non linear generalize compression reflection operator as a function from one variable is obtained.

  16. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter...

  17. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  18. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  19. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  20. A non-linear dissipative model of magnetism

    Czech Academy of Sciences Publication Activity Database

    Durand, P.; Paidarová, Ivana

    2010-01-01

    Roč. 89, č. 6 (2010), s. 67004 ISSN 1286-4854 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-linear dissipative model of magnetism * thermodynamics * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry http://epljournal.edpsciences.org/

  1. Modeling and verifying non-linearities in heterodyne displacement interferometry

    NARCIS (Netherlands)

    Cosijns, S.J.A.G.; Haitjema, H.; Schellekens, P.H.J.

    2002-01-01

    The non-linearities in a heterodyne laser interferometer system occurring from the phase measurement system of the interferometer andfrom non-ideal polarization effects of the optics are modeled into one analytical expression which includes the initial polarization state ofthe laser source, the

  2. Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms

    Science.gov (United States)

    Watanabe, N.; Harter, T.H.; Bergamaschi, B.A.

    2008-01-01

    Pharmaceuticals used in animal feeding operations have been detected in various environmental settings. There is a growing concern about the impact on terrestrial and aquatic organisms and the development of antibiotic-resistant strains of microorganisms. Pharmaceutical use in milking cows is relatively limited compared with other livestock operations, except for the ionophore monensin, which is given to lactating cows as a feed. By weight, monensin can be the most significant antibiotic used in a dairy farm. This study investigates the potential of monensin to move from dairy operations into the surrounding ground water. Using two dairy farms in California as study sites, we twice collected samples along the environmental pathway-from flush lanes, lagoon waters, and shallow ground water beneath the dairies and beneath its associated manured fields. Monensin concentrations were determined using solid-phase extraction and liquid chromatography-tandem mass spectrometry with positive electrospray ionization. Monensin was detected in all of the flush lane and lagoon water samples. Theoretical maximum concentration estimated from the actual dosing rate and the theoretical excretion rate assuming no attenuation was one order of magnitude greater than observed concentrations, suggesting significant attenuation in the manure collection and storage system. Monensin was also detected, at levels ranging from 0.04 to 0.39 microg L(-1), in some of the ground water samples underneath the production area of the dairy but not from the adjacent manured fields. Concentrations in ground water immediately downgradient of the lagoons were one to two orders of magnitude lower than the concentrations detected in lagoons, suggesting attenuation in the subsurface. The data suggest the possibility of monensin transport into shallow (2-5 m) alluvial ground water from dairy management units, including manure storage lagoons and freestalls occupied by heifers, lactating cows, and dry cows.

  3. Shallow-water habitats as sources of fallback foods for hominins.

    Science.gov (United States)

    Wrangham, Richard; Cheney, Dorothy; Seyfarth, Robert; Sarmiento, Esteban

    2009-12-01

    Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins.

  4. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.

    2013-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  5. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  6. The shallow water equations on the sphere and their Lagrange- Galerkin-solution

    CERN Document Server

    Heinze, T

    2002-01-01

    The shallow water equations are formulated on the sphere in a three- dimensional coordinate system with the aid of tangential velocity components and differential operators. We introduce a modified semi- Lagrangian scheme for the discretization in time. The discretization in space is solved by linear finite elements. The grids we use are regular refinements of a macro triangulation which itself is derived from a highly symmetric polyeder also known as a bucky or soccer ball. The good numerical results show that this combination is a promising approach. The numerical algorithm is stable and its strength is the conservation of mass and energy. (16 refs).

  7. Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion

    International Nuclear Information System (INIS)

    Wabnitz, Stefan

    2013-01-01

    In analogy with ocean waves running up towards the beach, shoaling of pre-chirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schrödinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion. (paper)

  8. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    Science.gov (United States)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  9. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    Science.gov (United States)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  10. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  11. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  12. Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation

    Science.gov (United States)

    Li, Ye-Zhou; Liu, Jian-Guo

    2018-06-01

    Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.

  13. Structural elements of collapses in shallow water flows with horizontally nonuniform density

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P., E-mail: v.goncharov@rambler.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation); Pavlov, V. I., E-mail: Vadim.Pavlov@univ-lille1.fr [Universite de Lille 1, UFR de Mathematiques Pures et Appliquees-LML UMR 8107 (France)

    2013-10-15

    The mechanisms and structural elements of instability whose evolution results in the occurrence of the collapse are studied in the scope of the rotating shallow water model with a horizontally nonuniform density. The diagram stability based on the integral collapse criterion is suggested to explain system behavior in the space of constants of motion. Analysis of the instability shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing drop-like fragment with the bottom contracts into a rotating segment. The other implies isotropic contraction of the area into a point.

  14. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    Full Text Available Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m, nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012 seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  15. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  16. Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004

    Science.gov (United States)

    Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.

    2004-01-01

    This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.

  17. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters.

    Science.gov (United States)

    Oczkowski, Autumn; McKinney, Richard; Ayvazian, Suzanne; Hanson, Alana; Wigand, Cathleen; Markham, Erin

    2015-01-01

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m), nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012) seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.

  18. Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia in Florida

    Directory of Open Access Journals (Sweden)

    James Davis Reimer

    2012-01-01

    Full Text Available Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, cytochrome oxidase subunit I, and the internal transcribed spacer of ribosomal DNA showed the presence of at least eleven species, of which up to four appear undescribed. Additionally, the presence of the genus Terrazoanthus in the Caribbean was confirmed for the first time. Attempts to match phylogenetic species or clades with original literature were hampered by vague and short original descriptions, and it is clear that for Atlantic Palythoa and Zoanthus species an in-depth and multidisciplinary investigation is needed to reconcile recent phylogenetic results such as in this study with traditional taxonomy. Furthermore, most shallow water zoanthid species from Florida were observed to have close, sister-species relationships with previously investigated species in the Pacific Ocean. These results indicate that many brachycnemic zoanthid species likely had a Caribbean-Pacific distribution until the formation of the Isthmus of Panama. However, due to inadvertent redescriptions, overall species diversity in these two common genera is likely much lower than literature indicates.

  19. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes.

    Science.gov (United States)

    He, Yuhong; Song, Na; Jiang, He-Long

    2018-04-01

    In recent years, the black water phenomenon has become an environmental event in eutrophic shallow lakes in China, leading to deterioration of lake ecosystems and potable water crises. Decomposition of macrophyte debris has been verified as a key inducement for black water events. In this study, the effects of the decomposition of dissolved organic matter (Kottelat et al., WASP 187:343-351, 2008) derived from macrophyte leachate on the occurrence of black water events are investigated to clarify the detailed mechanisms involved. Results show that dissolved organic matter (DOM) is composed of a trace of chromophoric DOM and mostly non-chromophoric dissolved organic matter (CDOM). DOM decomposition is accompanied by varied concentration of CDOM components, generation of organic particles, and increased microbial concentrations. These processes increase water chroma only during initial 48 h, so the intensified water color cannot be maintained by DOM decomposition alone. During DOM decomposition, microorganisms first consume non-CDOM, increasing the relative CDOM concentration and turning the water color to black (or brown). Simultaneously, tryptophan and aromatic proteins, which are major ingredients of CDOM, enhance UV light absorption, further aggravating the macroscopic phenomenon of black color. Our results show that DOM leached from decayed macrophytes promotes or even triggers the occurrence of black water events and should be taken more seriously in the future.

  20. Antecedent conditions control carbon loss and downstream water quality from shallow, damaged peatlands.

    Science.gov (United States)

    Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E

    2014-09-15

    Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by

  1. Ground-water flow and saline water in the shallow aquifer system of the southern watersheds of Virginia Beach, Virginia

    Science.gov (United States)

    Smith, Barry S.

