WorldWideScience

Sample records for non-linear plasma oscillations

  1. Viscous Hydrodynamic Model of Non-linear Plasma Oscillations in Two-Dimensional Gated Conduction Channels and Application to the Detection of Terahertz Signals

    Science.gov (United States)

    2010-04-01

    for the resonant tunable detection of terahertz radiation. The non-linear plasma response has been observed in InGaAs (3, 4) and GaN (5–8) HEMTs , in...the transistor cut-off frequency in a short channel device. In the Dyakonov-Shur detector a short channel HEMT is used for the resonant tunable...for the (a) GaAs and (b) GaN channels

  2. Non-linear plasma transport in graphene channels and application to the detection of terahertz signals

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg

    2012-02-01

    The non-linear electron plasma response to electromagnetic signal applied to a gated graphene conduction channel can be used to make a graphene based Dyakonov-Shur terahertz detector. The hydrodynamic model predicts a resonance response to electromagnetic radiation at the plasma oscillation frequency. With less damping and higher mobility, the graphene conduction channels may provide higher quality plasma response than possible with semiconductor channels. Our analysis of plasma oscillations in a graphene channel is based on the hydrodynamic equations which we derive from the Boltzmann equation accounting for both electrons and holes, and including the effects of viscosity and finite mobility.

  3. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  4. Non-linear Plasma Wake Growth of Electron Holes

    CERN Document Server

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  5. Non-linear plasma wake growth of electron holes

    Science.gov (United States)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  6. Systematic treatment of non-linear effects in Baryon Acoustic Oscillations

    CERN Document Server

    Ivanov, Mikhail M

    2016-01-01

    In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.

  7. Non-linear Oscillations of Compact Stars and Gravitational Waves

    CERN Document Server

    Passamonti, A

    2006-01-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...

  8. Wind farm non-linear control for damping electromechanical oscillations of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)

    2008-10-15

    This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  9. Low-frequency band gaps in chains with attached non-linear oscillators

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2007-01-01

    in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In the linear case the gap is located around......The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency range...

  10. Frequency and Phase Noise in Non-Linear Microwave Oscillator Circuits

    OpenAIRE

    Tannous, C.

    2003-01-01

    We have developed a new methodology and a time-domain software package for the estimation of the oscillation frequency and the phase noise spectrum of non-linear noisy microwave circuits based on the direct integration of the system of stochastic differential equations representing the circuit. Our theoretical evaluations can be used in order to make detailed comparisons with the experimental measurements of phase noise spectra in selected oscillating circuits.

  11. Non-Linear Langmuir Wave Modulation in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1977-01-01

    A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...

  12. BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2007-01-01

    attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...

  13. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  14. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Science.gov (United States)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.

    2013-10-01

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  15. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.

    Science.gov (United States)

    Wigren, Torbjörn

    2015-01-01

    The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data.

  16. Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case

    Science.gov (United States)

    Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem

    2015-01-01

    In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756

  17. Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method

    Science.gov (United States)

    Mishchenko, Yuriy; Ji, Chueng-R.

    2004-03-01

    Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.

  18. Non-Linear High Amplitude Oscillations in Wave-shaped Resonators

    Science.gov (United States)

    Antao, Dion; Farouk, Bakhtier

    2011-11-01

    A numerical and experimental study of non-linear, high amplitude standing waves in ``wave-shaped'' resonators is reported here. These waves are shock-less and can generate peak acoustic overpressures that can exceed the ambient pressure by three/four times its nominal value. A high fidelity compressible axisymmetric computational fluid dynamic model is used to simulate the phenomena in cylindrical and arbitrarily shaped axisymmetric resonators. Working fluids (Helium, Nitrogen and R-134a) at various operating pressures are studied. The experiments are performed in a constant cross-section cylindrical resonator in atmospheric pressure nitrogen and helium to provide model validation. The high amplitude non-linear oscillations demonstrated can be used as a prime mover in a variety of applications including thermoacoustic cryocooling. The work reported is supported by the US National Science Foundation under grant CBET-0853959.

  19. Quantum noise and mixedness of a pumped dissipative non-linear oscillator

    CERN Document Server

    Bajer, J; Andrzejewski, M; Bajer, Jiri; Miranowicz, Adam; Andrzejewski, Mateusz

    2004-01-01

    Evolutions of quantum noise, characterized by quadrature squeezing parameter and Fano factor, and of mixedness, quantified by quantum von Neumann and linear entropies, of a pumped dissipative non-linear oscillator are studied. The model can describe a signal mode interacting with a thermal reservoir in a parametrically pumped cavity with a Kerr non-linearity. It is discussed that the initial pure states, including coherent states, Fock states, and finite superpositions of coherent states evolve into the same steady mixed state as verified by the quantum relative entropy and the Bures metric. It is shown analytically and verified numerically that the steady state can be well approximated by a nonclassical Gaussian state exhibiting quadrature squeezing and sub-Poissonian statistics for the cold thermal reservoir. It is found a rapid increase in the mixedness, especially for the initial Fock states and superpositions of coherent states, during a very short time interval, and then for longer evolution times a dec...

  20. Non-linear shape oscillations of rising drops and bubbles: Experiments and simulations

    Science.gov (United States)

    Lalanne, Benjamin; Abi Chebel, Nicolas; Vejražka, Jiří; Tanguy, Sébastien; Masbernat, Olivier; Risso, Frédéric

    2015-12-01

    This paper focuses on shape-oscillations of a gas bubble or a liquid drop rising in another liquid. The bubble/drop is initially attached to a capillary and is released by a sudden motion of that capillary, resulting in the rise of the bubble/drop along with the oscillations of its shape. Such experimental conditions make difficult the interpretation of the oscillation dynamics with regard to the standard linear theory of oscillation because (i) amplitude of deformation is large enough to induce nonlinearities, (ii) the rising motion may be coupled with the oscillation dynamics, and (iii) clean conditions without residual surfactants may not be achieved. These differences with the theory are addressed by comparing experimental observation with numerical simulation. Simulations are carried out using Level-Set and Ghost-Fluid methods with clean interfaces. The effect of the rising motion is investigated by performing simulations under different gravity conditions. Using a decomposition of the bubble/drop shape into a series of spherical harmonics, experimental and numerical time evolutions of their amplitudes are compared. Due to large oscillation amplitude, non-linear couplings between the modes are evidenced from both experimental and numerical signals; modes of lower frequency influence modes of higher frequency, whereas the reverse is not observed. Nevertheless, the dominant frequency and overall damping rate of the first five modes are in good agreement with the linear theory. Effect of the rising motion on the oscillations is globally negligible, provided the mean shape of the oscillation remains close to a sphere. In the drop case, despite the residual interface contamination evidenced by a reduction in the terminal velocity, the oscillation dynamics is shown to be unaltered compared to that of a clean drop.

  1. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Science.gov (United States)

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  2. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    Science.gov (United States)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  3. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged

  4. Multidimensional Plasma Wake Excitation in the Non-linear Blowout Regime

    CERN Document Server

    Vieira, J; Silva, L O

    2016-01-01

    Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for sev- eral scientific, medical and technological applications. Current plasma based acceleration experiments operate in the relativistic regime, where the plasma response is strongly non-linear. We outline some of the key properties of wake- field excitation in these regimes. We outline a multidimensional theory for the excitation of plasma wakefields in connection with current experiments. We then use these results and provide design guidelines for the choice of laser and plasma parameters ensuring a stable laser wakefield accelerator that maximizes the quality of the accelerated electrons. We also mention some of the future challenges associated with this technology.

  5. Applicability of time-averaged holography for micro-electro-mechanical system performing non-linear oscillations.

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-21

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  6. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Directory of Open Access Journals (Sweden)

    Paulius Palevicius

    2014-01-01

    Full Text Available Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms.

  7. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    Science.gov (United States)

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  8. Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

    CERN Document Server

    Murrell, J K J

    2001-01-01

    previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...

  9. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Directory of Open Access Journals (Sweden)

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  10. Non-linear plasma effects on laser-induced terahertz emission from the atmosphere

    Science.gov (United States)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-02-01

    Power, spectral characteristics, and angle distribution of terahertz (THz) radiation from air irradiated by a single (ω) or coupled (ω, 2ω) femtosecond laser pulses are analyzed for higher intensities, for which non-linear plasma effects on the pulse propagation become essential, by means of multidimensional particle-in-cell simulations exploiting the self-consistent plasma kinetics. THz radiation is shown to be a result of beat waves generated at ionization front with fundamental and second harmonic waves. At lower intensities, the THz power growth is far faster than the linear; at pulse intensities over I > 1015 W/cm2, the power increases slower than the linear. Along with the forward emission, strong power in around 30o angles occurs at high intensities. Ionization of air results in poor focusing of laser pulses and, therefore, lower efficiency of THz emission.

  11. Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    CERN Document Server

    Everitt, M J; Stiffell, P B; Ralph, J F; Bulsara, A R; Harland, C J

    2005-01-01

    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.

  12. MEASUREMENT OF NON-LINEARITIES USING SPECTRUM ANALYSIS OF DRIVEN BETATRON OSCILLATION.

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; BLASKIEWICZ,M.; LEHRACH,A.; ROSER,T.; SCHMIDT,F.; VAN ASSELT,W.

    2001-06-18

    Resonance driving terms can be derived from the frequency analysis of turn-by-turn betatron oscillation data. This paper demonstrates that the same information can also be drawn from the spectral analysis of a driven oscillation adiabatically excited by an rf dipole. The advantage of this method is that a large betatron oscillation amplitude can be sustained without loosing the coherence signal. The frequency spectrum of the driven oscillation is composed of multiples of the rf dipole modulation frequency which can be interpreted as resonance driving terms. This analysis has been applied to the data taken at the Brookhaven AGS. The adiabatically excited coherent oscillation is also very useful in measuring the betatron tune parasitically. The data taken during the AGS high intensity proton program is also presented.

  13. Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

    Directory of Open Access Journals (Sweden)

    H. M. Abdelhafez

    2016-03-01

    Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.

  14. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    CERN Document Server

    Orain, F; Viezzer, E; Dunne, M; Becoulet, M; Cahyna, P; Huijsmans, G T A; Morales, J; Willensdorfer, M; Suttrop, W; Kirk, A; Pamela, S; Strumberger, E; Guenter, S; Lessig, A

    2016-01-01

    The plasma response to Resonant Magnetic Perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which Edge Localized Modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m=n, the coupling between the m + 2 kink component and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant ampli?cation can only partly explain the density pumpout observed in experiments.

  15. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    Science.gov (United States)

    Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q  =  m/n, the coupling between the kink component (m  >  nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.

  16. Properties of finite difference models of non-linear conservative oscillators

    Science.gov (United States)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  17. A general derivation of the subharmonic threshold for non-linear bubble oscillations.

    Science.gov (United States)

    Prosperetti, Andrea

    2013-06-01

    The paper describes an approximate but rather general derivation of the acoustic threshold for a subharmonic component to be possible in the sound scattered by an insonified gas bubble. The general result is illustrated with several specific models for the mechanical behavior of the surface coating of bubbles used as acoustic contrast agents. The approximate results are found to be in satisfactory agreement with fully non-linear numerical results in the literature. The amplitude of the first harmonic is also found by the same method. A fundamental feature identified by the analysis is that the subharmonic threshold can be considerably lowered with respect to that of an uncoated free bubble if the mechanical response of the coating varies rapidly in the neighborhood of certain specific values of the bubble radius, e.g., because of buckling.

  18. Crunch-in regime - Non-linearly driven hollow-channel plasma

    CERN Document Server

    Sahai, Aakash A

    2016-01-01

    Plasma wakefields driven inside a hollow-channel plasma are significantly different from those driven in a homogeneous plasma. This work investigates the scaling laws of the accelerating and focusing fields in the "crunch-in" regime. This regime is excited due to the collapse of the electron-rings from the channel walls onto the propagation axis of the energy-source, in its wake. This regime is thus the non-linearly driven hollow channel, since the electron-ring displacement is of the order of the channel radius. We present the properties of the coherent structures in the "crunch-in" regime where the channel radius is matched to the beam properties such that channel-edge to on-axis collapse time has a direct correspondence to the energy source intensity. We also investigate the physical mechanisms that underlie the "crunch-in" wakefields by tuning the channel radius. Using a theoretical framework and results from PIC simulations the possible applications of the "crunch-in" regime for acceleration of positron ...

  19. Non-linear mode interaction between spin torque driven and damped modes in spin torque nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); Delaët, B. [CEA-LETI, MINATEC, DRT/LETI/DIHS, 38054 Grenoble (France)

    2015-05-11

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.

  20. Selective measurement of quantronium qubit states by using of mesoscopic non-linear oscillator

    Science.gov (United States)

    Denisenko, M. V.; Satanin, A. M.

    2016-12-01

    We study the process of selective measurements of states of individual quantum systems - Josephson qubit - using nonlinear oscillator, working in the mesoscopic regime, when the number of quanta in the measuring process varies from a few dozen to a few hundred. Quantum Monte-Carlo method simulated dissipative dynamics of the system "qubit - oscillator" and the measurement process of a qubit state to modify the number of quanta of the oscillator. It is shown that for different Rabi-pulses of the recording state of a qubit the discrimination of states is possible, as well as the measurement of the effect of back-action of the measuring device, including separation of the prepared superposition state - carrying out statistical projective measurements.

  1. On the Approximate Analytical Solution to Non-Linear Oscillation Systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Bayat

    2013-01-01

    Full Text Available This study describes an analytical method to study two well-known systems of nonlinear oscillators. One of these systems deals with the strongly nonlinear vibrations of an elastically restrained beam with a lumped mass. The other is a Duffing equation with constant coefficients. A new implementation of the Variational Approach (VA is presented to obtain highly accurate analytical solutions to free vibration of conservative oscillators with inertia and static type cubic nonlinearities. In the end, numerical comparisons are conducted between the results obtained by the Variational Approach and numerical solution using Runge-Kutta's [RK] algorithm to illustrate the effectiveness and convenience of the proposed methods.

  2. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br [Associate Laboratory for Computing and Applied Mathematics - LAC, Brazilian National Institute for Space Research - INPE (Brazil); Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de [Department of Physics and Astronomy, University of Potsdam, Germany and Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the full synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.

  3. Simulation of the oscillation regimes of bowed bars: a non-linear modal approach

    Science.gov (United States)

    Inácio, Octávio; Henrique, Luís.; Antunes, José

    2003-06-01

    It is still a challenge to properly simulate the complex stick-slip behavior of multi-degree-of-freedom systems. In the present paper we investigate the self-excited non-linear responses of bowed bars, using a time-domain modal approach, coupled with an explicit model for the frictional forces, which is able to emulate stick-slip behavior. This computational approach can provide very detailed simulations and is well suited to deal with systems presenting a dispersive behavior. The effects of the bar supporting fixture are included in the model, as well as a velocity-dependent friction coefficient. We present the results of numerical simulations, for representative ranges of the bowing velocity and normal force. Computations have been performed for constant-section aluminum bars, as well as for real vibraphone bars, which display a central undercutting, intended to help tuning the first modes. Our results show limiting values for the normal force FN and bowing velocity ẏbow for which the "musical" self-sustained solutions exist. Beyond this "playability space", double period and even chaotic regimes were found for specific ranges of the input parameters FN and ẏbow. As also displayed by bowed strings, the vibration amplitudes of bowed bars also increase with the bow velocity. However, in contrast to string instruments, bowed bars "slip" during most of the motion cycle. Another important difference is that, in bowed bars, the self-excited motions are dominated by the system's first mode. Our numerical results are qualitatively supported by preliminary experimental results.

  4. Excitation of wakefields in a relativistically hot plasma created by dying non-linear plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, A. A.; Katsouleas, T. C.; Gessner, S.; Hogan, M.; Joshi, C.; Mori, W. B. [Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 90309 (United States); University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2012-12-21

    We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the case where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.

  5. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS).

    Science.gov (United States)

    Sage, Cindy

    2015-01-01

    The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health

  6. Linear and Non-linear Rabi Oscillations of a Two-Level System Resonantly Coupled to an Anderson-Localized Mode

    CERN Document Server

    Bachelard, Nicolas; Sebbah, Patrick; Vanneste, Christian

    2014-01-01

    We use time-domain numerical simulations of a two-dimensional (2D) scattering system to study the interaction of a collection of emitters resonantly coupled to an Anderson-localized mode. For a small electric field intensity, we observe the strong coupling between the emitters and the mode, which is characterized by linear Rabi oscillations. Remarkably, a larger intensity induces non-linear interaction between the emitters and the mode, referred to as the dynamical Stark effect, resulting in non-linear Rabi oscillations. The transition between both regimes is observed and an analytical model is proposed which accurately describes our numerical observations.

  7. Uncertainty Quantification of Non-linear Oscillation Triggering in a Multi-injector Liquid-propellant Rocket Combustion Chamber

    Science.gov (United States)

    Popov, Pavel; Sideris, Athanasios; Sirignano, William

    2014-11-01

    We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.

  8. Non-linear Ion-Wake Excitation by Plasma Electron Wakefields of an Electron or Positron Beam for Positron Acceleration

    Science.gov (United States)

    Katsouleas, Thomas; Sahai, Aakash

    2015-11-01

    The excitation of a non-linear ion-wake by a train of non-linear electron wake of an electron and a positron beam is modeled and its use for positron acceleration is explored. The ion-wake is shown to be a driven non-linear ion-acoustic wave in the form of a cylindrical ion-soliton similar to the solution of the cKdV equation. The phases of the oscillating radial electric fields of the slowly-propagating electron wake are asymmetric in time and excite time-averaged inertial ion motion radially. The radial field of the electron compression region sucks-in the ions and the field of space-charge region of the wake expels them, driving a cylindrical ion-soliton structure with on-axis and bubble-edge density-spikes. Once formed, the channel-edge density-spike is driven radially outwards by the thermal pressure of the thermalized wake energy. Its channel-like structure due to the flat-residue left behind by the propagating ion-soliton, is independent of the energy-source driving the non-linear electron wake. We explore the use of the partially-filled channel formed by the cylindrical ion-soliton for a novel regime of positron acceleration. PIC simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration (arXiv:1504.03735). Work supported by the US Department of Energy under DE-SC0010012 and the National Science Foundation under NSF-PHY-0936278.

  9. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Science.gov (United States)

    Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  10. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  11. Non-linear eye movements during visual-vestibular interaction under body oscillation with step-mode lateral linear acceleration.

    Science.gov (United States)

    Mori, Shigeo; Katayama, Naomi

    2005-02-01

    . To extend this hypothesis further, another group of subjects was exposed to three different optokinetic-stimulus speeds of 20, 40 and 60 deg/s combined with an acceleration of 0.3 G (Experiment 2, N=15). Combined stimulation tended to optimize the combined-OKR velocity around the given optokinetic stimulus-speed, especially in those cases where the reference-OKR velocity deviated significantly from the stimulus speed. Changes in combined-OKR velocity were small at 20 deg/s, and were likely to be linear across the agonistic and antagonistic conditions. With increasing optokinetic stimulus-speeds, the direction-selective asymmetry hypothesized above was maintained in more than half of the subjects, while in the other subjects the combined-OKR velocity difference increased remarkably, probably due to an enhancement of the OKR gain. We conclude that tVOR suppression during the antagonistic stimulus-condition and non-linearity in the tVOR-OKR interaction are characteristic of the otolith system, even under moderate-stimulus environments, in contrast to the linear eye-movement interaction in the semicircular canal system.

  12. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma

    Science.gov (United States)

    Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T.

    2017-03-01

    Energetic electrons are of interest in many types of plasmas, however previous modeling of their properties has been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modeling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.

  13. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma

    CERN Document Server

    Stahl, A; Embréus, O; Fülöp, T

    2016-01-01

    Energetic electrons are of interest in many types of plasmas, however previous modelling of their properties have been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modelling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.

  14. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  15. Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, S. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Valeo, E. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-10-01

    Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.

  16. Synchronization, non-linear dynamics and low-frequency fluctuations: analogy between spontaneous brain activity and networked single-transistor chaotic oscillators.

