Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions
Directory of Open Access Journals (Sweden)
Dr. M. S. Annie Christi
2016-11-01
Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
Individualized Learning Through Non-Linear use of Learning Objects: With Examples From Math and Stat
DEFF Research Database (Denmark)
Rootzén, Helle
2015-01-01
Our aim is to ensure individualized learning that is fun, inspiring and innovative. We believe that when you enjoy, your brain will open up and learning will be easier and more effective. The methods use a non-linear learning environment based on self-contained learning objects which are pieced t...
Design and implementation of non-linear image processing functions for CMOS image sensor
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Algebrability, non-linear properties, and special functions
Bartoszewicz, Artur; Pellegrino, Daniel; Seoane-Sepúlveda, Juan B
2011-01-01
We construct uncountably generated algebras inside the following sets of special functions: Sierpi\\'nski-Zygmund functions, perfectly everywhere surjective functions and nowhere continuous Darboux functions. All conclusions obtained in this paper are improvements of some already known results.
A New Multi-tanh-Based Non-linear Function Synthesiser
Taher Abuelma'atti, Muhammad; Radhi Al-Abbas, Saad
2016-11-01
A new complementary metal-oxide-semiconductor transadmittance-mode with input voltage and output current, analogue non-linear odd-function synthesiser is presented. The proposed circuit is based on the assumption that a non-linear odd- function can be approximated by the summation of hyperbolic tangent (tanh) functions with different arguments. Each term of the tanh function expansion is realised by exploiting to advantage the inherent non-linearity of a current-controlled current-conveyor (CCCCII) (or an operational transconductance amplifier (OTA)) with a different bias current. The output currents of these CCCCIIs (OTAs) are weighted using the gains of current amplifiers. These weighted currents are algebraically added to form the required non-linear function. The proposed circuit is suitable for integration, can be easily extended to include higher order terms of the tanh-odd-function expansion and can be programmed to realise arbitrary hard non-linear odd-functions that cannot be easily realised using already existing techniques, based on the Taylor-series expansion, for synthesising non-linear functions. PSPICE simulation results, obtained from CCCCII-based realisations of selected hard non-linearities, demonstrating the functionality of the proposed circuit are included.
Implicit objective integration for sensitivity analysis in non-linear solid mechanics
Leu, Liang-Jeno; Mukherjee, Subrata
1994-11-01
Incrementally objective integration schemes are proposed for the accurate and efficient determination of design sensitivity coefficients (DSCs) for solid mechanics problems with both material and geometrical non-linearities. The derivation of these schemes are based on the direct differentiation of objective schemes that are used in stress analysis for problems of this class. Two widely used objective stress rates, the Jaumann rate and the Green-Naghdi rate, are considered here within the only minor changes of the integration scheme. Numerical results are presented for a simple shear problem with different material consititutive laws, including a hypoelastic model and a isotropic viscoplastic model, for these two objective rates. The num0rical results are compared with analytical solutions or direct integration solutions. The close agreement among these solutions demonstrates the accuracy and efficiency of the proposed scheme.
Large-Scale Structure Formation: from the first non-linear objects to massive galaxy clusters
Planelles, S; Bykov, A M
2014-01-01
The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 10^15 Msun at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 10^5-10^8 Msun at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on i...
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Quantum Local Symmetry of the D-Dimensional Non-Linear Sigma Model: A Functional Approach
Directory of Open Access Journals (Sweden)
Andrea Quadri
2014-04-01
Full Text Available We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in D dimensions, based on the validity of a certain Local Functional Equation (LFE encoding the invariance of the SU(2 Haar measure under local left transformations. The deformation of the classical non-linearly realized symmetry at the quantum level is analyzed by cohomological tools. It is shown that all the divergences of the one-particle irreducible (1-PI amplitudes (both on-shell and off-shell can be classified according to the solutions of the LFE. Applications to the non-linearly realized Yang-Mills theory and to the electroweak theory, which is directly relevant to the model-independent analysis of LHC data, are briefly addressed.
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...
Chebrakov, Yu. V.
2014-01-01
In this paper we discuss techniques suitable for translating the verbal descriptions of computative algorithms into a set of mathematical formulae and demonstrate that logical functions can be used eﬀectively in order to create non-linear analytical formulae, describing a set of combinatorial and number-theoretic computative algorithms.
Non-linear shape functions over time in the space-time finite element method
Directory of Open Access Journals (Sweden)
Kacprzyk Zbigniew
2017-01-01
Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.
Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A
2006-01-01
A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.
El-Basyouny, Karim; Sayed, Tarek
2012-03-01
Full Bayes linear intervention models have been recently proposed to conduct before-after safety studies. These models assume linear slopes to represent the time and treatment effects across the treated and comparison sites. However, the linear slope assumption can only furnish some restricted treatment profiles. To overcome this problem, a first-order autoregressive (AR1) safety performance function (SPF) that has a dynamic regression equation (known as the Koyck model) is proposed. The non-linear 'Koyck' model is compared to the linear intervention model in terms of inference, goodness-of-fit, and application. Both models were used in association with the Poisson-lognormal (PLN) hierarchy to evaluate the safety performance of a sample of intersections that have been improved in the Greater Vancouver area. The two models were extended by incorporating random parameters to account for the correlation between sites within comparison-treatment pairs. Another objective of the paper is to compute basic components related to the novelty effects, direct treatment effects, and indirect treatment effects and to provide simple expressions for the computation of these components in terms of the model parameters. The Koyck model is shown to furnish a wider variety of treatment profiles than those of the linear intervention model. The analysis revealed that incorporating random parameters among matched comparison-treatment pairs in the specification of SPFs can significantly improve the fit, while reducing the estimates of the extra-Poisson variation. Also, the proposed PLN Koyck model fitted the data much better than the Poisson-lognormal linear intervention (PLNI) model. The novelty effects were short lived, the indirect (through traffic volumes) treatment effects were approximately within ±10%, whereas the direct treatment effects indicated a non-significant 6.5% reduction during the after period under PLNI compared to a significant 12.3% reduction in predicted collision
DEFF Research Database (Denmark)
Abrahamsen, Trine Julie; Hansen, Lars Kai
2011-01-01
We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping...... sparse pre-image reconstruction by Lasso regularization. We find that sparse estimation provides better brain state decoding accuracy and a more reproducible pre-image. These two important metrics are combined in an evaluation framework which allow us to optimize both the degree of sparsity and the non...
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
Non-linear diffusion in RD and in Hilbert Spaces, a Cylindrical/Functional Integral Study
Botelho, Luiz Carlos Lobato
2010-01-01
We present a proof for the existence and uniqueness of weak solutions for a cut-off and non cut-off model of non-linear diffusion equation in finite-dimensional space RD useful for modelling flows on porous medium with saturation, turbulent advection, etc. - and subject to deterministic or stochastic (white noise) stirrings. In order to achieve such goal, we use the powerful results of compacity on functional Lp spaces (the Aubin-Lion Theorem). We use such results to write a path-integral solution for this problem. Additionally, we present the rigourous functional integral solutions for the Linear Diffussion equation defined in Infinite-Dimensional Spaces (Separable Hilbert Spaces). These further results are presented in order to be useful to understand Polymer cylindrical surfaces probability distributions and functionals on String theory.
Directory of Open Access Journals (Sweden)
Mäntysaari Esa A
2006-06-01
Full Text Available Abstract A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.
Scaling functional patterns of skeletal and cardiac muscles: New non-linear elasticity approach
Kokshenev, Valery B
2009-01-01
Responding mechanically to environmental requests, muscles show a surprisingly large variety of functions. The studies of in vivo cycling muscles qualified skeletal muscles into four principal locomotor patterns: motor, brake, strut, and spring. While much effort of has been done in searching for muscle design patterns, no fundamental concepts underlying empirically established patterns were revealed. In this interdisciplinary study, continuum mechanics is applied to the problem of muscle structure in relation to function. The ability of a powering muscle, treated as a homogenous solid organ, tuned to efficient locomotion via the natural frequency is illuminated through the non-linear elastic muscle moduli controlled by contraction velocity. The exploration of the elastic force patterns known in solid state physics incorporated in activated skeletal and cardiac muscles via the mechanical similarity principle yields analytical rationalization for locomotor muscle patterns. Besides the explanation of the origin...
Institute of Scientific and Technical Information of China (English)
Yong-ping Liu; Gui-qiao Xu
2002-01-01
The classes of the multivariate functions with bounded moduli on Rd and Td are given and their average a-widths and non-linear n-widths are discussed. The weak asymptotic behaviors are established for the corresponding quantities.
Yukita, Kazuto; Kato, Shinya; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Kawashima, Yasuhiro
Recently, the independent power producers (IPPs) and the distributed power generations (DGs) are increase on by the electric power system with the power system deregulation. And the power system becomes more complicated. It is necessary to carry out the electric power demand forecasting in order to the power system is operated for the high economical and the high-efficient. For the improvement of electric power demand forecasting, many methods, such as the methods using fuzzy theory, neural network and SDP data, are proposed. In this paper, we proposed the method using STROGANOFF (STructured Re-presentation on Genetic Algorithms for Non-linear Function Fitting) that approximate the value of predictive to the future data by the past data is obtained. Also, the weather condition was considered for the forecasting that is improvement, and the daily peak load forecasting in next day on Chubu district in Japan was carried out, and the effectiveness of proposed method was examined.
Directory of Open Access Journals (Sweden)
Luiz Augusto da Cruz Meleiro
2005-06-01
Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.
Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.
Yu, W W; Acharya, U R; Lim, T C; Low, H W
2009-08-01
Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES.
Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function
DEFF Research Database (Denmark)
Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny
1997-01-01
The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper.......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...
Gao, Fan; Latash, Mark L.
2010-01-01
We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Ramcharan, A. M.; Kemanian, A.; Richard, T.
2013-12-01
The largest terrestrial carbon pool is soil, storing more carbon than present in above ground biomass (Jobbagy and Jackson, 2000). In this context, soil organic carbon has gained attention as a managed sink for atmospheric CO2 emissions. The variety of models that describe soil carbon cycling reflects the relentless effort to characterize the complex nature of soil and the carbon within it. Previous works have laid out the range of mathematical approaches to soil carbon cycling but few have compared model structure performance in diverse agricultural scenarios. As interest in increasing the temporal and spatial scale of models grows, assessing the performance of different model structures is essential to drawing reasonable conclusions from model outputs. This research will address this challenge using the Evolutionary Algorithm Borg-MOEA to optimize the functionality of carbon models in a multi-objective approach to parameter estimation. Model structure performance will be assessed through analysis of multi-objective trade-offs using experimental data from twenty long-term carbon experiments across the globe. Preliminary results show a successful test of this proof of concept using a non-linear soil carbon model structure. Soil carbon dynamics were based on the amount of carbon inputs to the soil and the degree of organic matter saturation of the soil. The degree of organic matter saturation of the soil was correlated with the soil clay content. Six parameters of the non-linear soil organic carbon model were successfully optimized to steady-state conditions using Borg-MOEA and datasets from five agricultural locations in the United States. Given that more than 50% of models rely on linear soil carbon decomposition dynamics, a linear model structure was also optimized and compared to the non-linear case. Results indicate linear dynamics had a significantly lower optimization performance. Results show promise in using the Evolutionary Algorithm Borg-MOEA to assess
Indian Academy of Sciences (India)
Sabapathi Gokulnath; Tavarekere K Chandrashekar
2008-01-01
In this paper, the non-linear optical properties of representative core-modified expanded porphyrins have been investigated with an emphasis on the structure-property relationship between the aromaticity and conformational behaviour. It has been shown that the measured two-photon absorption cross section (2) values depend on the structure of macrocycle, its aromaticity and the number of -electrons in conjugation.
Thunis, P.; Clappier, A.; Pisoni, E.; Degraeuwe, B.
2015-02-01
Air quality models which are nowadays used for a wide range of scopes (i.e. assessment, forecast, planning) see their intrinsic complexity progressively increasing as better knowledge of the atmospheric chemistry processes is gained. As a result of this increased complexity potential non-linearities are implicitly and/or explicitly incorporated in the system. These non-linearities represent a key and challenging aspect of air quality modeling, especially to assess the robustness of the model responses. In this work the importance of non-linear effects in air quality modeling is quantified, especially as a function of time averaging. A methodology is proposed to decompose the concentration change resulting from an emission reduction over a given domain into its linear and non-linear contributions for each precursor as well as in the contribution resulting from the interactions among precursors. Simulations with the LOTOS-EUROS model have been performed by TNO over three regional geographical areas in Europe for this analysis. In all three regions the non-linear effects for PM10 and PM2.5 are shown to be relatively minor for yearly and monthly averages whereas they become significant for daily average values. For Ozone non-linearities become important already for monthly averages in some regions. An approach which explicitly deals with monthly variations seems therefore more appropriate for O3. In general non-linearities are more important at locations where concentrations are the lowest, i.e. at urban locations for O3 and at rural locations for PM10 and PM2.5. Finally the impact of spatial resolution (tested by comparing coarse and fine resolution simulations) on the degree of non-linearity has been shown to be minor as well. The conclusions developed here are model dependent and runs should be repeated with the particular model of interest but the proposed methodology allows with a limited number of runs to identify where efforts should be focused in order to
Beta-functions of non-linear $\\sigma$-models for disordered and interacting electron systems
Dell'Anna, Luca
2016-01-01
We provide and study complete sets of one-loop renormalization group equations, calculated at all orders in the interaction parameters, of several Finkel'stein non-linear $\\sigma$-models, the effective field theories describing the diffusive quantum fluctuations in correlated disordered systems. We consider different cases according to the presence of certain symmetries induced by the original random Hamiltonians, and we show that, for interacting systems, the Cartan's classification of symmetry classes is not enough to uniquely determine their scaling behaviors.
Non-linear optical functions of crystalline-Si resulting from nanoscale layered systems
Energy Technology Data Exchange (ETDEWEB)
Kuznicki, Z.T. [Laboratoire PHASE, CNRS UPR 292, 23 rue du Loess, F-67037 Strasbourg cedex 2 (France)]. E-mail: kuznicki@phase.c-strasbourg.fr; Ley, M. [Laboratoire PHASE, CNRS UPR 292, 23 rue du Loess, F-67037 Strasbourg cedex 2 (France); Lezec, H.J. [ISIS, ULP, 8 allee Gaspard Monge, F-67083 Strasbourg cedex (France); Sarrabayrouse, G. [LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse cedex 4 (France); Rousset, B. [LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse cedex 4 (France); Rossel, F. [LAAS-CNRS, 7 av. du colonel Roche, 31077 Toulouse cedex 4 (France); Migeon, H. [LAM, Centre de Recherche Public - Gabriel Lippmann, 162a, av. de la Faiaencerie, L-1511 Luxembourg (Luxembourg); Wirtz, T. [LAM, Centre de Recherche Public - Gabriel Lippmann, 162a, av. de la Faiaencerie, L-1511 Luxembourg (Luxembourg)
2006-07-15
New non-linear optoelectronic and photovoltaic behavior of crystalline silicon (c-Si) has been obtained with a strained nanoscale Si-layered system. We have found c-Si absorptances that even exceed values of amorphous silicon (a-Si) thin films. The present investigation exploits charge carrier and photon flux transformations at the so-called carrier collection limit. A correlation between free carrier density and the absorption coefficient could be established by combining reflectivity and transmissivity measurements on samples having different surface free carrier reservoirs. In summary, Si modifications implemented on the nanoscale lead to new effects that can widen applications of conventional Si devices.
Anderson, Johan; Johansson, Jonas
2016-12-01
An analytical derivation of the probability density function (PDF) tail describing the strongly correlated interface growth governed by the nonlinear Kardar-Parisi-Zhang equation is provided. The PDF tail exactly coincides with a Tracy-Widom distribution i.e. a PDF tail proportional to \\exp ≤ft(-cw23/2\\right) , where w 2 is the the width of the interface. The PDF tail is computed by the instanton method in the strongly non-linear regime within the Martin-Siggia-Rose framework using a careful treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the interface width distribution and the analysis suggests that there is no upper critical dimension.
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans
2014-05-21
We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.
von Götz, N; Richter, O
1999-03-01
The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.
Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente
2017-04-01
Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.
NON-LINEAR VIBRATION MODELING WITH THE HELP OF FUNCTIONAL SERIES
Directory of Open Access Journals (Sweden)
Z. M. Ghasanov
2010-06-01
Full Text Available The algorithm of modeling the significantly nonlinear processes – «black boxes» – is offered. It uses functional series. The algorithm is described on the example of modeling of complex oscillations, which occur in acoustic flaw detection.
Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications
Singh, Rajendra K.
A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.
Oracle Inequalities for Convex Loss Functions with Non-Linear Targets
DEFF Research Database (Denmark)
Caner, Mehmet; Kock, Anders Bredahl
of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions...... is linear this inequality also provides an upper bound of the estimation error of the estimated parameter vector. These are new results and they generalize the econometrics and statistics literature. Next, we use the non-asymptotic results to show that the excess loss of our estimator is asymptotically...
A New Non-linear Technique for Measurement of Splitting Functions of Normal Modes of the Earth
Pachhai, S.; Masters, G.; Tkalcic, H.
2014-12-01
Normal modes are the vibrating patterns of the Earth in response to the large earthquakes. Normal mode spectra are split due to Earth's rotation, ellipticity, and heterogeneity. The normal mode splitting is visualized through splitting functions, which represent the local radial average of Earth's structure seen by a mode of vibration. The analysis of the splitting of normal modes can provide unique information about the lateral variation of the Earth's elastic properties that cannot be directly imaged in body wave tomographic images. The non-linear iterative spectral fitting of the observed complex spectra and autoregressive linear inversion have been widely utilized to compute the Earth's 3-D structure. However, the non-linear inversion requires a model of the earthquake source and the retrieved 3-D structure is sensitive to the initial constraints. In contrast, the autoregressive linear inversion does not require the source model. However, this method requires many events to achieve full convergence. In addition, significant disagreement exists between different studies because of the non-uniqueness of the problem and limitations of different methods. We thus apply the neighbourhood algorithm (NA) to measure splitting functions. The NA is an efficient model space search technique and works in two steps: In the first step, the algorithm finds all the models compatible with given data while the posterior probability density of the model parameters are obtained in the second step. The NA can address the problem of non-uniqueness by taking advantage of random sampling of the full model space. The parameter trade-offs are conveniently visualized using joint marginal distributions. In addition, structure coefficients uncertainties can be extracted from the posterior probability distribution. After demonstrating the feasibility of NA with synthetic examples, we compute the splitting functions for the mode 13S2 (sensitive to the inner core) from several large
Institute of Scientific and Technical Information of China (English)
ZHANG Ren; HONG Mei; SUN Zhao-bo; NIU Sheng-jie; ZHU Wei-jun; MIN Jin-zhong; WAN Qi-lin
2006-01-01
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results.A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.
Directory of Open Access Journals (Sweden)
Valerii Azarskov
2015-12-01
Full Text Available The article represents an algorithm for dynamics models identification of nonlinear system “moving object and servo drive”, taking into account that the stochastic disturbances presented in the real operating mode are acting on it.
Li, Ranran; Lai, Youzhi; Zhang, Yumei; Yao, Li; Wu, Xia
2017-01-01
Leukoaraiosis (LA) describes diffuse white matter abnormalities apparent in computed tomography (CT) or magnetic resonance (MR) brain scans. Patients with LA generally show varying degrees of cognitive impairment, which can be classified as cognitively normal (CN), mild cognitive impairment (MCI), and dementia. However, a consistent relationship between the degree of LA and the level of cognitive impairment has not yet been established. We used functional magnetic resonance imaging (fMRI) to explore possible neuroimaging biomarkers for classification of cognitive level in LA. Functional connectivity (FC) between brain regions was calculated using Pearson’s correlation coefficient (PCC), maximal information coefficient (MIC), and extended maximal information coefficient (eMIC). Next, FCs with high discriminative power for different cognitive levels in LA were used as features for classification based on support vector machine. CN and MCI were classified with accuracies of 75.0, 61.9, and 91.1% based on features from PCC, MIC, and eMIC, respectively. MCI and dementia were classified with accuracies of 80.1, 86.2, and 87.4% based on features from PCC, MIC, and eMIC, respectively. CN and dementia were classified with accuracies of 80.1, 89.9, and 94.4% based on features from PCC, MIC, and eMIC, respectively. Our results suggest that features extracted from fMRI were efficient for classification of cognitive impairment level in LA, especially, when features were based on a non-linear method (eMIC). PMID:28154549
DEFF Research Database (Denmark)
Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa
2012-01-01
We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Buron, Marylise; Collet, Eric
2005-01-01
This issue is a collection of papers presented at the 2nd International Conference on Photo-Induced Phase Transitions; Cooperative, non-linear and functional properties (PIPT'05), which was held in Rennes (France) on 24-28 May 2005 and chaired by Hervé Cailleau and Tadeusz Luty. The first PIPT conference was organized by Professor Keiichiro Nasu in Tsukuba, Japan, in 2001. During 5 days, PIPT'05 provided an interdisciplinary forum for research communications between solid state physicists, photophysicists, photochemists and photobiologists, as well as material scientists. Scientists came from all around the world (Europe, Japan, USA, Canada, ...). The fascinating scientific challenge of the possibility of triggering physical properties of a material by light excitation was at the heart of the exchange of ideas between scientists of the different fields. The topics of the conference were about light-induced phenomena in functional materials, nano-particles and devices, photo-induced structural, magnetic and/or electronic phase transitions, photo-induced gauge type phase transitions, photo-induced cooperative molecular switching and chemical reactions in solids, dynamics of out-of-equilibrium processes, light-driven non-thermal processes such as coherent phonons, shock waves, surface melting and femtomagnetism, precursor phenomena, coherent, co-operative and non-linear processes in excited states and new investigations by light, x-ray and electron probes. As you will see, the collection of papers presented here cover many of the fields mentioned above. The PIPT conferences, encompassing different areas of light-induced phenomena are also meant to bridge the gap between experimentalists and theoreticians, and to promote communication between scientists working on different continents. The present conference was attended by 148 participants from 17 countries, with the total number of 87 presentations (16 invited, 27 contributed talks and 44 posters). It is encouraging
Reproducing Kernel Particle Method for Non-Linear Fracture Analysis
Institute of Scientific and Technical Information of China (English)
Cao Zhongqing; Zhou Benkuan; Chen Dapeng
2006-01-01
To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.
Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steven G.
2010-03-01
Chloroform is often used as a solvent when measuring non-linear optical properties of organic molecules. We assess the influence of the solution environment on the molecular properties by calculating directly the non-linear susceptibilities of liquid chloroform at optical frequencies. We use the Sternheimer equation in time-dependent density-functional theory [J. Chem. Phys. 126, 184106 (2007)], on snapshots from ab initio molecular dynamics. We compare the results to those in the gas and solid phases, and to experimental values. We also calculate ab initio local-field factors, used to analyze electric-field-induced second-harmonic generation (EFISH) and hyper-Rayleigh scattering (HRS) experiments.
Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.
2017-04-01
Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...
DEFF Research Database (Denmark)
Du, Yigang
without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...
Directory of Open Access Journals (Sweden)
Sergey Gennadyevich Ol’kov
2015-06-01
Full Text Available Objective to clarify the law of good and evil the function rule of justice and to construct mathematical models of political regimes. Methods 1 observation analysis and synthesis 2 deduction and induction 3 using the laws of formal logic 4 formal legal method 5 mathematical modeling 6 the study of mathematical functions 7 differential calculus 8 plotting. Results the author has deduced 1 the nonlinear law function of good and evil 2 the nonlinear function of justice 3 the law function of political regimes. Scientific novelty the author has calculated and found 1 a nonlinear formula DLcol ndashLcol3 which represents the relationship between the acts of legal public relations subjects D and thecollective freedom Lcol ndash the law of quotgood and evilquot 2 a nonlinear formula YD D3 illustrating the relationship between the acts of legal relations subjects D and responsibility for their actions Y ndash a nonlinear function of justice 3 a nonlinear formulanbsp that shows the relationship between the individual Lind and collective freedom Lcol in the negative area of the function definition collective negative freedom and a formulanbsp reflecting the relationship between the individual and collective freedom in the positive area of the function definition collective positive freedom 4 has given a general classification of political regimes in the world describing their functions showing the types of political systems deformation that occur due to the leftwise and rightwise shifts of collective freedom. Practical value the possibility to use the obtained scientific results in the development of various legal theories. nbsp
Non-Linear Integral Equation and excited-states scaling functions in the sine-Gordon model
Destri, C
1997-01-01
The NLIE (the non-linear integral equation equivalent to the Bethe Ansatz equations for finite size) is generalized to excited states, that is states with holes and complex roots over the antiferromagnetic ground state. We consider the sine-Gordon/massive Thirring model (sG/mT) in a periodic box of length L using the light-cone approach, in which the sG/mT model is obtained as the continuum limit of an inhomogeneous six vertex model. This NLIE is an useful starting point to compute the spectrum of excited states both analytically in the large L (perturbative) and small L (conformal) regimes as well as numerically. We derive the conformal weights of the Bethe states with holes and non-string complex roots (close and wide roots) in the UV limit. These weights agree with the Coulomb gas description, yielding a UV conformal spectrum related by duality to the IR conformal spectrum of the six vertex model.
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
Campo, J L; Gil, M G
1993-01-12
Assortative or random mating following selection in either direction on a non-linear index (experiment 1) or stabilizing selection for pupal length (experiment 2) were carried out for five generations in two lines of Tribolium castaneum (A and R, respectively), with three replicates each. The selected proportion was 25% in all lines. In experiment 1, the selection criterion was designed to increase the aggregate value of adult weight and the first- and second-order powers of pupal length. The A and R lines gave significant responses for the aggregate value (184 ± 6 and 161 ± 14, respectively), pupal length (0.74 ± 0.02 and 0.64 ± 0.05, respectively), and adult weight (0.79 ± 0.03 and 0.78 ± 0.12, respectively). Although the A line was not significantly better than the R line, there was a consistent advantage for assortative mating over random mating, the mean response for aggregate value and pupal length being approximately 1.15 times greater for the A line. In experiment 2 the selection criterion was the square of the deviation from the mean pupal length (stabilizing selection); both lines did not show any change for pupal length. The phenotypic variance showed a significant decrease in the A and R lines, due to a decrease in between-family variance. The assortatively and randomly mated lines were similar for these changes in phenotypic variation. RESUMEN: Aparemiento clasificado y selección direccional o estabilizante para una función no lineal en Tribolium. Dos líneas de Tribolium castaneum fueron seleccionadas direccionalmente para un índice no lineal (experimento 1) o estabilizantemente para longitud de pupa (experimento 2), apareando los animales seleccionados clasificadamente (A) o aleatoriamente (R). Había tres repeticiones por experimento y línea, siendo la proporción de selección el 25%. En el experimento 1, el objetivo de selección incluía el peso adulto así como la longitud de pupa y su cuadrado. Ambas líneas dieron respuesta
Yazdian, Seyed Ahmad; Shahanaghi, Kamran; Makui, Ahmad
2016-04-01
We investigate joint optimisation of remanufacturing, pricing and warranty decision-making for end-of-life products. A novel mathematical-statistical model is proposed where decisions involve pricing of returned used products (cores), degree of their remanufacturing, selling price and the warranty period for the final remanufactured products. The virtual age reliability improvement approach is chosen to model the upgrading of the cores to higher quality levels. We consider price- and warranty-dependent demand, price- and age-dependent return, and age-dependent remanufacturing cost in the model development. Both linear and non-linear forms of these functions are investigated. First, under some restrictive conditions of upgrade level and age distribution of received cores, special cases of the problem, which can be solved using a recently developed non-linear optimisation solver, are presented. We also implement a particle swarm optimisation algorithm for the solution of the original problem when all the restrictive assumptions are dropped. Finally, numerical experiments and sensitivity analysis are presented to address different aspects of the model and the solution approaches.
Reasoning about Function Objects
Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian
Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.
Islam, Nasarul; Niaz, Saba; Manzoor, Taniya; Pandith, Altaf Hussain
2014-10-01
The density functional theoretical (DFT) computations were performed at the B3LYP/6-311G++(d, p) level to calculate the equilibrium geometry, vibrational wave numbers, intensities, and various other molecular properties of brucine and strychnine, which were found in satisfactory agreement with the experimental data. The out-of-phase stretching modes of aromatic rings and carbonyl stretching modes in combination with CH stretching modes at stereogenic centers generate VCD signals, which are remarkably efficient configuration markers for these chiral molecular systems. NBOs analysis reveals that the large values of second order perturbation energy (47.24 kcal/mol for brucine and 46.93 kcal/mol for strychnine) confirms strong hyperconjugative interaction between the orbital containing the lone pair of electron of nitrogen and the neighboring Cdbnd O antibonding orbital. The molecular electrostatic potential map of strychnine molecule, with no polar groups other than the lone keto group, shows less polarization, which accounts for its lower susceptibility towards electrophilic attack as compared to brucine.
Islam, Nasarul; Niaz, Saba; Manzoor, Taniya; Pandith, Altaf Hussain
2014-10-15
The density functional theoretical (DFT) computations were performed at the B3LYP/6-311G++(d, p) level to calculate the equilibrium geometry, vibrational wave numbers, intensities, and various other molecular properties of brucine and strychnine, which were found in satisfactory agreement with the experimental data. The out-of-phase stretching modes of aromatic rings and carbonyl stretching modes in combination with CH stretching modes at stereogenic centers generate VCD signals, which are remarkably efficient configuration markers for these chiral molecular systems. NBOs analysis reveals that the large values of second order perturbation energy (47.24kcal/mol for brucine and 46.93kcal/mol for strychnine) confirms strong hyperconjugative interaction between the orbital containing the lone pair of electron of nitrogen and the neighboring CO antibonding orbital. The molecular electrostatic potential map of strychnine molecule, with no polar groups other than the lone keto group, shows less polarization, which accounts for its lower susceptibility towards electrophilic attack as compared to brucine.
DEFF Research Database (Denmark)
Raket, Lars Lau
-effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high......-dimensional Euclidean spaces under the effect of additive spatially correlated effects, and then move on to consider how to include data alignment in the statistical model as a nonlinear effect under additive correlated noise. In both cases, we will give directions on how to generalize the methodology to more complex...
Oscillatons formed by non linear gravity
Obregón, O; Schunck, F E; Obregon, Octavio; Schunck, Franz E.
2004-01-01
Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.
de Jong, Roelof
2005-07-01
This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap
Satija, A.; Caers, J.
2014-12-01
Hydrogeological forecasting problems, like many subsurface forecasting problems, often suffer from the scarcity of reliable data yet complex prior information about the underlying earth system. Assimilating and integrating this information into an earth model requires using iterative parameter space exploration techniques or Monte Carlo Markov Chain techniques. Since such an earth model needs to account for many large and small scale features of the underlying system, as the system gets larger, iterative modeling can become computationally prohibitive, in particular when the forward model would allow for only a few hundred model evaluations. In addition, most modeling methods do not include the purpose for which inverse method are built, namely, the actual forecast and usually focus only on data and model. In this study, we present a technique to extract features of the earth system informed by time-varying dynamic data (data features) and those that inform a time-varying forecasting variable (forecast features) using Functional Principal Component Analysis. Canonical Coefficient Analysis is then used to examine the relationship between these features using a linear model. When this relationship suggests that the available data informs the required forecast, a simple linear regression can be used on the linear model to directly estimate the posterior of the forecasting problem, without any iterative inversion of model parameters. This idea and method is illustrated using an example of contaminant flow in an aquifer with complex prior, large dimension and non-linear flow & transport model.
Arrigoni, Marco; McCoy, Darryl
2016-03-01
In the last few years Multiphoton Excitation Microscopy witnessed a mutation from tool for imaging cellular structures in living animals deeper than other high-resolution techniques, into an instrument for monitoring functionality and even stimulating or inhibiting inter-cellular signalling. This paradigm shift has been enabled primarily by the development of genetically encoded probes like Ca indicators (GECI) and Opsins for optogenetics inhibition and stimulation. These developments will hopefully enable the understanding of how local network of hundreds or thousands of neurons operate in response to actual tasks or induced stimuli. Imaging, monitoring signals and activating neurons, all on a millisecond time scale, requires new laser tools providing a combination of wavelengths, higher powers and operating regimes different from the ones traditionally used for classic multiphoton imaging. The other key development in multiphoton techniques relates to potential diagnostic and clinical applications where non-linear imaging could provide all optical marker-free replacement of H and E techniques and even intra-operative guidance for procedures like cancer surgery. These developments will eventually drive the development of specialized laser sources where compact size, ease of use, beam delivery and cost are primary concerns. In this talk we will discuss recent laser product developments targeting the various applications of multiphoton imaging, as fiber lasers and other new type of lasers gradually gain popularity and their own space, side-by-side or as an alternative to conventional titanium sapphire femtosecond lasers.
Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics
Directory of Open Access Journals (Sweden)
Dubljević Stevan
2003-01-01
Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.
Non-Linear Unit Root Properties of Crude Oil Production
Svetlana Maslyuk; Russell Smyth
2007-01-01
While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...
Non-linear canonical correlation
van der Burg, Eeke; de Leeuw, Jan
1983-01-01
Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
A non-linear UAV altitude PSO-PD control
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
Non-linear dynamics of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...
FUZZY IDENTIFICATION METHOD BASED ON A NEW OBJECTIVE FUNCTION
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non-linear systems and obviously improve modeling accuracy.
Simulation of non-linear ultrasound fields
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.
2002-01-01
An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Symmetries in Non-Linear Mechanics
Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco
2014-01-01
In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds
Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven
2010-01-01
People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
'Syncing' Up with the Quinn-Rand-Strogatz Constant: Hurwitz-ZetaFunctions in Non-Linear physics
Energy Technology Data Exchange (ETDEWEB)
Durgin, Natalie J.; Garcia, Sofia M.; Flournoy, Tamara; Bailey,David H.
2007-12-01
This work extends the analytical and computationalinvestigation of the Quinn-Rand-Strogatz (QRS) constants from non-linearphysics. The QRS constants (c1, c2, ..., cN) are found in a Winfreeoscillator mean-field system used to examine the transition of coupledoscillators as they lose synchronization. The constants are part of anasymptotic expansion of a function related to the oscillatorsynchronization. Previous work used high-precision software packages toevaluate c1 to 42 decimal-digits, which made it possible to recognize andprove that c1 was the root of a certain Hurwitz-zeta function. Thisallowed a value of c2 to beconjectured in terms of c1. Therefore thereis interest in determining the exact values of these constants to highprecision in the hope that general relationships can be establishedbetween the constants and the zeta functions. Here, we compute the valuesof the higher order constants (c3, c4) to more than 42-digit precision byextending an algorithm developed by D.H. Bailey, J.M. Borwein and R.E.Crandall. Several methods for speeding up the computation are exploredand an alternate proof that c1 is the root of a Hurwitz-zeta function isattempted.
Directory of Open Access Journals (Sweden)
Lhoucine Boutahar
2016-03-01
Full Text Available Some Functionally Graded Materials contain pores due to the result of processing; this influences their elastic and mechanical properties. Therefore, it may be very useful to examine the vibration behavior of thin Functionally Graded Annular Plates Clamped at both edges including porosities. In the present study, the rule of mixture is modified to take into account the effect of porosity and to approximate the material properties assumed to be graded in the thickness direction of the examined annular plate. A semi-analytical model based on Hamilton’s principle and spectral analysis is adopted using a homogenization procedure to reduce the problem under consideration to that of an equivalent isotropic homogeneous annular plate. The problem is solved by a numerical iterative method. The effects of porosity, material property, and elastic foundations characteristics on the CCFGAP axisymmetric large deflection response are presented and discussed in detail.
Non-linear Growth Models in Mplus and SAS.
Grimm, Kevin J; Ram, Nilam
2009-10-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.
Lokstein, Heiko; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd
2011-08-15
Photosynthetically active pigments are usually organized into pigment-protein complexes. These include light-harvesting antenna complexes (LHCs) and reaction centers. Site energies of the bound pigments are determined by interactions with their environment, i.e., by pigment-protein as well as pigment-pigment interactions. Thus, resolution of spectral substructures of the pigment-protein complexes may provide valuable insight into structure-function relationships. By means of conventional (linear) and time-resolved spectroscopic techniques, however, it is often difficult to resolve the spectral substructures of complex pigment-protein assemblies. Nonlinear polarization spectroscopy in the frequency domain (NLPF) is shown to be a valuable technique in this regard. Based on initial experimental work with purple bacterial antenna complexes as well as model systems NLPF has been extended to analyse the substructure(s) of very complex spectra, including analyses of interactions between chlorophylls and "optically dark" states of carotenoids in LHCs. The paper reviews previous work and outlines perspectives regarding the application of NLPF spectroscopy to disentangle structure-function relationships in pigment-protein complexes.
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
Feinstein, Efraim; Prentiss, Mara
2011-01-01
The homology search process depends on the free energy of double stranded DNA (dsDNA) triplets bound to pre-synaptic filaments. It has been assumed that the total free energy is a linear function of the number of bound dsDNA triplets. We present an analytical model using a simplified version of the known structure of dsDNA bound to ssDNA/RecA filaments. This model predicts that the mechanical energy stored in dsDNA bound to RecA increases non-linearly with the number of contiguous bound dsDNA triplets. We suggest that the free energy increase for the homology searching state is much more rapid than the increase for the post-strand exchange state and propose that this difference may play a vital role in the homology search/strand exchange process.
Directory of Open Access Journals (Sweden)
Edivaldo Antonio Bulba
2004-01-01
Full Text Available São apresentados métodos para determinação dos índices de capacidade tais como Cp e Cpk aplicados no "design for six sigma" (DFSS quando a característica de qualidade é não-observável e dada por Y = f(X1, X2, X3,....Xk, onde Xi são variáveis aleatórias com média e variância respectivamente iguais a miXi e sigma2Xi; f é uma função conhecida. A determinação é baseada na série de Taylor e o procedimento será ilustrado com exemplos práticos.Here we present methods to determine capabilit indices such as Cp and Cpk to be applied in "design for six sigma" (DFSS when the quality characteristic of interest Y is unobservable but given by Y = f(X1, X2, X3,....Xk, where Xi's are random variables with means and variance respectively equal to muXi and sigma2Xi; f is a known function. The determination is based on Taylor series and we illustrate the procedure with practical examples.
OPTIMUM DESIGN AND NON-LINEAR MODEL OF POWERPLANT HYDRAULIC MOUNT SYSTEM
Institute of Scientific and Technical Information of China (English)
Shi Wenku; Min Haitao; Dang Zhaolong
2003-01-01
6-DOF non-linear mechanics model of powerplant hydraulic mount system is established. Optimum design of the powerplant hydraulic mount system is made with the hydraulic mount parameters as variables and with uncoupling of energy, rational disposition of nature frequency and minimum of reactive force at mount's location as objective functions. And based on the optimum design, software named ODPHMS (optimum design of powerplant hydraulic mount system) used in powerplant mount system optimum design is developed.
Fluid flow of incompressible viscous fluid through a non-linear elastic tube
Energy Technology Data Exchange (ETDEWEB)
Lazopoulos, A.; Tsangaris, S. [National Technical University of Athens, Fluids Section, School of Mechanical Engineering, Zografou, Athens (Greece)
2008-11-15
The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung's (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain-energy density function. The fluid is described through a Navier-Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response. (orig.)
Generalized non-linear strength theory and transformed stress space
Institute of Scientific and Technical Information of China (English)
YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo
2004-01-01
Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.
Controlling ultrafast currents by the non-linear photogalvanic effect
Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-01-01
We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.
Non-linear system identification in flow-induced vibration
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Change-Of-Bases Abstractions for Non-Linear Systems
Sankaranarayanan, Sriram
2012-01-01
We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...
Non-linear growth and condensation in multiplex networks
Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc
2013-01-01
Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.
Foundations of the non-linear mechanics of continua
Sedov, L I
1966-01-01
International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable
Non-linear magnetorheological behaviour of an inverse ferrofluid
de Gans, B.J.; Hoekstra, Hans; Mellema, J.
1999-01-01
The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...
Non-Linear Relativity in Position Space
Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João
2003-01-01
We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Non-linear (loop) quantum cosmology
Bojowald, Martin; Dantas, Christine C; Jaffe, Matthew; Simpson, David
2012-01-01
Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a non-linear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of non-linear and non-local equations suggests new questions for mathematical and computational investigations, and general properties of non-linear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny local contributions adding up coherently in large regions.
Non-Linear Logging Parameters Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...
Controller reconfiguration for non-linear systems
Kanev, S.; Verhaegen, M.
2000-01-01
This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m
Non-linear dendrites can tune neurons
Directory of Open Access Journals (Sweden)
Romain Daniel Cazé
2014-03-01
Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.
Measuring the Non-Linear Effects of Monetary Policy
Christian Matthes; Regis Barnichon
2015-01-01
This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...
Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis
2006-01-01
International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt
2008-01-01
International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line ...
Fliess, Michel; Sira-Ramirez, Hebertt
2007-01-01
Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.
Fitting and forecasting non-linear coupled dark energy
Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian
2015-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...
SSNN toolbox for non-linear system identification
Luzar, Marcel; Czajkowski, Andrzej
2015-11-01
The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.
Non-linear Q-clouds around Kerr black holes
Directory of Open Access Journals (Sweden)
Carlos Herdeiro
2014-12-01
Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.
Non Linear Behaviour in Learning Processes
Manfredi, Paolo; Manfredi, Vicenzo Rosario
2003-01-01
This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...
BRST structure of non-linear superalgebras
Asorey, M; Radchenko, O V; Sugamoto, A
2008-01-01
In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.
Limits on Non-Linear Electrodynamics
Fouché, M; Rizzo, C
2016-01-01
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
Non-linear aeroelastic prediction for aircraft applications
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Generalized Ghost Dark Energy with Non-Linear Interaction
Ebrahimi, E; Mehrabi, A; Movahed, S M S
2016-01-01
In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...
Short- and long-term variations in non-linear dynamics of heart rate variability
DEFF Research Database (Denmark)
Kanters, J K; Højgaard, M V; Agner, E;
1996-01-01
OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from...... corresponding surrogate time series. RESULTS: A small significant amount of non-linear dynamics exists in heart rate variability. Correlation dimensions and non-linear predictability are relatively specific parameters for each individual examined. The correlation dimension is inversely correlated to the heart...