    2003-01-01

    Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown

  2. Investigation of Shallow Ground Water in the Tulul Al Ashaqif Highlands, Jordan

    International Nuclear Information System (INIS)

    Abu-Jaber, N.; Abderahman, N.; Azaizeh, W.; Omari, H.; Al-Sokhny, K.; Haddadin, G.; Hamzeh, M.; AlQudah, K.

    2003-01-01

    Perched aquifers in the arid region of Tulul al Ashaqif in northeastern Jordan are an important traditional source of water in this area, and could potentially be a significant contributor to the water resources of this arid region. Despite this, little effort has yet been exerted into understanding the distribution and nature of this resource. The purpose of this paper is to describe the recent research effort, which aimed at understanding the factors controlling the distribution of this water, its quality and renewability as well as the hydrological nature of the aquifers. A combination of remote sensing and geomorphological analysis was used to determine the locations of potential sites for further investigation . Based on this, detailed geophysical surveys were conducted at nine sites, using both Wenner and Schlumberger geoelectrical arrays. These surveys resulted in the choice of four potential sites for drilling of shallow wells. The wells yielded two locations where groundwater is present. The chemical characteristics of the water indicate that it is well within the standard guidelines for drinking water in Jordan. The isotopic data from this water indicate that it is renewable. The hydrological characteristics of the aquifer indicate low hydraulic conductivity, ranging from 5.8-9.7cm/day, although the quantity of water is significant (millions of cubic meters). This suggests that numerous wells need to be drilled for optimal extraction. (Author's) 18 refrs., 6 figs., 4 tabs

  3. Potential impacts of climate change on water quality in a shallow reservoir in China.

    Science.gov (United States)

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  4. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Science.gov (United States)

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  5. Groundwater suppression and surface water diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Stansfield, R.G.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, the older of the two sites [Solid Waste Storage Area Four (SWSA 4)] was equipped in September 1975 with asphalt lined drainage-ways designed to prevent infiltration of storm drainage from a 13.8-ha upslope catchment. At the second site (49-Trench area of SWSA 6), the entire 0.44-ha trench area was capped with a bentonite clay cover in 1976. These attempts have not corrected the water problems. In September 1983, engineered drainage projects were initiated at both the disposal sites. The SWSA 4 project was designed to divert surface runoff and shallow subsurface flow which originates upslope of the site away from the disposal area. The second project, a passive French drain constructed in SWSA 6, was aimed strictly at suppressing the site water table, thus preventing its intersection with the bottoms of disposal trenches. Postconstruction monitoring for performance evaluation has shown that the water table in the 49-Trench area has been suppressed to a depth > 4.9 m below the ground surface over 50% of the site as compared to a depth of only 2.1 m for certain parts of the same area observed during seasonally wet months prior to drain construction. The SWSA 4 project evaluation indicates that 56% of the Winter-Spring 1984 runoff was diverted around SWSA 4 via the drainage system

  6. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    Science.gov (United States)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  7. A finite element method for solving the shallow water equations on the sphere

    Science.gov (United States)

    Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent

    Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.

  8. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  9. Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study

    Science.gov (United States)

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    2009-01-01

    A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions. ?? 2008 Elsevier B.V.

  10. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Science.gov (United States)

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  11. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed.

    Science.gov (United States)

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-05-17

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.

  12. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  13. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed

    Directory of Open Access Journals (Sweden)

    Loïca Avanthey

    2016-05-01

    Full Text Available Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results.

  14. Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies

    Science.gov (United States)

    Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.

    2012-04-01

    In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed

  15. Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm.

    Science.gov (United States)

    Sipaúba-Tavares, L H; Dias, S G

    2014-05-01

    Plankton communities and macrofauna associated to aquatic macrophyte stands in a shallow water-supply reservoir (21°14'09″S; 48°18'38″W) on an aquaculture farm were compared to evaluate the relationship between organism densities and some abiotic features of the reservoir. Water and communities associated were sampled at two sites, one in an area with the predominance of Eichhornia azurea (Sw.) Kunth and the other with the predominance of Salvinia auriculata Aublet. Communities associated with macrophytes were sampled with floating quadrants (0.5 m2); the macrophytes were washed and plankton and macrofauna were fixated with 4% formalin and 1% lugol iodine; the specimens were then identified and counted. Plankton and macrofauna communities associated with S. auriculata and E. azurea had a similar diversity of species but different (pmacrophytes presence in the shallow reservoir is a strong predictor of favourable conditions to maintain great diversity plankton community and macrofauna associated with plants. The role of macrophytes is important for not only stabilising the clear-water state and maintaining high diversity of organisms associated, but also it seems to be a good alternative to maintaining desirable water-supply quality for aquaculture farms.

  16. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    Science.gov (United States)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially. non-linear model are compared to those

  17. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  18. Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors

    OpenAIRE

    Johnson, V; Brownlee, C; Milazzo, M; Hall-Spencer, J

    2015-01-01

    Predicting the effects of anthropogenic CO2 emissions on coastal ecosystems requires an understanding of the responses of algae, since these are a vital functional component of shallow-water habitats. We investigated microphytobenthic assemblages on rock and sandy habitats along a shallow subtidal pCO2 gradient near volcanic seeps in the Mediterranean Sea. Field studies of natural pCO2 gradients help us understand the likely effects of ocean acidification because entire communities are subjec...

  19. Classification of bottom composition and bathymetry of shallow waters by passive remote sensing

    Science.gov (United States)

    Spitzer, D.; Dirks, R. W. J.

    The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.

  20. International Space Science Institute Workshop on Shallow Clouds, Water Vapor, Circulation and Climate Sensitivity

    CERN Document Server

    Winker, David; Bony, Sandrine; Stevens, Bjorn

    2018-01-01

    This volume presents a series of overview articles arising from a workshop exploring the links among shallow clouds, water vapor, circulation, and climate sensitivity. It provides a state-of-the art synthesis of understanding about the coupling of clouds and water vapor to the large-scale circulation. The emphasis is on two phenomena, namely the self-aggregation of deep convection and interactions between low clouds and the large-scale environment, with direct links to the sensitivity of climate to radiative perturbations. Each subject is approached using simulations, observations, and synthesizing theory; particular attention is paid to opportunities offered by new remote-sensing technologies, some still prospective. The collection provides a thorough grounding in topics representing one of the World Climate Research Program’s Grand Challenges. Previously published in Surveys in Geophysics, Volume 38, Issue 6, 2017 The articles “Observing Convective Aggregation”, “An Observational View of Relationshi...

  1. On shallow water waves in a medium with time-dependent

    Directory of Open Access Journals (Sweden)

    Hamdy I. Abdel-Gawad

    2015-07-01

    Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.

  2. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    Directory of Open Access Journals (Sweden)

    Ziliang Liu

    Full Text Available A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km. The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front

  3. Formation Conditions and Sedimentary Characteristics of a Triassic Shallow Water Braided Delta in the Yanchang Formation, Southwest Ordos Basin, China.

    Science.gov (United States)

    Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi

    2015-01-01

    A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.