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  17. A non-linear discontinuous Petrov-Galerkin method for removing oscillations in the solution of the time-dependent transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Merton, S. R.; Smedley-Stevenson, R. P. [Computational Physics Group, AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Pain, C. C. [Dept. of Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2012-07-01

    This paper describes a Non-Linear Discontinuous Petrov-Galerkin method and its application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The added dissipation is calculated at each node of the finite element mesh based on local behaviour of the transport solution on both the spatial and temporal axes of the problem. Thus a different dissipation is used in different elements. The magnitude of dissipation that is used is obtained from a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is implemented within a very general finite element Riemann framework. This makes it completely independent of choice of angular basis function allowing one to use different descriptions of the angular variation. Results show the non-linear scheme performs consistently well in demanding time-dependent multi-dimensional neutron transport problems. (authors)

  18. Characteristic Scales of Baryon Acoustic Oscillations from Perturbation Theory: Non-linearity and Redshift-Space Distortion Effects

    CERN Document Server

    Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi

    2007-01-01

    An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.

  19. Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Fläschner, G.; Ruschmeier, K.; Schwarz, A., E-mail: aschwarz@physnet.uni-hamburg.de; Wiesendanger, R. [Institut für Angewandte Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Bakhtiari, M. R.; Thorwart, M. [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrae 9, 20355 Hamburg (Germany)

    2015-03-23

    The sensitivity of atomic force microscopes is fundamentally limited by the cantilever temperature, which can be, in principle, determined by measuring its thermal spectrum and applying the equipartition theorem. However, the mechanical response can be affected by the light field inside the cavity of a Fabry-Perot interferometer due to light absorption, radiation pressure, photothermal forces, and laser noise. By evaluating the optomechanical Hamiltonian, we are able to explain the peculiar distance dependence of the mechanical quality factor as well as the appearance of thermal spectra with symmetrical Lorentzian as well as asymmetrical Fano line shapes. Our results can be applied to any type of mechanical oscillator in an interferometer-based detection system.

  20. Non-linear 2-DOF model and centre manifold theory to study limit cycle oscillations caused by drum-brake judder

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming-gang; HUANG Qi-bai; WANG Yong; XU Zhi-sheng

    2007-01-01

    This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.

  1. Pair creation and plasma oscillations.

    Energy Technology Data Exchange (ETDEWEB)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  2. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  3. Non-linear Equation using Plasma Brain Natriuretic Peptide Levels to Predict Cardiovascular Outcomes in Patients with Heart Failure

    Science.gov (United States)

    Fukuda, Hiroki; Suwa, Hideaki; Nakano, Atsushi; Sakamoto, Mari; Imazu, Miki; Hasegawa, Takuya; Takahama, Hiroyuki; Amaki, Makoto; Kanzaki, Hideaki; Anzai, Toshihisa; Mochizuki, Naoki; Ishii, Akira; Asanuma, Hiroshi; Asakura, Masanori; Washio, Takashi; Kitakaze, Masafumi

    2016-11-01

    Brain natriuretic peptide (BNP) is the most effective predictor of outcomes in chronic heart failure (CHF). This study sought to determine the qualitative relationship between the BNP levels at discharge and on the day of cardiovascular events in CHF patients. We devised a mathematical probabilistic model between the BNP levels at discharge (y) and on the day (t) of cardiovascular events after discharge for 113 CHF patients (Protocol I). We then prospectively evaluated this model on another set of 60 CHF patients who were readmitted (Protocol II). P(t|y) was the probability of cardiovascular events occurring after >t, the probability on t was given as p(t|y) = -dP(t|y)/dt, and p(t|y) = pP(t|y) = αyβP(t|y), along with p = αyβ (α and β were constant); the solution was p(t|y) = αyβ exp(-αyβt). We fitted this equation to the data set of Protocol I using the maximum likelihood principle, and we obtained the model p(t|y) = 0.000485y0.24788 exp(-0.000485y0.24788t). The cardiovascular event-free rate was computed as P(t) = 1/60Σi=1,…,60 exp(-0.000485yi0.24788t), based on this model and the BNP levels yi in a data set of Protocol II. We confirmed no difference between this model-based result and the actual event-free rate. In conclusion, the BNP levels showed a non-linear relationship with the day of occurrence of cardiovascular events in CHF patients.

  4. Impurity-induced divertor plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  5. Impurity-induced divertor plasma oscillations

    Science.gov (United States)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  6. Neutrino oscillations in a turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T. [Instituto de Física, Universidade de São Paulo, São Paulo, SP, CEP 05508-090 Brazil and IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Haas, F. [Departamento de Física, Universidade Federal do Paraná, Curitiba PR, CEP 81531-990 (Brazil)

    2013-07-15

    A new model for the joint neutrino flavor and plasma oscillations is introduced, in terms of the dynamics of the neutrino flavor polarization vector in a plasma background. Fundamental solutions are found for both time-invariant and time-dependent media, considering slow and fast variations of the electron plasma density. The model is shown to be described by a generalized Hamiltonian formalism. In the case of a broad spectrum of electron plasma waves, a statistical approach indicates the shift of both equilibrium value and frequency oscillation of flavor coherence, due to the existence of a turbulent plasma background.

  7. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  8. Effective attraction between oscillating electrons in plasma

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    We consider the effective interaction between electrons due to the exchange of virtual acoustic waves in low temperature plasma. Electrons are supposed to participate in rapid oscillations and form a spherically symmetric soliton like structure. We show that under certain conditions this effective interaction can result in the attraction between oscillating electrons and can be important for the dynamics of a plasmoid. Some possible applications of the obtained results to the theory of natural long lived plasma structures are also discussed.

  9. DoE Plasma Center for Momentum Transport and Flow Self-Organization in Plasmas: Non-linear Emergent Structure Formation in magnetized Plasmas and Rotating Magnetofluids

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary B. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2016-11-10

    This report covers the UW-Madison activities that took place within a larger DoE Center Administered and directed by Professor George Tynan at the University of California, San Diego. The work at Wisconsin will also be covered in the final reporting for the entire center, which will be submitted by UCSD. There were two main activities, one experimental and one that was theoretical in nature, as part of the Center activities at the University of Wisconsin, Madison. First, the Center supported an experimentally focused postdoc (Chris Cooper) to carry out fundamental studies of momentum transport in rotating and weakly magnetized plasma. His experimental work was done on the Plasma Couette Experiment, a cylindrical plasma confinement device, with a plasma flow created through electromagnetically stirring plasma at the plasma edge facilitated by arrays of permanent magnets. Cooper's work involved developing optical techniques to measure the ion temperature and plasma flow through Doppler-shifted line radiation from the plasma argon ions. This included passive emission measurements and development of a novel ring summing Fabry-Perot spectroscopy system, and the active system involved using a diode laser to induce fluorescence. On the theoretical side, CMTFO supported a postdoc (Johannes Pueschel) to carry out a gyrokinetic extension of residual zonal flow theory to the case with magnetic fluctuations, showing that magnetic stochasticity disrupts zonal flows. The work included a successful comparison with gyrokinetic simulations. This work and its connection to the broader CMTFO will be covered more thoroughly in the final CMTFO report from Professor Tynan.

  10. Sausage oscillations of coronal plasma slabs

    Science.gov (United States)

    Hornsey, C.; Nakariakov, V. M.; Fludra, A.

    2014-07-01

    Context. Sausage oscillations are observed in plasma non-uniformities of the solar corona as axisymmetric perturbations of the non-uniformity. Often, these non-uniformities can be modelled as field-aligned slabs of the density enhancement. Aims: We perform parametric studies of sausage oscillations of plasma slabs, aiming to determine the dependence of the oscillation period on its parameters, and the onset of leaky and trapped regimes of the oscillations. Methods: Slabs with smooth transverse profiles of the density of a zero-beta plasma are perturbed by an impulsive localised perturbation of the sausage symmetry. In particular, the slab can contain an infinitely thin current sheet in its centre. The initial value problem is then solved numerically. The numerical results are subject to spectral analysis. The results are compared with analytical solutions for a slab with a step-function profile and also with sausage oscillations of a plasma cylinder. Results: We established that sausage oscillations in slabs generally have the same properties as in plasma cylinders. In the trapped regime, the sausage oscillation period increases with the increase in the longitudinal wavelength. In the leaky regime, the dependence of the period on the wavelength experiences saturation, and the period becomes independent of the wavelength in the long-wavelength limit. In the leaky regime the period is always longer than in the trapped regime. The sausage oscillation period in a slab is always longer than in a cylinder with the same transverse profile. In slabs with steeper transverse profiles, sausage oscillations have longer periods. The leaky regime occurs at shorter wavelengths in slabs with smoother profiles.

  11. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  12. SAUSAGE OSCILLATIONS OF CORONAL PLASMA STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M.; Hornsey, C. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Melnikov, V. F., E-mail: V.Nakariakov@warwick.ac.uk [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 St Petersburg (Russian Federation)

    2012-12-20

    The dependence of the period of sausage oscillations of coronal loops on length together with the depth and steepness of the radial profile are determined. We performed a parametric study of linear axisymmetric fast magnetoacoustic (sausage) oscillations of coronal loops modeled as a field-aligned low-{beta} plasma cylinder with a smooth inhomogeneity of the plasma density in the radial direction. The density decreases smoothly in the radial direction. Sausage oscillations are impulsively excited by a perturbation of the radial velocity, localized at the cylinder axis and with a harmonic dependence on the longitudinal coordinate. The initial perturbation results in either a leaky or a trapped sausage oscillation, depending upon whether the longitudinal wavenumber is smaller or greater than a cutoff value, respectively. The period of the sausage oscillations was found to always increase with increasing longitudinal wavelength, with the dependence saturating in the long-wavelength limit. Deeper and steeper radial profiles of the Alfven speed correspond to more efficient trapping of sausage modes: the cutoff value of the wavelength increases with the steepness and the density (or Alfven speed) contrast ratio. In the leaky regime, the period is always longer than the period of a trapped mode of a shorter wavelength in the same cylinder. For shallow density profiles and shorter wavelengths, the period increases with wavelength. In the long-wavelength limit, the period becomes independent of the wavelength and increases with the depth and steepness of the radial profile of the Alfven speed.

  13. Non-linear recurrence analysis of NREM human sleep microstructure discloses deterministic oscillation patterns related to sleep stage transitions and sleep maintenance.

    Science.gov (United States)

    Priano, L; Saccomandi, F; Mauro, A; Guiot, C

    2010-01-01

    Sleep is a dynamic process aimed at obtaining the required neurophysiological states at certain times, according to circadian and homeostatic needs and despite external or internal interfering stimuli. In this context, peculiar transient synchronized EEG patterns (TSEP) are supposed to play the main role in the building up of EEG synchronization and in the flexible adaptation against perturbations Our study aimed at disclosing and quantifying attractor driven, hidden periodicity or, conversely, chaotic oscillation patterns in the series of these TSEP related to sleep stage transitions and sleep maintenance. At first we devised a multistep algorithm, able to capture TSEP from EEG during sleep in 10 healthy volunteers. The time series of TSEP were then analyzed according to the Recurrence Plot (RP). TSEP series showed to form a pseudo-periodic series which becomes progressively denser and more stable until steady slow wave NREM sleep is reached, but looses stability just before REM sleep starts. This suggests that deterministic oscillatory patterns maybe adequate descriptors of the balance between homeostatic needs for NREM sleep and REM sleep pressure, supported by different cortical neuronal populations interactions.

  14. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  15. On the stability, the periodic solutions and the resolution of certain types of non linear equations, and of non linearly coupled systems of these equations, appearing in betatronic oscillations; Sur la stabilite, les solutions periodiques et la resolution de certaines categories d'equations et systemes d'equations differentielles couplees non lineaires apparaissant dans les oscillations betatroniques

    Energy Technology Data Exchange (ETDEWEB)

    Valat, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de

  16. Relativistic longitudinal non-Abelian oscillations in quark–antiquark plasma

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2002-10-01

    We study the relativistic version of the non-Abelian, longitudinal wave in quark–antiquark plasma reported earlier by Bhat et al [Phys. Rev. D39, 649 (1989)]. We have also relaxed various approximations they made in their analysis. Both the quark and antiquark dynamics are taken in our analysis. The non-linearity arising from non-Abelian field as well as from plasma are included. Hence it is an exact longitudinal mode in relativistic quark–antiquark plasma, relevant to the study of quark gluon plasma. We find that earlier results are reproduced for non-relativistic and low amplitude oscillations, but are modified for relativistic or large amplitude waves. Further more, the above results are based on just four first-order equations for gauge invariant quantities derived from gauge covariant twelve first-order equations.

  17. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas; Dinamica nao linear de ondas de Langmuir e eletromagneticas em plasmas espaciais

    Energy Technology Data Exchange (ETDEWEB)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  18. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    Science.gov (United States)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  19. Non-linear canonical correlation

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1983-01-01

    Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An

  20. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  1. Non-Linear Model for the Disturbance of Electronics in by High Energy Electron Plasmas in the Van Allen Radiation Belts

    Science.gov (United States)

    Atkinson, William

    2009-11-01

    A model is presented that models the disturbance of electrical components by high energy electrons trapped in the Van Allen radiation belts; the model components consists of module computing the electron fluence rate given the altitude, the time of the year, and the sunspot number, a module that transports the electrons through the materials of the electrical component, and a module that computes the charge and electrical fields of the insulating materials as a function of time. A non-linear relationship (the Adameic-Calderwood equation) for the variation of the electrical conductivity with the electrical field strength is used as the field intensities can be quite high due to the small size of the electrical components and the high fluence rate of the electrons. The results show that the electric fields can often be as high as 10 MV/m in materials commonly used in cables such as Teflon and that the field can stay at high levels as long as an hour after the irradiation ends.

  2. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  3. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  4. Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film

    Directory of Open Access Journals (Sweden)

    H. N. Desai

    2015-06-01

    Full Text Available Thin film of Zinc Selenide (ZnSe was deposited onto transparent glass substrate by thermal evaporation technique. ZnSe thin film was characterized by UV-Visible spectrophotometer within the wavelength range of 310 nm-1080 nm. The Linear optical parameters (linear optical absorption, extinction coefficient, refractive index and complex dielectric constant of ZnSe thin film were analyzed from absorption spectra. The optical band gap and Urbach energy were obtained by Tauc’s equation. The volume and surface energy loss function of ZnSe thin film were obtained by complex dielectric constant. The Dispersion parameters (dispersion energy, oscillation energy, moment of optical dispersion spectra, static dielectric constant and static refractive index were calculated using theoretical Wemple-DiDomenico model. The oscillation strength, oscillator wavelength, high frequency dielectric constant and high frequency refractive index were calculated by single Sellmeier oscillator model. Also, Lattice dielectric constant, N/m* and plasma resonance frequency were obtained. The electronic polarizibility of ZnSe thin film was estimated by Clausius-Mossotti local field polarizibility. The nonlinear optical parameters (non-linear susceptibility and non-linear refractive index were estimated.

  5. Transverse oscillations in plasma wakefield experiments at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lindstrøm, C.A. [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Allen, J.; Clarke, C.I.; Frederico, J.; Gessner, S.J.; Green, S.Z.; Hogan, M.J.; Litos, M.D.; White, G.R.; Yakimenko, V. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); An, W.; Clayton, C.E.; Marsh, K.A.; Mori, W.B.; Joshi, C.; Vafaei-Najafabadi, N. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Corde, S. [LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91762 Palaiseau (France); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lu, W. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-09-01

    We study transverse effects in a plasma wakefield accelerator. Experimental data from FACET with asymmetry in the beam-plasma system is presented. Energy dependent centroid oscillations are observed on the accelerated part of the charge. The experimental results are compared to PIC simulations and theoretical estimates.

  6. NICMOS non-linearity tests

    Science.gov (United States)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  7. Oscillating plasma bubbles. III. Internal electron sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2012-08-15

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  8. Review of relaxation oscillations in plasma processing discharges

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhu-Wen; M.A.Lieberman; Sungjin Kim

    2007-01-01

    Relaxation oscillations due to plasma instabilities at frequencies ranging from a few Hz to tens of kHz have been observed in various types of plasma processing discharges.Relaxation oscillations have been observed in electropositive capacitive discharges between a powered anode and a metallic chamber whose periphery iS grounded through a slot with dielectric spacers.The oscillations of time-varying optical emission from the main discharge chamber show,for example,a high-frequency (~40 kHz) relaxation oscillation at 13.33Pa,with an absorbed power being nearly the peripheral breakdown power,and a low-frequency (~3 Hz) oscillation,with an even higher absorbed power.The high-frequency oscillation is found to ignite plasma in the slot,but usually not in the peripheral chamber.The kilohertz oscillations are modelled using an electromagnetic model of the slot impedance,coupled to a circuit analysis of the system including the matching network.The model results are in general agreement with the experimental observations,and indicate a variety of behaviours dependent on the matching conditions.In low-pressure inductive discharges,oscillations appear in the transition between low-density capacitively driven and high-density inductively driven discharges when attaching gases such as SF6 and Ar/SF6 mixtures are used.Oscillations of charged particles,plasma potential,and light,at frequencies ranging from a few Hz to tens of kHz,are seen for gas pressures between 0.133 Pa and 13.33 Pa and discharge powers in a range of 75-1200 W.The region of instability increases as the plasma becomes more electronegative,and the frequency of plasma oscillation increases as the power,pressure,and gas flow rate increase.A volume-averaged (global) model of the kilohertz instability has been developed;the results obtained from the model agree well with the experimental observations.

  9. Auto-oscillations in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Sergej K; Schwabe, Mierk; Heidemann, Ralf; Suetterlin, Robert; Thomas, Hubertus M; Rubin-Zuzic, Milenko; Rothermel, Hermann; Hagl, Tanja; Ivlev, Alexei V; Morfill, Gregor E [Max-Planck-Institut fuer extraterrestrische Physik, D-85741 Garching (Germany); Molotkov, Vladimir I; Lipaev, Andrey M; Petrov, Oleg F; Fortov, Vladimir E [Institute for High Energy Densities, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Reiter, Thomas [Deutsches Zentrum fuer Luft- und Raumfahrt, Linder Hoehe, 51147 Koeln (Germany)], E-mail: zh@mpe.mpg.de

    2010-04-15

    Experimental results on an auto-oscillatory pattern observed in a complex plasma are presented. The experiments are performed with an argon plasma, which is produced under microgravity conditions using a capacitively coupled rf discharge at low power and gas pressure. The observed intense wave activity in the complex plasma cloud correlates well with the low-frequency modulation of the discharge voltage and current and is initiated by periodic void contractions. Particle migrations forced by the waves are of long-range repulsive and attractive character.

  10. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig

    1975-01-01

    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  11. Parametric excitation of plasma oscillations in Josephson Junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud

    1973-01-01

    A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self...

  12. Linear theory of plasma filled backward wave oscillator

    Indian Academy of Sciences (India)

    Preeti Vyas; Arti Gokhale; Y Choyal; K P Maheshwari

    2001-05-01

    An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.

  13. Nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator

    CERN Document Server

    Miwadinou, C H; Monwanou, A V; Orou, J B Chabi

    2013-01-01

    This paper considers nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator. These plasma oscillations are described by a nonlinear differential equation of the form $ \\ddot{x}+ \\epsilon (1 +{x}^{2}){\\dot{x}} + x+ \\alpha \\epsilon{x}{\\dot{x}} + {\\beta}x^{2}+\\gamma x^{3}= F\\cos{\\Omega t}.$ The amplitudes of the forced harmonic, superharmonic and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales methods. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth order Runge- Kutta scheme. The influences of the differents parameters and of amplitude of external forced have been found.

  14. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  15. Gravitomagnetic Effects on Collective Plasma Oscillations in Compact Stars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of gravitomagnetic force on plasma oscillations are investigated using the kinetic theory of homogeneous electrically neutral plasma in the absence of external electric or magnetic field. The random phase assumption is employed neglecting the thermal motion of the electrons with respect to a fixed ion background. It is found that the gravitomagnetic force reduces the characteristic frequency of the plasma thus enhancing the refractive index of the medium. The estimates for the predicted effects are given for a typical white dwarf, pulsar, and neutron star.