Directory of Open Access Journals (Sweden)
Diana M. Ortiz
2011-01-01
Full Text Available Estrategias de evolución es una técnica bio-inspirada, eficiente y robusta para resolver problemas de optimización donde el espacio de soluciones es no restringido. Sin embargo, esta suposición es irreal en muchos casos porque el espacio de soluciones es limitado por fronteras complejas en la forma de restricciones tanto lineales como no lineales. En este artículo de investigación, se propone una modificación al algoritmo original de estrategias de evolución para optimizar problemas donde el espacio de soluciones es limitado usando restricciones complejas. El método propuesto es basado en el uso de una función de penalización la cual es cero dentro de la región factible, e igual al máximo valor dentro de la región factible cuando se considera un punto que es no factible. La aproximación propuesta es probada usando seis problemas de prueba bien conocidos. En todos los casos, esta aproximación encontró un punto óptimo igual o menor que los valores reportados en la literatura.Evolution Strategies is a bio-inspired, robust, and efficient technique for solving optimization problems where the solution space is unrestricted. However, this assumption is unreal in many cases because the solution space is limited by complex boundaries in the form of linear and non-linear restrictions. In this paper, a modification of the original algorithm of Evolution Strategies for optimizing problems where the solution space is bounded using complex restrictions is proposed. The proposed method is based on the use of a penalization function which is zero inside of the feasible region and equal to the maximum value inside of the feasible region when an unfeasible point is considered. The proposed approach is proved using six benchmark problems. In all cases, our approach found an optimal point equal or lower than the values reported in the literature.
Hierarchical Non-linear Image Registration Integrating Deformable Segmentation
Institute of Scientific and Technical Information of China (English)
RAN Xin; QI Fei-hu
2005-01-01
A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
Chaotic Discrimination and Non-Linear Dynamics
Directory of Open Access Journals (Sweden)
Partha Gangopadhyay
2005-01-01
Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.
Risks of non-linear climate change
Energy Technology Data Exchange (ETDEWEB)
Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)
1995-12-31
Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.
Long-term cavity closure in non-linear rocks
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter
2017-08-01
The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {{v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( 1 + {\\overline {M_s}} ^{-1/2})R\\overline D_{II}, where \\overline {M_s} = (1 + {\\overline {D_{II}} }^2 \\big/ {nD{_{II}^*}^2}) \\big/ ( 1 + {\\overline {D_{II}}^2} \\big/ D{_{II}^*}^2) and \\overline {D_{II}} is the second invariant of the far
Non-linear Bayesian update of PCE coefficients
Litvinenko, Alexander
2014-01-06
Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).
An Adaptive Non-Linear Map and Its Application
Institute of Scientific and Technical Information of China (English)
YAN Xuefeng
2006-01-01
A novel adaptive non-linear mapping (ANLM),integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimensional olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
Non-Linear Sigma Model on Conifolds
Parthasarathy, R
2002-01-01
Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...
Non-Linear Electrohydrodynamics in Microfluidic Devices
Directory of Open Access Journals (Sweden)
Jun Zeng
2011-03-01
Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.
Variational iteration method for solving non-linear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Hemeda, A.A. [Department of Mathematics, Faculty of Science, University of Tanta, Tanta (Egypt)], E-mail: aahemeda@yahoo.com
2009-02-15
In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV-MKdV equation and Camassa-Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Non-linear Plasma Wake Growth of Electron Holes
Hutchinson, I H; Zhou, C
2015-01-01
An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...
Non-linear plasma wake growth of electron holes
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-01
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Non-linear analysis of EEG signals at various sleep stages.
Acharya U, Rajendra; Faust, Oliver; Kannathal, N; Chua, TjiLeng; Laxminarayan, Swamy
2005-10-01
Application of non-linear dynamics methods to the physiological sciences demonstrated that non-linear models are useful for understanding complex physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages and sustained fluctuations of autonomic functions such as temperature, blood pressure, electroencephalogram (EEG), etc., can be described as a chaotic process. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The sleep data analysis is carried out using non-linear parameters: correlation dimension, fractal dimension, largest Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and recurrence plots. These non-linear parameters quantify the cortical function at different sleep stages and the results are tabulated.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Non-linear leak currents affect mammalian neuron physiology
Directory of Open Access Journals (Sweden)
Shiwei eHuang
2015-11-01
Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.
Black Hole Hair Removal: Non-linear Analysis
Jatkar, Dileep P; Srivastava, Yogesh K
2009-01-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Black hole hair removal: non-linear analysis
Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.
2010-02-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Estimations of non-linearities in structural vibrations of string musical instruments
Ege, Kerem; Boutillon, Xavier
2012-01-01
Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
Describing Growth Pattern of Bali Cows Using Non-linear Regression Models
Directory of Open Access Journals (Sweden)
Mohd. Hafiz A.W
2016-12-01
Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.
An integer optimization algorithm for robust identification of non-linear gene regulatory networks
Directory of Open Access Journals (Sweden)
Chemmangattuvalappil Nishanth
2012-09-01
Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters
Non-linear dimensionality reduction of signaling networks
Directory of Open Access Journals (Sweden)
Ivakhno Sergii
2007-06-01
combinations of TNF, EGF and insulin. Prediction accuracy was highest when early activation time points in the apoptosis signaling network were used to predict apoptosis rates at later time points. Extended Isomap also outperformed PCA on the AfCS double ligand screen data. Isomap identified more functionally coherent clusters than PCA and captured more information in the first two-components. The Isomap projection performs slightly worse when more signaling networks are analyzed; suggesting that the mapping function between cues and responses becomes increasingly non-linear when large signaling pathways are considered. Conclusion We developed and applied extended Isomap approach for the analysis of cell signaling networks. Potential biological applications of this method include characterization, visualization and clustering of different treatment conditions (i.e. low and high doses of TNF in terms of changes in intracellular signaling they induce.
Realising traceable electrostatic forces despite non-linear balance motion
Stirling, Julian; Shaw, Gordon A.
2017-05-01
Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model.
Linear and non-linear bias: predictions vs. measurements
Hoffmann, Kai; Gaztanaga, Enrique
2016-01-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...
Non-linear Oscillations of Compact Stars and Gravitational Waves
Passamonti, A
2006-01-01
This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...
Non-Linear Acoustic Concealed Weapons Detector
2006-05-01
below in Figure 8. 11 The cloth is stretched over the objects. The objects were loosely draped with cloth. The specimen was placed on a tissue...clock to control 2 AD9959 4 channel direct digital synthesizer chips to produce an 8 channel phased array system. The programming on the AD9959 shows...clock is used to clock both output synthesizer chips and also used to gate each of the synthesizers, then all 8 outputs will be coherent. This
Graphical and Analytical Analysis of the Non-Linear PLL
de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram
The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
Non Linear Gauge Fixing for FeynArts
Gajdosik, Thomas
2007-01-01
We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Towards Objective Measures of Functional Hearing Abilities
DEFF Research Database (Denmark)
Innes-Brown, Hamish; Tsongas, Renee; Marozeau, Jeremy
2016-01-01
sensitivity to temporal fine structure (TFS) cues, brainstem encoding of complex harmonic and amplitude modulated sounds, and the ability to understand speech in noise. Understanding these links will allow the development of an objective measure that could be used to detect changes in functional hearing...
Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres
Uhlemann, C.; Codis, S.; Kim, J.; Pichon, C.; Bernardeau, F.; Pogosyan, D.; Park, C.; L'Huillier, B.
2017-04-01
We present simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts and grow as b(ρ) - b(1) ∝ (1 - ρ-13/21)ρ1 + n/3 with b(1) = -4/21 - n/3 for a power-law initial spectrum with index n. We carry out the derivation in the context of large-deviation statistics while relying on the spherical collapse model. We use a logarithmic transformation that provides a saddle-point approximation that is valid for the whole range of densities and show its accuracy against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow us to identify peaks are employed to obtain the conditional bias and a proxy for the BBKS extremum correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the per cent level down to scales of about 10 Mpc h-1 at redshift 0. Conversely, the joint statistics also provide us with optimal dark matter two-point correlation estimates that can be applied either universally to all spheres or to a restricted set of biased (over- or underdense) pairs. Based on a simple fiducial survey, we show that the variance of this estimator is reduced by five times relative to the traditional sample estimator for the two-point function. Extracting more information from correlations of different types of objects should prove essential in the context of upcoming surveys like Euclid, DESI and WFIRST.
Employment of CB models for non-linear dynamic analysis
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
Non-linear dielectric monitoring of biological suspensions
Energy Technology Data Exchange (ETDEWEB)
Treo, E F; Felice, C J [Departamento de BioingenierIa, Universidad Nacional de Tucuman and Consejo Nacional de Investigaciones Cientificas y Tecnicas. CC327, CP4000, San Miguel de Tucuman (Argentina)
2007-11-15
Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response.
Non-linearities in Theory-of-Mind Development
Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.
2017-01-01
Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065
PLASTICITY AND NON-LINEAR ELASTIC STRAINS
conditions existing in plane waves in an extended medium to give the time rate of change of stress as a function of the time rate of change of strain, the stress invariants, the total strain and the plastic strain. (Author)
Vismara, S. O.; Ricci, S.; Bellini, M.; Trittoni, L.
2016-06-01
The objective of the present paper is to describe a procedure to identify and model the non-linear behaviour of structural elements. The procedure herein applied can be divided into two main steps: the system identification and the finite element model updating. The application of the restoring force surface method as a strategy to characterize and identify localized non-linearities has been investigated. This method, which works in the time domain, has been chosen because it has `built-in' characterization capabilities, it allows a direct non-parametric identification of non-linear single-degree-of-freedom systems and it can easily deal with sine-sweep excitations. Two different application examples are reported. At first, a numerical test case has been carried out to investigate the modelling techniques in the case of non-linear behaviour based on the presence of a free-play in the model. The second example concerns the flap of the Intermediate eXperimental Vehicle that successfully completed its 100-min mission on 11 February 2015. The flap was developed under the responsibility of Thales Alenia Space Italia, the prime contractor, which provided the experimental data needed to accomplish the investigation. The procedure here presented has been applied to the results of modal testing performed on the article. Once the non-linear parameters were identified, they were used to update the finite element model in order to prove its capability of predicting the flap behaviour for different load levels.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS
Institute of Scientific and Technical Information of China (English)
Yang Xiaodong; Chen Li-Qun
2006-01-01
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
Programming Scala Scalability = Functional Programming + Objects
Wampler, Dean
2009-01-01
Learn how to be more productive with Scala, a new multi-paradigm language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. With this book, you'll discover why Scala is ideal for highly scalable, component-based applications that support concurrency and distribution. Programming Scala clearly explains the advantages of Scala as a JVM language. You'll learn how to leverage the wealth of Java class libraries to meet the practical needs of enterprise and Internet projects more easily. Packed with code examples, this book provides us
Non-linear effects in transition edge sensors for X-ray detection
Energy Technology Data Exchange (ETDEWEB)
Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Murphy, K.D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2006-04-15
In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter.
Ondra, V.; Sever, I. A.; Schwingshackl, C. W.
2017-01-01
This paper presents a method for detection and characterisation of structural non-linearities from a single frequency response function using the Hilbert transform in the frequency domain and artificial neural networks. A frequency response function is described based on its Hilbert transform using several common and newly introduced scalar parameters, termed non-linearity indexes, to create training data of the artificial neural network. This network is subsequently used to detect the existence of non-linearity and classify its type. The theoretical background of the method is given and its usage is demonstrated on different numerical test cases created by single degree of freedom non-linear systems and a lumped parameter multi degree of freedom system with a geometric non-linearity. The method is also applied to several experimentally measured frequency response functions obtained from a cantilever beam with a clearance non-linearity and an under-platform damper experimental rig with a complex friction contact interface. It is shown that the method is a fast and noise-robust means of detecting and characterising non-linear behaviour from a single frequency response function.
Correction of non-linearity effects in detectors for electron spectroscopy
Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S
2004-01-01
Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...
Wind farm non-linear control for damping electromechanical oscillations of power systems
Energy Technology Data Exchange (ETDEWEB)
Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)
2008-10-15
This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)
Non-local investigation of bifurcations of solutions of non-linear elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Il' yasov, Ya Sh
2002-12-31
We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with p-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.
Non-linear swept frequency technique for CO2 measurements using a CW laser system
Campbell, Joel F
2013-01-01
A system using a non-linear multi-swept sine wave system is described which employs a multi-channel, multi-swept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept and non-linear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.
Non-linear evolution of the cosmic neutrino background
Energy Technology Data Exchange (ETDEWEB)
Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Non-linear vorticity upsurge in Burgers flow
Lam, F
2016-01-01
We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo
2012-01-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...
Non-linear Least Squares Fitting in IDL with MPFIT
Markwardt, Craig B
2009-01-01
MPFIT is a port to IDL of the non-linear least squares fitting program MINPACK-1. MPFIT inherits the robustness of the original FORTRAN version of MINPACK-1, but is optimized for performance and convenience in IDL. In addition to the main fitting engine, MPFIT, several specialized functions are provided to fit 1-D curves and 2-D images; 1-D and 2-D peaks; and interactive fitting from the IDL command line. Several constraints can be applied to model parameters, including fixed constraints, simple bounding constraints, and "tying" the value to another parameter. Several data weighting methods are allowed, and the parameter covariance matrix is computed. Extensive diagnostic capabilities are available during the fit, via a call-back subroutine, and after the fit is complete. Several different forms of documentation are provided, including a tutorial, reference pages, and frequently asked questions. The package has been translated to C and Python as well. The full IDL and C packages can be found at http://purl.co...
Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
Institute of Scientific and Technical Information of China (English)
Marek Pawlikowski
2014-01-01
The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Van Aert, S; Chen, J H; Van Dyck, D
2010-10-01
A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has
Salinas, Daniel; Baker, David P
2015-01-01
Objective Previous studies found that developed and developing countries present opposite education-overweight gradients but have not considered the dynamics at different levels of national development. A U-inverted curve is hypothesized to best describe the education-overweight association. It is also hypothesized that as the nutrition transition unfolds within nations the shape of education-overweight curve change. Design Multi-level logistic regression estimates the moderating effect of the nutrition transition at the population level on education-overweight gradient. At the individual level, a non-linear estimate of the education association assesses the optimal functional form of the association across the nutrition transition. Setting Twenty-two administrations of the Demographic and Health Survey, collected at different time points across the nutrition transition in nine Latin American/Caribbean countries. Subjects Mothers of reproductive age (15–49) in each administration (n 143,258). Results In the pooled sample, a non-linear education gradient on mothers‘ overweight is found; each additional year of schooling increases the probability of being overweight up to the end of primary schooling, after which each additional year of schooling decreases the probability of overweight. Also, as access to diets of high animal fats and sweeteners increases over time, the curve‘s critical point moves to lower education levels, the detrimental positive effect of education diminishes, and both occur as the overall risk of overweight increases with greater access to harmful diets. Conclusions Both hypotheses are supported. As the nutrition transition progresses, the education-overweight curve steadily shifts to a negative linear association with higher average risk of overweight; and education, at increasingly lower levels, acts as a “social vaccine” against increasing risk of overweight. These empirical patterns fit the general “population education
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.;
2014-01-01
the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non...
Peri-implantitis: a complex condition with non-linear characteristics
Papantonopoulos, G.H.; Gogos, C.; Housos, E.; Bountis, T.; Loos, B.G.
2015-01-01
Aim To cluster peri-implantitis patients and explore non-linear patterns in peri-implant bone levels. Materials and Methods Clinical and radiographic variables were retrieved from 94 implant-treated patients (340 implants, mean 7.1 ± 4.1 years in function). Kernel probability density estimations on
Baptist, M.J.; Leopold, M.F.
2010-01-01
Human impacts on water transparency may affect plunge-diving seabirds. We studied prey capture success of Sandwich Terns Sterna sandvicensis as a function of six environmental variables during the breeding season. We observed diving terns in the south eastern North Sea and found a non-linear optimum
Peri-implantitis: a complex condition with non-linear characteristics
Papantonopoulos, G.H.; Gogos, C.; Housos, E.; Bountis, T.; Loos, B.G.
2015-01-01
Aim To cluster peri-implantitis patients and explore non-linear patterns in peri-implant bone levels. Materials and Methods Clinical and radiographic variables were retrieved from 94 implant-treated patients (340 implants, mean 7.1 ± 4.1 years in function). Kernel probability density estimations on
Estimation of saturation and coherence effects in the KGBJS equation - a non-linear CCFM equation
Deak, Michal
2012-01-01
We solve the modified non-linear extension of the CCFM equation - KGBJS equation - numerically for certain initial conditions and compare the resulting gluon Green functions with those obtained from solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second. T...
Mukhopadhyay, A. K.
1975-01-01
Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.
Massive Neutrinos and the Non-linear Matter Power Spectrum
Bird, Simeon; Haehnelt, Martin G
2011-01-01
We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...
Analytical exact solution of the non-linear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica
2011-07-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
The Importance of Non-Linearity on Turbulent Fluxes
DEFF Research Database (Denmark)
Rokni, Masoud
2007-01-01
Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...
Non-linear dynamics of a geared rotor-bearing system with multiple clearances
Kahraman, A.; Singh, R.
1991-02-01
Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.
An algorithm for earthwork allocation considering non-linear factors
Institute of Scientific and Technical Information of China (English)
WANG Ren-chao; LIU Jin-fei
2008-01-01
For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.
Non-linear behaviour of large-area avalanche photodiodes
Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E
2002-01-01
The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.
Pattern formation due to non-linear vortex diffusion
Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.
Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.
Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E
2014-09-15
A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior.
Realization of non-linear coherent states by photonic lattices
Directory of Open Access Journals (Sweden)
Shahram Dehdashti
2015-06-01
Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Comparison of Simulated and Measured Non-linear Ultrasound Fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...
Non-linear effects in bunch compressor of TARLA
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Realization of non-linear coherent states by photonic lattices
Energy Technology Data Exchange (ETDEWEB)
Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Gravitational-wave tail effects to quartic non-linear order
Marchand, Tanguy; Faye, Guillaume
2016-01-01
Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. Also known are the "tails-of-tails", which are cubically non-linear effects appearing at the 3PN order in the waveform. Here we derive still higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.
The role of dendritic non-linearities in single neuron computation
Directory of Open Access Journals (Sweden)
Boris Gutkin
2014-05-01
Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.
Linear and non-linear bias: predictions versus measurements
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
基于样条插值的非线性滤波器的分析与设计%Analysis and Design of Non-linear filters Based on Cubic Spline Function
Institute of Scientific and Technical Information of China (English)
伍小芹; 张宏科; 邓家先
2011-01-01
在理论分析和实际应用中,信号分析具有重要的理论意义和实际应用价值.非平稳信号的分析及处理一直是学术和工程界关注的热点问题之一.由于传统数据分析方法受线性或者平稳性假设的限制,无法有效地应用于图像处理、语音处理及雷达信号处理等实际应用中.本文通过对非线性、非平稳数据的建模,研究了适合非平稳数据分析的经验数据分解算法.建立了可行的经验数据分解滤波器的设计准则,并利用三次样条插值预测滤波器的参数.使用超光谱图像数据进行测试分析,在一次经验数据分解后,分析了高频子带数值在规定范围内的概率分布及相应的熵值.实验结果表明:经验数据分解算法产生的高频系数在0附近更集中,这对图像压缩有利,从而证明经验数据分解是一种对非平稳数据有效的分析方法.%Signal analysis has important theoretical and practical application. Non-stationary signal analysis and processing is one of the hot topics in the scientific and engineering research area. Because of the limit of linearity and stationarity assumption, the traditional methods can not be effectively used in image processing, speech processing and radar signal processing. A model suiting for nonlinear and non-stationary is established. The empirical data decomposition algorithm is discussed. A suitable design criteria is established. The use of cubic spline functions to predict the parameters of the predictive filter is discussed. Making a test on spectrum image data with empirical data decomposition. The system is simulated in Matlab. The probability distribution of the samples in high-frequency subbands whose values are within the specified range and the corresponding entropy are analyzed through simulation. The results show that the high-frequency coefficients produed by empirical data decomposition algorithm is more concentrated than those of 5/3 wavelet and 9
Numerical simulation of non-linear phenomena in geotechnical engineering
DEFF Research Database (Denmark)
Sørensen, Emil Smed
Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Algorithms for non-linear M-estimation
DEFF Research Database (Denmark)
Madsen, Kaj; Edlund, O; Ekblom, H
1997-01-01
a sequence of estimation problems for linearized models is solved. In the testing we apply four estimators to ten non-linear data fitting problems. The test problems are also solved by the Generalized Levenberg-Marquardt method and standard optimization BFGS method. It turns out that the new method...
Non-Linear Vibration of Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Barari, Amin; Kaliji, H. D.; Domairry, G.
2011-01-01
In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...
Range non-linearities correction in FMCW SAR
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...
Note About Hamiltonian Structure of Non-Linear Massive Gravity
Kluson, J
2011-01-01
We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.
Locally supersymmetric D=3 non-linear sigma models
Wit, B. de; Tollsten, A. K.; Nicolai, H.
1992-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general
On the non-linearity of the subsidiary systems
Friedrich, H
2005-01-01
In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.