  4. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  5. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  6. On the non-linear scale of cosmological perturbation theory

    CERN Document Server

    Blas, Diego; Konstandin, Thomas

    2013-01-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  7. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  8. On the non-linear scale of cosmological perturbation theory

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-04-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  9. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  10. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  11. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  12. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  13. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  14. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  15. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  16. Turbulence modeling of transverse flow on ship hulls in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, Ken-Robert Gjelstad

    2010-09-15

    The hydrodynamic forces acting on a ship that travels in restricted water vary greatly with water depth and the geometry of the ship hull. This will affect the ship maneuverability in terms of various flow effects like for instance squat, when the ship is sucked down towards the seabed due to a pressure drop on the hull at forward speed. It is, thus, important to gain detailed knowledge on these aspects of marine engineering. The problem is in the present work addressed through a numerical investigation of turbulent transverse flow on two-dimensional ship sections in shallow water. The numerical code is validated against traditional flow problems in the literature. Namely, the Backward-facing step (BFS) and the Smoothly-contoured ramp (SCR). 2D and 3D laminar flows and 2D low Reynolds number turbulent flows are calculated, and the results are found to be in good agreement with the previous numerical and experimental comparison data. The turbulence model used in the calculations is the one-equation Spalart-Allmaras model. The overall goal of achieving more efficient and accurate numerical schemes will always be in focus of code development. Adaptive mesh refinement (AMR) is then a very helpful tool to save both time for grid generation prior to the calculations in question and the CPU hours needed to solve the governing equations. The latter is even more evident in a parallel environment. These aspects are included in the present investigation as part of the process to adapt and investigate a CFD tool suitable to handle turbulent flows on a ship hull in shallow water. Several physical and numerical parameters are included in the present study and the Plackett-Burman screening design is utilized to efficiently analyze the results. With the latter method, a simple function for calculating the drag force on a two-dimensional ship section as function of the given parameters has been obtained. (Author)

  17. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    Science.gov (United States)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  18. Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat

    Science.gov (United States)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the second part of an investigation that analyzes human alteration of shallow-water habitat (SWH) available to juvenile salmonids in the tidal Lower Columbia River. Part 2 develops a one-dimensional, subtidal river stage model that explains ˜90% of the stage variance in the tidal river. This model and the tidal model developed in part 1 [, 2003] uncouple the nonlinear interaction of river tides and river stage by referring both to external forcing by river discharge, ocean tides, and atmospheric pressure. Applying the two models, daily high-water levels were predicted for a reach from rkm-50 to rkm-90 during 1974 to 1998, the period of contemporary management. Predicted water levels were related to the bathymetry and topography to determine the changes in shallow-water habitat area (SWHA) caused by flood control dikes and altered flow management. Model results suggest that diking and a >40% reduction of peak flows have reduced SWHA by ˜62% during the crucial spring freshet period during which juvenile salmon use of SWHA is maximal. Taken individually, diking and flow cycle alteration reduced spring freshet SWHA by 52% and 29%, respectively. SWHA has been both displaced to lower elevations and modified in its character because tidal range has increased. Our models of these processes are economical for the very long simulations (seasons to centuries) needed to understand historic changes and climate impacts on SWH. Through analysis of the nonlinear processes controlling surface elevation in a tidal river, we have identified some of the mechanisms that link freshwater discharge to SWH and salmonid survival.

  19. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  20. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  1. N=4 superconformal mechanics as a non linear realization

    International Nuclear Information System (INIS)

    Anabalon, Andres; Gomis, Joaquim; Kamimura, Kiyoshi; Zanelli, Jorge

    2006-01-01

    An action for a superconformal particle is constructed using the non linear realization method for the group PSU(1,1/2), without introducing superfields. The connection between PSU(1,1/2) and black hole physics is discussed. The lagrangian contains six arbitrary constants and describes a non-BPS superconformal particle. The BPS case is obtained if a precise relation between the constants in the lagrangian is verified, which implies that the action becomes kappa-symmetric

  2. General treatment of a non-linear gauge condition

    International Nuclear Information System (INIS)

    Malleville, C.

    1982-06-01

    A non linear gauge condition is presented in the frame of a non abelian gauge theory broken with the Higgs mechanism. It is shown that this condition already introduced for the standard SU(2) x U(1) model can be generalized for any gauge model with the same type of simplification, namely the suppression of any coupling of the form: massless gauge boson, massive gauge boson, unphysical Higgs [fr

  3. A nearly orthogonal 2D grid system in solving the shallow water equations in the head bay of Bengal

    International Nuclear Information System (INIS)

    Roy, G.D. . E.mail: roy_gd@hotmail.com; Hussain, Farzana . E.mail: farzana@sust.edu

    2001-11-01

    A typical nearly orthogonal grid system is considered to solve the shallow water equations along the head bay of Bengal. A pencil of straight lines at uniform angular distance through a suitable origin, O at the mean sea level (MSL), are considered as a system of grid lines. A system of concentric and uniformly distributed ellipses with center at O is considered as the other system of grid lines. In order to solve the shallow water equations numerically, a system of transformations is applied so that the grid system in the transformed domain becomes a rectangular one. Shallow water equations are solved using appropriate initial and boundary conditions to estimate the water level due to tide and surge. The typical grid system is found to be suitable in incorporating the bending of the coastline and the island boundaries accurately in the numerical scheme along the coast of Bangladesh. (author)

  4. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  5. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  6. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  7. Cheilopallene ogasawarensis, a New Species of Shallow-Water Pycnogonid (Arthropoda: Pycnogonida) from the Ogasawara (Bonin) Islands, Japan, Northwest Pacific.

    Science.gov (United States)

    Nakamura, Koichiro; Akiyama, Tadashi

    2015-08-05

    A new species of pycnogonid recorded from the shallow waters of Ogasawara (Bonin) Island, Japan, Cheilopallene ogasawarensis n. sp. is described, illustrated and compared with similar species. Cheilopallene ogasawarensis is only the third pycnogonid species recorded from these islands. Morphological characters clearly distinguish the new species from its geographically closest congener C. nodulosa Hong and Kim, 1987, also recorded from Japanese waters.

  8. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  9. Susceptibility of ground water to surface and shallow sources of contamination in Mississippi

    Science.gov (United States)

    O'Hara, Charles G.

    1996-01-01

    Ground water, because of its extensive use in agriculture, industry, and public-water supply, is one of Mississippi's most important natural resources.  Ground water is the source for about 80 percent of the total freshwater used by the State's population (Solley and others, 1993).  About 2,600 Mgal/d of freshwater is withdrawn from aquifers in Mississippi (D.E. Burt, Jr., U.S. Geological Survey, oral commun., 1995).  Wells capable of yielding 200 gal/min of water with quality suitable for most uses can be developed nearly anywhere in the State (Bednar, 1988).  The U.S. Geological Survey (USGS), in cooperation with the Mississippi Department of Environmental Quality, Office of Pollution Control, and the Mississippi Department of Agriculture and Commerce, Bureau of Plant Industry, conducted an investigation to evaluate the susceptibility of ground water to contamination from surgace and shallow sources in Mississippi.  A geographic information system (GIS) was used to develop and analyze statewide spatial data layers that contain geologic, hydrologic, physiographic, and cultural information.

  10. Non-linearities in Holocene floodplain sediment storage

    Science.gov (United States)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  11. Shallow Water Habitat Mapping in Cape Cod National Seashore: A Post-Hurricane Sandy Study

    Science.gov (United States)

    Borrelli, M.; Smith, T.; Legare, B.; Mittermayr, A.

    2017-12-01

    Hurricane Sandy had a dramatic impact along coastal areas in proximity to landfall in late October 2012, and those impacts have been well-documented in terrestrial coastal settings. However, due to the lack of data on submerged marine habitats, similar subtidal impact studies have been limited. This study, one of four contemporaneous studies commissioned by the US National Park Service, developed maps of submerged shallow water marine habitats in and around Cape Cod National Seashore, Massachusetts. All four studies used similar methods of data collection, processing and analysis for the production of habitat maps. One of the motivations for the larger study conducted in the four coastal parks was to provide park managers with a baseline inventory of submerged marine habitats, against which to measure change after future storm events and other natural and anthropogenic phenomena. In this study data from a phase-measuring sidescan sonar, bottom grab samples, seismic reflection profiling, and sediment coring were all used to develop submerged marine habitat maps using the Coastal and Marine Ecological Classification Standard (CMECS). Vessel-based acoustic surveys (n = 76) were conducted in extreme shallow water across four embayments from 2014-2016. Sidescan sonar imagery covering 83.37 km2 was collected, and within that area, 49.53 km2 of co-located bathymetric data were collected with a mean depth of 4.00 m. Bottom grab samples (n = 476) to sample macroinvertebrates and sediments (along with other water column and habitat data) were collected, and these data were used along with the geophysical and coring data to develop final habitat maps using the CMECS framework.