  16. Spatial dependence of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holst, Thorsten; Hansen, Jørn Bindslev

    1991-01-01

    We report on direct measurements of the plasma oscillations in Josephson tunnel junctions of various spatial dimensions. The effect of the spatial variation of the Cooper-pair phase difference (the Josephson phase) on the dynamics of the junction was investigated by application of a static magnetic...... field threading the tunneling barrier. We compare measurements where the plasma frequency was tuned either by applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behavior of the functional dependence of the plasma oscillations was observed in the case...... of an applied magnetic field. Numerical simulations of the governing partial-differential sine-Gordon equation were performed and compared to the experimental results and a perturbation analysis. The theoretical results support the experiments and allow us to interpret the observed crossover as due...

  17. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  18. Pressure-driven reconnection and quasi periodical oscillations in plasmas

    Science.gov (United States)

    Paccagnella, R.

    2014-03-01

    This paper presents a model for an ohmically heated plasma in which a feedback exists between thermal conduction and transport, on one side, and the magneto-hydro-dynamical stability of the system, on the other side. In presence of a reconnection threshold for the magnetic field, a variety of periodical or quasi periodical oscillations for the physical quantities describing the system are evidenced. The model is employed to interpret the observed quasi periodical oscillations of electron temperature and perturbed magnetic field around the so called "Single Helical" state in the reversed field pinch, but its relevance for other periodical phenomena observed in magnetic confinement systems, especially in tokamaks, is suggested.

  19. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  20. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  1. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  2. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  3. Non-linear irreversible thermodynamics of single-molecule experiments

    CERN Document Server

    Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A

    2015-01-01

    Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.

  4. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  5. Non-Linear Relativity in Position Space

    CERN Document Server

    Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João

    2003-01-01

    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.

  6. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  7. Non-linear (loop) quantum cosmology

    CERN Document Server

    Bojowald, Martin; Dantas, Christine C; Jaffe, Matthew; Simpson, David

    2012-01-01

    Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a non-linear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of non-linear and non-local equations suggests new questions for mathematical and computational investigations, and general properties of non-linear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny local contributions adding up coherently in large regions.

  8. Generalized Ghost Dark Energy with Non-Linear Interaction

    CERN Document Server

    Ebrahimi, E; Mehrabi, A; Movahed, S M S

    2016-01-01

    In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...

  9. Non-Linear Logging Parameters Inversion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,

  10. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  11. Oscillatons formed by non linear gravity

    CERN Document Server

    Obregón, O; Schunck, F E; Obregon, Octavio; Schunck, Franz E.

    2004-01-01

    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.

  12. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...

  13. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  14. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  15. Piezoelectric Non-linear Nanomechanical Temperature and Acceleration Intensive Clocks (PENNTAC)

    Science.gov (United States)

    2014-05-01

    overlaid dashed black line represents the fixed point solution of the Duffing resonator. Resonator non-linearities tend to worsen the oscillator PN by...Schematic and Actual implementation of the Oscillator Setup used to demonstrate PN shaping via a Duffing Resonator. (1) AlN CMR mounted on a PCB, (2...exhibited by the Duffing resonator 3.2 1/f Resonator Flicker Noise In order to identify the main noise sources in our oscillators , and

  16. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X. [University of California-Irvine, Irvine, California 92697 (United States); General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Heidbrink, W. W. [University of California-Irvine, Irvine, California 92697 (United States); Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Zeng, L. [University of California, Los Angeles 90095, California (United States); Austin, M. E. [University of Texas-Austin, Austin, Texas 78712 (United States)

    2014-08-15

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  17. Formation of bound states of electrons in spherically symmetric oscillations of plasma

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We study spherically symmetric oscillations of electrons in plasma in frames of the classical electrodynamics. First we analyze the electromagnetic potentials for the system of radially oscillating charged particles. Then we consider both free and forced spherically symmetric oscillations of electrons. Finally we discuss the interaction between radially oscillating electrons through the exchange of ion acoustic waves. It is obtained that the effective potential of this interaction can be attractive and can transcend the Debye-Hueckel potential. We suggest that oscillating electrons can form bound states at the initial staged of the spherical plasma structure evolution. The application of the obtained results to the theory of natural plasmoids are considered.

  18. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  19. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    Energy Technology Data Exchange (ETDEWEB)

    Sosenko, P.; Pierre, Th. [Universite Marseille, Lab. PIIM - UMR6633 CNRS, Centre Saint Jerome, 13 - Marseille (France); Zagorodny, A. [Nancy-1 Univ. Henri Poincare, Lab. de Physique des Milieux Ionises (LPMIA, UPRES-A), Nancy 54 (France); International Centre of Physics, Kyiv (Ukraine)

    2004-07-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  20. Canard-induced mixed mode oscillations in an excitable glow discharge plasmas

    CERN Document Server

    Nurujjaman, M

    2014-01-01

    We demonstrated experimentally canard induced mixed mode oscillations (MMO) in an excitable glow discharge plasma, and the results are validated through numerical solution of the FitzHugh Nagumo (FHN) model. When glow discharge plasma is perturbed by applying a magnetic field, it shows mixed mode oscillatory activity, i.e., quasiperiodic small oscillations interposed with large bounded limit cycles oscillations. The initial quasiperiodic oscillations were observed to change into large amplitude limit cycle oscillations with magnetic field, and the number of these oscillation increases with increase in the magnetic field. Fourier analysis of both numerical and experimental results show that the origin of these oscillations are canard-induced phenomena, which occurs near the threshold of the control parameter. Further, the phase space plots also confirm that the oscillations are basically canard-induced MMOs.

  1. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  2. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  3. Non-linear estimation is easy

    OpenAIRE

    Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt

    2008-01-01

    International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line ...

  4. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  5. Non-linear estimation is easy

    CERN Document Server

    Fliess, Michel; Sira-Ramirez, Hebertt

    2007-01-01

    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.

  6. On the frequency of oscillations in the pair plasma generated by a strong electric field

    CERN Document Server

    Benedetti, A; Ruffini, R; Vereshchagin, G V

    2011-01-01

    We study the frequency of the plasma oscillations of electron-positron pairs created by the vacuum polarization in an uniform electric field with strength E in the range 0.2 Ec 0. Thereby, we focus our attention on its evolution in time studying how this oscillation frequency approaches the plasma frequency. The time-scale needed to approach to the plasma frequency and the power spectrum of these oscillations are computed. The characteristic frequency of the power spectrum is determined uniquely from the initial value of the electric field strength. The effects of plasma degeneracy and pair annihilation are discussed.

  7. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  8. Damping of electron center-of-mass oscillation in ultracold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2016-05-15

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  9. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  10. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  11. Non Linear Behaviour in Learning Processes

    OpenAIRE

    Manfredi, Paolo; Manfredi, Vicenzo Rosario

    2003-01-01

    This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...

  12. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  13. Limits on Non-Linear Electrodynamics

    CERN Document Server

    Fouché, M; Rizzo, C

    2016-01-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  14. Instability Parameters of Optical Oscillation Frequency in Plasma Central Discharge and Periphery Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM

    2006-01-01

    @@ We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at 100mTorr and 8 W absorbed power,and a low frequency (2.72 Hz) relaxation oscillation, 100mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.

  15. Non-linear PIC simulation in a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)

    2001-01-01

    We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.

  16. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.;

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non...

  17. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  18. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  19. Chaotic Discrimination and Non-Linear Dynamics

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2005-01-01

    Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.

  20. Symmetries in Non-Linear Mechanics

    CERN Document Server

    Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco

    2014-01-01

    In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...

  1. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)

    1995-12-31

    Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.

  2. The heliocentric radial variation of plasma oscillations associated with type III radio bursts

    Science.gov (United States)

    Gurnett, D. A.; Anderson, R. R.; Scarf, F. L.; Kurth, W. S.

    1978-01-01

    A survey is presented of all of the electron plasma oscillation events found to date in association with low-frequency type III solar radio bursts using approximately 9 years of observations from the Imp 6 and 8, Helios 1 and 2, and Voyager 1 and 2 spacecraft. Plasma oscillation events associated with type III radio bursts show a pronounced increase in both the intensity and the frequency of occurrence with decreasing heliocentric radial distance. This radial dependence explains why intense electron plasma oscillations are seldon observed in association with type III radio bursts at the orbit of the earth. Possible interpretations of the observed radial variation in the plasma oscillation intensity are considered.

  3. Reply to Comment on `Formation of bound states of electrons in spherically symmetric oscillations of plasma'

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    I reply here to the comment of Dr Shmatov on my recent work and demonstrate the invalidity of his criticism of the classical physics description of the formation of bound states of electrons participating in spherically symmetric oscillations of plasma.

  4. Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, Antanas, E-mail: reklaitis@pfi.lt [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goshtauto 11, Vilnius 01108 (Lithuania)

    2014-08-28

    Oscillations of electron-hole plasma generated by femtosecond optical pulse in freestanding semiconductor are studied using hydrodynamic model and Monte Carlo simulations. The conditions required for the observation of coherent plasma oscillations in THz emission from semiconductor are determined. It is shown that several conditions have to be fulfilled in order to observe coherent plasma oscillations. First, the intensity of the optical pulse must exceed some threshold value. Second, the optical absorption depth must exceed the thickness of the built-in electric field region. Third, the generation of electron-hole pairs with uniform illumination is required, i.e., the laser beam with the flattop intensity profile has to be used. It is found that the duration of the optical pulse does not play a vital role in the development of plasma oscillations.

  5. Levitation and Oscillation of Dust Grains in Plasma Sheath with Wake Potential

    Institute of Scientific and Technical Information of China (English)

    练海俊; 谢柏松; 周宏余

    2002-01-01

    We investigate the equilibrium and levitation of dust grains in a plasma sheath with various forces, in particular the wake potential force. The vertical oscillation frequency of dust chains is also obtained by including the wake potential term. It is found that the wake potential has a significant role for the levitation and oscillation of dust grains.

  6. Charged relativistic fluids and non-linear electrodynamics

    Science.gov (United States)

    Dereli, T.; Tucker, R. W.

    2010-01-01

    The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.

  7. Using the group of non-linear cells design metamaterial bar

    Science.gov (United States)

    Sun, Hongwei; Song, Xin; Hu, Xiaolei; Gu, Jinliang

    2016-04-01

    The paper presents the wave propagation in one-dimensional metamaterial bar with attached group of non-linear local oscillators by using analytical and numerical models. The focus is on the influence of group of non-linear cells on the filtering properties of the bar in the 1000Hz to 2000Hz range. Group of Periodic cells with alternating properties exhibit interesting dynamic characteristics that enable them to act as filters. Waves can propagate along bars within specific bands of frequencies called pass bands, and attenuate within bands of frequencies called gaps. Gaps in structures with group of periodic cells are located according on the frequency of cells. From the cell, we can yield the effect negative stiffness and effect negative mass. We can also design the gaps from attached oscillators or cells. In the uniform case the gap is located around the resonant frequency of the oscillators, and thus a stop band can be created in the lower frequency range. In the case with group of non-linear cells the results show that the position of the gap can be designed, and the design depends on the amplitude and the degree of non-linear cells.

  8. Plasma and oscillations with contributions in memoriam including a complete bibliography of his works

    CERN Document Server

    Suits, C Guy

    1961-01-01

    The Collected Works of Irving Langmuir, Volume 5: Plasma and Oscillations is an 11-chapter text covers the extensive research study of Langmuir in the field of gas discharges. This book specifically tackles oscillations in ionized gases. The opening chapters describe the plasma-boundary phenomena and the use of a probe to separate the primary electron beam from the scattered electrons. The succeeding chapters deal with the collisions between electrons and gas molecules, oscillations in ionized gases, and the interaction of electron and positive ion space charges in cathode sheaths. These t

  9. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    GAN Bao-Xia; CHEN Yin-Hua

    2007-01-01

    The oscillations of a single magnetized dust grain in electronegative plasma sheath are investigated taking into account the existence of an external magnetic field. The influence of the content of negative ions and the magnetic field intensity on the properties of the dust vibration is analysed. The result shows that the existence of the negative ions in plasma reduces the dust oscillation frequency and drops the equilibrium position of dust, whereas the magnetic field raises the equilibrium position and also reduces the dust oscillation frequency on the condition considered.

  10. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  11. Non-Linear Sigma Model on Conifolds

    CERN Document Server

    Parthasarathy, R

    2002-01-01

    Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...

  12. Non-Linear Electrohydrodynamics in Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Jun Zeng

    2011-03-01

    Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.

  13. Plasma Magnetosphere of Oscillating and Rotating Neutron Stars in General Relativity

    Science.gov (United States)

    Ahmedov, Bobomurat; Morozova, Viktoriya; Zanotti, Olindo

    2016-07-01

    We discuss a number of analytical studies, aimed at adding the influence of oscillations experienced by a pulsar/magnetar on its plasma magnetopshere. We show that particular modes of oscillations may considerably increase the pulsar/magnetar luminosity and apply the obtained theoretical results on the plasma magnetosphere of oscillating and rotating neutron stars i) to propose a qualitative model for the explanation of the phenomenology of intermittent part time pulsars, ii) to study the conditions for radio emission in rotating and oscillating magnetars by focusing on the main physical processes determining the position of their death lines, i.e. of those lines that separate the regions where the neutron star may be radio loud or radio quiet, iii) to explain the subpulse drift phenomena adopting the space-charge limited flow model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses.

  14. Power loss of an oscillating electric dipole in a quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderipoor, L. [Department of Physics, Faculty of Science, University of Qom, 3716146611 (Iran, Islamic Republic of); Mehramiz, A. [Department of Physics, Faculty of Science, Imam Khomeini Int' l University, Qazvin 34149-16818 (Iran, Islamic Republic of)

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  15. The self-similar, non-linear evolution of rotating magnetic flux ropes

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    Full Text Available We study, in the ideal MHD approximation, the non-linear evolution of cylindrical magnetic flux tubes differentially rotating about their symmetry axis. Our force balance consists of inertial terms, which include the centrifugal force, the gradient of the axial magnetic pressure, the magnetic pinch force and the gradient of the gas pressure. We employ the "separable" class of self-similar magnetic fields, defined recently. Taking the gas to be a polytrope, we reduce the problem to a single, ordinary differential equation for the evolution function. In general, two regimes of evolution are possible; expansion and oscillation. We investigate the specific effect rotation has on these two modes of evolution. We focus on critical values of the flux rope parameters and show that rotation can suppress the oscillatory mode. We estimate the critical value of the angular velocity Ωcrit, above which the magnetic flux rope always expands, regardless of the value of the initial energy. Studying small-amplitude oscillations of the rope, we find that torsional oscillations are superimposed on the rotation and that they have a frequency equal to that of the radial oscillations. By setting the axial component of the magnetic field to zero, we study small-amplitude oscillations of a rigidly rotating pinch. We find that the frequency of oscillation ω is inversely proportional to the angular velocity of rotation Ω; the product ωΩbeing proportional to the inverse square of the Alfvén time. The period of large-amplitude oscillations of a rotating flux rope of low beta increases exponentially with the energy of the equivalent 1D oscillator. With respect to large-amplitude oscillations of a non-rotating flux rope, the only change brought about by rotation is to introduce a multiplicative factor greater than unity, which further increases the period. This multiplicative factor depends on the ratio of the azimuthal speed to the Alfvén speed

  16. The Microphysics Explorer (MPEX) Mission: A Small Explorer Mission to Investigate the Role of Small Scale Non-Linear Time Domain Structures (TDS) and Waves in the Energization of Electrons and Energy Flow in Space Plasmas.

    Science.gov (United States)

    Wygant, J. R.

    2016-12-01

    Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.

  17. Non linear behaviour of cell tensegrity models

    Science.gov (United States)

    Alippi, A.; Bettucci, A.; Biagioni, A.; Conclusio, D.; D'Orazio, A.; Germano, M.; Passeri, D.

    2012-05-01

    Tensegrity models for the cytoskeleton structure of living cells is largely used nowadays for interpreting the biochemical response of living tissues to mechanical stresses. Microtubules, microfilaments and filaments are the microscopic cell counterparts of struts (microtubules) and cables (microfilaments and filaments) in the macroscopic world: the formers oppose to compression, the latters to tension, thus yielding an overall structure, light and highly deformable. Specific cell surface receptors, such as integrins, act as the coupling elements that transmit the outside mechanical stress state into the cell body. Reversible finite deformations of tensegrity structures have been widely demonstrated experimentally and in a number of living cell simulations. In the present paper, the bistability behaviour of two general models, the linear bar oscillator and the icosahedron, is studied, as they are both obtained from mathematical simulation, the former, and from larger scale experiments, the latter. The discontinuity in the frequency response of the oscillation amplitude and the lateral bending of the resonance curves are put in evidence, as it grows larger as the driving amplitude increases, respectively.

  18. Non-linear dynamics of the passivity breakdown of iron in acidic solutions

    CERN Document Server

    Sazou, D

    2003-01-01

    Breakdown of the iron passivity in acid solutions accompanied by current oscillations was investigated by using electrochemical techniques, which reveal the non-linear dynamical response of the system in the current-potential (I-E) and current-time (I-t) planes. Current oscillations of the Fe-electrolyte electrochemical system were studied in the (a) absence and (b) presence of chlorides. In case (a) two oscillatory regions were distinguished; one at low potentials associated with the formation-dissolution of a ferrous salt and another at higher potentials associated with the formation-breakdown of the oxide film. Chaotic oscillations appear in the former region whereas periodic oscillations of a relaxation type appear in the latter region. In case (b), complex periodic and aperiodic oscillations are induced by small amounts of chlorides due to pitting corrosion. Pitting corrosion is a multistage localized process of a great technological importance. It consists of a local breakdown of the passive oxide film ...

  19. Non-Linear Unit Root Properties of Crude Oil Production

    OpenAIRE

    Svetlana Maslyuk; Russell Smyth

    2007-01-01

    While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...

  20. First observation of quasi-2-day oscillations in ionospheric plasma frequency at fixed heights

    Directory of Open Access Journals (Sweden)

    D. Altadill

    Full Text Available The existence and development of the quasi-2-day oscillations in the plasma frequency variations of the F region at northern middle latitudes are investigated. A new approach to study the quasi-2-day oscillations is presented, using a methodology that allows us to do such a study at fixed heights. The hourly values of plasma frequency at fixed heights, from 170 km to 220 km at 10 km step, obtained at the Observatori de l'Ebre station (40.8°N, 0.5°E during 1995 are used for analysis. It is found that quasi-2-day oscillations exist and persisted in the ionospheric plasma frequency variations over the entire year 1995 for all altitudes investigated. The dominant period of oscillation ranges from 42 to 56 h. The amplitude of oscillation is from 0.1 MHz to 1 MHz. The activity of the quasi-2-day oscillation is better expressed during the summer half year when several enhancements, about 15–30 days in duration, were observed. The largest enhancements of the oscillation occurred during early June, July and early August; i. e., near and after the summer solstice when the 2-day wave in the middle neutral atmosphere typically displays its largest activity in the Northern Hemisphere. The results obtained may help us understand better the possible influencing mechanisms between the 2-day wave in the middle neutral atmosphere and the ionospheric quasi-2-day oscillations.

    Key words. Ionosphere (Ionosphere - atmosphere interactions; Mid-latitude ionosphere; Plasma waves and instabilities

  1. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  2. Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas

    Science.gov (United States)

    Ross, A. E.; McKenzie, D. R.

    2016-04-01

    Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.

  3. Benchmark of ASTRA with Analytical Solution for the Longitudinal Plasma Oscillation Problem

    CERN Document Server

    Geloni, Gianluca; Schneidmiller, Evgeny A; Yurkov, Mikhail V

    2004-01-01

    During the design of X-FELs, space-charge codes are required to simulate the evolution of longitudinal plasma oscillation within an electron beam in connection with LSC microbunching instability [1] and certain pump-probe synchronization schemes [2]. In the paper [3] we presented an analytical solution to the initial value problem for longitudinal plasma oscillation in an electron beam. Such a result, besides its theoretical importance, allows one to benchmark space-charge simulation programs against a self-consistent solution of the evolution problem. In this paper we present a comparison between our results [3] and the outcomes of the simulation code ASTRA.

  4. Non-linear controls on the persistence of La Nina

    Science.gov (United States)

    Di Nezio, P. N.; Deser, C.