Development and Control of a Non Linear Magnetic Levitation System
Directory of Open Access Journals (Sweden)
A Sanjeevi Gandhi
2013-06-01
Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...
Applications of non-linear methods in astronomy
Martens, P.C.H.
1984-01-01
In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d
Tagging the didactic functionality of learning objects
DEFF Research Database (Denmark)
Hansen, Per Skafte; Brostroem, Stig
2002-01-01
From a components-in-a-network point of view, the most important issues are: a didactically based typing of the learning objects themselves; the entire design superstructure, into which the learning objects must be fitted; and the symmetry of the interfaces, as seen by each pair of the triad...
Characteristics of the Main Journal Bearings of an Engine Based on Non-linear Dynamics
Institute of Scientific and Technical Information of China (English)
NI Guangjian; ZHANG Junhong; CHENG Xiaoming
2009-01-01
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
A study of non-linearity in rainfall-runoff response using 120 UK catchments
Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.
2016-09-01
This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.
On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study.
Graczyk, Alicja; Żurek, Justyna M; Paterson, Martin J
2014-01-01
A theoretical analysis of linear and non-linear (two-photon absorption) electronic spectroscopy of all known porphyrinic pigments has been performed using linear and quadratic density functional response theory, with the long-range corrected CAM-B3LYP functional. We found that higher Soret transitions often contain non-Gouterman contributions and that each chlorophyll has the possibility for resonance enhanced TPA in the Soret region, although there is also significant TPA in the Q region.
Geometrically non linear analysis of functionally graded material ...
African Journals Online (AJOL)
user
However, FGM plates under mechanical loading ..... vector is obtained from the tangent stiffness matrix, using the latest known solution and the process will ..... His areas of interests are Alternative fuels & CFD, Optimization techniques, soft.
A study of the non-linear behaviour of adhesively-bonded composite assemblies
Cognard, Jean Yves; Davies, Peter; Sohier, S; Creac' Hcadec, R
2006-01-01
The objective of this study is to define a reliable tool for dimensioning of adhesively bonded assemblies, particularly for marine and underwater applications. This paper presents experimental and numerical results, which describe the non-linear behaviour of an adhesive in a bonded assembly for various loadings. A modified Arcan fixture, well-suited for the study of the behaviour of bonded metal-metal assemblies, was developed in order to focus on the analysis of the behaviour of the adhesive...
Distributed Lag Linear and Non-Linear Models in R: The Package dlnm
Directory of Open Access Journals (Sweden)
Antonio Gasparrini
2011-08-01
Full Text Available Distributed lag non-linear models (DLNMs represent a modeling framework to flexibly describe associations showing potentially non-linear and delayed effects in time series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space expressed by the combination of two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. This framework is implemented in the R package dlnm, which provides functions to perform the broad range of models within the DLNM family and then to help interpret the results, with an emphasis on graphical representation. This paper offers an overview of the capabilities of the package, describing the conceptual and practical steps to specify and interpret DLNMs with an example of application to real data.
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
Directory of Open Access Journals (Sweden)
M. Pattnaik
2013-08-01
Full Text Available In this paper the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model under restricted space. Since various types of uncertainties and imprecision are inherent in real inventory problems they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by usual probabilistic models. The questions how to define inventory optimization tasks in such environment how to interpret optimal solutions arise. This paper allows the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price and the setup cost varies with the quantity produced/Purchased. This paper considers the modification of objective function and storage area in the presence of imprecisely estimated parameters. The model is developed for the problem by employing different modeling approaches over an infinite planning horizon. It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered and the demand per unit compares both fuzzy non linear and other models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and ugh MATLAB (R2009a version software, the two and three dimensional diagrams are represented to the application. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values and to draw managerial insights of the decision problem.
Directory of Open Access Journals (Sweden)
Pattnaik Monalisha
2015-01-01
Full Text Available In this paper, the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ model for restricted budget and space. Since various types of uncertainties and imprecision are inherent in real inventory problems, they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by the usual probabilistic models. The questions are how to define inventory optimization tasks in such environment and how to interpret the optimal solutions. This paper allow the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price, and the setup cost varies with the quantity produced/Purchased. The modification of objective function, budget, and storage area in the presence of imprecisely estimated parameters are considered. The model is developed by employing different approaches over an infinite planning horizon. It incorporates all the concepts of a fuzzy arithmetic approach and comparative analysis with other non linear models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated by an example problem, and two and three dimensional diagrams are represented to this application through MATL(R2009a software. Sensitivity analysis of the optimal solution is studied with respect to the changes of different parameter values for obtaining managerial insights of the decision problem.
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Non-linear irreversible thermodynamics of single-molecule experiments
Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A
2015-01-01
Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.
The linear-non-linear frontier for the Goldstone Higgs
Gavela, M B; Machado, P A N; Saa, S
2016-01-01
The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...
Non-linear Young's double-slit experiment.
San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis
2006-04-01
The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
Integration of non-linear cellular mechanisms regulating microvascular perfusion.
Griffith, T M; Edwards, D H
1999-01-01
It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
Non-linear Behavior of Curved Sandwich Panels
DEFF Research Database (Denmark)
Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;
2003-01-01
In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...
Non-Linear Aeroelastic Stability of Wind Turbines
DEFF Research Database (Denmark)
Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie;
2013-01-01
As wind turbines increase in magnitude without a proportional increase in stiffness, the risk of dynamic instability is believed to increase. Wind turbines are time dependent systems due to the coupling between degrees of freedom defined in the fixed and moving frames of reference, which may...... trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...... and non-linear aero-elasticity into consideration. The stability of the wind turbine is determined by the maximum Lyapunov exponent of the system, which is operated directly on the non-linear state vector differential equations. Numerical examples show that this approach is promising for stability...
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Defects in the discrete non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)
2012-01-01
The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)
2015-12-15
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)
2015-12-09
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Linear Algebraic Method for Non-Linear Map Analysis
Energy Technology Data Exchange (ETDEWEB)
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Non-Linear Vibration of Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Barari, Amin; Kaliji, H. D.; Domairry, G.
2011-01-01
In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for no...... for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions....
Control of Non-linear Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....
Adaptive spectral identification techniques in presence of undetected non linearities
Cella, G; Guidi, G M
2002-01-01
The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise
Likelihood inference for discretely observed non-linear diffusions
1998-01-01
This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...
Non-linear dark matter collapse under diffusion
Velten, Hermano E S
2014-01-01
Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.
On the non-linear stability of scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)
2011-09-22
We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.
Non-linear Higgs portal to Dark Matter
Bajo, Rocío del Rey
2016-01-01
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet Dark Matter candidate $S$ in an effective description. The main phenomenological differences with respect to the standard scenario can be seen in the Dark Matter relic abundance, in direct/indirect searches and in signals at colliders.
Non-Linear Second-Order Periodic Systems with Non-Smooth Potential
Indian Academy of Sciences (India)
Evgenia H Papageorgiou; Nikolaos S, Papageorgiou
2004-08-01
In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on the potential function. Then we establish the existence of non-trivial homoclinic (to zero) solutions. Our theorem appears to be the first such result (even for smooth problems) for systems monitored by the -Laplacian. In the last section of the paper we examine the scalar non-linear and semilinear problem. Our approach uses a generalized Landesman–Lazer type condition which generalizes previous ones used in the literature. Also for the semilinear case the problem is at resonance at any eigenvalue.
Modeling the Non-Linear Behavior of Library Cells for an Accurate Static Noise Analysis
Forzan, Cristiano
2011-01-01
In signal integrity analysis, the joint effect of propagated noise through library cells, and of the noise injected on a quiet net by neighboring switching nets through coupling capacitances, must be considered in order to accurately estimate the overall noise impact on design functionality and performances. In this work the impact of the cell non-linearity on the noise glitch waveform is analyzed in detail, and a new macromodel that allows to accurately and efficiently modeling the non-linear effects of the victim driver in noise analysis is presented. Experimental results demonstrate the effectiveness of our method, and confirm that existing noise analysis approaches based on linear superposition of the propagated and crosstalk-injected noise can be highly inaccurate, thus impairing the sign-off functional verification phase.
Synthesis, characterization and calculated non-linear optical properties of two new chalcones
Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav
2012-06-01
Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).
Non-linear HRV indices under autonomic nervous system blockade.
Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel
2014-01-01
Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.
Non-linear polaronic conduction in magnetite nanowires
Energy Technology Data Exchange (ETDEWEB)
Singh, Pooja, E-mail: pooja7503@gmail.com [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rout, P.K., E-mail: pkrout.phy@gmail.com [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Husale, Sudhir; Gupta, Anurag [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Manju [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rakshit, R.K. [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Dogra, Anjana, E-mail: anjanad@nplindia.org [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)
2016-12-01
We report the temperature dependent current (I) – voltage (V) characteristics of Fe{sub 3}O{sub 4} nanowires with varying width (w) of 132, 358, and 709 nm. While the widest nanowire (w=709 nm) shows ohmic I (V) curves for all temperatures, those for w=132 and 358 nm show nonlinearity, which can be expressed by a combination of linear (V) and cubic (V{sup 3}) terms. The behaviour of conductance (linear bias component of current) and non-linearity in these nanowires is related to small polaron hopping related conduction. Moreover, we observed an anomalously large hopping lengths, which may be related to the size of percolation cluster and/or antiphase domain. Our study presents first experimental evidence for such non-linear polaronic conduction in magnetite nanowires. - Highlights: • Temperature dependent I–V measurements of FIB fabricated magnetite nanowires. • Small polaron based conduction in non-linear I–V curves. • Anomalously large hopping lengths due to percolation effect and/or antiphase domains.
Testing non-linear vacuum electrodynamics with Michelson interferometry
Schellstede, Gerold O; Lämmerzahl, Claus
2015-01-01
We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...
Fabrication and characterization of non-linear parabolic microporous membranes.
Rajasekaran, Pradeep Ramiah; Sharifi, Payam; Wolff, Justin; Kohli, Punit
2015-01-01
Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t(1/2). Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.
Identification of a Non-Linear Landing Gear Model Using Nature-Inspired Optimization
Directory of Open Access Journals (Sweden)
Felipe A.C. Viana
2008-01-01
Full Text Available This work deals with the application of a nature-inspired optimization technique to solve an inverse problem represented by the identification of an aircraft landing gear model. The model is described in terms of the landing gear geometry, internal volumes and areas, shock absorber travel, tire type, and gas and oil characteristics of the shock absorber. The solution to this inverse problem can be obtained by using classical gradient-based optimization methods. However, this is a difficult task due to the existence of local minima in the design space and the requirement of an initial guess. These aspects have motivated the authors to explore a nature-inspired approach using a method known as LifeCycle Model. In the present formulation two nature-based methods, namely the Genetic Algorithms and the Particle Swarm Optimization were used. An optimization problem is formulated in which the objective function represents the difference between the measured characteristics of the system and its model counterpart. The polytropic coefficient of the gas and the damping parameter of the shock absorber are assumed as being unknown: they are considered as design variables. As an illustration, experimental drop test data, obtained under zero horizontal speed, were used in the non-linear landing gear model updating of a small aircraft.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
GA and Lyapunov theory-based hybrid adaptive fuzzy controller for non-linear systems
Roy, Ananya; Das Sharma, Kaushik
2015-02-01
In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA-Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.
Identification of non-linear models of neural activity in bold fmri
DEFF Research Database (Denmark)
Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai
2006-01-01
Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These ....... These distributions are themselves stochastic, therefore we estimate their variance by epoch based leave-one-out cross validation, using a Metropolis-Hastings algorithm for sampling of the posterior parameter distribution....
High order explicit symplectic integrators for the Discrete Non Linear Schr\\"odinger equation
Boreux, Jehan; Hubaux, Charles
2010-01-01
We propose a family of reliable symplectic integrators adapted to the Discrete Non-Linear Schr\\"odinger equation; based on an idea of Yoshida (H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A, 150, 5,6,7, (1990), pp. 262.) we can construct high order numerical schemes, that result to be explicit methods and thus very fast. The performances of the integrators are discussed, studied as functions of the integration time step and compared with some non symplectic methods.
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
The non-linear evolution of edge localized modes
Energy Technology Data Exchange (ETDEWEB)
Wenninger, Ronald
2013-01-09
Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal
A Comparison of PDE-based Non-Linear Anisotropic Diffusion Techniques for Image Denoising
Energy Technology Data Exchange (ETDEWEB)
Weeratunga, S K; Kamath, C
2003-01-06
PDE-based, non-linear diffusion techniques are an effective way to denoise images. In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.
Comparison of PDE-based non-linear anistropic diffusion techniques for image denoising
Weeratunga, Sisira K.; Kamath, Chandrika
2003-05-01
PDE-based, non-linear diffusion techniques are an effective way to denoise images.In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.
A hybrid-stress solid-shell element for non-linear analysis of piezoelectric structures
Institute of Scientific and Technical Information of China (English)
SZE; K; Y
2009-01-01
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.
Non linear field correction effects on the dynamic aperture of the FCC-hh
AUTHOR|(INSPIRE)INSPIRE-00361058; Seryi, Andrei; Maclean, Ewen Hamish; Martin, Roman; Tomas Garcia, Rogelio
2017-01-01
The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2016-07-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Sparse PDF maps for non-linear multi-resolution image operations
Hadwiger, Markus
2012-11-01
We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2017-01-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Anticipation and the Non-linear Dynamics of Meaning-Processing in Social Systems
Leydesdorff, Loet
2009-01-01
Social order does not exist as a stable phenomenon, but can be considered as "an order of reproduced expectations." When anticipations operate upon one another, they can generate a non-linear dynamics which processes meaning. Although specific meanings can be stabilized, for example in social institutions, all meaning arises from a global horizon of possible meanings. Using Luhmann's (1984) social systems theory and Rosen's (1985) theory of anticipatory systems, I submit algorithms for modeling the non-linear dynamics of meaning in social systems. First, a self-referential system can use a model of itself for the anticipation. Under the condition of functional differentiation, the social system can be expected to entertain a set of models; each model can also contain a model of the other models. Two anticipatory mechanisms are then possible: a transversal one between the models, and a longitudinal one providing the system with a variety of meanings. A system containing two anticipatory mechanisms can become h...
Automated, non-linear registration between 3-dimensional brain map and medical head image
Energy Technology Data Exchange (ETDEWEB)
Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao [National Cardiovascular Center, Suita, Osaka (Japan)
1998-05-01
In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)
Assessment of subjective and objective cognitive function in bipolar disorder
DEFF Research Database (Denmark)
Demant, Kirsa M; Vinberg, Maj; Kessing, Lars V
2015-01-01
cognitive function and psychosocial function. We also identified clinical variables that predicted objective and subjective cognitive function and psychosocial functioning. There was a correlation between global subjective and objective measures of cognitive dysfunction but not within the individual...... cognitive domains. However, the correlation was weak, suggesting that cognitive complaints are not an assay of cognition per se. Self-rated psychosocial difficulties were associated with subjective (but not objective) cognitive impairment and both subjective cognitive and psychosocial difficulties were...
Non-linear DSGE Models and The Optimized Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
Linear and non-linear perturbations in dark energy models
Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S
2016-01-01
In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.
Hans Hinterreiter’s non-linear transformations
DEFF Research Database (Denmark)
Makovicky, Emil
poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely...... of plane-group patterns onto curvilinear nets of different kinds, mostly combined with a skilful application of principles of dichroic or polychromatic symmetry. Unlike Escher, Hinterreiter strove to achieve the aesthetic ideal of a pure abstract form [2] with its inherent symmetries. His unique, two...
Studies for an alternative LHC non-linear collimation system
Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J
2012-01-01
A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Non-linear optical titanyl arsenates: Crystal growth and properties
Nordborg, Jenni Eva Louise
Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic
Non-linear Calibration Leads to Improved Correspondence between Uncertainties
DEFF Research Database (Denmark)
Andersen, Jens Enevold Thaulov
2007-01-01
an investigation of an uncomplicated expression of the non-linear working curve that is well suited to an assessment of predicted uncertainties. At small concentrations, the working curve reduces to a straight line that corresponds to the conventional calibration line. If no interferences were disturbing...... limit theorem, an excellent correspondence was obtained between predicted uncertainties and measured uncertainties. In order to validate the method, experiments were applied of flame atomic absorption spectrometry (FAAS) for the analysis of Co and Pt, and experiments of electrothermal atomic absorption...
Non-linear dynamics in pulse combustor: A review
Indian Academy of Sciences (India)
Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen
2015-03-01
The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.
Simulation of non-linear coaxial line using ferrite beads
Energy Technology Data Exchange (ETDEWEB)
Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J. [Nagaoka Univ. of Technology, Niigata (Japan)
2002-06-01
A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)
Utilization of non-linear converters for audio amplification
DEFF Research Database (Denmark)
Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold
2012-01-01
Class D amplifiers fits the automotive demands quite well. The traditional buck-based amplifier has reduced both the cost and size of amplifiers. However the buck topology is not without its limitations. The maximum peak AC output voltage produced by the power stage is only equal the supply voltage....... The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is possible to achieve...
Non linear analyses of speech and prosody in Asperger's syndrome
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Bang, Dan; Weed, Ethan
and explain this oddness of speech pattern. In this project, we quantify how the speech patterns of people with Asperger’s Syndrome (AS) differ from that of matched controls. To do so, we employed both traditional measures (pitch range and standard deviation, pause duration, and so on) and 2) non......-linear techniques measuring the structure (regularity and complexity) of verbal, prosodic and fluency behaviour. Our aims were (1) to achieve a more fine-grained understanding of the speech patterns in AS than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ...
Weak non-linear surface charging effects in electrolytic films
Dean, D. S.; Horgan, R. R.
2002-01-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...
From Functions to Object-Orientation by Abstraction
Diertens, B.
2012-01-01
In previous work we developed a framework of computational models for function and object execution. The models on an higher level of abstraction in this framework allow for concurrent execution of functions and objects. We show that the computational model for object execution complies with the fun
Particle sizing by dynamic light scattering: non-linear cumulant analysis.
Mailer, Alastair G; Clegg, Paul S; Pusey, Peter N
2015-04-15
We revisit the method of cumulants for analysing dynamic light scattering data in particle sizing applications. Here the data, in the form of the time correlation function of scattered light, is written as a series involving the first few cumulants (or moments) of the distribution of particle diffusion constants. Frisken (2001 Appl. Opt. 40 4087) has pointed out that, despite greater computational complexity, a non-linear, iterative, analysis of the data has advantages over the linear least-squares analysis used originally. In order to explore further the potential and limitations of cumulant methods we analyse, by both linear and non-linear methods, computer-generated data with realistic 'noise', where the parameters of the distribution can be set explicitly. We find that, with modern computers, non-linear analysis is straightforward and robust. The mean and variance of the distribution of diffusion constants can be obtained quite accurately for distributions of width (standard deviation/mean) up to about 0.6, but there appears to be little prospect of obtaining meaningful higher moments.
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, A. J.
2016-09-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predictions for dark energy models for k ≤ 5 hMpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the appendix I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
Non-linear effects on solute transfer between flowing water and a sediment bed.
Higashino, Makoto; Stefan, Heinz G
2011-11-15
A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.
Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads
Directory of Open Access Journals (Sweden)
Donald Mark Santee
2006-01-01
Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.
Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.
Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim
2017-09-12
Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Non-linear magnetization effects within the Kosterlitz-Thouless theory
Benfatto, Lara; Castellani, Claudio; Giamarchi, Thierry
2008-03-01
Recent experiments in cuprate superconductors have attracted the attention on the role of vortex fluctuations. Measurements of the field-induced magnetization showed that the correlation length diverge exponentially, as predicted within the Kosterlitz-Thouless (KT) theory. However, it is somehow puzzling thepersistence of strong non-linear magnetization effects at low field. Here we address this issue by means of a new theoretical approach to the KT transition at finite magnetic field, based on the sine-Gordon model. This approach is particularly useful in two respects. First, it leads to a straightforward definition of the field-induced magnetization as a function of the external magnetic field H instead of the magnetic induction B, which is crucial to get a consistent description of the Meissner phase. Second, it allows us to identify the cross-over field Hcr from linear to non-linear magnetization both below and above the transition. Above TKT Hcr turns out to scale as the inverse correlation length, so that it decreases as the transition is approached. As a consequence, the fact that only the non-linear regime is accessible experimentally should be interpreted as a typical signature of the fast divergence of the correlation length within the KT theory. L.Benfatto, C.Castellani and T.Giamarchi, Phys. Rev. Lett. 99, 207002 (2007)
Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum
Mead, A. J.
2017-01-01
I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo-finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power-spectrum predictions for dark energy models for k ≤ 5 h Mpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the Appendix, I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Primordial black holes in linear and non-linear regimes
Allahyari, Alireza; Abolhasani, Ali Akbar
2016-01-01
Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...
Non Linear Analysis of MPPT for Power Quality Improvement
Directory of Open Access Journals (Sweden)
S. Sankar
2015-08-01
Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.
A non-linear model of information seeking behaviour
Directory of Open Access Journals (Sweden)
Allen E. Foster
2005-01-01
Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.
The Linear-Non-Linear Frontier for the Goldstone Higgs
Energy Technology Data Exchange (ETDEWEB)
Gavela, M. B. [Madrid, IFT; Kanshin, K. [Padua U.; Machado, P. A.N. [Madrid, IFT; Saa, S. [Madrid, IFT
2016-10-25
The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.