  12. Mechanisms of SAR Imaging of Shallow Water Topography of the Subei Bank

    Directory of Open Access Journals (Sweden)

    Shuangshang Zhang

    2017-11-01

    Full Text Available In this study, the C-band radar backscatter features of the shallow water topography of Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental Satellite ASAR (advanced synthetic aperture radar and ERS-2 (European Remote-Sensing Satellite-2 SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s, the wide bright patterns with an average width of 6 km are shown and correspond to sea surface imprints of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower (only 1 km wide, fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s. Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under strong winds when propagating from deep water to the shallower water, which leads to an increase of surface roughness over the sand ridges.

  13. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    Science.gov (United States)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  14. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  15. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  16. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  17. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the

  18. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  19. Non color-saturated cross-sections of non-linear tomography and seismicity

    International Nuclear Information System (INIS)

    Panza, G.F.; Raykova, R.B.

    2007-11-01

    We define the structure and the rheology of the lithosphere in Italy and surrounding, combining the cellular velocity model, derived from the non-linear tomographic inversion, with the distribution versus depth of the hypocenters to assess the brittle properties of the fragile Earth. The mechanical properties, and their uncertainties, of the uppermost 60 km of the Earth crust/mantle and the seismicity, grouping hypocenter's depth with a step of 4 km, are averaged over cells of 1 deg. by 1 deg. For most of the cells the earthquake energy released has a maximum in the depth range, from 5 to 15 km, i.e. mainly in the upper crust. For some regions, where orogenic processes are in progress, the release of seismic energy is shallower and is concentrated in the uppermost 10 km of the crust. (author)

  20. Loading forces in shallow water running in two levels of immersion.

    Science.gov (United States)

    Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; de Brito Fontana, Heiliane; Roesler, Helio

    2010-07-01

    To analyse the vertical and anteroposterior components of the ground reaction force during shallow water running at 2 levels of immersion. Twenty-two healthy adults with no gait disorders, who were familiar with aquatic exercises. Subjects performed 6 trials of water running at a self-selected speed in chest and hip immersion. Force data were collected through an underwater force plate and running speed was measured with a photocell timing light system. Analysis of covariance was used for data analysis. Vertical forces corresponded to 0.80 and 0.98 times the subject's body weight at the chest and hip level, respectively. Anteroposterior forces corresponded to 0.26 and 0.31 times the subject's body weight at the chest and hip level, respectively. As the water level decreased the subjects ran faster. No significant differences were found for the force values between the immersions, probably due to variability in speed, which was self-selected. When thinking about load values in water running professionals should consider not only the immersion level, but also the speed, as it can affect the force components, mainly the anteroposterior one. Quantitative data on this subject could help professionals to conduct safer aqua-tic rehabilitation and physical conditioning protocols.

  1. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  2. Novel Slope Source Term Treatment for Preservation of Quiescent Steady States in Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Khawar Rehman

    2016-10-01

    Full Text Available This paper proposes a robust method for modeling shallow-water flows and near shore tsunami propagation, applicable for both simple and complex geometries with uneven beds. The novel aspect of the model includes the introduction of a new method for slope source terms treatment to preserve quiescent equilibrium over uneven topographies, applicable to both structured and unstructured mesh systems with equal accuracy. Our model is based on the Godunov-type finite volume numerical approximation. Second-order spatial and temporal accuracy is achieved through high resolution gradient reconstruction and the predictor-corrector method, respectively. The approximate Riemann solver of Harten, Lax, and van Leer with contact wave restoration (HLLC is used to compute fluxes. Comparisons of the model’s results with analytical, experimental, and published numerical solutions show that the proposed method is capable of accurately predicting experimental and real-time tsunami propagation/inundation, and dam-break flows over varying topographies.

  3. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  4. Central-Upwind Schemes for Two-Layer Shallow Water Equations

    KAUST Repository

    Kurganov, Alexander

    2009-01-01

    We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.

  5. An oscillation phenomenon of low frequency reverberation in the shallow water and its physical explanation

    Institute of Scientific and Technical Information of China (English)

    LI; Fenghua; LIU; Jianjun; LI; Zhenglin; ZHANG; Renhe

    2005-01-01

    An oscillation phenomenon of the low frequency reverberation intensity was observed in several shallow water reverberation experiments. This phenomenon cannot be explained by the widely used incoherent reverberation theory. In this paper, to explain the observed oscillation phenomenon, a normal mode based coherent reverberation theory is presented. The theoretical analysis and numerical results show that modal interference can cause the regular oscillation phenomenon of the low frequency reverberation intensity, and the oscillation frequency is determined by the normal mode eigen-values. A new method to estimate the bottom sound speed based on the oscillation frequency of reverberation intensity was presented in this paper. The experimental results at three different sites indicate that the bottom sound speed estimated from the oscillation frequency of reverberation intensity agrees with that inverted from Matched Field Processing (MFP) well.

  6. Geophysical fluid dynamics understanding (almost) everything with rotating shallow water models

    CERN Document Server

    Zeitlin, Vladimir

    2018-01-01

    The book explains the key notions and fundamental processes in the dynamics of the fluid envelopes of the Earth (transposable to other planets), and methods of their analysis, from the unifying viewpoint of rotating shallow-water model (RSW). The model, in its one- or two-layer versions, plays a distinguished role in geophysical fluid dynamics, having been used for around a century for conceptual understanding of various phenomena, for elaboration of approaches and methods, to be applied later in more complete models, for development and testing of numerical codes and schemes of data assimilations, and many other purposes. Principles of modelling of large-scale atmospheric and oceanic flows, and corresponding approximations, are explained and it is shown how single- and multi-layer versions of RSW arise from the primitive equations by vertical averaging, and how further time-averaging produces celebrated quasi-geostrophic reductions of the model. Key concepts of geophysical fluid dynamics are exposed and inte...

  7. A note on relative equilibria in a rotating shallow water layer

    KAUST Repository

    Ait Abderrahmane, Hamid

    2013-05-08

    Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.

  8. Experimental Results for Direction of Arrival Estimation with a Single Acoustic Vector Sensor in Shallow Water

    Directory of Open Access Journals (Sweden)

    Alper Bereketli

    2015-01-01

    Full Text Available We study the performances of several computationally efficient and simple techniques for estimating direction of arrival (DOA of an underwater acoustic source using a single acoustic vector sensor (AVS in shallow water. Underwater AVS is a compact device, which consists of one hydrophone and three accelerometers in a packaged form, measuring scalar pressure and three-dimensional acceleration simultaneously at a single position. A very controlled experimental setup is prepared to test how well-known techniques, namely, arctan-based, intensity-based, time domain beamforming, and frequency domain beamforming methods, perform in estimating DOA of a source in different circumstances. Experimental results reveal that for almost all cases beamforming techniques perform best. Moreover, arctan-based method, which is the simplest of all, provides satisfactory results for practical purposes.

  9. The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection

    Science.gov (United States)

    Franzen, J.