    2013-12-01

    Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that

  5. A novel method for analyzing complicated quantum behaviors of light waves in oscillating turbulent plasma.

    Science.gov (United States)

    Choi, Jeong Ryeol

    2014-11-03

    Quantum dynamics of light waves traveling through a time-varying turbulent plasma is investigated via the SU(1,1) Lie algebraic approach. Plasma oscillations that accompany time-dependence of electromagnetic parameters of the plasma are considered. In particular, we assume that the conductivity of plasma involves a sinusoidally varying term in addition to a constant one. Regarding the time behavior of electromagnetic parameters in media, the light fields are modeled as a modified CK (Caldirola-Kanai) oscillator that is more complex than the standard CK oscillator. Diverse quantum properties of the system are analyzed under the consideration of time-dependent characteristics of electromagnetic parameters. Quantum energy of the light waves is derived and compared with the counterpart classical energy. Gaussian wave packet of the field whose probability density oscillates with time like that of classical states is constructed through a choice of suitable initial condition and its quantum behavior is investigated in detail. Our development presented here provides a useful way for analyzing time behavior of quantized light in complex plasma.

  6. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-09-09

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity (<10{sup 14}Wcm{sup -2}) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  7. Graphical and Analytical Analysis of the Non-Linear PLL

    NARCIS (Netherlands)

    de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper

  8. Non-linear Frequency Scaling Algorithm for FMCW SAR Data

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran

  9. Non Linear Gauge Fixing for FeynArts

    CERN Document Server

    Gajdosik, Thomas

    2007-01-01

    We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.

  10. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  11. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  12. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  13. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  14. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  15. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  16. Non-linear dielectric monitoring of biological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Treo, E F; Felice, C J [Departamento de BioingenierIa, Universidad Nacional de Tucuman and Consejo Nacional de Investigaciones Cientificas y Tecnicas. CC327, CP4000, San Miguel de Tucuman (Argentina)

    2007-11-15

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response.

  17. Non-linear dynamo waves in an incompressible medium when the turbulence dissipative coefficients depend on temperature

    Directory of Open Access Journals (Sweden)

    A. D. Pataraya

    Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.

  18. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    Science.gov (United States)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  19. DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR

    Institute of Scientific and Technical Information of China (English)

    GAO HONG; LIU SHENG-GANG

    2000-01-01

    A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.

  20. Experimental investigation on parametric excitation of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;

    1975-01-01

    Experimental evidence for subharmonic, parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson tunnel junction biased in the zero voltage state to a finite...

  1. The Non-Linear Power Spectrum of the Lyman Alpha Forest

    CERN Document Server

    Arinyo-i-Prats, Andreu; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyman Alpha transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyman Alpha forest and provide a better physical interpretation of ...

  2. Oscillating two-stream instability of laser wakefield-driven plasma wave

    Indian Academy of Sciences (India)

    Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat

    2016-01-01

    The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.

  3. High and low frequency relaxation oscillations in a capacitive discharge plasma

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhu-Wen; Sungjin Kim; Ji Shi-Yin; Sun Guang-Yu; Deng Ming-Sen

    2008-01-01

    Both high and low frequency relaxation oscillations have been observed in an argon capacitive discharge connected to a peripheral grounded chamber through a slot with dielectric spacers.The oscillations,observed from time-varying optical emission of the main discharge chamber,show,for example,a high frequency(46 kHz)relaxation oscillation at 100 mTorr,with an absorbed power near the peripheral breakdown,and a low frequency(2.7-3.7 Hz)oscillation,at a higher absorbed power.The high frequency oscillation is found to ignite a plasma in the slot,but usually not in the periphery.The high frequency oscillation is interpreted by using an electromagnetic model of the slot impedance,combined with the circuit analysis of the system including a matching network.The model is further developed by using a parallel connection of variable peripheral capacitance to analyse the low frequency oscillation.The results obtained from the model are in agreement with the experimental observations and indicate that a variety of behaviours are dependent on the matching conditions.

  4. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  5. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  6. Dayside episodic ion outflow from Martian magnetic cusps and/or magnetosheath boundary motion associated with plasma oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Lundin, R.; Duru, I. H.; Winningham, J. D.; Frahm, R. A.

    2014-05-01

    The radar sounder on the Mars Express Spacecraft is able to make measurements of electron densities in the Martian ionosphere from both local electron plasma oscillations and remote soundings. A study of thousands of orbits shows that in some cases the electron plasma oscillations disappear and reappear abruptly near the upper boundary of the dayside ionosphere. In some cases, the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) data show clear evidence of upwardly accelerated ionospheric ions, on interconnected magnetic field lines. In other cases, ASPERA-3 data show that when the plasma oscillations disappear, the spacecraft is in the magnetosheath and when they return, the ionospheric plasma reappears. These intermittent appearances of plasma suggest the multiple crossings of the magnetosheath boundary. The motion of the boundary or plasma clouds and ionospheric streamers (a relatively narrow strip of plasma attached to the ionosphere) can cause these multiple crossings.

  7. Three dimensional MHD Modeling of Vertical Kink Oscillations in an Active Region Plasma Curtain

    CERN Document Server

    Ofman, Leon; Srivastava, Abhishek K

    2015-01-01

    Observations on 2011 August 9 of an X6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in EUV coronal lines. The damped oscillations with periods in the range 8.8-14.9 min were detected and analyzed recently. Our aim is to study the generation and propagation of the MHD oscillations in the plasma curtain taking into account realistic 3D magnetic and density structure of the curtain. We also aim at testing and improving coronal seismology for more accurate determination of the magnetic field than with standard method. We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain based on Differential Emission Measure (DEM) analysis to initialize a 3D MHD model of its vertical and transverse oscillations by implementing the impulsively excited velocity pulse mimick...

  8. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  9. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  10. Longitudinal oscillations in a non-uniform spatially dispersive plasma

    Energy Technology Data Exchange (ETDEWEB)

    Calogeracos, Alex, E-mail: a.calogeracos@yahoo.co.uk

    2015-03-15

    Longitudinal oscillations of the electron fluid in the hydrodynamic model of a metal are examined with pressure effects taken into account. It is well-known that this entails spatial dispersion. The equilibrium electron number density is taken to be non-uniform and a non-self-adjoint fourth order differential equation obeyed by the electric potential is derived. A velocity potential necessary for the description of sound waves is introduced in the standard fashion and the generalized version of Bloch orthogonality appropriate to a non-uniform background is deduced. We observe a duality between electric and velocity potentials in the sense that the respective differential operators are adjoint to each other. The spectrum is calculated in the special case of an exponential profile for the equilibrium electron number density. The surface plasmons are connected with the analytic properties of the scattering amplitude in the complex plane. The phase shift at threshold is expressed in terms of the number of surface plasmon modes via an expression reminiscent of Levinson’s statement in quantum mechanics.

  11. Non-linear classical dynamics in a superconducting circuit containing a cavity and a Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2015-07-01

    Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.

  12. Linear and non-linear control of wind farms. Contribution to the grid stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica, Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000, Comodoro Rivadavia (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, CICpBA, La Plata (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina)

    2010-06-15

    This paper deals with linear and non-linear control of wind farms equipped with doubly-fed induction generators (DFIG). Both, active and reactive wind farm powers are employed in two independent control laws in order to increase the damping of the oscillation modes of a power system. In this way, it presented a general strategy where two correction terms are added, one by each independent control, to the normal operating condition of a wind farm. The proposed control laws are derived from the Lyapunov approach. Meanwhile for the reactive power a non-linear correction is presented, for the wind farm active power it is demonstrated that the classical proportional and inertial laws can be considered via the Lyapunov approach if wind farms are considered as real power plants, i.e. equivalent to conventional synchronous generation. Finally, some simulations are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  13. Global search of non-linear systems periodic solutions: A rotordynamics application

    Science.gov (United States)

    Sarrouy, E.; Thouverez, F.

    2010-08-01

    Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.

  14. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tinakiche, Nouara [Department of Physics, Faculty of Science, U.M.B.B, Boumerdes 35000 (Algeria); Faculty of Physics, U.S.T.H.B, Algiers 16111 (Algeria); Annou, R. [Faculty of Physics, U.S.T.H.B, Algiers 16111 (Algeria)

    2015-04-15

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  15. Oscillating two-stream instability in a magnetized electron-positron-ion plasma

    Science.gov (United States)

    Tinakiche, Nouara; Annou, R.

    2015-04-01

    Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.

  16. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Institute of Scientific and Technical Information of China (English)

    Minh Khang Phan; Jichul Shin

    2016-01-01

    Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC sur-face glow discharge plasma actuator which is analytically modeled as an ion pressure force pro-duced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0%chord length and/or at 10%chord length. The plasma actuator at deep-stall angles (from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequen-cies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70%by a selec-tive operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the opti-mized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  17. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sabuj, E-mail: sabuj.ghosh@saha.ac.in; Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Iyengar, A. N. Sekar, E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata-700064 (India)

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  18. Plasma Dipole Oscillation Excited by Trapped Electrons Leading to Bursts of Coherent Radiation

    CERN Document Server

    Kwon, Kyu Been; Song, Hyung Seon; Kim, Young-Kuk; Ersfeld, Bernhard; Jaroszynski, Dino A; Hur, Min Sup

    2016-01-01

    Plasma dipole oscillation (PDO) depicted as harmonic motion of a spatially localized block of electrons has, until now, been hypothetical. In practice, the plasma oscillation occurs always as a part of a plasma wave. Studies on radiation burst from plasmas have focused only on coupling of the plasma wave and electromagnetic wave. Here we show that a very-high-field PDO can be generated by the electrons trapped in a moving train of potential wells. The electrons riding on the potential train coherently construct a local dipole moment by charge separation. The subsequent PDO is found to persist stably until its energy is emitted entirely via coherent radiation. In our novel method, the moving potentials are provided by two slightly-detuned laser pulses colliding in a non-magnetized plasma. The radiated energy reaches several millijoules in the terahertz spectral region. The proposed method provides a way of realizing the PDO as a new radiation source in the laboratory. PDO as a mechanism of astrophysical radio-...

  19. A Statistical study of plasma sheet oscillations with kinetic ballooning/interchange instability signatures using THEMIS spacecraft

    Science.gov (United States)

    Jurisic, Mirjana; Panov, Evgeny; Nakamura, Rumi; Baumjohann, Wolfgang

    2016-04-01

    We use THEMIS data from 2010-2012 tail seasons to collect observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Over seventy observations with closely located THEMIS probes P3-P5 reveal that BICI-like plasma sheet oscillations may appear at different magnetic local time. For these, we derive background plasma sheet parameters such as BZ, δBZ/δx and plasma beta, and investigate solar wind conditions. We also estimate the proper parameters of BICI-like oscillations such as frequency and amplitude. Based on this, we search for a relation between the background plasma sheet parameters and the proper parameters of BICI-like oscillations.

  20. A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, J W; Hittinger, J A

    2009-11-24

    Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.

  1. Long-term non-linear predictability of ENSO events over the 20th century

    CERN Document Server

    Astudillo, H F; Borotto, F A

    2015-01-01

    We show that the monthly recorded history (1878-2013) of the Southern Oscillation Index (SOI), a descriptor of the El Ni\\~no Southern Oscillation (ENSO) phenomenon, can be well described as a dynamic system that supports an average nonlinear predictability well beyond the spring barrier. The predictability is strongly linked to a detailed knowledge of the topology of the attractor obtained by embedding the SOI index in a wavelets base state space. Using the state orbits on the attractor we show that the information contained in the Southern Oscillation Index (SOI) is sufficient to provide average nonlinear predictions for time periods of 2, 3 and 4 years in advance throughout the 20th century with an acceptable error. The simplicity of implementation and ease of use makes it suitable for studying non linear predictability in any area where observations are similar to those that describe the ENSO phenomenon.

  2. A Method on Non-Linear Correction of Broadband LFMCW Signal Utilizing Its Relative Sweep Non-Linear Error

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.

  3. Analytical approximations for a conservative nonlinear singular oscillator in plasma physics

    Directory of Open Access Journals (Sweden)

    A. Mirzabeigy

    2012-10-01

    Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.

  4. Plasma oscillations in two-dimensional semiconductor superstructures in the presence of a high electric field

    CERN Document Server

    Glazov, S Y

    2001-01-01

    The effect of the high permanent electric field on plasma oscillations in the two-dimensional electron gas with the superstructure and taking into account the transfer processes is investigated. The dispersions omega(k) is obtained for the case of high temperature T (DELTA << T, where DELTA is the width of the conductivity miniband). It is shown that the frequency of plasmons in the high electric field depends on the value of the electric field intensity and the wave number k as the oscillating function. The spectrum is periodic with the period equal to 2 pi/d for arbitrary values of k. The numerical estimation shown that the oscillations can be manifested at the electric field intensity more than 3 x 10 sup 3 V/cm

  5. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Science.gov (United States)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  6. Landau damping of longitudinal oscillation in ultrarelativistic plasmas with nonextensive distribution

    Institute of Scientific and Technical Information of China (English)

    Liu San-Qiu; Chen Xiao-Chang

    2011-01-01

    The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.

  7. Massive Neutrinos and the Non-linear Matter Power Spectrum

    CERN Document Server

    Bird, Simeon; Haehnelt, Martin G

    2011-01-01

    We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...

  8. Analytical exact solution of the non-linear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica

    2011-07-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  9. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  10. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.

    Science.gov (United States)

    Saini, V K

    2013-06-20

    Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s5→2p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

  11. On the self-excitation mechanisms of Plasma Series Resonance oscillations in single- and multi-frequency capacitive discharges

    CERN Document Server

    Schuengel, Edmund; Korolov, Ihor; Derzsi, Aranka; Donko, Zoltan; Schulze, Julian

    2016-01-01

    The self-excitation of plasma series resonance (PSR) oscillations is a prominent feature in the current of low pressure capacitive radio frequency (RF) discharges. This resonance leads to high frequency oscillations of the charge in the sheaths and enhances electron heating. Up to now, the phenomenon has only been observed in asymmetric discharges. There, the nonlinearity in the voltage balance, which is necessary for the self-excitation of resonance oscillations with frequencies above the applied frequencies, is caused predominantly by the quadratic contribution to the charge-voltage relation of the plasma sheaths. Using PIC/MCC simulations of single- and multi- frequency capacitive discharges and an equivalent circuit model, we demonstrate that other mechanisms such as a cubic contribution to the charge-voltage relation of the plasma sheaths and the time dependent bulk electron plasma frequency can cause the self-excitation of PSR oscillations, as well. These mechanisms have been neglected in previous model...

  12. Generalized non-linear strength theory and transformed stress space

    Institute of Scientific and Technical Information of China (English)

    YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo

    2004-01-01

    Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.

  13. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  14. An algorithm for earthwork allocation considering non-linear factors

    Institute of Scientific and Technical Information of China (English)

    WANG Ren-chao; LIU Jin-fei

    2008-01-01

    For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.

  15. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  16. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  17. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  18. Non-linear Growth Models in Mplus and SAS.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2009-10-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.

  19. Change-Of-Bases Abstractions for Non-Linear Systems

    CERN Document Server

    Sankaranarayanan, Sriram

    2012-01-01

    We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...

  20. Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma

    CERN Document Server

    Mukherjee, Arghya

    2016-01-01

    The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...

  1. Non-linear growth and condensation in multiplex networks

    CERN Document Server

    Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc

    2013-01-01

    Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.

  2. Realization of non-linear coherent states by photonic lattices

    Directory of Open Access Journals (Sweden)

    Shahram Dehdashti

    2015-06-01

    Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  3. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...

  4. Non-linear effects in bunch compressor of TARLA

    Science.gov (United States)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  5. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  6. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  7. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam

    Indian Academy of Sciences (India)

    A Hadap; J Mondal; K C Mittal; K P Maheshwari

    2011-03-01

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.

  8. Three-dimensional MHD modeling of vertical kink oscillations in an active region plasma curtain

    Science.gov (United States)

    Ofman, L.; Parisi, M.; Srivastava, A. K.

    2015-10-01

    Context. Observations on 2011 August 9 of an X 6.9-class flare in active region (AR) 11263 by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), were followed by a rare detection of vertical kink oscillations in a large-scale coronal active region plasma curtain in extreme UV coronal lines with periods in the range 8.8-14.9 min. Aims: Our aim is to study the generation and propagation of the magnetohydrodynamic (MHD) oscillations in the plasma curtain taking the realistic 3D magnetic and the density structure of the curtain into account. We also aim to test and improve coronal seismology for a more accurate determination of the magnetic field than with the standard method. Methods: We use the observed morphological and dynamical conditions, as well as plasma properties of the coronal curtain, to initialize a 3D MHD model of the observed vertical and transverse oscillations. To accomplish this, we implemented the impulsively excited velocity pulse mimicking the flare-generated nonlinear fast magnetosonic propagating disturbance interacting obliquely with the curtain. The model is simplified by utilizing an initial dipole magnetic field, isothermal energy equation, and gravitationally stratified density guided by observational parameters. Results: Using the 3D MHD model, we are able to reproduce the details of the vertical oscillations and study the process of their excitation by a nonlinear fast magnetosonic pulse, propagation, and damping, finding agreement with the observations. Conclusions: We estimate the accuracy of simplified slab-based coronal seismology by comparing the determined magnetic field strength to actual values from the 3D MHD modeling results, and demonstrate the importance of taking more realistic magnetic geometry and density for improving coronal seismology into account. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  9. Non-linear MHD modeling of edge localized mode cycles and mitigation by resonant magnetic perturbations

    Science.gov (United States)

    Orain, François; Bécoulet, M.; Morales, J.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Garbet, X.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The dynamics of a multi-edge localized mode (ELM) cycle as well as the ELM mitigation by resonant magnetic perturbations (RMPs) are modeled in realistic tokamak X-point geometry with the non-linear reduced MHD code JOREK. The diamagnetic rotation is found to be a key parameter enabling us to reproduce the cyclical dynamics of the plasma relaxations and to model the near-symmetric ELM power deposition on the inner and outer divertor target plates consistently with experimental measurements. Moreover, the non-linear coupling of the RMPs with unstable modes are found to modify the edge magnetic topology and induce a continuous MHD activity in place of a large ELM crash, resulting in the mitigation of the ELMs. At larger diamagnetic rotation, a bifurcation from unmitigated ELMs—at low RMP current—towards fully suppressed ELMs—at large RMP current—is obtained.

  10. Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment

    CERN Document Server

    Citrin, J; Haverkort, J W; Hogeweij, G M D; Jenko, F; Mantica, P; Pueschel, M J; Told, D; contributors, JET-EFDA

    2013-01-01

    Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness at low magnetic shear (s) in the presence of flow shear. Non-linear gyrokinetic simulations are performed, aiming to investigate the physical mechanism behind the observations. The sensitivity of profile stiffness to the variations of plasma parameters experimentally observed when transitioning to the low-stiffness regime is assessed. It is found that non-linear electromagnetic effects, even at low beta_e, can significantly reduce the profile stiffness, although not by a degree sufficient to explain the experimental observations. The effect of toroidal flow shear itself is not predicted by the simulations to lead to a significant reduction in flux due to significant parallel gradient velocity destabilisation. For the majority of discharges studied, the simulated and experimental ion heat flux values do agree within reasonable variations of input parameters around the experimental uncertainties. However, no such ...

  11. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  12. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  13. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    a sequence of estimation problems for linearized models is solved. In the testing we apply four estimators to ten non-linear data fitting problems. The test problems are also solved by the Generalized Levenberg-Marquardt method and standard optimization BFGS method. It turns out that the new method...

  14. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...

  15. Range non-linearities correction in FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si

  16. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  17. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...

  18. Note About Hamiltonian Structure of Non-Linear Massive Gravity

    CERN Document Server

    Kluson, J

    2011-01-01

    We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.

  19. Locally supersymmetric D=3 non-linear sigma models

    NARCIS (Netherlands)

    Wit, B. de; Tollsten, A. K.; Nicolai, H.

    1992-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general

  20. Non-linear magnetorheological behaviour of an inverse ferrofluid

    NARCIS (Netherlands)

    de Gans, B.J.; Hoekstra, Hans; Mellema, J.

    1999-01-01

    The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made

  1. On the non-linearity of the subsidiary systems

    CERN Document Server

    Friedrich, H

    2005-01-01

    In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.

  2. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  3. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.;

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....

  4. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  5. Applications of non-linear methods in astronomy

    NARCIS (Netherlands)

    Martens, P.C.H.