PV Degradation Curves: Non-Linearities and Failure Modes
Energy Technology Data Exchange (ETDEWEB)
Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill; Kurtz, Sarah R.
2016-09-03
Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Left-Right Non-Linear Dynamical Higgs
Shu, Jing; Yepes, Juan
2016-12-01
All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work
Improved parameter estimation for hydrological models using weighted object functions
Stein, A.; Zaadnoordijk, W.J.
1999-01-01
This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging. Calibration is applied to pi
Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.
2011-06-01
Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Investigating Mesoscopic Non-linear Series Circuit with the Coherent Thermo State Representation
Wang, Xiu-Xia
2017-03-01
For the first time we considered the quantum effects of mesoscopic non-linear series circuit with the coherent thermo state representation | τ rangle . After introducing the representation |τ rangle , we derived the expression of the density matrix ρ and find that | ρ rangle T presents Gauss type with the representation | τ rangle . In addition, we derived the Wigner function and calculated the quantum fluctuation in the thermo vacuum state |0( β)>. It is shown that the circuit has the zero current fluctuation because the diode has the reverse saturation current, and the temperature affects the Wigner function of the circuit in thermo vacuum state deeply.
Directory of Open Access Journals (Sweden)
Chris eFields
2011-03-01
Full Text Available The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially-disconnected stimuli as continuously-existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated trajectory recognition networks downstream of the medial-temporal motion detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders.
Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python
Newville, Matthew; Stensitzki, Till; Allen, Daniel B.; Rawlik, Michal; Ingargiola, Antonino; Nelson, Andrew
2016-06-01
Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.
Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming
Directory of Open Access Journals (Sweden)
Jairo Marlon Corrêa
2016-03-01
Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods
Annular pupil filter under shot-noise condition for linear and non linear microscopy.
Ronzitti, Emiliano; Vicidomini, Giuseppe; Caorsi, Valentina; Diaspro, Alberto
2009-04-13
The imaging performances of multiphoton excitation and confocal laser scanning microscopy are herby considered: in typical experimental imaging conditions, a small finite amount of photon reaches the detector giving shot-noise fluctuations which affects the signal acquired. A significant detriment in the high frequencies transmission capability is obtained. In order to partially recover the high frequencies information lost, the insertion of a pupil plane filter in the microscope illumination light pathway on the objective lens is proposed. We demonstrate high-frequency and resolution enhancement in the case of linear and non linear fluorescence microscope approach under shot-noise condition.
New holographic dark energy model with non-linear interaction
Oliveros, A
2014-01-01
In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.
Ferrite core non-linearity in coils for magnetic neurostimulation.
RamRakhyani, Anil Kumar; Lazzi, Gianluca
2014-10-01
The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.
Non-Gaussianity vs. non-linearity of cosmological perturbations
Verde, L
2001-01-01
Following the discovery of the CMB, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us towards a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, non-linear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but these might not be faithful tr...
Hans Hinterreiter’s non-linear transformations
DEFF Research Database (Denmark)
Makovicky, Emil
Hans Hinterreiter (1902-1989) was a Swiss painter, belonging to the Constructivist movement, who spent most of his life in Ibiza, Spain. Since 1930 he occupied himself with the laws of form and colour. Parallel to Escher, he discovered laws of coloured symmetry before crystallographers started...... poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely......-step approach that combines plane group patterns with the principles of coloured symmetry and nonlinear transformations, his understanding of crystallographic and non-crystallographic symmetry and a meticulous application of these principles even to the most complex patterns produced a legacy close to the heart...
Non-linear Kalman filters for calibration in radio interferometry
Tasse, Cyril
2014-01-01
We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...
Hitting probabilities for non-linear systems of stochastic waves
Dalang, Robert C
2012-01-01
We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.
Predictability of extremes in non-linear hierarchically organized systems
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Method and system for non-linear motion estimation
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....
Non-linear rheology in a model biological tissue
Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten
2016-01-01
Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
The mathematics of non-linear metrics for nested networks
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
Biometric Authentication System using Non-Linear Chaos
Directory of Open Access Journals (Sweden)
Dr.N.Krishnan
2010-08-01
Full Text Available A major concern nowadays for any Biometric Credential Management System is its potential vulnerability to protect its information sources; i.e. protecting a genuine user’s template from both internal and external threats. These days’ biometric authentication systems face various risks. One of the most serious threats is the ulnerability of the template's database. An attacker with access to a reference template could try to impersonate a legitimate user by reconstructing the biometric sample and by creating a physical spoof.Susceptibility of the database can have a disastrous impact on the whole authentication system. The potential disclosure of digitally stored biometric data raises serious concerns about privacy and data protection. Therefore, we propose a method which would integrate conventional cryptography techniques with biometrics. In this work, we present a biometric crypto system which encrypts the biometric template and the encryption is done by generating pseudo random numbers, based on non-linear dynamics.
Responding to non-linear internationalisation of public policy
DEFF Research Database (Denmark)
Daugbjerg, Carsten
2016-01-01
The transfer of regulatory authority to international organisations can initiate domestic policy reform. The internationalisation process can be a one-off transfer of authority to international institutions or an ongoing process. In the latter situation, the level of internationalisation may...... be gradually increased by expanding the regulatory scope of the regime or by deepening it. However, internationalisation processes may also involve stalemate or even reversal. How do domestic policy makers respond to such non-linear internationalisation? To answer this question, this paper analyzes...... the relationship between developments in the GATT and WTO farm trade negotiations and the reform trajectory of the EU's Common Agricultural Policy (CAP) from the early 1990s to 2013. Until 2008, the EU gradually changed the support instruments of the CAP to limit their trade distorting impact. After the Doha Round...
Computational models of signalling networks for non-linear control.
Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M
2013-05-01
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.
Non linear prompt neutron kinetics in multigroup diffusion theory
Energy Technology Data Exchange (ETDEWEB)
Ghatak, Ajoy Kumar
1963-06-15
It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)
An empirical evaluation of non-linear trading rules.
Directory of Open Access Journals (Sweden)
Sosvilla-Rivero, Simón
2003-01-01
Full Text Available In this paper we investigate the profitability of non-linear trading rules based on nearest neighbour (NN predictors. Applying this investment strategy to the New York Stock Exchange, our results suggest that, taking into account transaction costs, the NN-based trading rule is superior to both a riskadjusted buy-and-hold strategy and a linear ARIMA-based strategy in terms of returns for all of the years studied (1997-2002. Regarding other profitability measures, the NN-based trading rule yields higher Sharpe ratios than the ARIMA-based strategy for all of the years in the sample except for 2001. As for 2001, in 36 out of the 101 cases considered, the ARIMA-based strategy gives higher Sharpe ratios than those from the NN-trading rule, in 18 cases the opposite is true, and in the remaining 36 cases both strategies yield the same ratios.
Non-linear PIC simulation in a penning trap
Energy Technology Data Exchange (ETDEWEB)
Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)
2001-01-01
We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.
Robust C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...
Non Linear Lorentz Transformation and Doubly Special Relativity
Atehortua, A N; Mira, J M; Vanegas, N
2012-01-01
We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.
Non-linear scalable TFETI domain decomposition based contact algorithm
Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.
2010-06-01
The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.
Considering Complexity: Toward A Strategy for Non-linear Analysis
Directory of Open Access Journals (Sweden)
Ken Hatt
2009-01-01
Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.
NOLB : Non-linear rigid block normal mode analysis method.
Hoffmann, Alexandre; Grudinin, Sergei
2017-04-05
We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
Non-linear dynamics of a spur gear pair
Kahraman, A.; Singh, R.
1990-10-01
Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second
Institute of Scientific and Technical Information of China (English)
Hasan ABBASI NOZARI; Hamed DEHGHAN BANADAKI; Mohammad MOKHTARE; Somaveh HEKMATI VAHED
2012-01-01
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system.A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT),which is an incremental tree-based learning algorithm.The proposed NF models are compared with other known intelligent identifiers,namely multilayer perceptron (MLP) and radial basis function (RBF).Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system.Experimental results show the effectiveness of our proposed NF modelling approach.
Energy Technology Data Exchange (ETDEWEB)
Narayanan, M. [Department of Physics, Yadava College Govindarajan Campus, Thiruppalai, Madurai-625 014 (India); John Peter, A., E-mail: a.john.peter@gmail.com [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of); Yoo, Chang Kyoo [Center for Environmental Studies/Green Energy Center, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701 (Korea, Republic of)
2012-02-01
Binding energy, interband emission energy and the non-linear optical properties of exciton in an InSb/InGa{sub x}Sb{sub 1-x} quantum dot are computed as functions of dot radius and the Ga content. Optical properties are obtained using the compact density matrix approach. The dependence of non-linear optical processes on the dot sizes is investigated for different Ga concentrations. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of the exciton are calculated for different concentrations of gallium content. It is found that gallium concentration has great influence on the optical properties of InSb/InGa{sub x}Sb{sub 1-x} dots.
Keesman, K.J.
2006-01-01
In this short paper for the panel discussion on ¿Experience and challenges in identification of non-linear systems¿ some major issues with respect to identification of non-linear biochemical and environmental systems are presented.
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
DEFF Research Database (Denmark)
Dich, Nadya; Doan, Stacey N; Kivimäki, Mika
2014-01-01
Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...
Extracting a common pulse like signal from Time Serie using a non linear Kalman Filter
Gazeaux, J.; Batista, D.; Ammann, C.; Naveau, P.; Jégat, C.; Gao, C.
2009-04-01
To understand the nature and cause of natural climate variability, it is important to attribute past climate variations to particular forcing factors. In this work, our main focus is to introduce an automatic assimilation procedure to estimate the magnitude of strong but short-lived perturbations, such as large explosive volcanic eruptions, using climate/proxies time series. The extraction and decomposition procedure is run on real multivariate time series of sulfate from ice cores drilled at different sites in Greenland. The sulfate ejected by volcanoes is transported through the stratosphere towards the poles and deposited via sedimentation near the pole. Sulfate in Greenland is then a marker of huge volcanic eruptions which occur all over the world. Such pulse-like processes are highly non linear, as much in time as for their intensity. If they are not detected, such pulse-like signals of extreme and rare events can perturb an objective calculation of the trend. This work is then as much an estimation procedure for such signals, as a first step to estimate a posteriori trend in the time series. Our extraction algorithm handles multivariate time series with a common but unknown forcing. This statistical procedure is based on a multivariate multi-state space model and a non linear Kalman Filter. The non linearity is solved using the calculation of a twice conditional expectation and variance. It can provide an accurate estimate of the timing and duration of individual pulse-like events from a set of different series covering the same temporal space. It not only allows for a more objective estimation of its associated peak amplitude and the subsequent time evolution of the signal, but at the same time it provides a measure of confidence through the posterior probability for each pulse-like event. The flexibility, robustness and limitations of our approach are discussed by applying our method to simulated time series and to the Monte-Carlo method to test the
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
State-variable analysis of non-linear circuits with a desk computer
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
The tanh-coth method combined with the Riccati equation for solving non-linear equation
Energy Technology Data Exchange (ETDEWEB)
Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr
2009-05-15
In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.
A computerized implementation of a non-linear equation to predict barrier shielding requirements.
Chamberlain, A C; Strydom, W J
1997-04-01
A non-linear equation to predict barrier shielding thickness from the work function of x- and gamma-ray generators is presented. This equation is incorporated into a model that takes into account primary, scatter, and leakage radiation components to determine the amount of shielding necessary. The case of multiple wall materials is also considered. The equation accurately models the radiation attenuation curves given in NCRP 49 for concrete and lead, thus eliminating the necessity to use graphical or tabular methods to calculate shielding thickness, which can be inaccurate.
Current distribution effects in patterned non-linear magnetoresistive tunnel junctions
Montaigne, F; Schuhl, A
2000-01-01
To be used in submicronic devices like magnetic memories, magnetic tunnel junctions require low resistances. Four-probe measurements of such resistances are often altered by non-uniformity of the current distribution in the junction. The measured resistance is decreased by localised preferential conduction and increased by voltage drop in the measure electrode. Competition between these two effects is investigated as a function of the geometry. The non-linear conduction of tunnel junctions amplifies dramatically these phenomena and can modify by more than 50% the measured resistance.
The de Sitter limit of inflation and non-linear perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Jarnhus, Philip R; Sloth, Martin S, E-mail: pjarn@phys.au.dk, E-mail: sloth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)
2008-02-15
We study the fourth-order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in non-linear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the nth-order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.
DEFF Research Database (Denmark)
Kjems, Ulrik; Storther, Stephen C.; Anderson, Jon
1999-01-01
This paper addresses the problem of neuro-anatomical registration across individuals for functional [15O]water PET activation studies. A new algorithm for 3D non-linear structural registration (warping) of MR scans is presented. The method performs a hierarchically scaled search for a displacement...
DEFF Research Database (Denmark)
Kjems, Ulrik; Storther, Stephen C.; Anderson, Jon
1999-01-01
This paper addresses the problem of neuro-anatomical registration across individuals for functional [15O]water PET activation studies. A new algorithm for 3D non-linear structural registration (warping) of MR scans is presented. The method performs a hierarchically scaled search for a displacemen...
Beyond Kaiser bias: mildly non-linear two-point statistics of densities in distant spheres
Uhlemann, C; Kim, J; Pichon, C; Bernardeau, F; Pogosyan, D; Park, C; L'Huillier, B
2016-01-01
Simple parameter-free analytic bias functions for the two-point correlation of densities in spheres at large separation are presented. These bias functions generalize the so-called Kaiser bias to the mildly non-linear regime for arbitrary density contrasts. The derivation is carried out in the context of large deviation statistics while relying on the spherical collapse model. A logarithmic transformation provides a saddle approximation which is valid for the whole range of densities and shown to be accurate against the 30 Gpc cube state-of-the-art Horizon Run 4 simulation. Special configurations of two concentric spheres that allow to identify peaks are employed to obtain the conditional bias and a proxy to BBKS extrema correlation functions. These analytic bias functions should be used jointly with extended perturbation theory to predict two-point clustering statistics as they capture the non-linear regime of structure formation at the percent level down to scales of about 10 Mpc/h at redshift 0. Conversely...
Reactor Network Synthesis Based on Instantaneous Objective Function Characteristic Curves
Institute of Scientific and Technical Information of China (English)
张治山; 赵文; 王艳丽; 周传光; 袁希钢
2003-01-01
It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions(steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper,the instantaneous objective function is closed to be the instantaneous selectivity and several samples axe examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.
Non-linear controls on the persistence of La Nina
Di Nezio, P. N.; Deser, C.
2013-12-01
Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that
Park, Yu Rang; Lee, Hye Won; Cho, Sung Bum; Kim, Ju Han
2007-01-01
The development of functional genomics including transcriptomics, proteomics and metabolomics allow us to monitor a large number of key cellular pathways simultaneously. Several technology-specific data models have been introduced for the representation of functional genomics experimental data, including the MicroArray Gene Expression-Object Model (MAGE-OM), the Proteomics Experiment Data Repository (PEDRo), and the Tissue MicroArray-Object Model (TMA-OM). Despite the increasing number of cancer studies using multiple functional genomics technologies, there is still no integrated data model for multiple functional genomics experimental and clinical data. We propose an object-oriented data model for cancer genomics research, Cancer Genomics Object Model (CaGe-OM). We reference four data models: Functional Genomic-Object Model, MAGE-OM, TMAOM and PEDRo. The clinical and histopathological information models are created by analyzing cancer management workflow and referencing the College of American Pathology Cancer Protocols and National Cancer Institute Common Data Elements. The CaGe-OM provides a comprehensive data model for integrated storage and analysis of clinical and multiple functional genomics data.
Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...
Analyses of non-linear systems and their application to biology: a review.
Sato, S
1994-01-01
In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.
Directory of Open Access Journals (Sweden)
Mkrtychev Oleg Vartanovich
Full Text Available In the article the problem of calculation of a construction basis system in case of earthquake is considered taking into account casual properties of basis soil in various points of the soil body. As a stochastic function in the calculation of linearly deformable basis, the deformation module, which accepts different values in the direction x, y, z, was chosen. In the calculation of the system on non-linearly deformable basis as incidentally distributed sizes the following parameters were accepted: deformation module, shear modulus, specific adhesion, angle of internal friction. The authors of the article offer to consider initial seismic influence in the form of casual stationary process. In order to solve such problems modern software systems are proposed that solve differential equations of motion via direct integration with explicit schemes. The calculation in this case will be held on the synthesized accelerograms. A short review of the task solution of the beam lying on elastic basis, which was received by D.N. Sobolev at casual distribution of pastel coefficient in the direction x, is provided in article. In order to define the objective, D.N. Sobolev gives expressions for a population mean and correlation function of stochastic function. As a result of the task solution population means and dispersions of function of movements and its derivatives were received. The problem formulation considered in the article is more complicated, but at the same time important from a practical standpoint.
NLHB : A Non-Linear Hopper Blum Protocol
Madhavan, Mukundan; Sankarasubramaniam, Yogesh; Viswanathan, Kapali
2010-01-01
In this paper, we propose a light-weight provably-secure authentication protocol called the NLHB protocol, which is a variant of the HB protocol. The HB protocol uses the complexity of decoding linear codes for security against passive attacks. In contrast, security for the NLHB protocol is proved by reducing passive attacks to the problem of decoding a class of non-linear codes\\footnote that are provably hard. We demonstrate that the existing passive attacks on the HB protocol family, which have contributed to considerable reduction in its effective key-size, are ineffective against the NLHB protocol. From the evidence, we conclude that smaller-key sizes are sufficient for the NLHB protocol to achieve the same level of passive attack security as the HB Protocol. Further, for this choice of parameters, we provide an implementation instance for the NLHB protocol for which the Prover/Verifier complexity is lower than the HB protocol, enabling authentication on very low-cost devices like RFID tags. Finally, in t...
Organic non-linear optics and opto-electronics
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Non-linear Dynamics of Speech in Schizophrenia
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan
Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and mode...... to the symptoms. Automated analysis of voice dynamics reveals potential for the assessment and monitoring of the disorder. Future work includes further validation of the approach, as well as more detailed investigation of the relation between speech patterns and other symptoms.......Background The speech of patients with schizophrenia is often described as monotonous, flat and without emotion. Distinctive speech patterns are qualitatively assessed in the diagnostic process and deeply impact the quality of everyday social interactions. In this project, we investigate and model...... speech patterns of people with schizophrenia contrasting them with matched controls and in relation to positive and negative symptoms. We employ both traditional measures (pitch mean and range, pause number and duration, speech rate, etc.) and 2) non-linear techniques measuring the temporal structure...
Non linear inversion of gravity gradients and the GGI gradiometer
Talwani, Manik
2011-12-01
All gradiometers currently operating for exploration in the field are based on Lockheed Martin's GGI gradiometer. The working of this gradiometer is described and a method for robust non linear inversion of gravity gradients is presented. The inversion method involves obtaining the gradient response of a trial body consisting of vertical rectangular prisms. The inversion adjusts the depth to the tops or bases of the prisms. In the trial model all the prisms are not required to have the same area of cross section or the same density (which can also be allowed to vary with depth). The depth to the tops and bottoms of each prism can also be different. This response is compared with the observed values of gradient and through an iterative procedure, the difference is minimized in a least square sense to arrive at a best fitting model by varying the position of the tops or bottoms of the prisms. Each gradient can be individually inverted or one or more gradients can be jointly inverted. The method is extended to invert gravity values individually or jointly with gradient values. The use of Differential Curvature, a quantity which is directly obtained by current gradiometers in use and which is an invariant under a rotation in the horizontal plane, is emphasized. Synthetic examples as well as a field example of inversion are given.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
The weakly non-linear density-velocity relation
Chodorowski, Michal J.; Lokas, Ewa L.
1997-05-01
We rigorously derive up to third order in perturbation theory the weakly non-linear relation between the cosmic density and velocity fields. The density field is described by the mass density contrast, delta. The velocity field is described by the variable theta proportional to the velocity divergence, theta=-f (Omega)^-1H ^-1_0∇. v, where f (Omega)~=Omega^0.6, Omega is the cosmological density parameter and H_0 is the Hubble constant. Our calculations show that mean delta given theta is a third-order polynomial in theta, --_theta=a _1theta+a_2(theta ^2-sigma^2_theta)+ a_3theta^3. This result constitutes an extension of the formula --_theta=theta+a _2(theta^2-sigma^2 _theta) found by Bernardeau which involved second-order perturbative solutions. Third-order perturbative corrections introduce the cubic term. They also, however, cause the coefficient a_1 to depart from unity, in contrast with the linear theory prediction. We compute the values of the coefficients a_p for scale-free power spectra, as well as for standard cold dark matter (CDM), for Gaussian smoothing. The coefficients obey a hierarchy a_3Ganon et al. The results provide a method for breaking the Omega-bias degeneracy in comparisons of cosmic density and velocity fields such as IRAS-potent.
Non-linear BFKL dynamics: color screening vs. gluon fusion
Fiore, R; Zoller, V R
2012-01-01
A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Non-linear controllers in ship tracking control system
Institute of Scientific and Technical Information of China (English)
LESZEK M
2005-01-01
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
Non-linear optical microscopy sheds light on cardiovascular disease.