    1994-01-01

    The superposition of higher order multipole fields on the basic quadrupole field in ion traps generates a non-harmonic oscillator system for the ions. Fourier analyses of simulated secular oscillations in non-linear ion traps, therefore, not only reveal the sideband frequencies, well-known from the Mathieu theory, but additionally a commonwealth of multipole-specific overtones (or higher harmonics), and corresponding sidebands of overtones. Non-linear resonances occur when the overtone frequencies match sideband frequencies. It can be shown that in each of the resonance conditions, not just one overtone matches one sideband, instead, groups of overtones match groups of sidebands. The generation of overtones is studied by Fourier analysis of computed ion oscillations in the direction of thez axis. Even multipoles (octopole, dodecapole, etc.) generate only odd orders of higher harmonics (3, 5, etc.) of the secular frequency, explainable by the symmetry with regard to the planez = 0. In contrast, odd multipoles (hexapole, decapole, etc.) generate all orders of higher harmonics. For all multipoles, the lowest higher harmonics are found to be strongest. With multipoles of higher orders, the strength of the overtones decreases weaker with the order of the harmonics. Forz direction resonances in stationary trapping fields, the function governing the amplitude growth is investigated by computer simulations. The ejection in thez direction, as a function of timet, follows, at least in good approximation, the equation wheren is the order of multipole, andC is a constant. This equation is strictly valid for the electrically applied dipole field (n = 1), matching the secular frequency or one of its sidebands, resulting in a linear increase of the amplitude. It is valid also for the basic quadrupole field (n = 2) outside the stability area, giving an exponential increase. It is at least approximately valid for the non-linear resonances by weak superpositions of all higher odd

  10. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  11. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  12. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  13. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  14. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  15. Quantization of a non-linearly realized supersymmetric theory

    International Nuclear Information System (INIS)

    Shima, Kazunari

    1976-01-01

    The two-dimensional version of the Volkov-Akulov's Lagrngian, where the super-symmetry is realized non-linearly by means of a single Majorana spinor psi(x), is quantized. The equal time anti-commutators for the field are not c-numbers but functions of the field itself. By the explicite calculation we shall show that supersymmetry charges of the model form the supersymmetry algebra(the graded Lie algebra) and the supersymmetry charges exactly generate a constant translation of psi(x) in the spinor space. In this work we restrict our investigation to the two-dimensional space-time for the sake of simplicity. (auth.)

  16. Non-linear sigma model on the fuzzy supersphere

    International Nuclear Information System (INIS)

    Kurkcuoglu, Seckin

    2004-01-01

    In this note we develop fuzzy versions of the supersymmetric non-linear sigma model on the supersphere S (2,2) . In hep-th/0212133 Bott projectors have been used to obtain the fuzzy C P 1 model. Our approach utilizes the use of supersymmetric extensions of these projectors. Here we obtain these (super)-projectors and quantize them in a fashion similar to the one given in hep-th/0212133. We discuss the interpretation of the resulting model as a finite dimensional matrix model. (author)

  17. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  18. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  19. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    Full Text Available Abstract Background Non-linear dielectric spectroscopy (NLDS of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar

  20. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  1. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  2. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  3. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  4. Non-linear unidimensional Debye screening in plasmas

    International Nuclear Information System (INIS)

    Clemente, R.A.; Martin, P.

    1992-01-01

    An exact analytical solution for T e = T i and an approximate solution for T e ≠ T i have been obtained for the unidimensional non-linear Debye potential. The approximate expression is a solution of the Poisson equation obtained by expanding up to third order the Boltzmann's factors. The analysis shows that the effective Debye screening length can be quite different from the usual Debye length, when the potential to thermal energy ratio of the particles is not much smaller than unity. (author)

  5. Non-linear effective Lagrangian treatment of 'Penguin' interaction

    International Nuclear Information System (INIS)

    Pham, T.N.

    1984-01-01

    Using the non-linear effective lagrangian technique, we show explicitly that only derivative coupling is allowed for the K - π, K -> 2 π and K -> 3 π transitions induced by the ΔS = 1 Penguin operator of SVZ in agreement with chiral symmetry requirements. From a derivative coupling (3, anti 3) mass term and the SU(3) breaking effect for fsub(K)/fsub(π), we estimate the strength of the Penguin interactions and find it too small to account for the ΔI = 1/2 amplitude. (orig.)

  6. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  7. A theorem for non-linear stability to tearing modes

    International Nuclear Information System (INIS)

    Avinash, K.

    1992-12-01

    Within the reduced MHD approximation it is shown that dJ z /dΨ≤0 [J z is z component of the current density and Ψ is the helical flux] is a sufficient condition for the equilibrium to be non-linearly stable to tearing mode. It is further shown that this is also a sufficient condition for an equilibrium to be axisymmetric, hence helical equilibrium consistent with this condition cannot be constructed. However a class of axisymmetric equilibrium with hollow current profile is shown to satisfy the stability criterion. (author). 16 refs, 2 figs

  8. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Pojonk, Oliver; Rosic, Bojana V.; Zander, Elmar

    2014-01-01

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  9. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  10. Non-linear ultrasonic time-reversal mirrors in NDT

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    -, č. 4 (2012), s. 4-4 [World Conference on Nondestructive Testing /18./. 16.4.2012-20.4.2012, Durban] R&D Projects: GA MPO(CZ) FR-TI1/274; GA MPO(CZ) FR-T1/198; GA ČR(CZ) GAP104/10/1430 Institutional research plan: CEZ:AV0Z2076919 Keywords : non-linear ime reversal mirror * ultrasonic techniques * ESAM Subject RIV: BI - Acoustics http://www.academia-ndt.org/Downloads/AcademiaNews4.pdf

  11. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  12. Non-linear spin transport in magnetic semiconductor superlattices

    International Nuclear Information System (INIS)

    Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.

    2004-01-01

    The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field

  13. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  14. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  15. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  16. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  17. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Directory of Open Access Journals (Sweden)

    Line Hermannsen

    Full Text Available Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3 at six ranges (6, 120, 200, 400, 800 and 1300 m in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration, and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  18. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Science.gov (United States)

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  19. Airborne 3D Imaging Lidar for Contiguous Decimeter Resolution Terrain Mapping and Shallow Water Bathymetry

    Science.gov (United States)

    Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.

    2005-12-01

    A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.

  20. Laterally Loaded Single Pile Response Considering the Influence of Suction and Non-Linear Behaviour of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2017-12-01

    Full Text Available A hybrid BEM-p-y curves approach was developed for the single pile analysis with free/fixed head restraint conditions. The method considers the soil non-linear behaviour by means of p-y curves in series to a multi-layered elastic half-space. The non-linearity of reinforced concrete pile sections, also considering the influence of tension-stiffening, has been considered. The model reproduces the influence of suction by increasing the stress state and hence the stiffness of shallow soil-layers. Suction is modeled using the Modified-Kovacs model. The hybrid BEM-py curves method was validated by comparing results from data of 22 load tests on single piles. In addition, a detailed comparison is presented between measured and computed data on a large-diameter reinforced concrete bored single pile.

  1. Shallow ground water in the Powder River Bbasin, northeastern Wyoming: Description of selected publications, 1950-91, and indications for further study. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lindner-Lunsford, J.B.; Wilson, J.F.

    1992-01-01

    The report describes the conclusions and contributions to knowledge of shallow ground water in publications resulting from previous ground-water investigations in the Powder River Basin and describes indications for further study. For the report, shallow ground water is defined as water in geologic formations overlying the Upper Cretaceous Pierre Shale and equivalents. The 76 publications described were produced from 1950-91 by the U.S. Geological Survey, other government agencies, and academic and private organizations, including mining companies and engineering consultants. Only those parts of the publications that are relevant to thee quantity or quality of shallow ground water in the Powder River Basin are described. Mine plans for coal and uranium mines (many of which contain detailed, local hydrologic information) and publications containing pertinent geologic information, but no hydrologic information, are not included

  2. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Field Test of Electromigration as a Method for Remediating Sulfate from Shallow Ground Water

    Science.gov (United States)

    Patterson, C.G.; Runnells, D.D.