    1984-01-01

    In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d

  6. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  7. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases

    DEFF Research Database (Denmark)

    Olsen, Lars Folke; Andersen, Ann Zahle; Lunding, Anita

    2009-01-01

    We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethylo......We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3......,3'-diethyloxacarbocyanine iodide. The responses of glycolytic and membrane potential oscillations to a number of inhibitors of glycolysis, mitochondrial electron flow, and mitochondrial and plasma membrane H(+)-ATPase were investigated. Furthermore, the glycolytic flux was determined as the rate of production of ethanol...... in a number of different situations (changing pH or the presence and absence of inhibitors). Finally, the intracellular pH was determined and shown to oscillate. The results support earlier work suggesting that the coupling between glycolysis and mitochondrial membrane potential is mediated by the ADP...

  8. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  9. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    This thesis focuses on non-linear soil response to the type of cyclic loading experienced under offshore gravity base platform foundations. These loads are dominated by a cyclic component around the main wave frequency, which may well mobilize soil non-linearity under severe sea-states. Superimposed on this main component are lower level higher frequency loads caused by resonant oscillations of the platform. The thesis presents results of specially designed triaxial tests to simulate this loading condition. The tests simultaneously applied two cyclic load components at different frequencies and amplitudes. The measured soil response to each component has been isolated through a frequency domain separation. It was found that the soil responds to the superimposed high frequency low level component as if the soil had a cyclically time-varying stiffness. If the superimposed component does not lead to load reversals, this stiffness variation is controlled by the frequency and amplitude of the main load component and by the hysteretic non-linearity of the soil. If the superimposed component causes reversals, the influence of the hysteretic non-linearity on the stiffness variation is reduced. The higher the degree of reversal, the more this influence it taken over by the variation in the instantaneous unloading-reloading stiffness of the soil. It was also found that this type of two-frequency cyclic soil testing is generally superior over conventional single-frequency testing in the way it enforces the soil to reveal several of its inherent properties not deducible from ordinary tests. Benefits of analyzing non-linear response in the frequency domain is demonstrated throughout this thesis. The ability of various theoretical soil models to simulate the observed soil behaviour under two-frequency cyclic loading has, been investigated through numerical analyses. It was found that only those models that are based on kinematic hardening are able to reproduce what was observed

  10. Laser Plasmas : Density oscillations in laser produced plasma decelerated by external magnetic field

    Indian Academy of Sciences (India)

    V N Rai; M Shukla; H C Pant

    2000-11-01

    This paper presents the dynamics as well as the stability of laser produced plasma expanding across the magnetic field. Observation of some high frequency fluctuations superimposed on ion saturation current along with structuring in the pin hole images of x-ray emitting plasma plume indicate the presence of instability in the plasma. Two type of slope in the variation of x-ray emission with laser intensity in the absence and presence of magnetic field shows appearance of different threshold intensity of laser corresponding to each magnetic field at which this instability or density fluctuation sets on. This instability has been identified as a large Larmor radius instability instead of classical Rayleigh-Taylor (R-T) instability.

  11. Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels

    CERN Document Server

    Chmielewski, P; Murawski, K; Musielak, Z E

    2014-01-01

    We present simulation results of the impulsively generated linear and non-linear Alfven waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfven waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfven waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfven waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfven waves show that they can contribute only to the plasma dynamics and heating of t...

  12. Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels

    Science.gov (United States)

    Chmielewski, P.; Srivastava, A. K.; Murawski, K.; Musielak, Z. E.

    2014-01-01

    We present simulation results of the impulsively generated linear and non-linear Alfvén waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfvén waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfvén waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfvén waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfvén waves shows that they can contribute only to the plasma dynamics and heating of the funnel-like magnetic flux-tubes associated with the polar coronal holes.

  13. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  14. Non-linear effects for cylindrical gravitational two-soliton

    CERN Document Server

    Tomizawa, Shinya

    2015-01-01

    Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.

  15. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  16. The linear-non-linear frontier for the Goldstone Higgs

    CERN Document Server

    Gavela, M B; Machado, P A N; Saa, S

    2016-01-01

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...

  17. Non-linear Young's double-slit experiment.

    Science.gov (United States)

    San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis

    2006-04-01

    The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.

  18. SSNN toolbox for non-linear system identification

    Science.gov (United States)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  19. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  20. Integration of non-linear cellular mechanisms regulating microvascular perfusion.

    Science.gov (United States)

    Griffith, T M; Edwards, D H

    1999-01-01

    It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.

  1. Parametric Analysis of Fiber Non-Linearity in Optical systems

    Directory of Open Access Journals (Sweden)

    Abhishek Anand

    2013-06-01

    Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.

  2. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...

  3. Non-Linear Aeroelastic Stability of Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie;

    2013-01-01

    As wind turbines increase in magnitude without a proportional increase in stiffness, the risk of dynamic instability is believed to increase. Wind turbines are time dependent systems due to the coupling between degrees of freedom defined in the fixed and moving frames of reference, which may...... trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...... and non-linear aero-elasticity into consideration. The stability of the wind turbine is determined by the maximum Lyapunov exponent of the system, which is operated directly on the non-linear state vector differential equations. Numerical examples show that this approach is promising for stability...

  4. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2013-09-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  5. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  6. Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma

    Institute of Scientific and Technical Information of China (English)

    Ma Jin-Yi; Qiu Xi-Jun; Zhu Zhi-Yuan

    2004-01-01

    Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically.By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.

  7. Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Barnali; Poria, Swarup, E-mail: swarup-p@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-04-15

    The two-stream instability has wide range of astrophysical applications starting from gamma-ray bursts and pulsar glitches to cosmology. We consider one dimensional weakly relativistic Zakharov equations and describe nonlinear saturation of the oscillating two-stream instability using a three dimensional dynamical system resulting form a truncation of the nonlinear Schrodinger equation to three modes. The equilibrium points of the model are determined and their stability natures are discussed. Using the tools of nonlinear dynamics such as the bifurcation diagram, Poincaré maps, and Lyapunav exponents, existence of periodic, quasi-periodic, and chaotic solutions are established in the dynamical system. Interestingly, we observe the multistable behavior in this plasma model. The system has multiple attractors depending on the initial conditions. We also notice that the relativistic parameter plays the role of control parameter in the model. The theoretical results presented in this paper may be helpful for better understanding of space and astrophysical plasmas.

  8. Defects in the discrete non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)

    2012-01-01

    The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.

  9. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  10. Measuring the Non-Linear Effects of Monetary Policy

    OpenAIRE

    Christian Matthes; Regis Barnichon

    2015-01-01

    This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...

  11. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)

    2015-12-15

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)

  12. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)

    2015-12-09

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.

  13. Linear Algebraic Method for Non-Linear Map Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  14. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for no...... for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions....

  15. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  16. Adaptive spectral identification techniques in presence of undetected non linearities

    CERN Document Server

    Cella, G; Guidi, G M

    2002-01-01

    The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise

  17. Likelihood inference for discretely observed non-linear diffusions

    OpenAIRE

    1998-01-01

    This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...

  18. Non-linear dark matter collapse under diffusion

    CERN Document Server

    Velten, Hermano E S

    2014-01-01

    Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.

  19. On the non-linear stability of scalar field cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2011-09-22

    We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.

  20. Non-linear Higgs portal to Dark Matter

    CERN Document Server

    Bajo, Rocío del Rey

    2016-01-01

    The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet Dark Matter candidate $S$ in an effective description. The main phenomenological differences with respect to the standard scenario can be seen in the Dark Matter relic abundance, in direct/indirect searches and in signals at colliders.

  1. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  2. Non-linear polaronic conduction in magnetite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pooja, E-mail: pooja7503@gmail.com [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rout, P.K., E-mail: pkrout.phy@gmail.com [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Husale, Sudhir; Gupta, Anurag [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Manju [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rakshit, R.K. [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Dogra, Anjana, E-mail: anjanad@nplindia.org [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2016-12-01

    We report the temperature dependent current (I) – voltage (V) characteristics of Fe{sub 3}O{sub 4} nanowires with varying width (w) of 132, 358, and 709 nm. While the widest nanowire (w=709 nm) shows ohmic I (V) curves for all temperatures, those for w=132 and 358 nm show nonlinearity, which can be expressed by a combination of linear (V) and cubic (V{sup 3}) terms. The behaviour of conductance (linear bias component of current) and non-linearity in these nanowires is related to small polaron hopping related conduction. Moreover, we observed an anomalously large hopping lengths, which may be related to the size of percolation cluster and/or antiphase domain. Our study presents first experimental evidence for such non-linear polaronic conduction in magnetite nanowires. - Highlights: • Temperature dependent I–V measurements of FIB fabricated magnetite nanowires. • Small polaron based conduction in non-linear I–V curves. • Anomalously large hopping lengths due to percolation effect and/or antiphase domains.

  3. Non-linear Q-clouds around Kerr black holes

    Directory of Open Access Journals (Sweden)

    Carlos Herdeiro

    2014-12-01

    Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.

  4. Fitting and forecasting non-linear coupled dark energy

    CERN Document Server

    Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2015-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...

  5. Testing non-linear vacuum electrodynamics with Michelson interferometry

    CERN Document Server

    Schellstede, Gerold O; Lämmerzahl, Claus

    2015-01-01

    We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...

  6. Fabrication and characterization of non-linear parabolic microporous membranes.

    Science.gov (United States)

    Rajasekaran, Pradeep Ramiah; Sharifi, Payam; Wolff, Justin; Kohli, Punit

    2015-01-01

    Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t(1/2). Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.

  7. A Non-linearized PLS Model Based on Multivariate Dominant Factor for Laser-induced Breakdown Spectroscopy Measurements

    CERN Document Server

    Wang, Zhe; Li, Lizhi; Ni, Weidou; Li, Zheng

    2011-01-01

    A multivariate dominant factor based non-linearized PLS model is proposed. The intensities of different lines were taken to construct a multivariate dominant factor model, which describes the dominant concentration information of the measured species. In constructing such a multivariate model, non-linear transformation of multi characteristic line intensities according to the physical mechanisms of lased induced plasma spectrum were made, combined with linear-correlation-based PLS method, to model the nonlinear self-absorption and inter-element interference effects. This enables the linear PLS method to describe non-linear relationship more accurately and provides the statistics-based PLS method with physical backgrounds. Moreover, a secondary PLS is applied utilizing the whole spectra information to further correct the model results. Experiments were conducted using standard brass samples. Taylor expansion was applied to make the nonlinear transformation to describe the self-absorption effect of Cu. Then, li...

  8. Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuse; Gásková, Dana; Kucerová, Helena

    2009-05-01

    Microorganisms that survive in natural environments form organized multicellular communities, biofilms and colonies with specific properties. During stress and nutrient limitation, slow growing and senescent cells in such communities retain vital processes by maintaining plasma membrane integrity and retaining the ability to generate transmembrane electrochemical gradients. We report the use of a Saccharomyces cerevisiae colonial model to show that population growth in a multicellular community depends on nutrient diffusion and that resting cells start to accumulate from the beginning of the second acidic phase of colony development. Despite differentiation of colony members, synchronous transmembrane potential oscillation was detected in the organized colony. The electrochemical membrane potential periodically oscillated at frequencies between those for circadian to infradian rhythms during colony aging and transiently decreased at time points previously linked with rebuilding of yeast metabolism. Despite extensive decreases in the intracellular ATP concentration and in the amount and activity of the plasma membrane proton pump during nutrient limited growth and colony aging, the transmembrane electrochemical potential appeared to be maintained above a level critical for population survival.

  9. Non-linear Study of Bell's Cosmic Ray Current-driven Instability

    CERN Document Server

    Riquelme, Mario A

    2008-01-01

    The cosmic ray current-driven (CRCD) instability, predicted by Bell (2004), consists of non-resonant, growing plasma waves driven by the electric current of cosmic rays (CRs) that stream along the magnetic field ahead of both relativistic and non-relativistic shocks. Combining an analytic, kinetic model with one-, two-, and three-dimensional particle-in-cell simulations, we confirm the existence of this instability in the kinetic regime and determine its saturation mechanisms. In the linear regime, we show that, if the background plasma is well magnetized, the CRCD waves grow exponentially at the rates and wavelengths predicted by the analytic dispersion relation. The magnetization condition implies that the growth rate of the instability is much smaller than the ion cyclotron frequency. As the instability becomes non-linear, significant turbulence forms in the plasma. This turbulence reduces the growth rate of the field and damps the shortest wavelength modes, making the dominant wavelength, \\lambda_d, grow ...

  10. The penetration of plasma clouds across magnetic boundaries the role of high frequency oscillations

    CERN Document Server

    Hurtig, T; Raadu, M A; Hurtig, Tomas; Brenning, Nils; Raadu, Michael A.

    2004-01-01

    Experiments are reported where a collisionfree plasma cloud penetrates a magnetic barrier by self-polarization. We here focus on the resulting anomalous magnetic field diffusion into the plasma cloud, two orders of magnitude faster than classical, which is one important aspect of the plasma cloud penetration mechanism. Without such fast magnetic diffusion, clouds with kinetic beta below unity would not be able to penetrate magnetic barriers at all. Tailor-made diagnostics has been used for measurements in the parameter range with the kinetic beta ? 0.5 to 10, and with normalized width w/r(gi) of the order of unity. Experimental data on hf fluctuations in density and in electric field has been combined to yield the effective anomalous transverse resistivity eta(EFF). It is concluded that they are both dominated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop that is set up in the plasma in the penetration process. The anomalous magnetic diffusion rate, ca...

  11. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {{v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( 1 + {\\overline {M_s}} ^{-1/2})R\\overline D_{II}, where \\overline {M_s} = (1 + {\\overline {D_{II}} }^2 \\big/ {nD{_{II}^*}^2}) \\big/ ( 1 + {\\overline {D_{II}}^2} \\big/ D{_{II}^*}^2) and \\overline {D_{II}} is the second invariant of the far

  12. Forced Desynchrony Reveals Independent Contributions of Suprachiasmatic Oscillators to the Daily Plasma Corticosterone Rhythm in Male Rats

    OpenAIRE

    2013-01-01

    The suprachiasmatic nucleus (SCN) is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrol...

  13. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    Science.gov (United States)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.

    2014-02-01

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m2). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling

  14. Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Subramanian Ramasamy

    2010-01-01

    Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.

  15. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    Science.gov (United States)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  16. Monitoring Technical Conditions of Engineering Structures Using the Non-Linear Approach

    Science.gov (United States)

    Volkova, V. E.

    2015-11-01

    Conventional methods of monitoring technical condition are based on detection of damage in the structures of buildings or facilities during the entire period of their operation. In spite of considerable interest displayed to this issue and a significant number of publications, there is no unity of opinions. These methods differ from each other in the sets of values fixed for investigations, the techniques of their recording, transfer and further processing. Today's rules and regulations for structural designs expand the scope of application of the structures operating in the elastic-plastic stage. These damage-free structures originally display the nonlinear properties and can be adequately described only by the non-linear models. This paper presents a method for determining the type and level of non-linearity from the structural oscillations data for monitoring the change in the health of structures. It is shown that a plot of acceleration against the magnitude of the displacement represents the restoring force of a structure. If the structure is damaged during a new striking motion, the phase trajectories in plane “acceleration-displacement” will deviate from its healthy signature.

  17. Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Baki, K.; Boitier, F.; Diab, H.; Lanty, G.; Jemli, K.; Lédée, F.; Deleporte, E.; Lauret, J. S., E-mail: jean-sebastien.lauret@lac.u-psud.fr [Laboratoire Aimé Cotton, CNRS, Univ. Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay Cedex (France); Garrot, D. [GEMAC, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des États Unis 78035 Versailles Cedex (France)

    2016-02-14

    Due to their high potentiality for photovoltaic applications or coherent light sources, a renewed interest in hybrid organic perovskites has emerged for few years. When they are arranged in two dimensions, these materials can be considered as hybrid quantum wells. One consequence of the unique structure of 2D hybrid organic perovskites is a huge exciton binding energy that can be tailored through chemical engineering. We present experimental investigations of the exciton non-linearities by means of femtosecond pump-probe spectroscopy. The exciton dynamics is fitted with a bi-exponential decay with a free exciton life-time of ∼100 ps. Moreover, an ultrafast intraband relaxation (<150 fs) is also reported. Finally, the transient modification of the excitonic line is analyzed through the moment analysis and described in terms of reduction of the oscillator strength and linewidth broadening. We show that excitonic non-linearities in 2D hybrid organic perovskites share some behaviours of inorganic semiconductors despite their high exciton binding energy.

  18. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  19. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  20. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  1. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  2. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  3. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  4. Hans Hinterreiter’s non-linear transformations

    DEFF Research Database (Denmark)

    Makovicky, Emil

    poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely...... of plane-group patterns onto curvilinear nets of different kinds, mostly combined with a skilful application of principles of dichroic or polychromatic symmetry. Unlike Escher, Hinterreiter strove to achieve the aesthetic ideal of a pure abstract form [2] with its inherent symmetries. His unique, two...

  5. Studies for an alternative LHC non-linear collimation system

    CERN Document Server

    Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J

    2012-01-01

    A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).

  6. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  7. Non-linear optical titanyl arsenates: Crystal growth and properties

    Science.gov (United States)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  8. Non-linear Calibration Leads to Improved Correspondence between Uncertainties

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2007-01-01

    an investigation of an uncomplicated expression of the non-linear working curve that is well suited to an assessment of predicted uncertainties. At small concentrations, the working curve reduces to a straight line that corresponds to the conventional calibration line. If no interferences were disturbing...... limit theorem, an excellent correspondence was obtained between predicted uncertainties and measured uncertainties. In order to validate the method, experiments were applied of flame atomic absorption spectrometry (FAAS) for the analysis of Co and Pt, and experiments of electrothermal atomic absorption...

  9. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  10. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  11. A non-linear UAV altitude PSO-PD control

    Science.gov (United States)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  12. Simulation of non-linear coaxial line using ferrite beads

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J. [Nagaoka Univ. of Technology, Niigata (Japan)

    2002-06-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  13. Hierarchical Non-linear Image Registration Integrating Deformable Segmentation

    Institute of Scientific and Technical Information of China (English)

    RAN Xin; QI Fei-hu

    2005-01-01

    A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.

  14. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  15. Utilization of non-linear converters for audio amplification

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold

    2012-01-01

    Class D amplifiers fits the automotive demands quite well. The traditional buck-based amplifier has reduced both the cost and size of amplifiers. However the buck topology is not without its limitations. The maximum peak AC output voltage produced by the power stage is only equal the supply voltage....... The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is possible to achieve...

  16. Non linear analyses of speech and prosody in Asperger's syndrome

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Bang, Dan; Weed, Ethan

    and explain this oddness of speech pattern. In this project, we quantify how the speech patterns of people with Asperger’s Syndrome (AS) differ from that of matched controls. To do so, we employed both traditional measures (pitch range and standard deviation, pause duration, and so on) and 2) non......-linear techniques measuring the structure (regularity and complexity) of verbal, prosodic and fluency behaviour. Our aims were (1) to achieve a more fine-grained understanding of the speech patterns in AS than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ...

  17. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  18. Non-linear variability in microquasars in relation with the winds from their accretion disks

    CERN Document Server

    Janiuk, Agnieszka; Sukova, Petra; Capitanio, Fiamma; Bianchi, Stefano; Kowalski, Wojtek

    2016-01-01

    The microquasar IGR J17091, which is the recently discovered analogue of the well known source GRS 1915+105, exhibits quasi-periodic outbursts, with a period of 5-70 seconds, and regular amplitudes, referred to as "heartbeat state". We argue that these states are plausibly explained by accretion disk instability, driven by the dominant radiation pressure. Using our GLobal Accretion DIsk Simulation hydrodynamical code, we model these outbursts quantitatively. We also find a correlation between the presence of massive outflows launched from the accretion disk and the stabilization of its oscillations. We verify the theoretical predictions with the available timing and spectral observations. Furthermore, we postulate that the underlying non-linear differential equations that govern the evolution of an accretion disk are responsible for the variability pattern of several other microquasars, including XTE J1550-564, GX 339-4, and GRO J1655-40. This is based on the signatures of deterministic chaos in the observed ...

  19. Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing

    Science.gov (United States)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-11-01

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid-state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of un trapped particles, and their diffusion into nominally empty RF buckets ("ghost bunches").

  20. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  1. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  2. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  3. Non Linear Analysis of MPPT for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    S. Sankar

    2015-08-01

    Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.