Directory of Open Access Journals (Sweden)
Valentina Caorsi
Full Text Available Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE and Second Harmonic signal Generation (SHG. No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (B(SHG alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.
Non-linear image scanning microscopy (Conference Presentation)
Gregor, Ingo; Ros, Robert; Enderlein, Jörg
2017-02-01
Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.
Non Linear Force Free Field Modeling for a Pseudostreamer
Karna, Nishu; Savcheva, Antonia; Gibson, Sarah; Tassev, Svetlin V.
2017-08-01
In this study we present a magnetic configuration of a pseudostreamer observed on April 18, 2015 on southern west limb embedding a filament cavity. We constructed Non Linear Force Free Field (NLFFF) model using the flux rope insertion method. The NLFFF model produces the three-dimensional coronal magnetic field constrained by observed coronal structures and photospheric magnetogram. SDO/HMI magnetogram was used as an input for the model. The high spatial and temporal resolution of the SDO/AIA allows us to select best-fit models that match the observations. The MLSO/CoMP observations provide full-Sun observations of the magnetic field in the corona. The primary observables of CoMP are the four Stokes parameters (I, Q, U, V). In addition, we perform a topology analysis of the models in order to determine the location of quasi-separatrix layers (QSLs). QSLs are used as a proxy to determine where the strong electric current sheets can develop in the corona and also provide important information about the connectivity in complicated magnetic field configuration. We present the major properties of the 3D QSL and FLEDGE maps and the evolution of 3D coronal structures during the magnetofrictional process. We produce FORWARD-modeled observables from our NLFFF models and compare to a toy MHD FORWARD model and the observations.
Non-linear equation: energy conservation and impact parameter dependence
Kormilitzin, Andrey
2010-01-01
In this paper we address two questions: how energy conservation affects the solution to the non-linear equation, and how impact parameter dependence influences the inclusive production. Answering the first question we solve the modified BK equation which takes into account energy conservation. In spite of the fact that we used the simplified kernel, we believe that the main result of the paper: the small ($\\leq 40%$) suppression of the inclusive productiondue to energy conservation, reflects a general feature. This result leads us to believe that the small value of the nuclear modification factor is of a non-perturbative nature. In the solution a new scale appears $Q_{fr} = Q_s \\exp(-1/(2 \\bas))$ and the production of dipoles with the size larger than $2/Q_{fr}$ is suppressed. Therefore, we can expect that the typical temperature for hadron production is about $Q_{fr}$ ($ T \\approx Q_{fr}$). The simplified equation allows us to obtain a solution to Balitsky-Kovchegov equation taking into account the impact pa...
Non-linear model for compression tests on articular cartilage.
Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore
2015-07-01
Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
Are oil markets chaotic? A non-linear dynamic analysis
Energy Technology Data Exchange (ETDEWEB)
Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)
2000-10-01
The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.
Non-Linear Optical Microscopy Sheds Light on Cardiovascular Disease
Caorsi, Valentina; Toepfer, Christopher; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken; Ferenczi, Mike A.
2013-01-01
Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (BSHG) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression. PMID:23409139
Duality Theorems on Multi-objective Programming of Generalized Functions
Institute of Scientific and Technical Information of China (English)
Li-ping Pang; Wei Wang; Zun-quan Xia
2006-01-01
The form of a dual problem of Mond-Weir type for multi-objective programming problems of generalized functions is defined and theorems of the weak duality, direct duality and inverse duality are proven.
Khachatryan, Kh A.
2015-04-01
We study certain classes of non-linear Hammerstein integral equations on the semi-axis and the whole line. These classes of equations arise in the theory of radiative transfer in nuclear reactors, in the kinetic theory of gases, and for travelling waves in non-linear Richer competition systems. By combining special iteration methods with the methods of construction of invariant cone segments for the appropriate non-linear operator, we are able to prove constructive existence theorems for positive solutions in various function spaces. We give illustrative examples of equations satisfying all the hypotheses of our theorems.
Optimum sensitivity derivatives of objective functions in nonlinear programming
Barthelemy, J.-F. M.; Sobieszczanski-Sobieski, J.
1983-01-01
The feasibility of eliminating second derivatives from the input of optimum sensitivity analyses of optimization problems is demonstrated. This elimination restricts the sensitivity analysis to the first-order sensitivity derivatives of the objective function. It is also shown that when a complete first-order sensitivity analysis is performed, second-order sensitivity derivatives of the objective function are available at little additional cost. An expression is derived whose application to linear programming is presented.
Mapping and Visiting in Functional and Object-oriented Programming
DEFF Research Database (Denmark)
Nørmark, Kurt; Thomsen, Bent; Thomsen, Lone Leth
2008-01-01
Mapping and visiting represent different programming styles for traversals of collections of data. Mapping is rooted in the functional programming paradigm, and visiting is rooted in the object-oriented programming paradigm. This paper explores the similarities and differences between mapping...... and visiting, seen across the traditions in the two different programming paradigms. The paper is concluded with recommendations for mapping and visiting in programming languages that support both the functional and the object-oriented paradigms....
Tomlinson, Sean
2016-04-01
The calculation and comparison of physiological characteristics of thermoregulation has provided insight into patterns of ecology and evolution for over half a century. Thermoregulation has typically been explored using linear techniques; I explore the application of non-linear scaling to more accurately calculate and compare characteristics and thresholds of thermoregulation, including the basal metabolic rate (BMR), peak metabolic rate (PMR) and the lower (Tlc) and upper (Tuc) critical limits to the thermo-neutral zone (TNZ) for Australian rodents. An exponentially-modified logistic function accurately characterised the response of metabolic rate to ambient temperature, while evaporative water loss was accurately characterised by a Michaelis-Menten function. When these functions were used to resolve unique parameters for the nine species studied here, the estimates of BMR and TNZ were consistent with the previously published estimates. The approach resolved differences in rates of metabolism and water loss between subfamilies of Australian rodents that haven't been quantified before. I suggest that non-linear scaling is not only more effective than the established segmented linear techniques, but also is more objective. This approach may allow broader and more flexible comparison of characteristics of thermoregulation, but it needs testing with a broader array of taxa than those used here.
Non-linear response of soil carbon gas (CO2, CH4) flux to oxygen availability
Mcnicol, G.; Silver, W. L.
2013-12-01
Soil oxygen (O2) concentration can impact soil carbon (C) fluxes of carbon dioxide (CO2) and methane (CH4), and is an important chemical gradient across the terrestrial-aquatic interface that drives large differences in ecosystem C storage. Few studies have established quantitative relationships between gas-phase O2 concentration and soil C fluxes in controlled settings. Though standard Michaelis-Menten enzyme kinetics would predict a highly non-linear relationship between O2 concentration and microbial consumption, existing studies have imposed coarse changes in O2 concentration that necessarily prevent detection of non-linearity. We report on the results of laboratory incubations designed to explore the short-term sensitivity of soil C emissions to a wide range of gas-phase O2 concentrations. Organic-rich soil was collected from a drained peatland and subjected to seven O2 concentration treatments ranging from 0.03 % - 20 % O2. We compared the fit of the observed C flux response to O2 concentration to linear, log-linear, and Michaelis-Menten functions using MSE and residual fits as performance metrics. We found that both CO2 and CH4 emissions were highly sensitive to O2 concentration, with emission rates increasing and decreasing, respectively, at higher O2. Net CH4 emission rates were attenuated at higher O2 concentrations most likely due to stimulation of gross CH4 consumption. A log-linear or Michaelis-Menten model better fit data than a linear model by both performance metrics, demonstrating, empirically, a non-linear relationship between O2 concentration and soil CO2 and CH4 fluxes. Our results suggest high O2 sensitivity of C-rich soils at the terrestrial-aquatic interface and show that the microbial response to soil redox chemistry must be measured over a biophysically meaningful range of conditions to derive relationships that accurately predict soil C fluxes.
Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
2003-01-01
to estimate the probability of exceeding a critical event, defined by a so-called limit state function. The limit state function is obtained implicitly by non-linear FEM analysis from a realization of random material properties. As the latter can be modeled as random fields varying continuously over......, the gradient of the limit state function with respect to the random material variables is needed, or equivalently, the design sensitivities of the output to the FEM analysis with respect to the input. To this end, the Conditional Derivative Method (CDM) is used, which is a specialized Direct Differentiation...... the structure, a discretisation into random elements/variables is introduced. To this purpose, both the Midpoint (MP) and the Spatial Average (SA) approach are considered. The failure probability is obtained iteratively based on a first order Taylor series expansion of the limit state function. Thus...
Analysis of Guess and Determined Attack on Non Linear Modified SNOW 2.0 Using One LFSR
Directory of Open Access Journals (Sweden)
Madiha Waris
2011-08-01
Full Text Available stream ciphers encrypt the data bit by bit. In this research a new model of stream cipher SNOW 2.0 has been proposed i.e. Non linear modified SNOW 2.0 using one Linear Feedback Shift Register (LFSR with the embedding of non linear function in the model. The analysis of Guess and Determined (GD attack has been done to check its security with respect to previous versions. The proposed model contains one Linear Feedback Shift Register (LFSR along with the non linear function which increases the strength of the stream cipher, to make the static nature of modified SNOW 2.0 dynamic. The Experimental analysis show that such a mechanism has been built which provides more security than the previous version of modified SNOW 2.0 in which non linearity was either not introduced or it was introduced using two Linear Feedback Shift Registers (LFSRs. It is concluded that this version is more powerful with respect to the security of plain text against Guess and Determined attack (GD as compared to the previous versions.
Non-linear analysis of EEG and HRV signals during sleep.
Martin, Alejandro; Guerrero-Mora, Guillermina; Dorantes-Méndez, Guadalupe; Alba, Alfonso; Méndez, Martin O; Chouvarda, Ioanna
2015-01-01
The sleep phenomenon is a complex process that involves fluctuations of autonomic functions such as the blood pressure, temperature and brain function. These fluctuations change their properties through the different sleep stages with specific relations among the different systems. In order to understand the relation between the cardiovascular and central nervous system at the different sleep stages, we applied different non-linear methods to the energy of electroencephalographic signal (EEG) and the heart rate fluctuations. The EEG was divided in the Delta, Theta, Alpha and Beta frequency bands and the mean energy of these bands was computed at each heart rate interval. Thus, the non-linear relation was evaluated between the energy of the EEG bands and the heart rate fluctuations using Cross-Correlation, Cross-Sample Entropy and Recurrence Quantification Analysis in segments of 5 minutes grouped by sleep stage. The results showed that a relation exists between the changes of the energy in the Delta band and the Heart rate fluctuations.
[Cells in the system of multicelular organisms from positions of non-linear dynamics].
Kotolupov, V A; Isaeva, V V
2012-01-01
The organism physiological systems forming a hierarchic network with mutual dependence and subordination can be considered as systems with non-linear dynamics including positive and negative feedbacks. In the course of evolution there occurred selection of robust, flexible, modular systems capable for adaptive self-organization by non-linear interaction of components, which leads to formation of the ordered in space and time robust and plastic organization of the whole. Cells of multicellular organisms are capable for coordinated "social" behavior with formation of ordered cell assemblies, which provides a possibility of morphological and functional variability correlating with manifestations of the large spectrum of adaptive reactions. The multicellular organism is the multilevel system with hierarchy of numerous subsystems capable for adaptive self-organization; disturbance of their homeostasis can lead to pathological changes. The healthy organism regulates homeostasis, self-renewal, differentiation, and apoptosis of cells serving its parts and construction blocks by preserving its integrity and controlling behavior of cells. The systemic approach taking into account biological regularities of the appearance and development of functions in evolution of multicellular organisms opens new possibilities for diagnostics and treatment of many diseases.
Ghosez, Philippe
2006-03-01
The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.
Non-linear Dynamics in $QED_{3}$ and Non-trivial Infrared Structure
Mavromatos, Nikolaos E
1999-01-01
In this work we consider a coupled system of Schwinger-Dyson equations for self-energy and vertex functions in QED_3. Using the concept of a semi-amputated vertex function, we manage to decouple the vertex equation and transform it in the infrared into a non-linear differential equation of Emden-Fowler type. Its solution suggests the following picture: in the absence of infrared cut-offs there is only a trivial infrared fixed-point structure in the theory. However, the presence of masses, for either fermions or photons, changes the situation drastically, leading to a mass-dependent non-trivial infrared fixed point. In this picture a dynamical mass for the fermions is found to be generated consistently. The non-linearity of the equations gives rise to highly non-trivial constraints among the mass and effective (`running') gauge coupling, which impose lower and upper bounds on the latter for dynamical mass generation to occur. Possible implications of this to the theory of high-temperature superconductivity are...
Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins
Directory of Open Access Journals (Sweden)
Subramanian Ramasamy
2010-01-01
Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.
Non-Linear Dynamic Analysis of Inter-Word Time Intervals in Psychotic Speech.
Todder, Doron; Avissar, Sofia; Schreiber, Gabriel
2013-01-01
"Language is a form and not a substance" - Ferdinand de Saussure Objective: Analyses of speech processes in schizophrenia are invariably focused on words as vocal signals. The results of such analyses are, however, strongly related to content, and may be language- and culture-dependent. Little attention has been paid to a pure measure of the form of speech, unrelated to its content: inter-words time intervals. 15 patients with schizophrenia and 15 healthy volunteers are recorded spontaneously speaking for 10-15 min. Recordings are analyzed for inter-words time intervals using the following non-linear dynamical methods: unstable periodic orbits, correlation dimension, bi-spectral analysis, and symbolic dynamics. The series of inter-word time intervals in normal speech have the characteristics of a low-dimensional chaotic attractor with a correlation dimension of [Formula: see text]. Deconstruction of the attractor appears in psychosis with re-establishment after anti-psychotic treatment. Shannon entropy, a measure of the complexity in the time series, calculated from symbolic dynamics, is higher for psychotic speech, which is also characterized by higher levels of phase coupling: higher bicoherence, obtained using bi-spectral analysis. Non-linear dynamical methods applied to ITIs thus enable a content-independent, pure measure of the form of normal thought, its distortion in psychosis, and its restoration under treatment.
Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics
Energy Technology Data Exchange (ETDEWEB)
Ochoa, D A; Garcia, J E; Perez, R; Gomis, V; Albareda, A [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Rubio-Marcos, F; Fernandez, J F, E-mail: jose@fa.upc.ed [Department of Electroceramics, Instituto de Ceramica y Vidrio, CSIC, 28049 Madrid (Spain)
2009-01-21
Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O{sub 3} system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K{sub 0.44}Na{sub 0.52}Li{sub 0.04})(Nb{sub 0.86}Ta{sub 0.10}Sb{sub 0.04})O{sub 3} was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.
Teaching object-oriented programming on top of functional programming
DEFF Research Database (Denmark)
Kristensen, Jens Thyge; Hansen, Michael Reichhardt; Richel, Hans
2001-01-01
In the Informatics Programme at the Technical University of Denmark, the authors base the first course in object-oriented programming (using the Java language) on a preceding course in functional programming (using the SML language). The students may hence exploit concepts from functional program...
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Chien, Lung-Chang; Guo, Yuming; Li, Xiao; Yu, Hwa-Lung
2016-11-16
The distributed lag non-linear (DLNM) model has been frequently used in time series environmental health research. However, its functionality for assessing spatial heterogeneity is still restricted, especially in analyzing spatiotemporal data. This study proposed a solution to take a spatial function into account in the DLNM, and compared the influence with and without considering spatial heterogeneity in a case study. This research applied the DLNM to investigate non-linear lag effect up to 7 days in a case study about the spatiotemporal impact of fine particulate matter (PM2.5) on preschool children's acute respiratory infection in 41 districts of northern Taiwan during 2005 to 2007. We applied two spatiotemporal methods to impute missing air pollutant data, and included the Markov random fields to analyze district boundary data in the DLNM. When analyzing the original data without a spatial function, the overall PM2.5 effect accumulated from all lag-specific effects had a slight variation at smaller PM2.5 measurements, but eventually decreased to relative risk significantly analyzing spatiotemporal imputed data without a spatial function, the overall PM2.5 effect did not decrease but increased in monotone as PM2.5 increased over 20 μg/m(3). After adding a spatial function in the DLNM, spatiotemporal imputed data conducted similar results compared with the overall effect from the original data. Moreover, the spatial function showed a clear and uneven pattern in Taipei, revealing that preschool children living in 31 districts of Taipei were vulnerable to acute respiratory infection. Our findings suggest the necessity of including a spatial function in the DLNM to make a spatiotemporal analysis available and to conduct more reliable and explainable research. This study also revealed the analytical impact if spatial heterogeneity is ignored.Journal of Exposure Science and Environmental Epidemiology advance online publication, 16 November 2016; doi:10.1038/jes
Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.
Bardoscia, Marco; Caccioli, Fabio; Perotti, Juan Ignacio; Vivaldo, Gianna; Caldarelli, Guido
2016-01-01
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.
Non-linear critical taper model and determination of accretionary wedge strength
Yang, Che-Ming; Dong, Jia-Jyun; Hsieh, Yuan-Lung; Liu, Hsueh-Hua; Liu, Cheng-Lung
2016-12-01
The critical taper model has been widely used to evaluate the strength contrast between the wedge and the basal detachment of fold-and-thrust belts and accretionary wedges. However, determination of the strength parameters using the traditional critical taper model, which adopts the Mohr-Coulomb failure criterion, is difficult, if not impossible. In this study, we propose a modified critical taper model that incorporates the non-linear Hoek-Brown failure criterion. The parameters in the proposed critical Hoek-Brown wedge CHBW model can be directly evaluated via field investigations and laboratory tests. Meanwhile, the wedge strength is a function of the wedge thickness, which is oriented from stress non-linearity. The fold-and-thrust belt in western central Taiwan was used as an example to validate the proposed model. The determined wedge strength was 0.86 using a representative wedge thickness of 5.3 km; this was close to the inferred value of 0.6 from the critical taper. Interestingly, a concave topographic relief is predicted as a result of the wedge thickness dependency of the wedge strength, even if the wedge is composed of homogeneous materials and if the strength of the detachment is uniform. This study demonstrates that the influence of wedge strength on the critical taper angle can be quantified by the spatial distribution of strength variables and by the consideration of the wedge thickness dependency of wedge strength.
Exponents of non-linear clustering in scale-free one dimensional cosmological simulations
Benhaiem, David; Sicard, François
2012-01-01
One dimensional versions of cosmological N-body simulations have been shown to share many qualitative behaviours of the three dimensional problem. They can resolve a large range of time and length scales, and admit exact numerical integration. We use such models to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the 3D EdS model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two point correlation function. We study how the corresponding exponent \\gamma depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter \\kappa controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which \\gamma depends strongly on both n and \\kappa and where it agrees very well with a simple general...
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Directory of Open Access Journals (Sweden)
H. N. Desai
2015-06-01
Full Text Available Thin film of Zinc Selenide (ZnSe was deposited onto transparent glass substrate by thermal evaporation technique. ZnSe thin film was characterized by UV-Visible spectrophotometer within the wavelength range of 310 nm-1080 nm. The Linear optical parameters (linear optical absorption, extinction coefficient, refractive index and complex dielectric constant of ZnSe thin film were analyzed from absorption spectra. The optical band gap and Urbach energy were obtained by Tauc’s equation. The volume and surface energy loss function of ZnSe thin film were obtained by complex dielectric constant. The Dispersion parameters (dispersion energy, oscillation energy, moment of optical dispersion spectra, static dielectric constant and static refractive index were calculated using theoretical Wemple-DiDomenico model. The oscillation strength, oscillator wavelength, high frequency dielectric constant and high frequency refractive index were calculated by single Sellmeier oscillator model. Also, Lattice dielectric constant, N/m* and plasma resonance frequency were obtained. The electronic polarizibility of ZnSe thin film was estimated by Clausius-Mossotti local field polarizibility. The nonlinear optical parameters (non-linear susceptibility and non-linear refractive index were estimated.
A non-linear aeroelastic model for the study of flapping-wing flight
Larijani, Rambod Fayaz
A non-linear aeroelastic model for the study of flapping-wing flight is presented. This model has been developed to simulate the fully stalled and attached aerodynamic behaviour of a flapping wing and can account for any forcing function. An implicit unconditionally-stable time-marching method known as the Newmark method is used to accurately model the non-linear stalled and attached flow regimes. An iteration procedure is performed at each time step to eliminate any errors associated with the temporal discretization process. A finite element formulation is used to model the elastic behaviour of the wing which is composed of a leading edge composite spar and light-weight rigid ribs covered with fabric. A viscous damping model is used to simulate the structural damping of the wing. The Newmark code generates instantaneous lift and thrust values as well as torsional and bending moments along the wing span. Average lift values are in good agreement with experimental results obtained from tests performed on a scaled down model of the ornithopter at the NRC wind tunnel in Ottawa. Furthermore, bending and twisting moments obtained from strain gages embedded in the full-scale ornithopter's wing spar show that the predicted instantaneous moments are also quite accurate. Also, comparisons with experimental data show that the Newmark code can accurately predict the twisting behaviour of the wing for zero forward speed as well as cruise conditions.
Non-linear methods for inferring lidar metrics using SPOT-5 textural data
Shamsoddini, A.; Trinder, J. C.; Turner, R.