    1996-01-01

    Electromigration offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl-, NO3-, and SO4-. A field experiment was designed to test the efficacy of electromigration for preconcentrating dissolved SO42- in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feet apart (one 25 feet deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner tube of 2-inch PVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner tubing with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42- was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to be a steady-state value of 2200 mg/L, compared to the initial value in ground water of approximately 1150 mg/L. The results of this field test should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.

  4. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  5. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  6. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  7. A penalized framework for distributed lag non-linear models.

    Science.gov (United States)

    Gasparrini, Antonio; Scheipl, Fabian; Armstrong, Ben; Kenward, Michael G

    2017-09-01

    Distributed lag non-linear models (DLNMs) are a modelling tool for describing potentially non-linear and delayed dependencies. Here, we illustrate an extension of the DLNM framework through the use of penalized splines within generalized additive models (GAM). This extension offers built-in model selection procedures and the possibility of accommodating assumptions on the shape of the lag structure through specific penalties. In addition, this framework includes, as special cases, simpler models previously proposed for linear relationships (DLMs). Alternative versions of penalized DLNMs are compared with each other and with the standard unpenalized version in a simulation study. Results show that this penalized extension to the DLNM class provides greater flexibility and improved inferential properties. The framework exploits recent theoretical developments of GAMs and is implemented using efficient routines within freely available software. Real-data applications are illustrated through two reproducible examples in time series and survival analysis. © 2017 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  8. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  9. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  10. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  11. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  12. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  13. Understanding climate impacts on vegetation using a spatiotemporal non-linear Granger causality framework

    Science.gov (United States)

    Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem

    2017-04-01

    Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger

  14. Effects of sandfish (Holothuria scabra) removal on shallow-water sediments in Fiji.

    Science.gov (United States)

    Lee, Steven; Ford, Amanda K; Mangubhai, Sangeeta; Wild, Christian; Ferse, Sebastian C A

    2018-01-01

    Sea cucumbers play an important role in the recycling and remineralization of organic matter (OM) in reef sands through feeding, excretion, and bioturbation processes. Growing demand from Asian markets has driven the overexploitation of these animals globally. The implications of sea cucumber fisheries for shallow coastal ecosystems and their management remain poorly understood. To address this knowledge gap, the current study manipulated densities of Holothuria scabra within enclosures on a reef flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber removal on sedimentary function as a biocatalytic filter system. Three treatments were investigated: (i) high density (350 g m -2 wet weight; ca . 15 individuals); (ii) natural density (60 g m -2 ; ca . 3 individuals); and (iii) exclusion (0 g m -2 ). Quantity of sediment reworked through ingestion by H. scabra , grain size distribution, O 2 penetration depth, and sedimentary oxygen consumption (SOC) were quantified within each treatment. Findings revealed that the natural population of H. scabra at the study site can rework ca . 10,590 kg dry sediment 1,000 m -2 year -1 ; more than twice the turnover rate recorded for H. atra and Stichopus chloronotus . There was a shift towards finer fraction grains in the high treatment. In the exclusion treatment, the O 2 penetration depth decreased by 63% following a 6 °C increase in water temperature over the course of two months, while in the high treatment no such change was observed. SOC rates increased ca . two-fold in the exclusion treatment within the first month, and were consistently higher than in the high treatment. These results suggest that the removal of sea cucumbers can reduce the capacity of sediments to buffer OM pulses, impeding the function and productivity of shallow coastal ecosystems.

  15. Effects of sandfish (Holothuria scabra removal on shallow-water sediments in Fiji

    Directory of Open Access Journals (Sweden)

    Steven Lee

    2018-05-01

    Full Text Available Sea cucumbers play an important role in the recycling and remineralization of organic matter (OM in reef sands through feeding, excretion, and bioturbation processes. Growing demand from Asian markets has driven the overexploitation of these animals globally. The implications of sea cucumber fisheries for shallow coastal ecosystems and their management remain poorly understood. To address this knowledge gap, the current study manipulated densities of Holothuria scabra within enclosures on a reef flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber removal on sedimentary function as a biocatalytic filter system. Three treatments were investigated: (i high density (350 g m−2 wet weight; ca. 15 individuals; (ii natural density (60 g m−2; ca. 3 individuals; and (iii exclusion (0 g m−2. Quantity of sediment reworked through ingestion by H. scabra, grain size distribution, O2 penetration depth, and sedimentary oxygen consumption (SOC were quantified within each treatment. Findings revealed that the natural population of H. scabra at the study site can rework ca. 10,590 kg dry sediment 1,000 m−2 year−1; more than twice the turnover rate recorded for H. atra and Stichopus chloronotus. There was a shift towards finer fraction grains in the high treatment. In the exclusion treatment, the O2 penetration depth decreased by 63% following a 6 °C increase in water temperature over the course of two months, while in the high treatment no such change was observed. SOC rates increased ca. two-fold in the exclusion treatment within the first month, and were consistently higher than in the high treatment. These results suggest that the removal of sea cucumbers can reduce the capacity of sediments to buffer OM pulses, impeding the function and productivity of shallow coastal ecosystems.

  16. Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies

    Science.gov (United States)

    Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.

    2006-12-01

    The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds

  17. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  18. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    Science.gov (United States)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy

  19. SMALL ROV MARINE BOAT FOR BATHYMETRY SURVEYS OF SHALLOW WATERS – POTENTIAL IMPLEMENTATION IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K. T. Suhari

    2017-10-01

    Full Text Available Current practices in bathymetry survey (available method are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products – economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian’ bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling since it is mostly similar to Malaysia’s river characteristics and suggests some improvement for Malaysia best practice.

  20. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    Science.gov (United States)

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  1. The Analysis of Motion Dynamics and Resistance of the Multipurpose Boat Operating in Shallow Water

    Directory of Open Access Journals (Sweden)

    Jan Kulczyk

    2014-09-01

    Full Text Available Polish market of small boats has been developed very dynamically in recent years. Market competition forces the shipyards to build new more efficient hull forms and to cut the cost of production as well. This is why modern computer simulation programs are used more often by naval architects. Another trend is to design more universal ships that may be used by larger number of diversified customers. This paper presents project proposal of multipurpose boat hull form. The boat was design to fulfil the requirements imposed by public services like water police, fire brigades, and border guards. It is supposed to be operated on unexplored floodplains and other type shallow waters. The analysis of boat’s motion was based on computer simulations. The resistance curve was evaluated with two methods: comparison study of model test results of similar ships and CFD methods. The results obtained from Ansys Fluent and FINE/Marine systems were compared in this paper. It was shown that taking into consideration dynamic trim and sinkage has a significant impact on free surface capture and resistance values.

  2. Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.

    Science.gov (United States)

    Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E

    2009-06-01

    Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.

  3. Effect of temperature and salinity on stable isotopic composition of shallow water benthic foraminifera: A laboratory culture study

    Digital Repository Service at National Institute of Oceanography (India)

    Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.

    in the laboratory. In the present work, shallow water benthic foraminiferal species, Rosalina sp. and Pararotalia nipponica were subjected to different combinations of seawater temperature (25�C to 35�C) and salinity (25 psu to 37 psu) in the laboratory to assess...

  4. Citreicella manganoxidans sp. nov., a novel manganese oxidizing bacterium isolated from a shallow water hydrothermal vent in Espalamaca (Azores)

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasabapathy, R.; Mohandass, C; Dastager, S.G.; Liu, Q.; Li, W.-J; Colaco, A.

    A Gram-stain negative, non-motile, non-spore forming, aerobic and rod or narrow lemon-shaped bacterial strain, VSW210T, was isolated from surface seawater in a shallow water hydrothermal vent region in Espalamaca (Azores). Strain VSW210...