  4. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  5. The Linear-Non-Linear Frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M. B. [Madrid, IFT; Kanshin, K. [Padua U.; Machado, P. A.N. [Madrid, IFT; Saa, S. [Madrid, IFT

    2016-10-25

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.

  6. PV Degradation Curves: Non-Linearities and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill; Kurtz, Sarah R.

    2016-09-03

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.

  7. Polycarbonate-Based Blends for Optical Non-linear Applications.

    Science.gov (United States)

    Stanculescu, F; Stanculescu, A

    2016-12-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  8. An Adaptive Non-Linear Map and Its Application

    Institute of Scientific and Technical Information of China (English)

    YAN Xuefeng

    2006-01-01

    A novel adaptive non-linear mapping (ANLM),integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimensional olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.

  9. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  10. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  11. Left-Right Non-Linear Dynamical Higgs

    Science.gov (United States)

    Shu, Jing; Yepes, Juan

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  12. Nonlinear interaction between surface plasmons and ion oscillations in a semi-bounded collisional quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Taheri Boroujeni, S. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2015-11-15

    In this paper, we have investigated the nonlinear interaction between high-frequency surface plasmons and low-frequency ion oscillations in a semi-bounded collisional quantum plasma. By coupling the nonlinear Schrodinger equation and quantum hydrodynamic model, and taking into account the ponderomotive force, the dispersion equation is obtained. By solving this equation, it is shown that there is a modulational instability in the system, and collisions and quantum forces play significant roles on this instability. The quantum tunneling increases the phase and group velocities of the modulated waves and collisions increase the growth rate of the modulational instability. It is also shown that the effect of quantum forces and collisions is more significant in high modulated wavenumber regions.

  13. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    Directory of Open Access Journals (Sweden)

    David Salamon, Mirva Eriksson, Mats Nygren and Zhijian Shen

    2012-01-01

    Full Text Available The spark plasma sintering (SPS process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process.

  14. Non-linear dimensionality reduction of signaling networks

    Directory of Open Access Journals (Sweden)

    Ivakhno Sergii

    2007-06-01

    Full Text Available Abstract Background Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling. Results Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF and insulin and (II combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA and Partial Least Squares – Discriminant analysis (PLS-DA were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN and quadratic discriminant analysis (QDA, apoptosis intensity can be predicted for different

  15. Self-excitation of microwave oscillations in plasma-assisted slow-wave oscillators by an electron beam with a movable focus.

    Science.gov (United States)

    Bliokh, Yu P; Nusinovich, G S; Shkvarunets, A G; Carmel, Y

    2004-10-01

    Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.

  16. Radio to $\\gamma$-Ray Emission from Shell-type Supernova Remnants Predictions from Non-linear Shock Acceleration Models

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe

    1999-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...

  17. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  18. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  19. Non-Gaussianity vs. non-linearity of cosmological perturbations

    CERN Document Server

    Verde, L

    2001-01-01

    Following the discovery of the CMB, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us towards a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, non-linear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but these might not be faithful tr...

  20. Hans Hinterreiter’s non-linear transformations

    DEFF Research Database (Denmark)

    Makovicky, Emil

    Hans Hinterreiter (1902-1989) was a Swiss painter, belonging to the Constructivist movement, who spent most of his life in Ibiza, Spain. Since 1930 he occupied himself with the laws of form and colour. Parallel to Escher, he discovered laws of coloured symmetry before crystallographers started...... poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely......-step approach that combines plane group patterns with the principles of coloured symmetry and nonlinear transformations, his understanding of crystallographic and non-crystallographic symmetry and a meticulous application of these principles even to the most complex patterns produced a legacy close to the heart...

  1. Non-linear Kalman filters for calibration in radio interferometry

    CERN Document Server

    Tasse, Cyril

    2014-01-01

    We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...

  2. Hitting probabilities for non-linear systems of stochastic waves

    CERN Document Server

    Dalang, Robert C

    2012-01-01

    We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.

  3. Predictability of extremes in non-linear hierarchically organized systems

    Science.gov (United States)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare

  4. Method and system for non-linear motion estimation

    Science.gov (United States)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  5. Overall mass-transfer coefficients in non-linear chromatography

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Ernst

    1998-01-01

    In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....

  6. Non-linear rheology in a model biological tissue

    CERN Document Server

    Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2016-01-01

    Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  7. Realising traceable electrostatic forces despite non-linear balance motion

    Science.gov (United States)

    Stirling, Julian; Shaw, Gordon A.

    2017-05-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model.

  8. The mathematics of non-linear metrics for nested networks

    Science.gov (United States)

    Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian

    2016-10-01

    Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.

  9. Biometric Authentication System using Non-Linear Chaos

    Directory of Open Access Journals (Sweden)

    Dr.N.Krishnan

    2010-08-01

    Full Text Available A major concern nowadays for any Biometric Credential Management System is its potential vulnerability to protect its information sources; i.e. protecting a genuine user’s template from both internal and external threats. These days’ biometric authentication systems face various risks. One of the most serious threats is the ulnerability of the template's database. An attacker with access to a reference template could try to impersonate a legitimate user by reconstructing the biometric sample and by creating a physical spoof.Susceptibility of the database can have a disastrous impact on the whole authentication system. The potential disclosure of digitally stored biometric data raises serious concerns about privacy and data protection. Therefore, we propose a method which would integrate conventional cryptography techniques with biometrics. In this work, we present a biometric crypto system which encrypts the biometric template and the encryption is done by generating pseudo random numbers, based on non-linear dynamics.

  10. Responding to non-linear internationalisation of public policy

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten

    2016-01-01

    The transfer of regulatory authority to international organisations can initiate domestic policy reform. The internationalisation process can be a one-off transfer of authority to international institutions or an ongoing process. In the latter situation, the level of internationalisation may...... be gradually increased by expanding the regulatory scope of the regime or by deepening it. However, internationalisation processes may also involve stalemate or even reversal. How do domestic policy makers respond to such non-linear internationalisation? To answer this question, this paper analyzes...... the relationship between developments in the GATT and WTO farm trade negotiations and the reform trajectory of the EU's Common Agricultural Policy (CAP) from the early 1990s to 2013. Until 2008, the EU gradually changed the support instruments of the CAP to limit their trade distorting impact. After the Doha Round...

  11. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  12. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  13. Non linear prompt neutron kinetics in multigroup diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ajoy Kumar

    1963-06-15

    It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)

  14. An empirical evaluation of non-linear trading rules.

    Directory of Open Access Journals (Sweden)

    Sosvilla-Rivero, Simón

    2003-01-01

    Full Text Available In this paper we investigate the profitability of non-linear trading rules based on nearest neighbour (NN predictors. Applying this investment strategy to the New York Stock Exchange, our results suggest that, taking into account transaction costs, the NN-based trading rule is superior to both a riskadjusted buy-and-hold strategy and a linear ARIMA-based strategy in terms of returns for all of the years studied (1997-2002. Regarding other profitability measures, the NN-based trading rule yields higher Sharpe ratios than the ARIMA-based strategy for all of the years in the sample except for 2001. As for 2001, in 36 out of the 101 cases considered, the ARIMA-based strategy gives higher Sharpe ratios than those from the NN-trading rule, in 18 cases the opposite is true, and in the remaining 36 cases both strategies yield the same ratios.

  15. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  16. Black Hole Hair Removal: Non-linear Analysis

    CERN Document Server

    Jatkar, Dileep P; Srivastava, Yogesh K

    2009-01-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  17. Black hole hair removal: non-linear analysis

    Science.gov (United States)

    Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.

    2010-02-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  18. Non Linear Lorentz Transformation and Doubly Special Relativity

    CERN Document Server

    Atehortua, A N; Mira, J M; Vanegas, N

    2012-01-01

    We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.

  19. Non-linear scalable TFETI domain decomposition based contact algorithm

    Science.gov (United States)

    Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.

    2010-06-01

    The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.

  20. Considering Complexity: Toward A Strategy for Non-linear Analysis

    Directory of Open Access Journals (Sweden)

    Ken Hatt

    2009-01-01

    Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.

  1. NOLB : Non-linear rigid block normal mode analysis method.

    Science.gov (United States)

    Hoffmann, Alexandre; Grudinin, Sergei

    2017-04-05

    We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.

  2. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  3. Non-linear dynamics of a spur gear pair

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1990-10-01

    Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.

  4. Non-linearities in Theory-of-Mind Development

    Science.gov (United States)

    Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.

    2017-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065

  5. Some contributions to non-linear physic: Mathematical problems; Contribuciones a problemas matematicos en fisica no-lineal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of {zeta}/{zeta} u{sub {alpha}}, |{alpha} | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs.

  6. Experience and Challenges in Identification of Non-Linear Systems: Biochemical and Environmental Applications

    NARCIS (Netherlands)

    Keesman, K.J.

    2006-01-01

    In this short paper for the panel discussion on ¿Experience and challenges in identification of non-linear systems¿ some major issues with respect to identification of non-linear biochemical and environmental systems are presented.

  7. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    CERN Document Server

    Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G

    2015-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...

  8. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Science.gov (United States)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  9. State-variable analysis of non-linear circuits with a desk computer

    Science.gov (United States)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  10. Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds

    Science.gov (United States)

    Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven

    2010-01-01

    People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…

  11. The tanh-coth method combined with the Riccati equation for solving non-linear equation

    Energy Technology Data Exchange (ETDEWEB)

    Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr

    2009-05-15

    In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.

  12. Does the cerebral cortex exploit high dimensional, non-linear dynamics for information processing?

    Directory of Open Access Journals (Sweden)

    Wolf Singer

    2016-09-01

    Full Text Available The discovery of stimulus induced synchronisation in the visual cortex suggested the possibility that the relations among low-level stimulus features are encoded by the temporal relationship between neuronal discharges. In this framework, temporal coherence is considered a signature of perceptual grouping. This insight triggered a large number of experimental studies which sought to investigate the relationship between temporal coordination and cognitive functions. While some core predictions derived from the initial hypothesis were confirmed, these studies, also revealed a rich dynamical landscape beyond simple coherence whose role in signal processing is still poorly understood. In this paper a framework is presented which establishes links between the various manifestations of cortical dynamics by assigning specific coding functions to low dimensional dynamic features such as synchronized oscillations and phase shifts on the one hand and high dimensional non-linear, non-stationary dynamics on the other. The data serving as basis for this synthetic approach have been obtained with chronic multisite recordings from the visual cortex of anesthetized cats and from monkeys trained to solve cognitive tasks. It is proposed that the low dimensional dynamics characterized by synchronized oscillations and large-scale correlations are sub-states that represent the results of computations performed in the high dimensional state space provided by recurrently coupled networks.

  13. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    Science.gov (United States)

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.

  14. A 3D Self-Consistent, Analytical Model for Longitudinal Plasma Oscillation in a Relativistic Electron Beam

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M V

    2004-01-01

    Longitudinal plasma oscillations are becoming a subject of great interest for XFEL physics in connection with LSC microbunching instability[1] and certain pump-probe synchronization schemes[2]. In the present paper we developed the first exact analytical treatment for longitudinal oscillations within an axis-symmetric, (relativistic) electron beam, which can be used as a primary standard for benchmarking space-charge simulation codes. Also, this result is per se of obvious theoretical relevance as it constitutes one of the few exact solutions for the evolution of charged particles under the action of self-interactions.

  15. A pressure-driven model for the quasi periodical oscillations of the Single Helical States in Reversed Field Pinch plasmas

    Science.gov (United States)

    Paccagnella, Roberto

    2013-10-01

    In this work a model that could explain the experimentally observed quasi periodical oscillations in electron temperature and perturbed magnetic field in a Reversed Field Pinch is discussed. An ohmically heated plasma in which an interplay between thermal conduction and heat transport, on one side, and the magneto-hydro-dynamical stability, on the other side, is studied. It is shown that, by making some simple and physically reasonable assumptions, a set of equations can be obtained showing a variety of periodical or quasi periodical oscillations for the relevant dynamical variables.

  16. Frequency of self-oscillations

    CERN Document Server

    Groszkowski, Janusz

    2013-01-01

    Frequency of Self-Oscillations covers the realm of electric oscillations that plays an important role both in the scientific and technical aspects. This book is composed of nine chapters, and begins with the introduction to the alternating currents and oscillation. The succeeding chapters deal with the free oscillations in linear isolated systems. These topics are followed by discussions on self-oscillations in linear systems. Other chapters describe the self-oscillations in non-linear systems, the influence of linear elements on frequency of oscillations, and the electro mechanical oscillato

  17. Non-linear evolution of the cosmic neutrino background

    Energy Technology Data Exchange (ETDEWEB)

    Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  18. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  19. Design aspects of 13.56MHz, 1kW, CW-RF oscillator for plasma production

    Science.gov (United States)

    Kumar, Sunil; Kadia, Bhavesh; Singh, Raj; Varia, Atul; Srinivas, Y. S. S.; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    RF produced plasma has many applications in plasma processing and also it is useful in studying the fundamental characteristics of the plasma. A 1KW RF Hartley oscillator is designed and tested at 13.56 MHz. This has been built at RF section of Institute for Plasma Research by using EIMAC (3CX1200A7) triode tube. The RF source is operated in the grounded cathode mode. Triode 3CX1200A7 is operated in class AB and the feedback is Cathode grounded. The tube has sufficient margin in terms of plate dissipation and Grid dissipation that makes it suitable to withstand momentarily load mismatch. To optimize the RF source along with HVDC power supply many mechanical and electrical aspects have been thought of to enhance the overall quality of the system. This source mainly has three sections (The RF section, HVDC Power supply and soft start Filament Power supply). The system is compact and is housed in a 80 cm × 60 cm × 1800 cm aluminum panel. This paper describes the specifications, design criteria, circuit used, operating parameters of 1KW Oscillator along with HVDC power supply with necessary interlocks, tests conducted and results obtained of this 1 KW grounded grid Hartley Oscillator on 50 ohm dummy load. This system has been tested for 8 hours of continuous operation without any appreciable deterioration of the RF output power.

  20. Non-linear evolution of double tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.; Bell, M.; Budny, R.V.; Synakowski, E.

    1999-12-17

    The delta prime formalism with neoclassical modifications has proven to be a useful tool in the study of tearing modes in high beta, collisionless plasmas. In this paper the formalism developed for the inclusion of neoclassical effects on tearing modes in monotonic q-profile plasmas is extended to plasmas with hollow current profiles and double rational surfaces. First, the classical formalism of tearing modes in the Rutherford regime in low beta plasmas is extended to q profiles with two rational surfaces. Then it is shown that this formalism is readily extended to include neoclassical effects.

  1. Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET

    Science.gov (United States)

    Fil, A.; Nardon, E.; Hoelzl, M.; Huijsmans, G. T. A.; Orain, F.; Becoulet, M.; Beyer, P.; Dif-Pradalier, G.; Guirlet, R.; Koslowski, H. R.; Lehnen, M.; Morales, J.; Pamela, S.; Passeron, C.; Reux, C.; Saint-Laurent, F.

    2015-06-01

    JOREK 3D non-linear MHD simulations of a D2 Massive Gas Injection (MGI) triggered disruption in JET are presented and compared in detail to experimental data. The MGI creates an overdensity that rapidly expands in the direction parallel to the magnetic field. It also causes the growth of magnetic islands ( m / n = 2 / 1 and 3/2 mainly) and seeds the 1/1 internal kink mode. O-points of all island chains (including 1/1) are located in front of the MGI, consistently with experimental observations. A burst of MHD activity and a peak in plasma current take place at the same time as in the experiment. However, the magnitude of these two effects is much smaller than in the experiment. The simulated radiation is also much below the experimental level. As a consequence, the thermal quench is not fully reproduced. Directions for progress are identified. Radiation from impurities is a good candidate.

  2. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  3. Analyses of non-linear systems and their application to biology: a review.

    Science.gov (United States)

    Sato, S

    1994-01-01

    In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.

  4. NLHB : A Non-Linear Hopper Blum Protocol

    CERN Document Server

    Madhavan, Mukundan; Sankarasubramaniam, Yogesh; Viswanathan, Kapali

    2010-01-01

    In this paper, we propose a light-weight provably-secure authentication protocol called the NLHB protocol, which is a variant of the HB protocol. The HB protocol uses the complexity of decoding linear codes for security against passive attacks. In contrast, security for the NLHB protocol is proved by reducing passive attacks to the problem of decoding a class of non-linear codes\\footnote that are provably hard. We demonstrate that the existing passive attacks on the HB protocol family, which have contributed to considerable reduction in its effective key-size, are ineffective against the NLHB protocol. From the evidence, we conclude that smaller-key sizes are sufficient for the NLHB protocol to achieve the same level of passive attack security as the HB Protocol. Further, for this choice of parameters, we provide an implementation instance for the NLHB protocol for which the Prover/Verifier complexity is lower than the HB protocol, enabling authentication on very low-cost devices like RFID tags. Finally, in t...

  5. Non-linear vorticity upsurge in Burgers flow

    CERN Document Server

    Lam, F

    2016-01-01

    We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...

  6. Organic non-linear optics and opto-electronics

    Science.gov (United States)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  7. Non-linear Dynamics of Speech in Schizophrenia

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan

    Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and mode...... to the symptoms. Automated analysis of voice dynamics reveals potential for the assessment and monitoring of the disorder. Future work includes further validation of the approach, as well as more detailed investigation of the relation between speech patterns and other symptoms.......Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and model...... speech patterns of people with schizophrenia contrasting them with matched controls and in relation to positive and negative symptoms. We employ both traditional measures (pitch mean and range, pause number and duration, speech rate, etc.) and 2) non-linear techniques measuring the temporal structure...

  8. Non linear inversion of gravity gradients and the GGI gradiometer

    Science.gov (United States)

    Talwani, Manik

    2011-12-01

    All gradiometers currently operating for exploration in the field are based on Lockheed Martin's GGI gradiometer. The working of this gradiometer is described and a method for robust non linear inversion of gravity gradients is presented. The inversion method involves obtaining the gradient response of a trial body consisting of vertical rectangular prisms. The inversion adjusts the depth to the tops or bases of the prisms. In the trial model all the prisms are not required to have the same area of cross section or the same density (which can also be allowed to vary with depth). The depth to the tops and bottoms of each prism can also be different. This response is compared with the observed values of gradient and through an iterative procedure, the difference is minimized in a least square sense to arrive at a best fitting model by varying the position of the tops or bottoms of the prisms. Each gradient can be individually inverted or one or more gradients can be jointly inverted. The method is extended to invert gravity values individually or jointly with gradient values. The use of Differential Curvature, a quantity which is directly obtained by current gradiometers in use and which is an invariant under a rotation in the horizontal plane, is emphasized. Synthetic examples as well as a field example of inversion are given.

  9. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  10. The weakly non-linear density-velocity relation

    Science.gov (United States)

    Chodorowski, Michal J.; Lokas, Ewa L.

    1997-05-01

    We rigorously derive up to third order in perturbation theory the weakly non-linear relation between the cosmic density and velocity fields. The density field is described by the mass density contrast, delta. The velocity field is described by the variable theta proportional to the velocity divergence, theta=-f (Omega)^-1H ^-1_0∇. v, where f (Omega)~=Omega^0.6, Omega is the cosmological density parameter and H_0 is the Hubble constant. Our calculations show that mean delta given theta is a third-order polynomial in theta, --_theta=a _1theta+a_2(theta ^2-sigma^2_theta)+ a_3theta^3. This result constitutes an extension of the formula --_theta=theta+a _2(theta^2-sigma^2 _theta) found by Bernardeau which involved second-order perturbative solutions. Third-order perturbative corrections introduce the cubic term. They also, however, cause the coefficient a_1 to depart from unity, in contrast with the linear theory prediction. We compute the values of the coefficients a_p for scale-free power spectra, as well as for standard cold dark matter (CDM), for Gaussian smoothing. The coefficients obey a hierarchy a_3Ganon et al. The results provide a method for breaking the Omega-bias degeneracy in comparisons of cosmic density and velocity fields such as IRAS-potent.

  11. Non-linear BFKL dynamics: color screening vs. gluon fusion

    CERN Document Server

    Fiore, R; Zoller, V R

    2012-01-01

    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...

  12. Non-linear modulation of short wavelength compressional Alfven eigenmodes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)

    2013-04-15

    Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  13. Non-linear controllers in ship tracking control system

    Institute of Scientific and Technical Information of China (English)

    LESZEK M

    2005-01-01

    The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.