2013-10-01
Although many studies have demonstrated the utility of airborne lidar for forest inventory, the acquisition and processing of the data can be cost prohibitive for small areas. In such cases, it may be possible to emulate lidar metrics using more affordable optical data. This study explored processing methods for predicting lidar metrics using SPOT-5 textural data. Multiple-linear regression (MLR) was compared with non-linear machine learning techniques including multi-layer perceptron (MLP) artificial neural networks (ANN), rational basis function (RBF) ANN and regression tree (RT). For this purpose, 11 grey level co-occurrence matrix (GLCM) indices were calculated for bands, band ratios and principal components (PCs) of SPOT-5 multispectral image. SPOT-5 metrics were correlated with 25 lidar metrics collected over a Pinus radiata plantation. After dimensionality reduction, random forest feature selection was applied to select the most relevant SPOT-5 textural attributes for inferring each lidar metric. The results showed that the non-linear methods including MLP and RBF methods are more promising for modelling lidar metrics using SPOT-5 data than MLR and RT.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
A non-linear stochastic model for an office building with air infiltration
Directory of Open Access Journals (Sweden)
Anders Thavlov
2015-06-01
Full Text Available This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model parameters are estimated using a maximum-likelihood technique. Based on the maximum-likelihood value, the different models are statistically compared to each other using Wilk's likelihood ratio test. The model showing the best performance is finally verified in both the time domain and the frequency domain using the auto-correlation function and cumulated periodogram. The proposed model which includes air-infiltration shows a significant improvement compared to previously proposed linear models. The model has subsequently been used in applications for provision of power system services, e.g. by providing heat load reduction during peak load hours, control of indoor air temperature and for generating forecasts of power consumption from space heating.
Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems
Directory of Open Access Journals (Sweden)
J. Thomas
2016-09-01
Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Norman, M. R.
2013-12-01
Differential Transforms (DTs), a core component of so-called "automatic" or "algorithmic" differentiation, offer significant flexibility and efficiency to any numerical method. The i-th and j-th DT, U(i,j), of a function, u(x,y), is simply U(i,j)=1/(i!j!)*∂(i+j)u/∂xi∂yj. Being a term in the Taylor series of u(x,y) makes the reverse transform trivial. This relation also computes initial DTs from known spatial derivatives. What is novel about DTs is how they simplify a complex PDE system, transforming most arithmetic, trigonometric, and other operators into simple recurrence relations in derivative space. This allows one to simply and quickly compute analytical derivatives of highly complex and non-linear functions. Consider a pseudo-conservation law system, u(x)t+f(u,x)x=s(u,x), for instance. The fluxes and source terms could be (and often are) highly complex, non-linear functions of the state vector and independent variables. Regardless of the spatial discretization (variational / finite-element, weak / finite-volume, or strong / finite-difference), one nearly always must resort to tensored quadrature to evaluate face fluxes and body source terms, and this treatment is expensive. However, if one uses DTs to analytically compute spatial derivatives of the flux and source terms, given spatial derivatives of u, then the fluxes and source terms are directly expanded as polynomials, allowing for significantly cheaper, quadrature-free integration, sampling, and differentiation with a single dot product. Besides being simpler, this also allows flexibility for Galerkin methods in particular to analytically and cheaply compute body integrals, which are often approximated inexactly with quadrature. Computing Nth-order DTs in D dimensions is of O(D2*N) complexity, and whether for transport or non-linear compressible Euler equations, they are cheaper to compute and integrate analytically than quadrature. Further, because time-dependent PDE systems relate spatial
Lazo, Edmundo; Garrido, Alejandro; Neira, Félix
2016-11-01
This study investigates the localization properties of dual electric transmission lines with non-linear capacitances. The VC,n voltage across each capacitor is selected as a non-linear function of the electric charge qn, i.e., VC,n = qn(1/Cn -ɛn|qn|2) where Cn is the linear part of the capacitance and ɛn the amplitude of the non-linear term. We follow a binary distribution of values of ɛn, according to the Thue-Morse m-tupling sequence. The localization behavior of this non-linear case indicates that the case m = 2 does not belong to the m ≥ 3, family because when m changes from m = 2 to m = 3, the number of extended states diminishes dramatically. This proves the topological difference of the m = 2 and m = 3 families. However, by increasing m values, localization behavior of the m-tupling family resembles that of the m = 2, case because the system begins to regain its extended states. The exact same result was obtained recently in the study of linear direct transmission lines with m-tupling distribution of inductances. Consequently, we state that the localization behavior of the m-tupling family as a function of the m value is independent of both the linear and the non-linear system under study, but independent of the kind of transmission line (dual or direct). This is curious behavior of the m-tupling family and thus deserves more scholarly attention.
Function, goals and intention: children's teleological reasoning about objects.
Kelemen
1999-12-01
A fundamental aspect of adult thought is the 'teleological' tendency to assume that objects exist for a purpose. When seeing an unfamiliar artifact or strange anatomical part on an animal, the first question an adult will usually ask is 'what's that for?' - a query that assumes that the object can be teleologically explained in terms of its function. Current debate focuses on the origin and scope of teleological thought, and its role in children's emerging theories of the biological world. The bias to view objects as 'designed for a purpose' probably derives from children's privileged understanding of intentional behavior and artifacts. This makes children prone to a 'promiscuous teleology' in which artifacts and natural objects of all types are viewed as existing for a function. Because of this, I argue that we should be cautious about taking the existence of an early teleological bias as evidence that there is biological understanding that exists independently of a psychological construal of living things.
Classical methods for interpreting objective function minimization as intelligent inference
Energy Technology Data Exchange (ETDEWEB)
Golden, R.M. [Univ. of Texas, Dallas, TX (United States)
1996-12-31
Most recognition algorithms and neural networks can be formally viewed as seeking a minimum value of an appropriate objective function during either classification or learning phases. The goal of this paper is to argue that in order to show a recognition algorithm is making intelligent inferences, it is not sufficient to show that the recognition algorithm is computing (or trying to compute) the global minimum of some objective function. One must explicitly define a {open_quotes}relational system{close_quotes} for the recognition algorithm or neural network which identifies the: (i) sample space, (ii) the relevant sigmafield of events generated by the sample space, and (iii) the {open_quotes}relation{close_quotes} for that relational system. Only when such a {open_quotes}relational system{close_quotes} is properly defined, is it possible to formally establish the sense in which computing the global minimum of an objective function is an intelligent, inference.
Neurocognitive insight and objective cognitive functioning in schizophrenia.
Burton, Cynthia Z; Harvey, Philip D; Patterson, Thomas L; Twamley, Elizabeth W
2016-03-01
Neurocognitive impairment is a core component of schizophrenia affecting everyday functioning; the extent to which individuals with schizophrenia show awareness of neurocognitive impairment (neurocognitive insight) is unclear. This study investigated neurocognitive insight and examined the cross-sectional relationships between neurocognitive insight and objective neurocognition and functional capacity performance in a large outpatient sample. 214 participants with schizophrenia-spectrum disorders completed measures of neurocognition, functional capacity, and self-reported neurocognitive problems. Latent profile analysis classified participants with regard to neuropsychological performance and self-report of neurocognitive problems. The resulting classes were then compared on executive functioning performance, functional capacity performance, and psychiatric symptom severity. More than three quarters of the sample demonstrated objective neurocognitive impairment (global deficit score≥0.50). Among the participants with neurocognitive impairment, 54% were classified as having "impaired" neurocognitive insight (i.e., reporting few neurocognitive problems despite having objective neurocognitive impairment). Participants with impaired vs. intact neurocognitive insight did not differ on executive functioning measures or measures of functional capacity or negative symptom severity, but those with intact neurocognitive insight reported higher levels of positive and depressive symptoms. A substantial portion of individuals with schizophrenia and objectively measured neurocognitive dysfunction appear unaware of their deficits. Patient self-report of neurocognitive problems, therefore, is not likely to reliably assess neurocognition. Difficulty self-identifying neurocognitive impairment appears to be unrelated to executive functioning, negative symptoms, and functional capacity. For those with intact neurocognitive insight, improving depressive and psychotic symptoms may be
From tomography to FWI with a single objective function
Alkhalifah, Tariq Ali
2013-06-10
Reflections in our seismic data induce serious nonlinear behavior in the objective function of full waveform inversion (FWI). Thus, without a good initial velocity model, that can produce the reflections within a cycle of the frequency used in the inversion, convergence to the solution becomes hard. Such velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, that are not guaranteed to adhere to the FWI requirements. As such, we promote an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase based attribute of the wavefield, along with its phase unwrapping features, provide a frequency dependent traveltime function. With strong damping of the of the synthetic, potentially low frequency, data, this attribute admits first arrival traveltime that could be compared with picked ones from the observed data, like in wave equation tomography. As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped in an FWI type inversion. It, thus, provides a single objective function and a natural transition from traveltime tomography to full waveform inversion. A Marmousi example demonstrates the effectiveness of the approach.
Leyva, J. Francisco; Málaga, Carlos; Plaza, Ramón G.
2013-11-01
This paper studies a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (1997) [5] and it includes a suitable nutrient chemotactic term compatible with such type of diffusion, as suggested by Ben-Jacob et al. (2000) [20]. An asymptotic estimation predicts the growth velocity of the colony envelope as a function of both the nutrient concentration and the chemotactic sensitivity. It is shown that the growth velocity is an increasing function of the chemotactic sensitivity. High resolution numerical simulations using Graphic Processing Units (GPUs), which include noise in the diffusion coefficient for the bacteria, are presented. The numerical results verify that the chemotactic term enhances the velocity of propagation of the colony envelope. In addition, the chemotaxis seems to stabilize the formation of branches in the soft-agar, low-nutrient regime.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-01
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.
Non-linearity parameter / of binary liquid mixtures at elevated pressures
Indian Academy of Sciences (India)
J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma
2000-09-01
When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.
Zhang, Tian-Ping; Zhu, Qing; Yang, Yue-Quan
2012-04-01
In this article, two robust adaptive control schemes are investigated for a class of completely non-affine pure-feedback non-linear systems with input non-linearity and perturbed uncertainties using radial basis function neural networks (RBFNNs). Based on the dynamic surface control (DSC) technique and using the quadratic Lyapunov function, the explosion of complexity in the traditional backstepping design is avoided when the gain signs are known. In addition, the unknown virtual gain signs are dealt with using the Nussbaum functions. Using the mean value theorem and Young's inequality, only one learning parameter needs to be tuned online at each step of recursion. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness (SGUUB) of all signals in the closed-loop system. Simulation results verify the effectiveness of the proposed approach.
Parappagoudar, Mahesh B.; Pratihar, Dilip K.; Datta, Gouranga L.
2008-08-01
A cement-bonded moulding sand system takes a fairly long time to attain the required strength. Hence, the moulds prepared with cement as a bonding material will have to wait a long time for the metal to be poured. In this work, an accelerator was used to accelerate the process of developing the bonding strength. Regression analysis was carried out on the experimental data collected as per statistical design of experiments (DOE) to establish input-output relationships of the process. The experiments were conducted to measure compression strength and hardness (output parameters) by varying the input variables, namely amount of cement, amount of accelerator, water in the form of cement-to-water ratio, and testing time. A two-level full-factorial design was used for linear regression model, whereas a three-level central composite design (CCD) had been utilized to develop non-linear regression model. Surface plots and main effects plots were used to study the effects of amount of cement, amount of accelerator, water and testing time on compression strength, and mould hardness. It was observed from both the linear as well as non-linear models that amount of cement, accelerator, and testing time have some positive contributions, whereas cement-to-water ratio has negative contribution to both the above responses. Compression strength was found to have linear relationship with the amount of cement and accelerator, and non-linear relationship with the remaining process parameters. Mould hardness was seen to vary linearly with testing time and non-linearly with the other parameters. Analysis of variance (ANOVA) was performed to test statistical adequacy of the models. Twenty random test cases were considered to test and compare their performances. Non-linear regression models were found to perform better than the linear models for both the responses. An attempt was also made to express compression strength of the moulding sand system as a function of mould hardness.
Comparing non-linear mathematical models to describe growth of different animals
Directory of Open Access Journals (Sweden)
Jhony Tiago Teleken
2017-02-01
Full Text Available The main objective of this study was to compare the goodness of fit of five non-linear growth models, i.e. Brody, Gompertz, Logistic, Richards and von Bertalanffy in different animals. It also aimed to evaluate the influence of the shape parameter on the growth curve. To accomplish this task, published growth data of 14 different groups of animals were used and four goodness of fit statistics were adopted: coefficient of determination (R2, root mean square error (RMSE, Akaike information criterion (AIC and Bayesian information criterion (BIC. In general, the Richards growth equation provided better fits to experimental data than the other models. However, for some animals, different models exhibited better performance. It was obtained a possible interpretation for the shape parameter, in such a way that can provide useful insights to predict animal growth behavior.
Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.
Mo, Qi; Yeh, Hengchin; Manocha, Dinesh
2016-11-01
The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.
Exploiting Non-Linear Structure in Astronomical Data for Improved Statistical Inference
Lee, Ann B
2011-01-01
Many estimation problems in astrophysics are highly complex, with high-dimensional, non-standard data objects (e.g., images, spectra, entire distributions, etc.) that are not amenable to formal statistical analysis. To utilize such data and make accurate inferences, it is crucial to transform the data into a simpler, reduced form. Spectral kernel methods are non-linear data transformation methods that efficiently reveal the underlying geometry of observable data. Here we focus on one particular technique: diffusion maps or more generally spectral connectivity analysis (SCA). We give examples of applications in astronomy; e.g., photometric redshift estimation, prototype selection for estimation of star formation history, and supernova light curve classification. We outline some computational and statistical challenges that remain, and we discuss some promising future directions for astronomy and data mining.
Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2006-01-01
is tested experimentally using the RASMUS ultrasound system with a 7 MHz linear array transducer. Synthetic transmit aperture ultrasound imaging is applied to acquire data. The proposed design method was compared to a linear FM signal. Due to more efficient spectral usage, a gain in SNR of 4.3plusmn1.2 d......In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized...... in the transducer can be decreased. Secondly, by choosing an appropriate amplitude spectrum, no additional temporal tapering has to be applied to the matched filter to achieve sufficient range sidelobe suppression. Proper design results in waveforms with a range sidelobe level beyond -80 dB. The design method...
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe
Directory of Open Access Journals (Sweden)
M. Vrac
2007-12-01
Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.
To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.
Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of
phthalocyanine Positional Isomers for Non-linear O
African Journals Online (AJOL)
theoretical data obtained from density functional theory (DFT) and time dependent density functional theory .... Gaussian transverse mode at 532 nm, utilizing a repetition rate of ..... have the same molecular weight, this difference can then be.
A non-linear iterative method for multi-layer DOT sub-surface imaging system.
Hou, Hsiang-Wen; Wu, Shih-Yang; Sun, Hao-Jan; Fang, Wai-Chi
2014-01-01
Diffuse Optical Tomography (DOT) has become an emerging non-invasive technology, and has been widely used in clinical diagnosis. Functional near-infrared (FNIR) is one of the important applications of DOT. However, FNIR is used to reconstruct two-dimensional (2D) images for the sake of good spatial and temporal resolution. In this paper we propose a multiple-input and multiple-output (MIMO) based data extraction algorithm method in order to increase the spatial and temporal resolution. The non-linear iterative method is used to reconstruct better resolution images layer by layer. In terms of theory, the simulation results and original images are nearly identical. The proposed reconstruction method performs good spatial resolution, and has a depth resolutions capacity of three layers.
Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity
Directory of Open Access Journals (Sweden)
Li Wei-Jie
2014-01-01
Full Text Available Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented results indicate, the thermochemical ablation rate of a solid rocket nozzle calculated by using actual thermal conductivity, which is a function of temperature, is higher than that by a constant thermal conductivity, so the effect of thermal conductivity on the ablation rate of a solid rocket nozzle made of carbon/carbon composites cannot be neglected.
DEFF Research Database (Denmark)
Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan
This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set of ...... Carlo experiment. We find that estimation of the parameters in the transition function can be problematic but that there may be significant benefits in terms of forecast performance....... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...
Variational principle and a perturbative solution of non-linear string equations in curved space
Roshchupkin, S N
1999-01-01
String dynamics in a curved space-time is studied on the basis of an action functional including a small parameter of rescaled tension constant. A rescaled slow worldsheet time $T=\\epsilon\\tau$ is introduced, and general covariant non-linear string equation are derived. It is shown that in the first order of an $\\epsilon $-expansion these equations are reduced to the known equation for geodesic derivation but complemented by a string oscillatory term. These equations are solved for the de Sitter and Friedmann -Robertson-Walker spaces. The primary string constraints are found to be split into a chain of perturbative constraints and their conservation and consistency are proved. It is established that in the proposed realization of the perturbative approach the string dynamics in the de Sitter space is stable for a large Hubble constant $H
The velocity shear and vorticity across redshifts and non-linear scales
Libeskind, Noam I; Gottlöber, Stefan
2013-01-01
The evolution of the large scale distribution of matter in the universe is often characterized by the density field. Here we take a complimentary approach and characterize it using the cosmic velocity field, specifically the deformation of the velocity field. The deformation tensor is decomposed into its symmetric component (known as the "shear tensor") and its anti-symmetric part (the "vorticity"). Using a high resolution cosmological simulation we examine the relative orientations of the shear and the vorticity as a function of spatial scale and redshift. The shear is found to be remarkable stable to the choice of scale, while the vorticity is found to quickly decay with increasing spatial scale or redshift. The vorticity emerges out of the linear regime randomly oriented with respect to the shear eigenvectors. Non-linear evolution drives the vorticity to lie within the plane defined by the eigenvector of the fastest collapse. Within that plane the vorticity first gets aligned with the middle eigenvector an...
Yokoyama, Kazuto; Takahashi, Masaki
2015-02-01
A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
Automatic processing of unattended object features by functional connectivity
Directory of Open Access Journals (Sweden)
Katja Martina Mayer
2013-05-01
Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.
A Master Equation for Multi-Dimensional Non-Linear Field Theories
Park, Q H
1992-01-01
A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.
Non-linearly weighted fuzzy correlation for color-image retrieval
Institute of Scientific and Technical Information of China (English)
Guoguang Mu(母国光); Hongchen Zhai(翟宏琛); Siyuan Zhang(张思远)
2003-01-01
An algorithm with non-linear weight factors in the summation process for fuzzy correlation of color his-tograms is presented, in which non-linear weights are assigned to some characteristic colors of interest.Experimental results show that this can improve the retrieval of color images with partial aberrations orwith local color characters.
Measurements of dynamical response of non-linear systems. How hard can it be?
DEFF Research Database (Denmark)
Darula, Radoslav
2015-01-01
Measurements of a dynamical response of linear system are widely used in praxis, they are standardized and well known. On the other hand, for the non-linear systems the principle of superposition can’t be applied and also the non-linear systems can excite the harmonics or undergo jump phenomena...
Robust Non-Linear Control of a 400 kW Wind Turbine
DEFF Research Database (Denmark)
Tøffner-Clausen, S.; Andersen, Palle; Knudsen, Torben
1996-01-01
The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine.......The purpose of this paper is to describe a robust non-linear control design for a variable pitch constant speed 400 kW horisontal axis wind turbine....
Hippotherapy acute impact on heart rate variability non-linear dynamics in neurological disorders.
Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; Trimer, Vitor; Ricci, Paula Angélica; Italiano Monteiro, Clara; Camargo Magalhães Maniglia, Marcela; Silva Pereira, Ana Maria; Rodrigues das Chagas, Gustavo; Carvalho, Eliane Maria
2016-05-15
Neurological disorders are associated with autonomic dysfunction. Hippotherapy (HT) is a therapy treatment strategy that utilizes a horse in an interdisciplinary approach for the physical and mental rehabilitation of people with physical, mental and/or psychological disabilities. However, no studies have been carried out which evaluated the effects of HT on the autonomic control in these patients. Therefore, the objective of the present study was to investigate the effects of a single HT session on cardiovascular autonomic control by time domain and non-linear analysis of heart rate variability (HRV). The HRV signal was recorded continuously in twelve children affected by neurological disorders during a HT session, consisting in a 10-minute sitting position rest (P1), a 15-minute preparatory phase sitting on the horse (P2), a 15-minute HT session (P3) and a final 10-minute sitting position recovery (P4). Time domain and non-linear HRV indices, including Sample Entropy (SampEn), Lempel-Ziv Complexity (LZC) and Detrended Fluctuation Analysis (DFA), were calculated for each treatment phase. We observed that SampEn increased during P3 (SampEn=0.56±0.10) with respect to P1 (SampEn=0.40±0.14, p<0.05), while DFA decreased during P3 (DFA=1.10±0.10) with respect to P1 (DFA=1.26±0.14, p<0.05). A significant SDRR increase (p<0.05) was observed during the recovery period P4 (SDRR=50±30ms) with respect to the HT session period P3 (SDRR=30±10ms). Our results suggest that HT might benefit children with disabilities attributable to neurological disorders by eliciting an acute autonomic response during the therapy and during the recovery period.
Addressing the unemployment-mortality conundrum: non-linearity is the answer.
Bonamore, Giorgio; Carmignani, Fabrizio; Colombo, Emilio
2015-02-01
The effect of unemployment on mortality is the object of a lively literature. However, this literature is characterized by sharply conflicting results. We revisit this issue and suggest that the relationship might be non-linear. We use data for 265 territorial units (regions) within 23 European countries over the period 2000-2012 to estimate a multivariate regression of mortality. The estimating equation allows for a quadratic relationship between unemployment and mortality. We control for various other determinants of mortality at regional and national level and we include region-specific and time-specific fixed effects. The model is also extended to account for the dynamic adjustment of mortality and possible lagged effects of unemployment. We find that the relationship between mortality and unemployment is U shaped. In the benchmark regression, when the unemployment rate is low, at 3%, an increase by one percentage point decreases average mortality by 0.7%. As unemployment increases, the effect decays: when the unemployment rate is 8% (sample average) a further increase by one percentage point decreases average mortality by 0.4%. The effect changes sign, turning from negative to positive, when unemployment is around 17%. When the unemployment rate is 25%, a further increase by one percentage point raises average mortality by 0.4%. Results hold for different causes of death and across different specifications of the estimating equation. We argue that the non-linearity arises because the level of unemployment affects the psychological and behavioural response of individuals to worsening economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A non-Linear transport model for determining shale rock characteristics
Ali, Iftikhar; Malik, Nadeem
2016-04-01
Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007
Directory of Open Access Journals (Sweden)
Refat Aljumily
2015-09-01
Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed
Objective function of cost in optimal tolerance allocation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An objective function model is proposed for cost in optimizing and allocating tolerance with consideration of manufacturing conditions. With the fuzzy comprehensive evaluation method, a manufacturing difficulty coefficient is derived, which takes into account of several factors affecting the manufacturing cost, including the forming means of the blank, size, machining surface features, operator's skills and machinability of materials.The coefficient is then converted into a weight factor used in the inversed square model representing the relationship between the cost and tolerance, and, hence, an objective function for cost is established in optimizing and allocating tolerance. The higher is the manufacturing difficulty coefficient, the higher is the relative manufacturing cost and the higher is the weight factor of the tolerance allocation, which indicates the increase of the tolerance's effects on the total manufacturing cost and, therefore, a larger tolerance should be allocated. The computer-aided tolerance allocation utilizing this model makes it more convenient, accurate and practicable.
Objective function for municipal heat supply systems’ structural optimization
Directory of Open Access Journals (Sweden)
Sergiy V. Babich
2015-03-01
Full Text Available Modern heat supply systems in urban areas have the potential to heat supply cost reduction when using various alternative thermal energy sources. Availability of possible alternatives allows to select the source that generates a cheaper heat. At that arises the question of expressing such different sources’ characteristics as capital cost, reliability and efficiency in the consistent measurement units. This paper proposes an objective function representing all the factors affecting the thermal energy final cost in monetary units. It is shown that depending on external factors the range of prime cost for heat from various sources does vary considerably. Expected is that the proposed objective function application for managing the heat supply systems structure in urban areas will significantly reduce the operating costs.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Travelling and standing envelope solitons in discrete non-linear cyclic structures
Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph
2016-12-01
Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.
A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES
Directory of Open Access Journals (Sweden)
Turgay ÇOŞGUN
2003-02-01
Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.
Wilkie, S
2000-01-01
In recent years, novel non-linear organic materials have generated great interest in the development of all-optical non-linear devices. Such materials have been optically characterised, mainly for the purposes of second harmonic generation and electro-optic modulation, within the Chemistry department of Strathclyde University since the mid-1980's. This thesis documents the continued development and enhancement of this core research speciality in the growth, preparation and optical characterisation of two such novel organic non-linear materials, namely NMU and MBANP. A literature search that reviewed the linear and non-linear optical properties of a select number of novel organic non-linear materials was conducted. All too often sample crystal quality was not detailed and hence the quality of crystals upon which the material characterisation was based remained unknown. Surprisingly, the availability of reliable, accurate data was found to be scarce. The optical investigation of NMU represented the first ever e...
Water environmental planning considering the influence of non-linear characteristics
Institute of Scientific and Technical Information of China (English)
ZENG Guang-ming; QIN Xiao-sheng; WANG Wei; HUANG Guo-he; LI Jian-bing; B. Statzner
2003-01-01
In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods.
Methods for accurate analysis of galaxy clustering on non-linear scales
Vakili, Mohammadjavad
2017-01-01
Measurements of galaxy clustering with the low-redshift galaxy surveys provide sensitive probe of cosmology and growth of structure. Parameter inference with galaxy clustering relies on computation of likelihood functions which requires estimation of the covariance matrix of the observables used in our analyses. Therefore, accurate estimation of the covariance matrices serves as one of the key ingredients in precise cosmological parameter inference. This requires generation of a large number of independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast method based on low-resolution N-body simulations and approximate galaxy biasing technique for generating mock catalogs. Using a reference catalog that was created using the high resolution Big-MultiDark N-body simulation, we show that our method is able to produce catalogs that describe galaxy clustering at a percentage-level accuracy down to highly non-linear scales in both real-space and redshift-space.In most large-scale structure analyses, modeling of galaxy bias on non-linear scales is performed assuming a halo model. Clustering of dark matter halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies assume that halo mass alone is sufficient in characterizing the connection between galaxies and halos. However, modeling of galaxy bias can face systematic effects if the number of galaxies are correlated with other halo properties. Using the Small MultiDark-Planck high resolution N-body simulation and the clustering measurements of Sloan Digital Sky Survey DR7 main galaxy sample, we investigate the extent to which the dependence of galaxy bias on halo concentration can improve our modeling of galaxy clustering.
Ben Ahmed, A; Feki, H; Abid, Y; Boughzala, H; Minot, C
2010-01-01
This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2(1)2(1)2(1) of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm(-1)]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole mu, the polarizability alpha and the hyperpolarizability beta were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero beta value revealing microscopic second-order NLO behavior. Copyright 2009 Elsevier B.V. All rights reserved.
Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.
2010-01-01
This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2 12 12 1 of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm -1]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero β value revealing microscopic second-order NLO behavior.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn [Department of Mechanics, Tianjin University, 300072, Tianjin (China); Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin (China); Zhang, W. D., E-mail: zhangwenditju@126.com; Xu, J., E-mail: xujia-ld@163.com [Department of Mechanics, Tianjin University, 300072, Tianjin (China)
2014-03-15
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.
THE ROLE OF OBJECTIVE FUNCTION IN ENGINEERING DESING
Directory of Open Access Journals (Sweden)
Robert Ulewicz
2010-12-01
Full Text Available The process of material choice is a key element in the production of machines, devices and other engineering constructions. Engineering design relates to the design of engineered artifacts formed by materials of various types. Materials play an important role during the entire design process. At the early design stage, materials may achieve some of the required functions. Therefore, designers may need to identify materials with specific functionalities in order to find feasible design concepts including the costs of material and technology. In this paper, an overview of research in materials identification and materials selection is introduced. The objective function was used in the material selection. The assumed demands in industrial practice were verified by means of criteria patterns.
Non-linear vacuum polarization in strong fields
Energy Technology Data Exchange (ETDEWEB)
Gyulassy, M.
1981-07-01
The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.
The functional neuroanatomy of object agnosia: a case study.
Konen, Christina S; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine
2011-07-14
Cortical reorganization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related, and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.
A Review of Cell Formation from Perspective of Objective Function
Institute of Scientific and Technical Information of China (English)
WANG Xiaoqing; TANG Jiafu
2006-01-01
The initial and significant step in the design of a cellular manufacturing system is cell formation (CF). CF problem is proposed in this paper as a decision problem that determines to manufacture specified types of part in a manufacturing plant which machines and their associated parts are grouped together to form cell in a way that a concerned objective is optimized. For describing CF problem clearly, this paper firstly presents a review of cell formation problem from the view points of objective function. The CF problems are classified into three categories, which are cost oriented, flexibility oriented and grouping efficiency oriented CF problems. Then, the paper presents a comprehensive conceptual mathematical formulation describing the general cost problem and a decision variable for comprehensive describing routing flexibility and two trade-off questions in grouping efficiency issues. Finally, based on the review and discussion, the paper proposes five directions for future research in the CF field.
Chaos and non-linear phenomena in renal vascular control
DEFF Research Database (Denmark)
Yip, K P; Holstein-Rathlou, N H
1996-01-01
Renal autoregulation of blood flow depends on the functions of the tubuloglomerular feedback (TGF) system and the myogenic response of the afferent arteriole. Studies of the dynamic aspects of these control mechanisms at the level of both the single nephron and the whole kidney have revealed a va...
Developing a (Non-Linear) Practice of Design Thinking
Teal, Randall
2010-01-01
Design thinking can be a powerful way to engage the world, allowing interactive understandings that are both analytic and experiential. When fully functioning, design thinking necessarily calls upon faculties often considered a-rational, a-causal and a-logical. Unfortunately, such faculties often give rise to academic suspicion. That is to say,…
Developing a (Non-Linear) Practice of Design Thinking
Teal, Randall
2010-01-01
Design thinking can be a powerful way to engage the world, allowing interactive understandings that are both analytic and experiential. When fully functioning, design thinking necessarily calls upon faculties often considered a-rational, a-causal and a-logical. Unfortunately, such faculties often give rise to academic suspicion. That is to say,…
Energy Technology Data Exchange (ETDEWEB)
Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)
2013-07-01
Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)
Royston, T. J.; Singh, R.
1996-07-01
While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.
IMAGE RESTORATION: DESIGN OF NON-LINEAR FILTER (LR
Directory of Open Access Journals (Sweden)
Shenbagarajan Anantharajan
2012-11-01
Full Text Available In this proposed method, various types of noise models are subjected to an image and apply the nonlinear filter to reconstruct the original image from degraded image. Image restoration is a technique to attempt of reconstructs the original image by using a degraded phenomenon. In this paper the Lucy-Richardson filter is reconstruct the degraded image which closely resembles the original image. This paper deals with the various noise models and nonlinear filter. Objective of this paper is to study the various noise models and restoration filters in depth at restoration area.
Rigid Coumarins: a Complete DFT, TD-DFT and Non Linear Optical Property Study.
Lanke, Sandip K; Sekar, Nagaiyan
2015-09-01
The electronic structures and photophysical properties of rigid coumarin dyes have been studied by using quantum chemical methods. The ground-state geometries of these dyes were optimized using the Density Functional Theory (DFT) methods. The lowest singlet excited state was optimized using Time -Dependent Density Functional Theory [TD-B3LYP/6-31G(d)]. On the basis of ground- and excited-state geometries, the absorption and emission spectra have been calculated using the DFT and TD-DFT method. All the calculations were carried out in gas phase and in acetonitrile medium. The results show that the absorption maxima and fluorescence emission maxima calculated using the Time-Dependent Density Functional Theory is in good agreement with the available experimental results. To understand the Non- Linear Optical properties of coumarin dyes we computed dipole moment (μ), electronic polarizability (α), mean first hyperpolarizability (βo) and second hyperpolarizability (γ) using B3LYP density functional theory method in conjunction with 6-31G(d) basis set.
Fuzzy neural order robust of the non-linear systems
Madour, F.; Benmahammed, K.
2008-06-01
This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one [1], the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.
Energy Technology Data Exchange (ETDEWEB)
Weeratunga, S K; Kamath, C
2001-12-20
Removing noise from data is often the first step in data analysis. Denoising techniques should not only reduce the noise, but do so without blurring or changing the location of the edges. Many approaches have been proposed to accomplish this; in this paper, they focus on one such approach, namely the use of non-linear diffusion operators. This approach has been studied extensively from a theoretical viewpoint ever since the 1987 work of Perona and Malik showed that non-linear filters outperformed the more traditional linear Canny edge detector. They complement this theoretical work by investigating the performance of several isotropic diffusion operators on test images from scientific domains. They explore the effects of various parameters such as the choice of diffusivity function, explicit and implicit methods for the discretization of the PDE, and approaches for the spatial discretization of the non-linear operator etc. They also compare these schemes with simple spatial filters and the more complex wavelet-based shrinkage techniques. The empirical results show that, with an appropriate choice of parameters, diffusion-based schemes can be as effective as competitive techniques.
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2016-08-15
This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.
Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials
Directory of Open Access Journals (Sweden)
Wu Guo-Cheng
2017-01-01
Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.
Non-linear excitation of quantum emitters in two-dimensional hexagonal boron nitride
Schell, Andreas W; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor
2016-01-01
Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Estrada, R.F.
1979-08-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...
Solving non-linear Horn clauses using a linear Horn clause solver
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre
2016-01-01
In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...
SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES
Directory of Open Access Journals (Sweden)
S. V. Bosakov
2008-01-01
Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems.
Grey Box Non-Linearities Modeling and Characterization of a BandPass BAW Filter
Directory of Open Access Journals (Sweden)
M. Mabrouk
2016-06-01
Full Text Available In this work, the non-linearities of a 3G/UMTS geared BandPass Bulk Acoustic Wave ladder filter composed of five resonators were modeled using non-linear modified Butterworth-Van Dyke model. The non-linear characteristics were measured and simulated, and they were compared and found to be fairly identical. The filter's central frequency is 2.12 GHz, the corresponding bandwidth is 61.55 MHz, and the quality factor is 34.55.
Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle
Directory of Open Access Journals (Sweden)
Thor Inge Fossen
1988-10-01
Full Text Available A non-linear self-tuning algorithm is demonstrated for an autonomous underwater vehicle. Tighter control is achieved by a non-linear parameter identification algorithm which reduces the parameter uncertainty bounds. Expensive hydrodynamic tests for parameter determination can thus be avoided. Excellent tracking performance and robustness to parameter uncertainty are guaranteed through a robust control strategy based on the estimated parameters. The nonlinear control law is highly robust for imprecise models and the neglected dynamics. The non-linear self-tuning control strategy is simulated for the horizontal positioning of an underwater vehicle.
H∞ Synthesis Method for Control of Non-linear Flexible Joint Models
Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael
2014-01-01
An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...
Directory of Open Access Journals (Sweden)
Sharad Shandilya
Full Text Available The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR, rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals.Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA technique.358 defibrillations were evaluated (218 unsuccessful and 140 successful. Non-linear properties (Lyapunov exponent > 0 of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2% and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity outperformed AMSA (53.6% sensitivity. At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3% sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity.At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA, yielding fewer unsuccessful defibrillations
Denoising and robust non-linear wavelet analysis
Bruce, Andrew G.; Donoho, David L.; Gao, Hong-Ye; Martin, R. D.
1994-04-01
In a series of papers, Donoho and Johnstone develop a powerful theory based on wavelets for extracting non-smooth signals from noisy data. Several nonlinear smoothing algorithms are presented which provide high performance for removing Gaussian noise from a wide range of spatially inhomogeneous signals. However, like other methods based on the linear wavelet transform, these algorithms are very sensitive to certain types of non-Gaussian noise, such as outliers. In this paper, we develop outlier resistance wavelet transforms. In these transforms, outliers and outlier patches are localized to just a few scales. By using the outlier resistant wavelet transforms, we improve upon the Donoho and Johnstone nonlinear signal extraction methods. The outlier resistant wavelet algorithms are included with the S+Wavelets object-oriented toolkit for wavelet analysis.
Polarization effects in the non-linear Compton scattering
Ivanov, D Y; Serbo, V G
2005-01-01
We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.
Generation of Long Waves using Non-Linear Digital Filters
DEFF Research Database (Denmark)
Høgedal, Michael; Frigaard, Peter; Christensen, Morten
1994-01-01
transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...... method for including the correct 2nd order bound terms in such applications is presented. The technique utilizes non-liner digital filters fitted to the appropriate transfer function is derived only for bounded 2nd order subharmonics, as they laboratory experiments generally are considered the most...
A non-linear model predictive controller with obstacle avoidance for a space robot
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2016-04-01
This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.
Non-linear wave propagation in acoustically lined circular ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
An analysis is presented of the nonlinear effects of the gas motion as well as of the acoustic lining material on the transmission and attenuation of sound in a circular duct with a uniform cross-section and no mean flow. The acoustic material is characterized by an empirical, nonlinear impedance in which the instantaneous resistance is a nonlinear function of both the frequency and the acoustic velocity. The results show that there exist frequency bandwidths around the resonant frequencies in which the nonlinearity decreases the attenuation rate, and outside which the nonlinearity increases the attenuation rate, in qualitative agreement with experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Non-linear modeling of active biohybrid materials
Paetsch, C.
2013-11-01
Recent advances in engineered muscle tissue attached to a synthetic substrate motivate the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs. © 2013 Elsevier Ltd. All rights reserved.
Extreme non-linear elasticity and transformation optics
DEFF Research Database (Denmark)
Gersborg, Allan Roulund; Sigmund, Ole
2010-01-01
Transformation optics is a powerful concept for designing novel optical components such as high transmission waveguides and cloaking devices. The selection of specific transformations is a non-unique problem. Here we reveal that transformations which allow for all dielectric and broadband optical...... realizations correspond to minimizers of elastic energy potentials for extreme values of the mechanical Poisson's ratio ν . For TE (Hz) polarized light an incompressible transformation ν = 1/2 is ideal and for TM (E z) polarized light one should use a compressible transformation with negative Poissons's ratio...... ν = -1. For the TM polarization the mechanical analogy corresponds to a modified Liao functional known from the transformation optics literature. Finally, the analogy between ideal transformations and solid mechanical material models automates and broadens the concept of transformation optics...
Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling.
Song, Dong; Harway, Madhuri; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W
2014-01-01
To build a cognitive prosthesis that can replace the memory function of the hippocampus, it is essential to model the input-output function of the damaged hippocampal region, so the prosthetic device can stimulate the downstream hippocampal region, e.g., CA1, with the output signal, e.g., CA1 spike trains, predicted from the ongoing input signal, e.g., CA3 spike trains, and the identified input-output function, e.g., CA3-CA1 model. In order for the downstream region to form appropriate long-term memories based on the restored output signal, furthermore, the output signal should contain sufficient information about the memories that the animal has formed. In this study, we verify this premise by applying regression and classification modelings of the spatio-temporal patterns of spike trains to the hippocampal CA3 and CA1 data recorded from rats performing a memory-dependent delayed non-match-to-sample (DNMS) task. The regression model is essentially the multiple-input, multiple-output (MIMO) non-linear dynamical model of spike train transformation. It predicts the output spike trains based on the input spike trains and thus restores the output signal. In addition, the classification model interprets the signal by relating the spatio-temporal patterns to the memory events. We have found that: (1) both hippocampal CA3 and CA1 spike trains contain sufficient information for predicting the locations of the sample responses (i.e., left and right memories) during the DNMS task; and more importantly (2) the CA1 spike trains predicted from the CA3 spike trains by the MIMO model also are sufficient for predicting the locations on a single-trial basis. These results show quantitatively that, with a moderate number of unitary recordings from the hippocampus, the MIMO non-linear dynamical model is able to extract and restore spatial memory information for the formation of long-term memories and thus can serve as the computational basis of the hippocampal memory prosthesis.
Institute of Scientific and Technical Information of China (English)
张洪生; 洪广文; 丁平兴; 曹振轶
2001-01-01
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
Non-linear ultimate strength and stability limit state analysis of a wind turbine blade
DEFF Research Database (Denmark)
Rosemeier, Malo; Berring, Peter; Branner, Kim
2016-01-01
flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade...... of an imperfection. The more realistic non-linear approaches yielded more optimistic results than the mandatory linear bifurcation analysis. Consequently, the investigated blade designed after the lesser requirements was sufficient. Using the non-linear approaches, considering inter-fibre failure as the critical...... failure mode, yielded still a significant safety margin for the designer (7–28%). The non-linear response was significantly dependent on the scaling of the imperfection. Eurocode's method of applying an imperfection appeared more realistic than the GL method. Since the considered blade withstood 135...
Finite-time H∞ filtering for non-linear stochastic systems
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Non-linear time series analysis: methods and applications to atrial fibrillation.
Hoekstra, B P; Diks, C G; Allessie, M A; Degoede, J
2001-01-01
We apply methods from non-linear statistical time series analysis to characterize electrograms of atrial fibrillation. These are based on concepts originating from the theory of non-linear dynamical systems and use the empirical reconstruction density in reconstructed phase space. Application of these methods is not restricted to deterministic chaos but is valid in a general time series context. We illustrate this by applying three recently proposed non-linear time series methods to fibrillation electrograms: 1) a test for time reversibility in atrial electrograms during paroxysmal atrial fibrillation in patients; 2) a test to detect differences in the dynamical behaviour during the pharmacological conversion of sustained atrial fibrillation in instrumented conscious goats; 3) a test for general Granger causality to identify couplings and information transport in the atria during fibrillation. We conclude that a characterization of the dynamics via the reconstruction density offers a useful framework for the non-linear analysis of electrograms of atrial fibrillation.
The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems
Institute of Scientific and Technical Information of China (English)
ZANG Zhen-chun
2001-01-01
In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.
Systematic treatment of non-linear effects in Baryon Acoustic Oscillations
Ivanov, Mikhail M
2016-01-01
In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.
Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Jørgen Arendt
2013-01-01
. The accuracy of the nonlinear ASA is compared to the non-linear simulation program – Abersim, which is a numerical solution to the Burgers equation based on the OSM. Simulations are performed for a linear array transducer with 64 active elements, focus at 40 mm, and excitation by a 2-cycle sine wave......A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...