  5. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  6. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  7. GENOTOXICITY OF SHALLOW WATERS NEAR THE BRAZILIAN ANTARCTIC STATION "COMANDANTE FERRAZ" (EACF, ADMIRALTY BAY, KING GEORGE ISLAND, ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Arthur José da Silva Rocha

    2015-03-01

    Full Text Available Series of biomonitoring surveys were undertaken weekly in February 2012 to investigate the genotoxicity of the shallow waters around the Brazilian Antarctic Station "Comandante Ferraz" (EACF. The comet assay was applied to assess the damage to the DNA of hemocytes of the crustacean amphipods Gondogeneia antarctica collected from shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO of the research station, and compare it to the DNA damage of animals from Punta Plaza (PPL and Yellow Point (YP, natural sites far from the EACF defined as experimental controls. The damage to the DNA of hemocytes of G. antarctica was not significantly different between sites in the biomonitoring surveys I and II. In survey III, the damage to the DNA of animals captured in shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO was significantly higher than that of the control site of Punta Plaza (PPL. In biomonitoring survey IV, a significant difference was detected only between the FT and PPL sites. Results demonstrated that the shallow waters in front of the station may be genotoxic and that the comet assay and hemocytes of G. antarctica are useful tools for assessing genotoxicity in biomonitoring studies of Antarctic marine coastal habitats.

  8. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  9. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra; Tomar, Vikas, E-mail: tomar@purdue.edu

    2014-11-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water.

  10. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    International Nuclear Information System (INIS)

    Verma, Devendra; Tomar, Vikas

    2014-01-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water

  11. Contrasting cesium dynamics in neighboring deep and shallow warm-water reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, John E. [Department of Biology, Texas Christian University, Ft. Worth, TX 76129 (United States); Hinton, T.G., E-mail: thomas.hinton@irsn.f [Institute for Radiation Protection and Nuclear Safety, Cadarache, 13115 France (France); Whicker, F.W. [Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618 (United States)

    2010-09-15

    To measure the long term retention and seasonal dynamics of an initial 4 kg addition of {sup 133}Cs into an 11.4-ha, 157,000 m{sup 3} reservoir (Pond 4, near Aiken, South Carolina, USA), the concentrations and inventories of {sup 133}Cs in the water column were measured at periodical intervals for 522 days following the 1 August, 1999 release. After rapid declines in concentrations and inventories during the first 90 days, the {sup 133}Cs concentrations in the water column declined at an average proportional rate of 0.004 d{sup -1}. However, there were periods of less rapid and more rapid rates of declines, and these were correlated with periods of increasing and decreasing K concentrations in the water column. The decline rates were less and the K concentrations greater in the winter than in the summer. In the deeper, neighboring monomictic reservoirs of Par Pond and Pond B, a yearly cycle of increasing and decreasing {sup 137}Cs concentrations in the water column is driven by anoxic remobilization of Cs from the sediments into a persistent summer hypolimnion. In Pond 4, whose mean depth of 1.6 m is too shallow to support a persistent anoxic hypolimnion, the pattern of yearly dynamics for K and Cs appear to be related to the accumulation and release of these elements from the extensive, seasonal macrophyte communities. The contrasting results between Pond 4 and Pond B suggest that a full appreciation of the relative importance of 1) anoxic remobilization and 2) accumulation and release by macrophytes in these systems remains to be established.

  12. Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir

    Science.gov (United States)

    Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang

    2018-01-01

    Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.

  13. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NARCIS (Netherlands)

    Paaijmans, K.P.; Heusinkveld, B.G.; Jacobs, A.F.G.

    2008-01-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that

  14. Non-linear collective phenomena in dusty plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V N; Morfill, G E

    2004-01-01

    Dusty plasmas are unusual states of matter where the interactions between the dust grains can be collective and are not a sum of all pair particle interactions. This state of matter is appropriate to form non-linear dissipative collective self-organized structures. It is found that the potential around the grains can be over-screened leading to a new phenomenon-collective attraction of pairs of large charge grains of equal sign. The grain clouds can self-contract and their collapse is terminated at distances where the interaction becomes repulsive. The homogeneous dusty plasma distribution is universally unstable to form structures. The potential of the collective attraction is proportional to the square of the dimensionless parameter P = n d Z d /n i , where n d and n i are the average dust and ion densities, respectively, and Z d is the dust charge in units of electron charge. The collective attraction is determined by finite grain size and by the presence of absorption of plasma flux on grains. The physics of attraction is related to the space charge accumulation caused by collective flux disturbances. The collective attraction operates for systems with size larger than the mean free path for ion-dust absorption, the condition met in many existing low temperature dusty plasma experiments, in edge plasmas of fusion devices and in space dusty plasmas. The collective attraction exceeds the previously known non-collective attraction such as shadow attraction or wake attraction. The collective attraction can be responsible for pairing of dust grains (this process is completely classical in contrast to the known pairing in superconductivity) and can serve as the main process for the formation of more complicated dust complexes up to dust-plasma crystals. The equilibrium structures formed by collective attraction have universal properties and can exist in a limited domain of parameters (similar to the equilibrium balance known for stars). The balance conditions for

  15. Bottom friction models for shallow water equations: Manning’s roughness coefficient and small-scale bottom heterogeneity

    Science.gov (United States)

    Dyakonova, Tatyana; Khoperskov, Alexander

    2018-03-01

    The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.

  16. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  17. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

    Science.gov (United States)

    Eldred, Chris

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal

  18. Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance

    Directory of Open Access Journals (Sweden)

    Juan L. Torres-Pérez

    2012-11-01

    Full Text Available The coloration of tropical reef corals is mainly due to their association with photosynthetic dinoflagellates commonly known as zooxanthellae. Combining High Performance Liquid Chromatography (HPLC, spectroscopy and derivative analysis we provide a novel approach to discriminate between the Caribbean shallow-water corals Acropora cervicornis and Porites porites based on their associated pigments. To the best of our knowledge, this is the first time that the total array of pigments found within the coral holobiont is reported. A total of 20 different pigments were identified including chlorophylls, carotenes and xanthophylls. Of these, eleven pigments were common to both species, eight were present only in A. cervicornis, and three were present only in P. porites. Given that these corals are living in similar physical conditions, we hypothesize that this pigment composition difference is likely a consequence of harboring different zooxanthellae clades with a possible influence of endolithic green or brown algae. We tested the effect of this difference in pigments on the reflectance spectra of both species. An important outcome was the correlation of total pigment concentration with coral reflectance spectra up to a 97% confidence level. Derivative analysis of the reflectance curves showed particular differences between species at wavelengths where several chlorophylls, carotenes and xanthophylls absorb. Within species variability of spectral features was not significant while interspecies variability was highly significant. We recognize that the detection of such differences with actual airborne or satellite remote sensors is extremely difficult. Nonetheless, based on our results, the combination of these techniques (HPLC, spectroscopy and derivative analysis can be used as a robust approach for the development of a site specific spectral library for the identification of shallow-water coral species. Studies (Torres-Pérez, NASA Postdoctoral

  19. Realising traceable electrostatic forces despite non-linear balance motion

    International Nuclear Information System (INIS)

    Stirling, Julian; Shaw, Gordon A

    2017-01-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model. (paper)

  20. Non-linear numerical studies of the tearing mode

    International Nuclear Information System (INIS)

    Schnack, D.D. Jr.