  14. Non-linear evolution of the cosmic neutrino background

    CERN Document Server

    Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo

    2012-01-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...

  15. Non-linear optical microscopy sheds light on cardiovascular disease.

    Directory of Open Access Journals (Sweden)

    Valentina Caorsi

    Full Text Available Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE and Second Harmonic signal Generation (SHG. No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (B(SHG alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.

  16. Non-linear image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Gregor, Ingo; Ros, Robert; Enderlein, Jörg

    2017-02-01

    Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.

  17. Non-linear Least Squares Fitting in IDL with MPFIT

    CERN Document Server

    Markwardt, Craig B

    2009-01-01

    MPFIT is a port to IDL of the non-linear least squares fitting program MINPACK-1. MPFIT inherits the robustness of the original FORTRAN version of MINPACK-1, but is optimized for performance and convenience in IDL. In addition to the main fitting engine, MPFIT, several specialized functions are provided to fit 1-D curves and 2-D images; 1-D and 2-D peaks; and interactive fitting from the IDL command line. Several constraints can be applied to model parameters, including fixed constraints, simple bounding constraints, and "tying" the value to another parameter. Several data weighting methods are allowed, and the parameter covariance matrix is computed. Extensive diagnostic capabilities are available during the fit, via a call-back subroutine, and after the fit is complete. Several different forms of documentation are provided, including a tutorial, reference pages, and frequently asked questions. The package has been translated to C and Python as well. The full IDL and C packages can be found at http://purl.co...

  18. Non Linear Force Free Field Modeling for a Pseudostreamer

    Science.gov (United States)

    Karna, Nishu; Savcheva, Antonia; Gibson, Sarah; Tassev, Svetlin V.

    2017-08-01

    In this study we present a magnetic configuration of a pseudostreamer observed on April 18, 2015 on southern west limb embedding a filament cavity. We constructed Non Linear Force Free Field (NLFFF) model using the flux rope insertion method. The NLFFF model produces the three-dimensional coronal magnetic field constrained by observed coronal structures and photospheric magnetogram. SDO/HMI magnetogram was used as an input for the model. The high spatial and temporal resolution of the SDO/AIA allows us to select best-fit models that match the observations. The MLSO/CoMP observations provide full-Sun observations of the magnetic field in the corona. The primary observables of CoMP are the four Stokes parameters (I, Q, U, V). In addition, we perform a topology analysis of the models in order to determine the location of quasi-separatrix layers (QSLs). QSLs are used as a proxy to determine where the strong electric current sheets can develop in the corona and also provide important information about the connectivity in complicated magnetic field configuration. We present the major properties of the 3D QSL and FLEDGE maps and the evolution of 3D coronal structures during the magnetofrictional process. We produce FORWARD-modeled observables from our NLFFF models and compare to a toy MHD FORWARD model and the observations.

  19. Non-linear equation: energy conservation and impact parameter dependence

    CERN Document Server

    Kormilitzin, Andrey

    2010-01-01

    In this paper we address two questions: how energy conservation affects the solution to the non-linear equation, and how impact parameter dependence influences the inclusive production. Answering the first question we solve the modified BK equation which takes into account energy conservation. In spite of the fact that we used the simplified kernel, we believe that the main result of the paper: the small ($\\leq 40%$) suppression of the inclusive productiondue to energy conservation, reflects a general feature. This result leads us to believe that the small value of the nuclear modification factor is of a non-perturbative nature. In the solution a new scale appears $Q_{fr} = Q_s \\exp(-1/(2 \\bas))$ and the production of dipoles with the size larger than $2/Q_{fr}$ is suppressed. Therefore, we can expect that the typical temperature for hadron production is about $Q_{fr}$ ($ T \\approx Q_{fr}$). The simplified equation allows us to obtain a solution to Balitsky-Kovchegov equation taking into account the impact pa...

  20. Non-linear model for compression tests on articular cartilage.

    Science.gov (United States)

    Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore

    2015-07-01

    Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.

  1. Non-linear calibration models for near infrared spectroscopy.

    Science.gov (United States)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-02-27

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.

  2. Are oil markets chaotic? A non-linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)

    2000-10-01

    The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.

  3. Non-Linear Optical Microscopy Sheds Light on Cardiovascular Disease

    Science.gov (United States)

    Caorsi, Valentina; Toepfer, Christopher; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken; Ferenczi, Mike A.

    2013-01-01

    Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (BSHG) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression. PMID:23409139

  4. Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material

    Institute of Scientific and Technical Information of China (English)

    Marek Pawlikowski

    2014-01-01

    The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.

  5. Characterisation and Modelling of the Non Linear Mechanical Behaviour of Sepcarb NB41 Carbon/Carbon Composite

    Energy Technology Data Exchange (ETDEWEB)

    Abbe, F. [Snecma Prop Solide SAFRAN Grp, F-33187 Le Haillan (France); Herb, V.; Camus, G.; Martin, E. [Univ Bordeaux 1, Lab Composites Thermostruct, CNRS SPS CEA UB1, F-33600 Pessac (France)

    2009-08-15

    Design and optimization of a plasma facing component calls for dedicated constitutive laws which can handle the non linear behaviour typical of composite materials when applying this class of materials. This paper depicts the different phases of characterization and modelling which are required. Compared to a classical elastic analysis, this approach provides a more realistic estimate of the stress distribution within a thermally loaded PFC as demonstrated by finite element computations performed on a plasma facing component with a macro-bloc (R) geometry. (authors)

  6. Simultaneous Investigation of Flexibility and Plasma Actuation Effects on the Aerodynamic Characteristics of an Oscillating Airfoil

    Directory of Open Access Journals (Sweden)

    Arash Mahboubi Doust

    2016-01-01

    Full Text Available In this work, a numerical study of two dimensional laminar incompressible flow around the flexible oscillating NACA0012 airfoil is performed using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping is considered. Reynolds number for these motions is assumed fixed at 12000. One of the important issues that must be considered in designing air structures, in particular the aircraft wing, is the interaction between the air and the elastic aircraft wings that is known as the Aeroelastic phenomenon. For this purpose, the effect of airfoil flexibility and flow induced vibration in these motion types is investigated and compared with the case of rigid airfoil. It is observed that the flexibility in both types of motions causes improvement of the thrust which is boosted with increasing the frequency. Contrary to thrust, the significant improvement of lift is only achievable in high frequencies. It was also found that the effect of flexibility on the flapping motion is higher than the pitching motion. For flow control on the airfoil, Dielectric Barrier Discharge plasma actuator is used in the trailing edge of a flexible airfoil, and its effect on the flexible airfoil is also investigated.

  7. A general derivation of the subharmonic threshold for non-linear bubble oscillations

    NARCIS (Netherlands)

    Prosperetti, A.

    2013-01-01

    The paper describes an approximate but rather general derivation of the acoustic threshold for a subharmonic component to be possible in the sound scattered by an insonified gas bubble. The general result is illustrated with several specific models for the mechanical behavior of the surface coating

  8. Broadband Rotational Energy Harvesting with Non-linear Oscillator and Piezoelectric Transduction

    Science.gov (United States)

    Fu, H.; Yeatman, E. M.

    2016-11-01

    Rotational energy is widely distributed in many industrial and domestic applications, such as ventilation systems, moving vehicles and miniature turbines. This paper reports the design and implementation of a bi-stable rotational energy harvester with wide bandwidth and low operating frequency. The rotational energy is converted into electricity by magnetic plucking of a piezoelectric cantilever using a driving magnet mounted on a rotating host. The bistable condition is achieved by introducing a fixed magnet above the tip magnet at the cantilever's free end. The repulsive magnetic force between the magnets creates two equilibrium positions for the piezoelectric beam. The harvester is designed to operate in the high energy orbit (interwell vibration mode) to extract more energy from the rotational energy source. Harvesters with and without bistability are compared experimentally, showing the difference of power extraction on both the output power and bandwidth. The method proposed in this paper provides a simple and efficient way to extract rotational energy from the ambient environment.

  9. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  10. Forced desynchrony reveals independent contributions of suprachiasmatic oscillators to the daily plasma corticosterone rhythm in male rats.

    Science.gov (United States)

    Wotus, Cheryl; Lilley, Travis R; Neal, Adam S; Suleiman, Nicole L; Schmuck, Stefanie C; Smarr, Benjamin L; Fischer, Brian J; de la Iglesia, Horacio O

    2013-01-01

    The suprachiasmatic nucleus (SCN) is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrolateral (vl-) and dorsomedial (dm-) SCN, respectively. We show that when the vlSCN and dmSCN are in maximum phase misalignment, the peak of the plasma corticosterone rhythm is shifted and the amplitude reduced; whereas, the peak of the plasma adrenocorticotropic hormone (ACTH) rhythm is also reduced, the phase is dissociated from that of the corticosterone rhythm. These data support previous studies suggesting an ACTH-independent pathway contributes to the corticosterone rhythm. To determine if either SCN subregion independently regulates corticosterone through the sympathetic nervous system, we compared unilateral adrenalectomized, desynchronized rats that had undergone either transection of the thoracic splanchnic nerve or sham transection to the remaining adrenal. Splanchnicectomy reduced and phase advanced the peak of both the corticosterone and ACTH rhythms. These data suggest that both the vlSCN and dmSCN contribute to the corticosterone rhythm by both reducing plasma ACTH and differentially regulating plasma corticosterone through an ACTH- and sympathetic nervous system-independent pathway.

  11. Forced desynchrony reveals independent contributions of suprachiasmatic oscillators to the daily plasma corticosterone rhythm in male rats.

    Directory of Open Access Journals (Sweden)

    Cheryl Wotus

    Full Text Available The suprachiasmatic nucleus (SCN is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrolateral (vl- and dorsomedial (dm- SCN, respectively. We show that when the vlSCN and dmSCN are in maximum phase misalignment, the peak of the plasma corticosterone rhythm is shifted and the amplitude reduced; whereas, the peak of the plasma adrenocorticotropic hormone (ACTH rhythm is also reduced, the phase is dissociated from that of the corticosterone rhythm. These data support previous studies suggesting an ACTH-independent pathway contributes to the corticosterone rhythm. To determine if either SCN subregion independently regulates corticosterone through the sympathetic nervous system, we compared unilateral adrenalectomized, desynchronized rats that had undergone either transection of the thoracic splanchnic nerve or sham transection to the remaining adrenal. Splanchnicectomy reduced and phase advanced the peak of both the corticosterone and ACTH rhythms. These data suggest that both the vlSCN and dmSCN contribute to the corticosterone rhythm by both reducing plasma ACTH and differentially regulating plasma corticosterone through an ACTH- and sympathetic nervous system-independent pathway.

  12. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  13. Linear and non-linear bias: predictions versus measurements

    Science.gov (United States)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  14. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  15. Thermal rectification in non-linear structures with bulk losses

    Science.gov (United States)

    Schmidt, Martin; Kottos, Tsampikos

    2013-03-01

    A mechanism for thermal rectification based on the interplay between non-uniform bulk losses with nonlinearity is presented. We theoretically analyze the phenomenon using an anharmonic array of coupled oscillators coupled to the left and right with two Langevin reservoirs. A third probe thermostat (with temperature TB) is placed in an asymmetric position in the bulk of the lattice thus breaking the translational symmetry and leading to rectification of heat flow. We note that for TB = 0 this Langevin term is equivalent to a simple friction. We find that an increase of the friction strength can increase both the asymmetry and heat flux. Visiting Student from Germany

  16. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  17. Non-linear stochastic optimal control of acceleration parametrically excited systems

    Science.gov (United States)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  18. Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle

    Energy Technology Data Exchange (ETDEWEB)

    Sardanyes, Josep [Complex Systems Laboratory (ICREA-UPF), Barcelona Biomedical Research Park (PRBB-GRIB), Dr. Aiguader 88, 08003 Barcelona (Spain)], E-mail: josep.sardanes@upf.edu

    2009-01-15

    Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T{sub {epsilon}}, tends to infinity as n{yields}{infinity} (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold.

  19. Non-linearity parameter / of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma

    2000-09-01

    When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.

  20. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  1. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  2. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  3. eta/s and the phase transition of the Non-Linear Sigma Model

    CERN Document Server

    Dobado, Antonio; Torres-Rincon, Juan M

    2008-01-01

    We present a calculation of eta/s for the meson gas (zero baryon number) within unitarized NLO chiral perturbation theory and confirm the observation that eta/s decreases towards the possible phase transition to a quark-gluon plasma/liquid. The value is however somewhat higher than previously estimated in LO chiPT. We then study the behavior of the viscosity over entropy density across the known second order phase transition in the Non-Linear Sigma Model, and establish that it has indeed a minimum that, within calculational uncertainties, can be identified with the phase transition. Finally we examine the case of atomic Argon gas to check the discontinuity of eta/s across a first order phase transition. Our results reinforce the possibility of employing the KSS number to pin down the phase transition and critical point to a cross-over in strongly interacting nuclear matter between the hadron gas and the quark and gluon plasma/liquid.

  4. Non-linear dynamic response of a wind turbine blade

    Science.gov (United States)

    Chopra, I.; Dugundji, J.

    1979-01-01

    The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.

  5. Non-linear Matter Spectra in Coupled Quintessence

    CERN Document Server

    Saracco, F; Tetradis, N; Pettorino, V; Robbers, G

    2010-01-01

    We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-component matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is greatly enhanced by the extra coupling and can be at the percent level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.

  6. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    CERN Document Server

    Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A

    2014-01-01

    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...

  7. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  8. Self-injection by trapping of plasma electrons oscillating in rising density gradient at the vacuum-plasma interface

    CERN Document Server

    Sahai, Aakash A; Muggli, Patric

    2014-01-01

    We model the trapping of plasma $e^-$ within the density structures excited by a propagating energy source ($\\beta_{S}\\simeq1$) in a rising plasma density gradient. Rising density gradient leads to spatially contiguous coupled up-chirped plasmons ($d{\\omega^2_{pe}(x)}/{dx}>0$). Therefore phase mixing between plasmons can lead to trapping until the plasmon field is high enough such that $e^-$ trajectories returning towards a longer wavelength see a trapping potential. Rising plasma density gradients are ubiquitous for confining the plasma within sources at the vacuum-plasma interfaces. Therefore trapping of plasma-$e^-$ in a rising ramp is important for acceleration diagnostics and to understand the energy dissipation from the excited plasmon train \\cite{LTE-2013}. Down-ramp in density \\cite{density-transition-2001} has been used for plasma-$e^-$ trapping within the first bucket behind the driver. Here, in rising density gradient the trapping does not occur in the first plasmon bucket but in subsequent plasmon...

  9. Non-linear analysis of vibrations of irregular plates

    Science.gov (United States)

    Lobitz, D. W.; Nayfeh, A. H.; Mook, D. T.

    1977-01-01

    A numerical perturbation method is used to investigate the forced vibrations of irregular plates. Nonlinear terms associated with the midplane stretching are retained in the analysis. The numerical part of the method involves the use of linear, finite element techniques to determine the free oscillation mode shapes and frequencies and to obtain the linear midplane stress resultants caused by the midplane stretching. Representing the solution as an expansion in terms of these linear mode shapes, these modes and the resultants are used to determine the equations governing the time-dependent coefficients of this expansion. These equations are solved by using the method of multiple scales. Specific solutions are given for the main-resonant vibrations of an elliptical plate in the presence of internal resonances. The results indicate that modes other than the driven mode can be drawn into the steady state response. Though the excitation is composed of a single harmonic, the response may not be periodic. Moreover, the particular types of responses that can occur are highly dependent on the mode being excited and are sensitive to small geometrical changes.

  10. Phase-mixing self-injection into plasma-wakefield acceleration structures driven in a rising density gradient

    Science.gov (United States)

    Sahai, Aakash Ajit

    We model the phase-mixing self-injection of electrons into plasma-wakefield acceleration structures driven in a longitudinally rising density gradient. Self-injection is the process where some of the plasma electrons lose coherence with the wave due to non-linearities. The non-linearity is inherently and intentionally induced in the plasma oscillations due to the variation of the restoring force along the rising density gradient. These electrons then get trapped in and propagate with the accelerating phase of the plasma-wave. The electron oscillations driven by matched energy-sources are shown to get trapped in the wakefields similar in scaling to the phase-mixing of free oscillations. The onset of trapping is shown to scale with the gradient of rising density and the amplitude of oscillations. The planar longitudinal electron oscillations undergo trajectory crossing above a threshold amplitude or in a density inhomogeneity leading to phase-mixing and trapping of the oscillating electrons to a phase of the wave. In this thesis, we analyze the scaling of the phase-mixing based trapping of electron oscillations, independent of a threshold, in planar geometry driven by an electron beam in a rising density gradient. The cylindrical and spherical geometry electron oscillations undergo phase-mixing irrespective of the amplitude of oscillations. Here, driven radial electron oscillations in cylindrical geometry are shown to undergo phase-mixing leading to trapping of the plasma electrons in a longitudinally rising density gradient. We also present preliminary scaling results of phase-mixing based trapping of radially oscillating electrons in a rising density gradient.

  11. A Master Equation for Multi-Dimensional Non-Linear Field Theories

    CERN Document Server

    Park, Q H

    1992-01-01

    A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.

  12. Non-linearly weighted fuzzy correlation for color-image retrieval

    Institute of Scientific and Technical Information of China (English)

    Guoguang Mu(母国光); Hongchen Zhai(翟宏琛); Siyuan Zhang(张思远)

    2003-01-01

    An algorithm with non-linear weight factors in the summation process for fuzzy correlation of color his-tograms is presented, in which non-linear weights are assigned to some characteristic colors of interest.Experimental results show that this can improve the retrieval of color images with partial aberrations orwith local color characters.

  13. Measurements of dynamical response of non-linear systems. How hard can it be?

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2015-01-01

    Measurements of a dynamical response of linear system are widely used in praxis, they are standardized and well known. On the other hand, for the non-linear systems the principle of superposition can’t be applied and also the non-linear systems can excite the harmonics or undergo jump phenomena...

  14. Robust Non-Linear Control of a 400 kW Wind Turbine

    DEFF Research Database (Denmark)

    Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben

    1996-01-01

    The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....

  15. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  16. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Science.gov (United States)

    Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.

    2014-11-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.

  17. Travelling and standing envelope solitons in discrete non-linear cyclic structures

    Science.gov (United States)

    Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph

    2016-12-01

    Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.

  18. A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Turgay ÇOŞGUN

    2003-02-01

    Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.

  19. The preparation and optical characterisation of novel organic crystals with applications in non linear devices

    CERN Document Server

    Wilkie, S

    2000-01-01

    In recent years, novel non-linear organic materials have generated great interest in the development of all-optical non-linear devices. Such materials have been optically characterised, mainly for the purposes of second harmonic generation and electro-optic modulation, within the Chemistry department of Strathclyde University since the mid-1980's. This thesis documents the continued development and enhancement of this core research speciality in the growth, preparation and optical characterisation of two such novel organic non-linear materials, namely NMU and MBANP. A literature search that reviewed the linear and non-linear optical properties of a select number of novel organic non-linear materials was conducted. All too often sample crystal quality was not detailed and hence the quality of crystals upon which the material characterisation was based remained unknown. Surprisingly, the availability of reliable, accurate data was found to be scarce. The optical investigation of NMU represented the first ever e...

  20. Water environmental planning considering the influence of non-linear characteristics

    Institute of Scientific and Technical Information of China (English)

    ZENG Guang-ming; QIN Xiao-sheng; WANG Wei; HUANG Guo-he; LI Jian-bing; B. Statzner

    2003-01-01

    In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods.

  1. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E;

    1996-01-01

    OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from...... corresponding surrogate time series. RESULTS: A small significant amount of non-linear dynamics exists in heart rate variability. Correlation dimensions and non-linear predictability are relatively specific parameters for each individual examined. The correlation dimension is inversely correlated to the heart...

  2. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  3. Wave Propagation and Diffusive Transition of Oscillations in Pair Plasmas with Dust Impurities

    CERN Document Server

    Atamaniuk, Barbara

    2008-01-01

    In view of applications to electron-positron pair-plasmas and fullerene pair-ion-plasmas containing charged dust impurities a thorough discussion is given of three-component Plasmas. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson -Ampere equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped disp...