    1978-01-01

    A non-linear, time dependent, hydromagnetic model is developed and applied to the tearing mode, one of a class of instabilities which can occur in a magnetically confined plasma when the constraint of infinite conductivity is relaxed. The model is based on the eight partial differential equations of resistive magnetohydrodynamics (MHD). The equations are expressed as a set of conservation laws which conserves magnetic flux, momentum, mass, and total energy. These equations are then written in general, orthogonal, curvilinear coordinates in two space dimensions, so that the model can readily be applied to a variety of geometries. No assumption about the ordering of terms is made. The resulting equations are then solved by the method of finite differences on an Eulerian mesh. The model is applied to several geometries

  1. Neutron stars in non-linear coupling models

    International Nuclear Information System (INIS)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z.; Malheiro, Manuel; Chiapparini, Marcelo

    2001-01-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, ∼ 0.72M s un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  2. Neutron stars in non-linear coupling models

    Energy Technology Data Exchange (ETDEWEB)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    2001-07-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  3. Non-linear realizations and higher curvature supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-12-15

    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Magnetodynamic non-linearity of electric properties of uncompensated metals

    International Nuclear Information System (INIS)

    Sobol', V.R.; Mazurenko, O.N.

    2001-01-01

    Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids

  5. On modulated complex non-linear dynamical systems

    International Nuclear Information System (INIS)

    Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.

    1999-01-01

    This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed

  6. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  7. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    Wit, B. de; Tollsten, A.K.; Nicolai, H.

    1993-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  8. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  9. Considering system non-linearity in transmission pricing

    International Nuclear Information System (INIS)

    Oloomi-Buygi, M.; Salehizadeh, M. Reza

    2008-01-01

    In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)

  10. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  11. Some contributions to non-linear physic: Mathematical problems

    International Nuclear Information System (INIS)

    1981-01-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs

  12. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  13. Differential changes in production measures for an estuarine-resident sparid in deep and shallow waters following increases in hypoxia

    Science.gov (United States)

    Cottingham, Alan; Hall, Norman G.; Hesp, S. Alex; Potter, Ian C.

    2018-03-01

    This study determined how productivity measures for a fish species in different water depths of an estuary changed in response to the increase in hypoxia in deep waters, which had previously been shown to occur between 1993-95 and 2007-11. Annual data on length and age compositions, body mass, growth, abundance, biomass, production and production to biomass ratio (P/B) were thus determined for the estuarine-resident Acanthopagrus butcheri in nearshore shallow (compositions imply that the increase in hypoxia was accompanied by the distribution of the majority of the older and larger A. butcheri changing from deep to shallow waters, where the small fish typically reside. Annual densities, biomass and production in shallow waters of fish m-2, 2-4 g m-2 and ∼2 g m-2 y-1 in the earlier period were far lower than the 0.1-0.2 fish m-2, 8-15 g m-2 and 5-10 g m-2 y-1 in the later period, whereas the reverse trend occurred in deep waters, with values of 6-9 fish net-1, 2000-3900 g net-1, 900-1700 g net-1 y-1 in the earlier period vs fish net-1, ∼110 g net-1 and 27-45 g net-1 y-1 in the later period. Within the later period, and in contrast to the trends with annual abundance and biomass, the production in shallow waters was least during 2008/09, rather than greatest, reflecting the slow growth in that particularly cool year. The presence of substantial aggregations of both small and large fish in shallow waters accounts for the abundance, biomass and production in those waters increasing between those periods and thus, through a density-dependent effect, provide a basis for the overall reduction in growth. In marked contrast to the trends with the other three production measures, annual production to biomass ratios (P/B) in shallow waters in the two years in the earlier period, and in three of the four years of the later period, fell within the same range, i.e. 0.6-0.9 y-1, but was only 0.2 y-1 in 2008/09, reflecting the poor growth in that year. This emphasises the need

  14. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  15. Non-linear diffusion and pattern formation in vortex matter

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Griessen, R.; Einfeld, J.; Woerdenweber, R.

    2000-03-01

    Penetration of magnetic flux in YBa_2Cu_3O7 superconducting thin films and crystals in externally applied magnetic fields is visualized with a magneto-optical technique. A variety of flux patterns due to non-linear vortex behavior is observed: 1. Roughening of the flux front^1 with scaling exponents identical to those observed in burning paper^2. Two regimes are found where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. 2. Roughening of the flux profile similar to the Oslo model for rice-piles. 3. Fractal penetration of flux^3 with Hausdorff dimension depending on the critical current anisotropy. 4. Penetration as 'flux-rivers'. 5. The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori^4. By comparison with numerical simulations, it is shown that most of the observed behavior can be explained in terms of non-linear diffusion of vortices. ^1R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse, J.H. Rector, B. Dam and R. Griessen, Phys.Rev. Lett. 83 (1999) 2054 ^2J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997) ^3R. Surdeanu, R.J. Wijngaarden, B. Dam, J. Rector, R. Griessen, C. Rossel, Z.F. Ren and J.H. Wang, Phys Rev B 58 (1998) 12467 ^4C. Reichhardt, C.J. Olson and F. Nori, Phys. Rev. B 58, 6534 (1998)

  16. Non-linearities in Theory-of-Mind Development.

    Science.gov (United States)

    Blijd-Hoogewys, Els M A; van Geert, Paul L C

    2016-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72-78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths.

  17. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  18. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  19. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender.

    Science.gov (United States)

    Haupenthal, Alessandro; Fontana, Heiliane de Brito; Ruschel, Caroline; dos Santos, Daniela Pacheco; Roesler, Helio

    2013-07-01

    To analyze the effect of depth of immersion, running speed and gender on ground reaction forces during water running. Controlled laboratory study. Twenty adults (ten male and ten female) participated by running at two levels of immersion (hip and chest) and two speed conditions (slow and fast). Data were collected using an underwater force platform. The following variables were analyzed: vertical force peak (Fy), loading rate (LR) and anterior force peak (Fx anterior). Three-factor mixed ANOVA was used to analyze data. Significant effects of immersion level, speed and gender on Fy were observed, without interaction between factors. Fy was greater when females ran fast at the hip level. There was a significant increase in LR with a reduction in the level of immersion regardless of the speed and gender. No effect of speed or gender on LR was observed. Regarding Fx anterior, significant interaction between speed and immersion level was found: in the slow condition, participants presented greater values at chest immersion, whereas, during the fast running condition, greater values were observed at hip level. The effect of gender was only significant during fast water running, with Fx anterior being greater in the men group. Increasing speed raised Fx anterior significantly irrespective of the level of immersion and gender. The magnitude of ground reaction forces during shallow water running are affected by immersion level, running speed and gender and, for this reason, these factors should be taken into account during exercise prescription. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Radiochemical quality of water in the shallow aquifer in Mortandad Canyon, 1967-1978

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Hansen, W.R.; Peters, R.J.

    1983-03-01

    Mortandad Canyon receives treated industrial liquid effluents that contain trace amounts of radionuclides. The effluents, other waste water, and storm runoff recharge a shallow aquifer in the alluvium of the canyon. The aquifer lies within the Los Alamos National Laboratory boundaries. Analyses for gross alpha, gross beta, 137 Cs, 238 Pu, 239 Pu, 241 Am, 90 Sr, 3 H, and total U have been made of water in the aquifer from 1967 through 1978. Average concentrations of the radionuclides in solution decrease downgradient in the canyon with the exception of 3 H. Average 3 H concentrations were highest in the Middle Canyon. Inventories of most radionuclides in the water indicate that in 1978 less than 1% of the total amount released with the effluents in the canyon from 1963 through 1978 remained in solution. The amount of total U in solution in 1978 was about 16% of the total amount released. If there is no significant change in the amounts of radionuclides received at the treatment plant and methods of treatment remain the same, the projected estimates of radionuclide concentrations in the aquifer will increase about 80% from 1978 to 1990. The average concentrations in 1978 and projected concentrations in 1990 of gross alpha, 137 Cs, 238 Pu, 239 Pu, 241 Am, 90 Sr, 3 H, and total U are less than 1% of the Department of Energy's concentration guides (CG) for areas with controlled public access. Gross beta radioactivity in 1978 was 2% of the CG and is projected to increase to 3% of the CG by 1990