  4. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages.

    Science.gov (United States)

    Brandenberger, G; Follenius, M; Muzet, A; Ehrhart, J; Schieber, J P

    1985-08-01

    The 24-h pattern of PRA was studied in 6 supine normal subjects, and the relationship between sleep stages and PRA oscillations was analyzed using 18 nighttime profiles and the concomitant polygraphic recordings of sleep. Blood was collected at 10-min intervals. The slow trends obtained by adjusting a third degree polynomial to the 24-h data were not reproducible among individuals, and no circadian pattern was detected. Sustained oscillations in PRA occurred throughout the day. Spectral analysis revealed that PRA oscillated at a regular periodicity of about 100 min during the night. This periodicity was modified during the daytime by meal intake, which induced PRA peaks with large interindividual variations in size. A close relationship was found between the nocturnal PRA oscillations and the alternance of rapid eye movement (REM) sleep and non-REM sleep. Non-REM sleep invariably coincided with increasing or peaking PRA levels. REM sleep occurred as PRA was declining or at nadirs. More precisely, increases in PRA marked the transition from REM sleep to stage II, whereas stages III and IV usually occurred when PRA was highest. This relationship between the periodic nocturnal oscillations in PRA and the alternance of the REM-non-REM cycles may translate a similar oscillatory process in the central nervous system or may be linked to hemodynamic changes during sleep that might be partly controlled by the renin-angiotensin system.

  5. Effect of Sb addition on linear and non-linear optical properties of amorphous Ge-Se-Sn thin films

    Science.gov (United States)

    Sharma, Navjeet; Sharma, Surbhi; Sarin, Amit; Kumar, Rajesh

    2016-01-01

    Optical characterization of amorphous thin films of Ge20Sn10Se70-xSbx (x = 0, 3, 6, 9, 12, 15) has been carried out. Thin films were deposited onto pre cleaned glass substrates using thermal evaporation technique. Transmission spectra of the films were recorded, for normal incidence, in range 400-2400 nm. Refractive index of the films was calculated using the envelope method by Swanepoel. Dispersion analysis has been carried out using single effective oscillator model. Other optical constants such as absorption coefficients, extinction coefficients have also been evaluated. Tauc plots were used to evaluate the optical band gap. The refractive index has been found to be increasing while the band gap decreases with increasing Sb concentration. The observed optical behavior of the films has been explained using chemical bond approach. Cohesive energy is found to be decreasing in the present work, which reflects that bond strength decreases with the increasing content of Sb. Non-linear optical parameters (i.e. n2 and χ(3)) have been derived from linear optical parameters (i.e. n, k, Eg). Observed changes in linear and non-linear parameters have been reported in this study.

  6. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    Science.gov (United States)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  7. A New Multi-tanh-Based Non-linear Function Synthesiser

    Science.gov (United States)

    Taher Abuelma'atti, Muhammad; Radhi Al-Abbas, Saad

    2016-11-01

    A new complementary metal-oxide-semiconductor transadmittance-mode with input voltage and output current, analogue non-linear odd-function synthesiser is presented. The proposed circuit is based on the assumption that a non-linear odd- function can be approximated by the summation of hyperbolic tangent (tanh) functions with different arguments. Each term of the tanh function expansion is realised by exploiting to advantage the inherent non-linearity of a current-controlled current-conveyor (CCCCII) (or an operational transconductance amplifier (OTA)) with a different bias current. The output currents of these CCCCIIs (OTAs) are weighted using the gains of current amplifiers. These weighted currents are algebraically added to form the required non-linear function. The proposed circuit is suitable for integration, can be easily extended to include higher order terms of the tanh-odd-function expansion and can be programmed to realise arbitrary hard non-linear odd-functions that cannot be easily realised using already existing techniques, based on the Taylor-series expansion, for synthesising non-linear functions. PSPICE simulation results, obtained from CCCCII-based realisations of selected hard non-linearities, demonstrating the functionality of the proposed circuit are included.

  8. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  9. A Weakly Non Linear Stability Analysis of Heat Transport in Anisotropic Porous Cavity Under Time PeriodicTemperature Modulation

    Directory of Open Access Journals (Sweden)

    Amit kumar Mishra

    2015-01-01

    Full Text Available In this paper, we have analyzed the effect of time periodic temperature modulation on convective stability in anisotropic porous cavity. The cavity is heated from below and cooled from above. A weakly non-linear stability analysis is done to find Nusselt number governing the heat transport. The infinitely small disturbances are expanded in terms of power series of amplitude of modulation. Analytically the nonautonomous Ginzburg- landau amplitude equation is obtained for the stationary mode of convection. The effects of various parameters like Vadasz number, mechanical and thermal anisotropic parameters, amplitude of oscillations, frequency of modulation and aspect ratio of the cavity on heat transport is studied and plotted graphically. It is observed that the heat transport can also be controlled by suitably adjusting the external and internal parameters of the system.

  10. Least-Order Torsion-Gravity for Fermion Fields, and the Non-Linear Potentials in the Standard Models

    CERN Document Server

    Fabbri, Luca

    2014-01-01

    We will consider least-order torsional completion of gravity for a spacetime filled with fermionic Dirac matter fields, and we study the effects of the background-induced non-linear potentials for the matter field themselves, in terms of their effects for both standard models of physics: from the one of cosmology to that of particles, we will discuss the mechanisms of generation of the cosmological constant and particles masses as well as the phenomenology of leptonic weak-like forces and neutrino oscillations, the problem of zero-point energy, how there can be neutral massive fields as candidates for dark matter, and gravitationally-induced singularity formation; we will show the way in which all these different effects can nevertheless be altogether described in terms of just a single model, which will be thoroughly discussed in the end.

  11. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  12. Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride

    CERN Document Server

    Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor

    2016-01-01

    Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.

  13. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  14. Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren

    2005-01-01

    Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.

  15. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  16. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  17. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...

  18. SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. V. Bosakov

    2008-01-01

    Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems. 

  19. Variational iteration method for solving non-linear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, A.A. [Department of Mathematics, Faculty of Science, University of Tanta, Tanta (Egypt)], E-mail: aahemeda@yahoo.com

    2009-02-15

    In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV-MKdV equation and Camassa-Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.

  20. Grey Box Non-Linearities Modeling and Characterization of a BandPass BAW Filter

    Directory of Open Access Journals (Sweden)

    M. Mabrouk

    2016-06-01

    Full Text Available In this work, the non-linearities of a 3G/UMTS geared BandPass Bulk Acoustic Wave ladder filter composed of five resonators were modeled using non-linear modified Butterworth-Van Dyke model. The non-linear characteristics were measured and simulated, and they were compared and found to be fairly identical. The filter's central frequency is 2.12 GHz, the corresponding bandwidth is 61.55 MHz, and the quality factor is 34.55.

  1. Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Thor Inge Fossen

    1988-10-01

    Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.

  2. H∞ Synthesis Method for Control of Non-linear Flexible Joint Models

    OpenAIRE

    Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael

    2014-01-01

    An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...

  3. Numerical Simulation of Non-Linear Wave Propagation in Waters of Mildly Varying Topography with Complicated Boundary

    Institute of Scientific and Technical Information of China (English)

    张洪生; 洪广文; 丁平兴; 曹振轶

    2001-01-01

    In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.

  4. Non-linear analysis of EEG signals at various sleep stages.

    Science.gov (United States)

    Acharya U, Rajendra; Faust, Oliver; Kannathal, N; Chua, TjiLeng; Laxminarayan, Swamy

    2005-10-01

    Application of non-linear dynamics methods to the physiological sciences demonstrated that non-linear models are useful for understanding complex physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages and sustained fluctuations of autonomic functions such as temperature, blood pressure, electroencephalogram (EEG), etc., can be described as a chaotic process. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The sleep data analysis is carried out using non-linear parameters: correlation dimension, fractal dimension, largest Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and recurrence plots. These non-linear parameters quantify the cortical function at different sleep stages and the results are tabulated.

  5. Non-linear ultimate strength and stability limit state analysis of a wind turbine blade

    DEFF Research Database (Denmark)

    Rosemeier, Malo; Berring, Peter; Branner, Kim

    2016-01-01

    flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade...... of an imperfection. The more realistic non-linear approaches yielded more optimistic results than the mandatory linear bifurcation analysis. Consequently, the investigated blade designed after the lesser requirements was sufficient. Using the non-linear approaches, considering inter-fibre failure as the critical...... failure mode, yielded still a significant safety margin for the designer (7–28%). The non-linear response was significantly dependent on the scaling of the imperfection. Eurocode's method of applying an imperfection appeared more realistic than the GL method. Since the considered blade withstood 135...

  6. Finite-time H∞ filtering for non-linear stochastic systems

    Science.gov (United States)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  7. Non-linear time series analysis: methods and applications to atrial fibrillation.

    Science.gov (United States)

    Hoekstra, B P; Diks, C G; Allessie, M A; Degoede, J

    2001-01-01

    We apply methods from non-linear statistical time series analysis to characterize electrograms of atrial fibrillation. These are based on concepts originating from the theory of non-linear dynamical systems and use the empirical reconstruction density in reconstructed phase space. Application of these methods is not restricted to deterministic chaos but is valid in a general time series context. We illustrate this by applying three recently proposed non-linear time series methods to fibrillation electrograms: 1) a test for time reversibility in atrial electrograms during paroxysmal atrial fibrillation in patients; 2) a test to detect differences in the dynamical behaviour during the pharmacological conversion of sustained atrial fibrillation in instrumented conscious goats; 3) a test for general Granger causality to identify couplings and information transport in the atria during fibrillation. We conclude that a characterization of the dynamics via the reconstruction density offers a useful framework for the non-linear analysis of electrograms of atrial fibrillation.

  8. The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    ZANG Zhen-chun

    2001-01-01

    In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.

  9. Estimations of non-linearities in structural vibrations of string musical instruments

    CERN Document Server

    Ege, Kerem; Boutillon, Xavier

    2012-01-01

    Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.

  10. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    . The accuracy of the nonlinear ASA is compared to the non-linear simulation program – Abersim, which is a numerical solution to the Burgers equation based on the OSM. Simulations are performed for a linear array transducer with 64 active elements, focus at 40 mm, and excitation by a 2-cycle sine wave......A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...

  11. Controllability of non-linear systems: generic singularities and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, Alexey A; Zakalyukin, Vladimir M

    2012-04-30

    This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

  12. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  13. Non-Linear Noise Contributions in Highly Dispersive Optical Transmission Systems

    Science.gov (United States)

    Matera, Francesco

    2016-01-01

    This article reports an analytical investigation, confirmed by numerical simulations, about the non-linear noise contribution in single-channel systems adopting generic modulation-detection formats in long links with both managed and unmanaged dispersion compensation and its impact in system performance. This noise contribution is expressed in terms of a pulse non-linear interaction length and permits a simple calculation of the Q-factor. Results point out the dependence of this non-linear noise on the number of amplifiers spans, N, according to the adopted chromatic dispersion compensation scheme, the modulation-detection format, and the signal baud rate. It is also shown how the effects of polarization multiplexing can be taken into account and how this single-channel non-linear noise contribution can be used in a wavelength-division multiplexing (WDM) environment.

  14. ON THE HOLOMORPHIC SOLUTION OF NON-LINEAR TOTALLY CHARACTERISTIC EQUATIONS WITH SEVERAL SPACE VARIABLES

    Institute of Scientific and Technical Information of China (English)

    陈化; 罗壮初

    2002-01-01

    In this paper the authors study a class of non-linear singular partial differential equation in complex domain Ct × Cnx. Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of Ct × Cnx.

  15. Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar

    Directory of Open Access Journals (Sweden)

    John P. Godbaz

    2011-12-01

    Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.

  16. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Directory of Open Access Journals (Sweden)

    Izhal Abdul Halin

    2009-11-01

    Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  17. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  18. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.;

    2005-01-01

    plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled......A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  19. Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events

    Science.gov (United States)

    Krishnaswamy, Jagdish; Vaidyanathan, Srinivas; Rajagopalan, Balaji; Bonell, Mike; Sankaran, Mahesh; Bhalla, R. S.; Badiger, Shrinivas

    2015-07-01

    The El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are widely recognized as major drivers of inter-annual variability of the Indian monsoon (IM) and extreme rainfall events (EREs). We assess the time-varying strength and non-linearity of these linkages using dynamic linear regression and Generalized Additive Models. Our results suggest that IOD has evolved independently of ENSO, with its influence on IM and EREs strengthening in recent decades when compared to ENSO, whose relationship with IM seems to be weakening and more uncertain. A unit change in IOD currently has a proportionately greater impact on IM. ENSO positively influences EREs only below a threshold of 100 mm day-1. Furthermore, there is a non-linear and positive relationship between IOD and IM totals and the frequency of EREs (>100 mm day-1). Improvements in modeling this complex system can enhance the forecasting accuracy of the IM and EREs.

  20. Simultaneous Investigation of Flexibility and Plasma Actuation Effects on the Aerodynamic Characteristics of an Oscillating Airfoil

    OpenAIRE

    Arash Mahboubi Doust; Abas Ramiar; Morteza Dardel

    2016-01-01

    In this work, a numerical study of two dimensional laminar incompressible flow around the flexible oscillating NACA0012 airfoil is performed using the open source code OpenFOAM. Oscillatory motion types including pitching and flapping is considered. Reynolds number for these motions is assumed fixed at 12000. One of the important issues that must be considered in designing air structures, in particular the aircraft wing, is the interaction between the air and the elastic aircraft wings that i...

  1. Turbulence measurements in fusion plasmas

    Science.gov (United States)

    Conway, G. D.

    2008-12-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence—the microscopic random fluctuations in particle density, temperature, potential and magnetic field—is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  2. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    AFRL-RD-PS- AFRL-RD-PS- TR-2016-0055 TR-2016-0055 NON-LINEAR OPTICAL STUDIES OF IR MATERIALS WITH INFRARED FEMTOSECOND LASER Enam...ANDREAS SCHMITT-SODY, DR-III ERIN PETTYJOHN, DR-III Program Manager Deputy Chief, High Power Electromagnetics Division This...TITLE AND SUBTITLE Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9451-14-1

  3. Non - linear laminar flow of fluid into an open bottom well

    Directory of Open Access Journals (Sweden)

    S. K. JAIN

    1982-06-01

    Full Text Available In steady state condition, non - linear laminar flow of fluid into an open
    bottom well just penetrating the semi-infinite porous aquifer is considered. The
    influence of non-linear laminar flow on discharge and its dependance on related
    physical quantities is examined. It is found that an open bottom well actually
    behaves like a hemispherical well, which is an obvious practical phenomenon.

  4. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model param...... heat load reduction during peak load hours, control of indoor air temperature and for generating forecasts of power consumption from space heating....

  5. Characterization of Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes

    Science.gov (United States)

    2016-04-20

    Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0182 TR-2015-0182 CHARACTERIZATION OF NON-LINEARIZED SPACECRAFT RELATIVE MOTION USING NONLINEAR NORMAL MODES Eric...STATEMENT. THOMAS LOVELL PAUL HAUSGEN, Ph.D. Program Manager Technical Advisor, Spacecraft Component Technology JOHN BEAUCHEMIN Chief Engineer

  6. MCMC for non-linear state space models using ensembles of latent sequences

    OpenAIRE

    2013-01-01

    Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble ...

  7. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  8. Freely generated vertex algebras and non-linear Lie conformal algebras

    OpenAIRE

    De Sole, Alberto; Kac, Victor

    2003-01-01

    We introduce the notion of a non--linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a non--linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.

  9. Efficent Estimation of the Non-linear Volatility and Growth Model

    OpenAIRE

    2009-01-01

    Ramey and Ramey (1995) introduced a non-linear model relating volatility to growth. The solution of this model by generalised computer algorithms for non-linear maximum likelihood estimation encounters the usual difficulties and is, at best, tedious. We propose an algebraic solution for the model that provides fully efficient estimators and is elementary to implement as a standard ordinary least squares procedure. This eliminates issues such as the ‘guesstimation’ of initial values and mul...

  10. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  11. Digital Non-Linear Equalization for Flexible Capacity Ultradense WDM Channels for Metro Core Networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking.......We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking....

  12. Quantum Character of Electromagnetic Langmuir Oscillations in Conventional Electron-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Boris Alexandrovich Veklenko

    2012-01-01

    Full Text Available It is shown that the low-temperature plasma near-thermodynamic equilibrium cannot be classical because of a quantum nature of the longitudinal electromagnetic field and electron interaction with Rayleigh-Jeans distribution of Langmuir waves. The theory requires introduction of a dimensionless quantum charge whose value is greater than unity leading to a liquid-like behavior of the plasma.

  13. Effect of Background Pressure on the Plasma Oscillation Characteristics of the HiVHAc Hall Thruster

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Lobbia, Robert B.; Brown, Daniel L.

    2014-01-01

    During a component compatibility test of the NASA HiVHAc Hall thruster, a high-speed camera and a set of high-speed Langmuir probes were implemented to study the effect of varying facility background pressure on thruster operation. The results show a rise in the oscillation frequency of the breathing mode with rising background pressure, which is hypothesized to be due to a shortening accelerationionization zone. An attempt is made to apply a simplified ingestion model to the data. The combined results are used to estimate the maximum acceptable background pressure for performance and wear testing.

  14. Excitation of VLF quasi-electrostatic oscillations in the ionospheric plasma

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available A numerical solution of the dispersion equation for electromagnetic waves in a hot magnetized collisionless plasma has shown that, in a current-free ionospheric plasma, the distortion of the electron distribution function reproducing the downward flow of a thermal electron component and the compensating upward flow of the suprathermal electrons, which are responsible for the resulting heat flux, can destabilize quasi-electrostatic ion sound waves. The numerical analysis, performed with ion densities and electron temperature taken from the data recorded by the Interkosmos-24 (IK-24, Aktivny satellite, is compared with a VLF spectrum registered at the same time on board. This spectrum shows a wide frequency band emission below the local ion plasma frequency. The direction of the electron heat flux inherent to the assumed model of VLF emission generation is discussed

  15. The effect of spin magnetization in the damping of electron plasma oscillations

    CERN Document Server

    Moya, Pablo S

    2010-01-01

    The effect of spin of particles in the propagation of plasma waves is studied using a semi-classical kinetic theory for a magnetized plasma. We focus in the simple damping effects for the electrostatic wave modes besides Landau damping. Without taking into account more quantum effects than spin contribution to Vlasov's equation, we show that spin produces a new damping or instability which is proportional to the zeroth order magnetization of the system. This correction depends on the electromagnetic part of the wave which is coupled with the spin vector.

  16. Mean excitation energies for stopping powers in various materials using local plasma oscillator strengths

    Science.gov (United States)

    Wilson, J. W.; Xu, Y. J.; Kamaratos, E.; Chang, C. K.

    1984-01-01

    The basic model of Lindhard and Scharff, known as the local plasma model, is used to study the effects on stopping power of the chemical and physical state of the medium. Unlike previous work with the local plasma model, in which individual electron shifts in the plasma frequency were estimated empirically, he Pines correction derived for a degenerate Fermi gas is shown herein to provide a reasonable estimate, even on the atomic scale. Thus, the model is moved to a complete theoretical base requiring no empirical adjustments, as characteristic of past applications. The principal remaining error is in the overestimation of the low-energy absorption properties that are characteristic of the plasma model in the region of the atomic discrete spectrum, although higher-energy phenomena are accurately represented, and even excitation-to-ionization ratios are given to fair accuracy. Mean excitation energies for covalent-bonded gases and solids, for ionic gases and crystals, and for metals are calculated using first-order models of the bonded states.

  17. Seismic response of structures: from non-stationary to non-linear effects

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias

    2013-04-01

    cases it is possible to confuse apparent frequencies variations with real ones (related to nonlinear phenomena) which could lead to an incorrect assessment of the structural safety. In this paper a new theoretical approach is proposed to discriminate non-stationary from non-linear effects, it was tested on both numerical and experimental accelerometric recordings respectively retrieved from one degree of freedom oscillator and one timber framed structure monitored during the 2011 Canterbury Seismic Sequence.

  18. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  19. Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology

    CERN Document Server

    Ebrahimi, E

    2016-01-01

    In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.

  20. Non-linear effects in transition edge sensors for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Murphy, K.D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter.