Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
International Nuclear Information System (INIS)
Alvarez-Estrada, R.F.
1979-01-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly
A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten; Erleben, Kenny
2009-01-01
Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...
On a non-linear pseudodifferential boundary value problem
International Nuclear Information System (INIS)
Nguyen Minh Chuong.
1989-12-01
A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs
Frequency-domain full-waveform inversion with non-linear descent directions
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a
Alkhalifah, Tariq Ali
2012-09-25
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Alkhalifah, Tariq Ali; Choi, Yun Seok
2012-01-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Numerical solution of non-linear diffusion problems
International Nuclear Information System (INIS)
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
The Cauchy problem for non-linear Klein-Gordon equations
International Nuclear Information System (INIS)
Simon, J.C.H.; Taflin, E.
1993-01-01
We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
On the internal stability of non-linear dynamic inversion: application to flight control
Czech Academy of Sciences Publication Activity Database
Alam, M.; Čelikovský, Sergej
2017-01-01
Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Paradox in a non-linear capacitated transportation problem
Directory of Open Access Journals (Sweden)
Dahiya Kalpana
2006-01-01
Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)
International Nuclear Information System (INIS)
Dubinskii, Yu A; Osipenko, A S
2000-01-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
Linearized versus non-linear inverse methods for seismic localization of underground sources
DEFF Research Database (Denmark)
Oh, Geok Lian; Jacobsen, Finn
2013-01-01
The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem, a...
Statistical perspectives on inverse problems
DEFF Research Database (Denmark)
Andersen, Kim Emil
of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...
Implementation of a multi-layer perception for a non-linear control problem
International Nuclear Information System (INIS)
Lister, J.B.; Schnurrenberger, H.; Marmillod, P.
1990-12-01
We present the practical application of a 1-hidden-layer multilayer perception (MLP) to provide a non-linear continuous multi-variable mapping with 42 inputs and 13 outputs. The problem resolved is one of extracting information from experimental signals with a bandwidth of many kilohertz. We have an exact model of the inverse mapping of this problem, but we have no explicit form of the required forward mapping. This is the typical situation in data interpretation. The MLP was trained to provide this mapping by learning on 500 input-output examples. The success of the off-line solution to this problem using an MLP led us to examine the robustness of the MLP to different noise sources. We found that the MLP is more robust than an approximate linear mapping of the same problem. 12 bits of resolution in the weights are necessary to avoid a significant loss of precision. The practical implementation of large analog weight matrices using DAS-multipliers and a simple segmented sigmoid is also presented. A General Adaptive Recipe (GAR) for improving the performance of conventional back-propagation was developed. The GAR uses an adaptive step length and both the bias terms and the initial weight seeding are determined by the network size. The GAR was found to be robust and much faster than conventional back-propagation. (author) 20 figs., 1 tab., 15 refs
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
Surface waves tomography and non-linear inversion in the southeast Carpathians
International Nuclear Information System (INIS)
Raykova, R.B.; Panza, G.F.
2005-11-01
A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)
An inverse method for non linear ablative thermics with experimentation of automatic differentiation
Energy Technology Data Exchange (ETDEWEB)
Alestra, S [Simulation Information Technology and Systems Engineering, EADS IW Toulouse (France); Collinet, J [Re-entry Systems and Technologies, EADS ASTRIUM ST, Les Mureaux (France); Dubois, F [Professor of Applied Mathematics, Conservatoire National des Arts et Metiers Paris (France)], E-mail: stephane.alestra@eads.net, E-mail: jean.collinet@astrium.eads.net, E-mail: fdubois@cnam.fr
2008-11-01
Thermal Protection System is a key element for atmospheric re-entry missions of aerospace vehicles. The high level of heat fluxes encountered in such missions has a direct effect on mass balance of the heat shield. Consequently, the identification of heat fluxes is of great industrial interest but is in flight only available by indirect methods based on temperature measurements. This paper is concerned with inverse analyses of highly evolutive heat fluxes. An inverse problem is used to estimate transient surface heat fluxes (convection coefficient), for degradable thermal material (ablation and pyrolysis), by using time domain temperature measurements on thermal protection. The inverse problem is formulated as a minimization problem involving an objective functional, through an optimization loop. An optimal control formulation (Lagrangian, adjoint and gradient steepest descent method combined with quasi-Newton method computations) is then developed and applied, using Monopyro, a transient one-dimensional thermal model with one moving boundary (ablative surface) that has been developed since many years by ASTRIUM-ST. To compute numerically the adjoint and gradient quantities, for the inverse problem in heat convection coefficient, we have used both an analytical manual differentiation and an Automatic Differentiation (AD) engine tool, Tapenade, developed at INRIA Sophia-Antipolis by the TROPICS team. Several validation test cases, using synthetic temperature measurements are carried out, by applying the results of the inverse method with minimization algorithm. Accurate results of identification on high fluxes test cases, and good agreement for temperatures restitutions, are obtained, without and with ablation and pyrolysis, using bad fluxes initial guesses. First encouraging results with an automatic differentiation procedure are also presented in this paper.
Inverse problems of geophysics
International Nuclear Information System (INIS)
Yanovskaya, T.B.
2003-07-01
This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given
International Nuclear Information System (INIS)
Sentis, R.
1984-07-01
The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms
Quasi-stability of a vector trajectorial problem with non-linear partial criteria
Directory of Open Access Journals (Sweden)
Vladimir A. Emelichev
2003-10-01
Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.
On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity
International Nuclear Information System (INIS)
Aristov, Anatoly I
2011-01-01
We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.
Geodynamic inversion to constrain the non-linear rheology of the lithosphere
Baumann, T. S.; Kaus, Boris J. P.
2015-08-01
One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology
Arbitrary Lagrangian-Eulerian method for non-linear problems of geomechanics
International Nuclear Information System (INIS)
Nazem, M; Carter, J P; Airey, D W
2010-01-01
In many geotechnical problems it is vital to consider the geometrical non-linearity caused by large deformation in order to capture a more realistic model of the true behaviour. The solutions so obtained should then be more accurate and reliable, which should ultimately lead to cheaper and safer design. The Arbitrary Lagrangian-Eulerian (ALE) method originated from fluid mechanics, but has now been well established for solving large deformation problems in geomechanics. This paper provides an overview of the ALE method and its challenges in tackling problems involving non-linearities due to material behaviour, large deformation, changing boundary conditions and time-dependency, including material rate effects and inertia effects in dynamic loading applications. Important aspects of ALE implementation into a finite element framework will also be discussed. This method is then employed to solve some interesting and challenging geotechnical problems such as the dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, and the modelling of dynamic penetration of objects into soil layers.
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
Inverse logarithmic potential problem
Cherednichenko, V G
1996-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Directory of Open Access Journals (Sweden)
Murray L. Ireland
2015-06-01
Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Some problems on non-linear semigroups and the blow-up of integral solutions
International Nuclear Information System (INIS)
Pavel, N.H.
1983-07-01
After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander
2014-01-06
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Inverse Problems and Uncertainty Quantification
Litvinenko, Alexander; Matthies, Hermann G.
2014-01-01
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
Inverse problems and uncertainty quantification
Litvinenko, Alexander
2013-12-18
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.
The inverse problem for Schwinger pair production
Directory of Open Access Journals (Sweden)
F. Hebenstreit
2016-02-01
Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco
2017-11-01
The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.
Energy Technology Data Exchange (ETDEWEB)
Delbos, F.
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
Energy Technology Data Exchange (ETDEWEB)
Delbos, F
2004-11-01
Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Analog fault diagnosis by inverse problem technique
Ahmed, Rania F.
2011-12-01
A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.
International Nuclear Information System (INIS)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
Solving probabilistic inverse problems rapidly with prior samples
Käufl, Paul; Valentine, Andrew P.; de Wit, Ralph W.; Trampert, Jeannot
2016-01-01
Owing to the increasing availability of computational resources, in recent years the probabilistic solution of non-linear, geophysical inverse problems by means of sampling methods has become increasingly feasible. Nevertheless, we still face situations in which a Monte Carlo approach is not
Inverse feasibility problems of the inverse maximum flow problems
Indian Academy of Sciences (India)
199–209. c Indian Academy of Sciences. Inverse feasibility problems of the inverse maximum flow problems. ADRIAN DEACONU. ∗ and ELEONOR CIUREA. Department of Mathematics and Computer Science, Faculty of Mathematics and Informatics, Transilvania University of Brasov, Brasov, Iuliu Maniu st. 50,. Romania.
Rosenberg, D. E.; Alafifi, A.
2016-12-01
Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one
Inverse problem in hydrogeology
Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.
2005-03-01
The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le
Inverse problems for Maxwell's equations
Romanov, V G
1994-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem
Directory of Open Access Journals (Sweden)
Roshan Sharma
2012-01-01
Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.
An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems
Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri
2018-01-01
The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Czech Academy of Sciences Publication Activity Database
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems
DEFF Research Database (Denmark)
Clausen, Johan
-Coulomb yield criterion and the corresponding plastic potential possess corners and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to these problems is presented in this thesis. The solution is based on a transformation into principal stress space and is valid for all...... linear isotropic plasticity models in which corners and apexes are encountered. The validity and merits of the proposed solution are examined in relation to the Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed method compares well with existing methods......-Brown material. The efficiency and validity are demonstrated by comparing the finite-element results with well-known solutions for simple geometries. A common geotechnical problem is the assessment of slope stability. For slopes with simple geometries and consisting of a linear Mohr-Coulomb material, this can...
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
2015-01-01
Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-01
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded
Parameter estimation and inverse problems
Aster, Richard C; Thurber, Clifford H
2005-01-01
Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...
Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions
International Nuclear Information System (INIS)
Albeverio, S; Khrennikov, A Yu; Shelkovich, V M
2005-01-01
We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed
Directory of Open Access Journals (Sweden)
Buscaglia Gustavo C.
2001-01-01
Full Text Available A new numerical approach is proposed to alleviate the computational cost of solving non-linear non-uniform homogenized problems. The article details the application of the proposed approach to lubrication problems with roughness effects. The method is based on a two-parameter Taylor expansion of the implicit dependence of the homogenized coefficients on the average pressure and on the local value of the air gap thickness. A fourth-order Taylor expansion provides an approximation that is accurate enough to be used in the global problem solution instead of the exact dependence, without introducing significant errors. In this way, when solving the global problem, the solution of local problems is simply replaced by the evaluation of a polynomial. Moreover, the method leads naturally to Newton-Raphson nonlinear iterations, that further reduce the cost. The overall efficiency of the numerical methodology makes it feasible to apply rigorous homogenization techniques in the analysis of compressible fluid contact considering roughness effects. Previous work makes use of an heuristic averaging technique. Numerical comparison proves that homogenization-based methods are superior when the roughness is strongly anisotropic and not aligned with the flow direction.
EDITORIAL: Inverse Problems in Engineering
West, Robert M.; Lesnic, Daniel
2007-01-01
Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.
Automatic differentiation in geophysical inverse problems
Sambridge, M.; Rickwood, P.; Rawlinson, N.; Sommacal, S.
2007-07-01
Automatic differentiation (AD) is the technique whereby output variables of a computer code evaluating any complicated function (e.g. the solution to a differential equation) can be differentiated with respect to the input variables. Often AD tools take the form of source to source translators and produce computer code without the need for deriving and hand coding of explicit mathematical formulae by the user. The power of AD lies in the fact that it combines the generality of finite difference techniques and the accuracy and efficiency of analytical derivatives, while at the same time eliminating `human' coding errors. It also provides the possibility of accurate, efficient derivative calculation from complex `forward' codes where no analytical derivatives are possible and finite difference techniques are too cumbersome. AD is already having a major impact in areas such as optimization, meteorology and oceanography. Similarly it has considerable potential for use in non-linear inverse problems in geophysics where linearization is desirable, or for sensitivity analysis of large numerical simulation codes, for example, wave propagation and geodynamic modelling. At present, however, AD tools appear to be little used in the geosciences. Here we report on experiments using a state of the art AD tool to perform source to source code translation in a range of geoscience problems. These include calculating derivatives for Gibbs free energy minimization, seismic receiver function inversion, and seismic ray tracing. Issues of accuracy and efficiency are discussed.
Size Estimates in Inverse Problems
Di Cristo, Michele
2014-01-06
Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.
Inverse problem of solar oscillations
International Nuclear Information System (INIS)
Sekii, T.; Shibahashi, H.
1987-01-01
The authors present some preliminary results of numerical simulation to infer the sound velocity distribution in the solar interior from the oscillation data of the Sun as the inverse problem. They analyze the acoustic potential itself by taking account of some factors other than the sound velocity, and infer the sound velocity distribution in the deep interior of the Sun
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
Inverse source problems in elastodynamics
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.
2016-02-13
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Inverse Problems in a Bayesian Setting
Matthies, Hermann G.; Zander, Elmar; Rosić, Bojana V.; Litvinenko, Alexander; Pajonk, Oliver
2016-01-01
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.
Inverse problem in nuclear physics
International Nuclear Information System (INIS)
Zakhariev, B.N.
1976-01-01
The method of reconstruction of interaction from the scattering data is formulated in the frame of the R-matrix theory in which the potential is determined by position of resonance Esub(lambda) and their reduced widths γ 2 lambda. In finite difference approximation for the Schroedinger equation this new approach allows to make the logics of the inverse problem IP more clear. A possibility of applications of IP formalism to various nuclear systems is discussed. (author)
Inverse problems in systems biology
International Nuclear Information System (INIS)
Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp
2009-01-01
Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)
The seismic reflection inverse problem
International Nuclear Information System (INIS)
Symes, W W
2009-01-01
The seismic reflection method seeks to extract maps of the Earth's sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or other controlled sound sources positioned near the surface. Reasonably accurate models of seismic energy propagation take the form of hyperbolic systems of partial differential equations, in which the coefficients represent the spatial distribution of various mechanical characteristics of rock (density, stiffness, etc). Thus the fundamental problem of reflection seismology is an inverse problem in partial differential equations: to find the coefficients (or at least some of their properties) of a linear hyperbolic system, given the values of a family of solutions in some part of their domains. The exploration geophysics community has developed various methods for estimating the Earth's structure from seismic data and is also well aware of the inverse point of view. This article reviews mathematical developments in this subject over the last 25 years, to show how the mathematics has both illuminated innovations of practitioners and led to new directions in practice. Two themes naturally emerge: the importance of single scattering dominance and compensation for spectral incompleteness by spatial redundancy. (topical review)
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Inverse problem in radionuclide transport
International Nuclear Information System (INIS)
Yu, C.
1988-01-01
The disposal of radioactive waste must comply with the performance objectives set forth in 10 CFR 61 for low-level waste (LLW) and 10 CFR 60 for high-level waste (HLW). To determine probable compliance, the proposed disposal system can be modeled to predict its performance. One of the difficulties encountered in such a study is modeling the migration of radionuclides through a complex geologic medium for the long term. Although many radionuclide transport models exist in the literature, the accuracy of the model prediction is highly dependent on the model parameters used. The problem of using known parameters in a radionuclide transport model to predict radionuclide concentrations is a direct problem (DP); whereas the reverse of DP, i.e., the parameter identification problem of determining model parameters from known radionuclide concentrations, is called the inverse problem (IP). In this study, a procedure to solve IP is tested, using the regression technique. Several nonlinear regression programs are examined, and the best one is recommended. 13 refs., 1 tab
International Nuclear Information System (INIS)
Yun, Sung Hwan
2004-02-01
Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-07-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of {zeta}/{zeta} u{sub {alpha}}, |{alpha} | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs.
SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Looms, Majken Caroline
2013-01-01
We present an application of the SIPPI Matlab toolbox, to obtain a sample from the a posteriori probability density function for the classical tomographic inversion problem. We consider a number of different forward models, linear and non-linear, such as ray based forward models that rely...
Directory of Open Access Journals (Sweden)
Evans BAIDOO
2016-12-01
Full Text Available A study branch that mocks-up a population of network of swarms or agents with the ability to self-organise is Swarm intelligence. In spite of the huge amount of work that has been done in this area in both theoretically and empirically and the greater success that has been attained in several aspects, it is still ongoing and at its infant stage. An immune system, a cloud of bats, or a flock of birds are distinctive examples of a swarm system. . In this study, two types of meta-heuristics algorithms based on population and swarm intelligence - Multi Swarm Optimization (MSO and Bat algorithms (BA - are set up to find optimal solutions of continuous non-linear optimisation models. In order to analyze and compare perfect solutions at the expense of performance of both algorithms, a chain of computational experiments on six generally used test functions for assessing the accuracy and the performance of algorithms, in swarm intelligence fields are used. Computational experiments show that MSO algorithm seems much superior to BA.
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
On two-spectra inverse problems
Guliyev, Namig J.
2018-01-01
We consider a two-spectra inverse problem for the one-dimensional Schr\\"{o}dinger equation with boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.
Approximation of Bayesian Inverse Problems for PDEs
Cotter, S. L.; Dashti, M.; Stuart, A. M.
2010-01-01
Inverse problems are often ill posed, with solutions that depend sensitively on data.n any numerical approach to the solution of such problems, regularization of some form is needed to counteract the resulting instability. This paper is based on an approach to regularization, employing a Bayesian formulation of the problem, which leads to a notion of well posedness for inverse problems, at the level of probability measures. The stability which results from this well posedness may be used as t...
Optimization and inverse problems in electromagnetism
Wiak, Sławomir
2003-01-01
From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
BOOK REVIEW: Inverse Problems. Activities for Undergraduates
Yamamoto, Masahiro
2003-06-01
This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight
3rd Annual Workshop on Inverse Problem
2015-01-01
This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.
Inverse problems for the Boussinesq system
International Nuclear Information System (INIS)
Fan, Jishan; Jiang, Yu; Nakamura, Gen
2009-01-01
We obtain two results on inverse problems for a 2D Boussinesq system. One is that we prove the Lipschitz stability for the inverse source problem of identifying a time-independent external force in the system with observation data in an arbitrary sub-domain over a time interval of the velocity and the data of velocity and temperature at a fixed positive time t 0 > 0 over the whole spatial domain. The other one is that we prove a conditional stability estimate for an inverse problem of identifying the two initial conditions with a single observation on a sub-domain
Inverse problems in the Bayesian framework
International Nuclear Information System (INIS)
Calvetti, Daniela; Somersalo, Erkki; Kaipio, Jari P
2014-01-01
The history of Bayesian methods dates back to the original works of Reverend Thomas Bayes and Pierre-Simon Laplace: the former laid down some of the basic principles on inverse probability in his classic article ‘An essay towards solving a problem in the doctrine of chances’ that was read posthumously in the Royal Society in 1763. Laplace, on the other hand, in his ‘Memoirs on inverse probability’ of 1774 developed the idea of updating beliefs and wrote down the celebrated Bayes’ formula in the form we know today. Although not identified yet as a framework for investigating inverse problems, Laplace used the formalism very much in the spirit it is used today in the context of inverse problems, e.g., in his study of the distribution of comets. With the evolution of computational tools, Bayesian methods have become increasingly popular in all fields of human knowledge in which conclusions need to be drawn based on incomplete and noisy data. Needless to say, inverse problems, almost by definition, fall into this category. Systematic work for developing a Bayesian inverse problem framework can arguably be traced back to the 1980s, (the original first edition being published by Elsevier in 1987), although articles on Bayesian methodology applied to inverse problems, in particular in geophysics, had appeared much earlier. Today, as testified by the articles in this special issue, the Bayesian methodology as a framework for considering inverse problems has gained a lot of popularity, and it has integrated very successfully with many traditional inverse problems ideas and techniques, providing novel ways to interpret and implement traditional procedures in numerical analysis, computational statistics, signal analysis and data assimilation. The range of applications where the Bayesian framework has been fundamental goes from geophysics, engineering and imaging to astronomy, life sciences and economy, and continues to grow. There is no question that Bayesian
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
The ocean circulation inverse problem
National Research Council Canada - National Science Library
Wunsch, C
1996-01-01
.... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...
Direct Problems and Inverse Problems in Biometric Systems
Mihailescu Marius Iulian
2013-01-01
The article purpose is to describe the two sides of biometrics technologies, direct problems and inverse problems. The advance that we face today in field of Information Technology makes Information Security an inseparable part. The authentication has a huge role when we deal about security. The problems that can appear in implementing and developing biometrics systems is raising many problems, and one of the goal of this article is to focus on direct and inverse problems which is a new and c...
Inverse problems in linear transport theory
International Nuclear Information System (INIS)
Dressler, K.
1988-01-01
Inverse problems for a class of linear kinetic equations are investigated. The aim is to identify the scattering kernel of a transport equation (corresponding to the structure of a background medium) by observing the 'albedo' part of the solution operator for the corresponding direct initial boundary value problem. This means to get information on some integral operator in an integrodifferential equation through on overdetermined boundary value problem. We first derive a constructive method for solving direct halfspace problems and prove a new factorization theorem for the solutions. Using this result we investigate stationary inverse problems with respect to well posedness (e.g. reduce them to classical ill-posed problems, such as integral equations of first kind). In the time-dependent case we show that a quite general inverse problem is well posed and solve it constructively. (orig.)
An inverse problem for evolution inclusions
Ton, Bui An
2002-01-01
An inverse problem, the determination of the shape and a convective coefficient on a part of the boundary from partial measurements of the solution, is studied using 2-person optimal control techniques.
Multiparameter Optimization for Electromagnetic Inversion Problem
Directory of Open Access Journals (Sweden)
M. Elkattan
2017-10-01
Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.
Inverse scattering problems with multi-frequencies
International Nuclear Information System (INIS)
Bao, Gang; Li, Peijun; Lin, Junshan; Triki, Faouzi
2015-01-01
This paper is concerned with computational approaches and mathematical analysis for solving inverse scattering problems in the frequency domain. The problems arise in a diverse set of scientific areas with significant industrial, medical, and military applications. In addition to nonlinearity, there are two common difficulties associated with the inverse problems: ill-posedness and limited resolution (diffraction limit). Due to the diffraction limit, for a given frequency, only a low spatial frequency part of the desired parameter can be observed from measurements in the far field. The main idea developed here is that if the reconstruction is restricted to only the observable part, then the inversion will become stable. The challenging task is how to design stable numerical methods for solving these inverse scattering problems inspired by the diffraction limit. Recently, novel recursive linearization based algorithms have been presented in an attempt to answer the above question. These methods require multi-frequency scattering data and proceed via a continuation procedure with respect to the frequency from low to high. The objective of this paper is to give a brief review of these methods, their error estimates, and the related mathematical analysis. More attention is paid to the inverse medium and inverse source problems. Numerical experiments are included to illustrate the effectiveness of these methods. (topical review)
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.
1987-01-01
Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here
Inverse source problems for eddy current equations
International Nuclear Information System (INIS)
Rodríguez, Ana Alonso; Valli, Alberto; Camaño, Jessika
2012-01-01
We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. (paper)
Solving inversion problems with neural networks
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Introduction to inverse problems for differential equations
Hasanov Hasanoğlu, Alemdar
2017-01-01
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...
Ensemble Kalman methods for inverse problems
International Nuclear Information System (INIS)
Iglesias, Marco A; Law, Kody J H; Stuart, Andrew M
2013-01-01
The ensemble Kalman filter (EnKF) was introduced by Evensen in 1994 (Evensen 1994 J. Geophys. Res. 99 10143–62) as a novel method for data assimilation: state estimation for noisily observed time-dependent problems. Since that time it has had enormous impact in many application domains because of its robustness and ease of implementation, and numerical evidence of its accuracy. In this paper we propose the application of an iterative ensemble Kalman method for the solution of a wide class of inverse problems. In this context we show that the estimate of the unknown function that we obtain with the ensemble Kalman method lies in a subspace A spanned by the initial ensemble. Hence the resulting error may be bounded above by the error found from the best approximation in this subspace. We provide numerical experiments which compare the error incurred by the ensemble Kalman method for inverse problems with the error of the best approximation in A, and with variants on traditional least-squares approaches, restricted to the subspace A. In so doing we demonstrate that the ensemble Kalman method for inverse problems provides a derivative-free optimization method with comparable accuracy to that achieved by traditional least-squares approaches. Furthermore, we also demonstrate that the accuracy is of the same order of magnitude as that achieved by the best approximation. Three examples are used to demonstrate these assertions: inversion of a compact linear operator; inversion of piezometric head to determine hydraulic conductivity in a Darcy model of groundwater flow; and inversion of Eulerian velocity measurements at positive times to determine the initial condition in an incompressible fluid. (paper)
Non-linear wave equations:Mathematical techniques
International Nuclear Information System (INIS)
1978-01-01
An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Direct and inverse problems of infrared tomography
DEFF Research Database (Denmark)
Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander
2016-01-01
The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...
Modeling of uncertainties in statistical inverse problems
International Nuclear Information System (INIS)
Kaipio, Jari
2008-01-01
In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.
Bayesian probability theory and inverse problems
International Nuclear Information System (INIS)
Kopec, S.
1994-01-01
Bayesian probability theory is applied to approximate solving of the inverse problems. In order to solve the moment problem with the noisy data, the entropic prior is used. The expressions for the solution and its error bounds are presented. When the noise level tends to zero, the Bayesian solution tends to the classic maximum entropy solution in the L 2 norm. The way of using spline prior is also shown. (author)
Inverse and Ill-posed Problems Theory and Applications
Kabanikhin, S I
2011-01-01
The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.
Non-linear Bayesian update of PCE coefficients
Litvinenko, Alexander
2014-01-06
Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).
Non-linear Bayesian update of PCE coefficients
Litvinenko, Alexander; Matthies, Hermann G.; Pojonk, Oliver; Rosic, Bojana V.; Zander, Elmar
2014-01-01
Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).
Moebius inverse problem for distorted black holes
International Nuclear Information System (INIS)
Rosu, H.
1993-01-01
Hawking ''thermal'' radiation could be a means to detect black holes of micron sizes, which may be hovering through the universe. We consider these micro-black holes to be distorted by the presence of some distribution of matter representing a convolution factor for their Hawking radiation. One may hope to determine from their Hawking signals the temperature distribution of their material shells by the inverse black body problem. In 1990, Nan-xian Chen has used a so-called modified Moebius transform to solve the inverse black body problem. We discuss and apply this technique to Hawking radiation. Some comments on supersymmetric applications of Moebius function and transform are also added. (author). 22 refs
Topological inversion for solution of geodesy-constrained geophysical problems
Saltogianni, Vasso; Stiros, Stathis
2015-04-01
Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a
Formal solutions of inverse scattering problems. III
International Nuclear Information System (INIS)
Prosser, R.T.
1980-01-01
The formal solutions of certain three-dimensional inverse scattering problems presented in papers I and II of this series [J. Math. Phys. 10, 1819 (1969); 17 1175 (1976)] are obtained here as fixed points of a certain nonlinear mapping acting on a suitable Banach space of integral kernels. When the scattering data are sufficiently restricted, this mapping is shown to be a contraction, thereby establishing the existence, uniqueness, and continuous dependence on the data of these formal solutions
Inverse problem of radiofrequency sounding of ionosphere
Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.
2016-01-01
An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
Differential equations inverse and direct problems
Favini, Angelo
2006-01-01
DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
Inverse problems in classical and quantum physics
International Nuclear Information System (INIS)
Almasy, A.A.
2007-01-01
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
Inverse problems in classical and quantum physics
Energy Technology Data Exchange (ETDEWEB)
Almasy, A.A.
2007-06-29
The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A
An Entropic Estimator for Linear Inverse Problems
Directory of Open Access Journals (Sweden)
Amos Golan
2012-05-01
Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.
Eigenvectors phase correction in inverse modal problem
Qiao, Guandong; Rahmatalla, Salam
2017-12-01
The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.
Inverse scattering problem in turbulent magnetic fluctuations
Directory of Open Access Journals (Sweden)
R. A. Treumann
2016-08-01
Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes
ITOUGH2: Solving TOUGH inverse problems
Energy Technology Data Exchange (ETDEWEB)
Finsterle, S.; Pruess, K. [Lawrence Berkeley Laboratory, CA (United States)
1995-03-01
ITOUGH2 is a program that provides inverse modeling capabilities for the TOUGH2 code. While the main purpose of ITOUGH2 is to estimate two-phase hydraulic properties of calibrating a TOUGH2 model to laboratory or field data, the information obtained by evaluating parameter sensitivities can also be used to optimize the design of an experiment, and to analyze the uncertainty of model predictions. ITOUGH2 has been applied to a number of laboratory and field experiments on different scales. Three examples are discussed in this paper, demonstrating the code`s capability to support test design, data analysis, and model predictions for a variety of TOUGH problems.
Bilinear Inverse Problems: Theory, Algorithms, and Applications
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical
Data quality for the inverse lsing problem
International Nuclear Information System (INIS)
Decelle, Aurélien; Ricci-Tersenghi, Federico; Zhang, Pan
2016-01-01
There are many methods proposed for inferring parameters of the Ising model from given data, that is a set of configurations generated according to the model itself. However little attention has been paid until now to the data, e.g. how the data is generated, whether the inference error using one set of data could be smaller than using another set of data, etc. In this paper we discuss the data quality problem in the inverse Ising problem, using as a benchmark the kinetic Ising model. We quantify the quality of data using effective rank of the correlation matrix, and show that data gathered in a out-of-equilibrium regime has a better quality than data gathered in equilibrium for coupling reconstruction. We also propose a matrix-perturbation based method for tuning the quality of given data and for removing bad-quality (i.e. redundant) configurations from data. (paper)
Inverse problems for partial differential equations
Isakov, Victor
2017-01-01
This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...
Microlocal analysis of a seismic linearized inverse problem
Stolk, C.C.
1999-01-01
The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the
Solving inverse problems through a smooth formulation of multiple-point geostatistics
DEFF Research Database (Denmark)
Melnikova, Yulia
be inferred, for instance, from a conceptual geological model termed a training image.The main motivation for this study was the challenge posed by history matching, an inverse problem aimed at estimating rock properties from production data. We addressed two main difficulties of the history matching problem...... corresponding inverse problems. However, noise in data, non-linear relationships and sparse observations impede creation of realistic reservoir models. Including complex a priori information on reservoir parameters facilitates the process of obtaining acceptable solutions. Such a priori knowledge may...... strategies including both theoretical motivation and practical aspects of implementation. Finally, it is complemented by six research papers submitted, reviewed and/or published in the period 2010 - 2013....
Saravanan, R
2018-01-01
Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.
The inverse conductivity problem with limited data and applications
International Nuclear Information System (INIS)
Isakov, Victor
2007-01-01
This paper describes recent uniqueness results in inverse problems for semiconductor devices and in the inverse conductivity problem. We remind basic inverse probelsm in semiconductor theory and outline use of an adjoint equation and a proof of uniqueness of piecewise constant doping profile. For the inverse conductivity problem we give a first uniqueness proof when the Dirichlet-to-Neumann map is given at an arbitrarily small part of the boundary of a three-dimensional domain
A non-linear kinematic hardening function
International Nuclear Information System (INIS)
Ottosen, N.S.
1977-05-01
Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
Numerical Methods for Bayesian Inverse Problems
Ernst, Oliver
2014-01-06
We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.
On the quantum inverse scattering problem
International Nuclear Information System (INIS)
Maillet, J.M.; Terras, V.
2000-01-01
A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains
Numerical Methods for Bayesian Inverse Problems
Ernst, Oliver; Sprungk, Bjorn; Cliffe, K. Andrew; Starkloff, Hans-Jorg
2014-01-01
We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.
Stochastic inverse problems: Models and metrics
International Nuclear Information System (INIS)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-01-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Inverse Problem in Self-assembly
Tkachenko, Alexei
2012-02-01
By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.
Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Mosegaard, Klaus
2012-01-01
Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis algorithm can be used to sample solutions to non-linear inverse problems. In principle, these methods allow incorporation of prior information of arbitrary complexity. If an analytical closed form description of the prior...... is available, which is the case when the prior can be described by a multidimensional Gaussian distribution, such prior information can easily be considered. In reality, prior information is often more complex than can be described by the Gaussian model, and no closed form expression of the prior can be given....... We propose an algorithm, called sequential Gibbs sampling, allowing the Metropolis algorithm to efficiently incorporate complex priors into the solution of an inverse problem, also for the case where no closed form description of the prior exists. First, we lay out the theoretical background...
FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems
Vourc'h, Eric; Rodet, Thomas
2015-11-01
, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2015 was a one-day workshop held in May 2015 which attracted around 70 attendees. Each of the submitted papers has been reviewed by two reviewers. There have been 15 accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA and GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE.
FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)
2014-10-01
workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2014 was a one-day workshop held in May 2014 which attracted around sixty attendees. Each of the submitted papers has been reviewed by two reviewers. There have been nine accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR MIA, GDR MOA, GDR Ondes). The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA, SATIE. Eric Vourc'h and Thomas Rodet
Obtaining sparse distributions in 2D inverse problems
Reci, A; Sederman, Andrew John; Gladden, Lynn Faith
2017-01-01
The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxat...
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
MAP estimators and their consistency in Bayesian nonparametric inverse problems
Dashti, M.; Law, K. J H; Stuart, A. M.; Voss, J.
2013-01-01
with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. © 2013 IOP Publishing Ltd.
Direct and Inverse Problems in Statistical Wavefields
International Nuclear Information System (INIS)
Wolf, Emil
2002-01-01
In this report account is presented of research carried out during the period September 1, 1999-August 31, 2002 under the sponsorship of the Department of Energy, grant DE-FG02-90ER14119. The research covered several areas of modern optical physics, particularly propagation of partially coherent light and its interaction with deterministic and with random media, spectroscopy with partially coherent light, polarization properties of statistical wave fields, effects of moving diffusers on coherence and on the spectra of light transmitted and scattered by them, reciprocity inequalities involving spatial and angular correlations of partially coherent beams, spreading of partially coherent beams in-random media, inverse source problems, computed and diffraction tomography and partially coherent solitons. We have discovered a new phenomenon in an emerging field of physical optics, known as singular optics; specifically we found that the spectrum of light changes drastically in the neighborhood of points where the intensity has zero value and where, consequently, the phase becomes singular, We noted some potential applications of this phenomenon. The results of our investigations were reported in 39 publications. They are listed on pages 3 to 5. Summaries of these publications are given on pages 6-13. Scientists who have participated in this research are listed on page 14
On a quadratic inverse eigenvalue problem
International Nuclear Information System (INIS)
Cai, Yunfeng; Xu, Shufang
2009-01-01
This paper concerns the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M, C and K of size n × n, with M nonsingular, so that the quadratic matrix polynomial Q(λ) ≡ λ 2 M + λC + K has a completely prescribed set of eigenvalues and eigenvectors. It is shown via construction that the QIEP has a solution if and only if r 0, where r and δ are computable from the prescribed spectral data. A necessary and sufficient condition for the existence of a solution to the QIEP with M being positive definite is also established in a constructive way. Furthermore, two algorithms are developed: one is to solve the QIEP; another is to find a particular solution to the QIEP with the leading coefficient matrix being positive definite, which also provides us an approach to a simultaneous reduction of real symmetric matrix triple (M, C, K) by real congruence. Numerical results show that the two algorithms are feasible and numerically reliable
Machine Learning and Inverse Problem in Geodynamics
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R.
2017-12-01
During the past few decades numerical modeling and traditional HPC have been widely deployed in many diverse fields for problem solutions. However, in recent years the rapid emergence of machine learning (ML), a subfield of the artificial intelligence (AI), in many fields of sciences, engineering, and finance seems to mark a turning point in the replacement of traditional modeling procedures with artificial intelligence-based techniques. The study of the circulation in the interior of Earth relies on the study of high pressure mineral physics, geochemistry, and petrology where the number of the mantle parameters is large and the thermoelastic parameters are highly pressure- and temperature-dependent. More complexity arises from the fact that many of these parameters that are incorporated in the numerical models as input parameters are not yet well established. In such complex systems the application of machine learning algorithms can play a valuable role. Our focus in this study is the application of supervised machine learning (SML) algorithms in predicting mantle properties with the emphasis on SML techniques in solving the inverse problem. As a sample problem we focus on the spin transition in ferropericlase and perovskite that may cause slab and plume stagnation at mid-mantle depths. The degree of the stagnation depends on the degree of negative density anomaly at the spin transition zone. The training and testing samples for the machine learning models are produced by the numerical convection models with known magnitudes of density anomaly (as the class labels of the samples). The volume fractions of the stagnated slabs and plumes which can be considered as measures for the degree of stagnation are assigned as sample features. The machine learning models can determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at mid-mantle depths. Employing support vector machine (SVM) algorithms we show that SML techniques
PREFACE: International Conference on Inverse Problems 2010
Hon, Yiu-Chung; Ling, Leevan
2011-03-01
Following the first International Conference on Inverse Problems - Recent Theoretical Development and Numerical Approaches held at the City University of Hong Kong in 2002, the fifth International Conference was held again at the City University during December 13-17, 2010. This fifth conference was jointly organized by Professor Yiu-Chung Hon (Co-Chair, City University of Hong Kong, HKSAR), Dr Leevan Ling (Co-Chair, Hong Kong Baptist University, HKSAR), Professor Jin Cheng (Fudan University, China), Professor June-Yub Lee (Ewha Womans University, South Korea), Professor Gui-Rong Liu (University of Cincinnati, USA), Professor Jenn-Nan Wang (National Taiwan University, Taiwan), and Professor Masahiro Yamamoto (The University of Tokyo, Japan). It was agreed to alternate holding the conference among the above places (China, Japan, Korea, Taiwan, and Hong Kong) once every two years. The next conference has been scheduled to be held at the Southeast University (Nanjing, China) in 2012. The purpose of this series of conferences is to establish a strong collaborative link among the universities of the Asian-Pacific regions and worldwide leading researchers in inverse problems. The conference addressed both theoretical (mathematics), applied (engineering) and developmental aspects of inverse problems. The conference was intended to nurture Asian-American-European collaborations in the evolving interdisciplinary areas and it was envisioned that the conference would lead to long-term commitments and collaborations among the participating countries and researchers. There was a total of more than 100 participants. A call for the submission of papers was sent out after the conference, and a total of 19 papers were finally accepted for publication in this proceedings. The papers included in the proceedings cover a wide scope, which reflects the current flourishing theoretical and numerical research into inverse problems. Finally, as the co-chairs of the Inverse Problems
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Classical limit of the quantum inverse scattering problem
International Nuclear Information System (INIS)
Bogdanov, I.V.
1986-01-01
This paper studies the passage to the limit of classical mechanics which is realized in the formalism of Marchenko's method for a spherically symmetric inverse problem of quantum scattering for fixed angular momentum. The limit is considered for the general case of partial waves with arbitrary values of the orbital number 1>0 in the lowest order of perturbation theory. It is shown how in the limit h→0 in the quantum inverse problem the integral Able transformation characteristic of classical inverse problems arises. The classical inversion formula with delay time is derived from the Marchenko equation
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
The inverse spectral problem for pencils of differential operators
International Nuclear Information System (INIS)
Guseinov, I M; Nabiev, I M
2007-01-01
The inverse problem of spectral analysis for a quadratic pencil of Sturm-Liouville operators on a finite interval is considered. A uniqueness theorem is proved, a solution algorithm is presented, and sufficient conditions for the solubility of the inverse problem are obtained. Bibliography: 31 titles.
Formulas in inverse and ill-posed problems
Anikonov, Yu E
1997-01-01
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti; Rundell, William
2012-01-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical
On inverse problem of calculus of variations
Energy Technology Data Exchange (ETDEWEB)
Tao, Z-L [College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)], E-mail: zaolingt@nuist.edu.cn
2008-02-15
Using the semi-inverse method proposed by Ji-Huan He, variational principles are established for some nonlinear equations arising in physics, including the (p, 2p)-mZK equation, Klein-Gordon equation, sine-Gordon equation, Liouville equation, Dodd- Bullough-Mikhailov equation, and Tzitzeica-Dodd-Bullough equation.
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM
DEFF Research Database (Denmark)
Knudsen, Kim; Lassas, Matti; Mueller, Jennifer
2009-01-01
A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
This paper takes a different approach towards identiﬁcation of the thermal process in machining, using inverse heat transfer problem. Inverse heat transfer method allows the closest possible experimental and analytical approximation of thermal state for a machining process. Based on a temperature measured at any point ...
Spectral solution of the inverse Mie problem
Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.
2017-10-01
We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.
The importance of non-linearities in modern proton synchrotrons
International Nuclear Information System (INIS)
Wilson, E.J.N.
1977-01-01
The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)
Non-linear seismic analysis of structures coupled with fluid
International Nuclear Information System (INIS)
Descleve, P.; Derom, P.; Dubois, J.
1983-01-01
This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)
Applications of elliptic Carleman inequalities to Cauchy and inverse problems
Choulli, Mourad
2016-01-01
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.
The philosophical aspect of learning inverse problems of mathematical physics
Directory of Open Access Journals (Sweden)
Виктор Семенович Корнилов
2018-12-01
Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
LinvPy : a Python package for linear inverse problems
Beaud, Guillaume François Paul
2016-01-01
The goal of this project is to make a Python package including the tau-estimator algorithm to solve linear inverse problems. The package must be distributed, well documented, easy to use and easy to extend for future developers.
Carleman estimates and applications to inverse problems for hyperbolic systems
Bellassoued, Mourad
2017-01-01
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of wh...
A direct sampling method to an inverse medium scattering problem
Ito, Kazufumi; Jin, Bangti; Zou, Jun
2012-01-01
In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang; Youssef, Marzouk; Willcox, Karen
2014-01-01
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce
An inverse optimal control problem in the electrical discharge ...
Indian Academy of Sciences (India)
Marin Gostimirovic
2018-05-10
May 10, 2018 ... Keywords. EDM process; discharge energy; heat source parameters; inverse problem; optimization. 1. Introduction .... ation, thermal modeling of the EDM process would become ..... simulation of die-sinking EDM. CIRP Ann.
Inverse kinematics problem in robotics using neural networks
Choi, Benjamin B.; Lawrence, Charles
1992-01-01
In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.
The inverse problem of the magnetostatic nondestructive testing
International Nuclear Information System (INIS)
Pechenkov, A.N.; Shcherbinin, V.E.
2006-01-01
The inverse problem of magnetostatic nondestructive testing consists in the calculation of the shape and magnetic characteristics of a flaw in a uniform magnetized body with measurement of static magnetic field beyond the body. If the flaw does not contain any magnetic material, the inverse problem is reduced to identification of the shape and magnetic susceptibility of the substance. This case has been considered in the study [ru
Particle Swarm Optimization and Uncertainty Assessment in Inverse Problems
Directory of Open Access Journals (Sweden)
José L. G. Pallero
2018-01-01
Full Text Available Most inverse problems in the industry (and particularly in geophysical exploration are highly underdetermined because the number of model parameters too high to achieve accurate data predictions and because the sampling of the data space is scarce and incomplete; it is always affected by different kinds of noise. Additionally, the physics of the forward problem is a simplification of the reality. All these facts result in that the inverse problem solution is not unique; that is, there are different inverse solutions (called equivalent, compatible with the prior information that fits the observed data within similar error bounds. In the case of nonlinear inverse problems, these equivalent models are located in disconnected flat curvilinear valleys of the cost-function topography. The uncertainty analysis consists of obtaining a representation of this complex topography via different sampling methodologies. In this paper, we focus on the use of a particle swarm optimization (PSO algorithm to sample the region of equivalence in nonlinear inverse problems. Although this methodology has a general purpose, we show its application for the uncertainty assessment of the solution of a geophysical problem concerning gravity inversion in sedimentary basins, showing that it is possible to efficiently perform this task in a sampling-while-optimizing mode. Particularly, we explain how to use and analyze the geophysical models sampled by exploratory PSO family members to infer different descriptors of nonlinear uncertainty.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Inverse problems in vision and 3D tomography
Mohamad-Djafari, Ali
2013-01-01
The concept of an inverse problem is a familiar one to most scientists and engineers, particularly in the field of signal and image processing, imaging systems (medical, geophysical, industrial non-destructive testing, etc.) and computer vision. In imaging systems, the aim is not just to estimate unobserved images, but also their geometric characteristics from observed quantities that are linked to these unobserved quantities through the forward problem. This book focuses on imagery and vision problems that can be clearly written in terms of an inverse problem where an estimate for the image a
Quantum osp-invariant non-linear Schroedinger equation
International Nuclear Information System (INIS)
Kulish, P.P.
1985-04-01
The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)
Reconstruction Methods for Inverse Problems with Partial Data
DEFF Research Database (Denmark)
Hoffmann, Kristoffer
This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...
Stabilizing inverse problems by internal data
International Nuclear Information System (INIS)
Kuchment, Peter; Steinhauer, Dustin
2012-01-01
Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. (paper)
Stabilizing inverse problems by internal data
Kuchment, Peter
2012-07-30
Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. © 2012 IOP Publishing Ltd.
Inverse and Control Problems in Electromagnetics
1994-10-14
subject of multicriteria optimization has been most thoroughly developed in the literature of mathematical economics and is most often associated there...8217, Lecture Notes in Economics and Marhemcrical Systems. Vol. 152. Springer. Berlin. 1978. 6. Kirsch. A. and Wilde. P., "Tie optimization of directivity and...indentation D, The geometry of the problem is shown in Fig. 1. The domain the upper half wace , and a such that (E. H) and (E’, HI) of interest is that
An inverse problem approach to pattern recognition in industry
Directory of Open Access Journals (Sweden)
Ali Sever
2015-01-01
Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....
Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...
One-dimensional inverse problems of mathematical physics
Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R
1986-01-01
This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in
Inverse problems basics, theory and applications in geophysics
Richter, Mathias
2016-01-01
The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.
Inverse problems in ordinary differential equations and applications
Llibre, Jaume
2016-01-01
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
Coefficient Inverse Problem for Poisson's Equation in a Cylinder
Solov'ev, V. V.
2011-01-01
The inverse problem of determining the coefficient on the right-hand side of Poisson's equation in a cylindrical domain is considered. The Dirichlet boundary value problem is studied. Two types of additional information (overdetermination) can be specified: (i) the trace of the solution to the
Unfolding in particle physics: A window on solving inverse problems
International Nuclear Information System (INIS)
Spano, F.
2013-01-01
Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments. (authors)
DEFF Research Database (Denmark)
Schmidt, Johan Albrecht
’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...
Turbulence Nature and the Inverse Problem
Pyatnitsky, L. N
2009-01-01
Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscil...
Inverse planning for x-ray rotation therapy: a general solution of the inverse problem
International Nuclear Information System (INIS)
Oelfke, U.; Bortfeld, T.
1999-01-01
Rotation therapy with photons is currently under investigation for the delivery of intensity modulated radiotherapy (IMRT). An analytical approach for inverse treatment planning of this radiotherapy technique is described. The inverse problem for the delivery of arbitrary 2D dose profiles is first formulated and then solved analytically. In contrast to previously applied strategies for solving the inverse problem, it is shown that the most general solution for the fluence profiles consists of two independent solutions of different parity. A first analytical expression for both fluence profiles is derived. The mathematical derivation includes two different strategies, an elementary expansion of fluence and dose into polynomials and a more practical approach in terms of Fourier transforms. The obtained results are discussed in the context of previous work on this problem. (author)
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Regularization method for solving the inverse scattering problem
International Nuclear Information System (INIS)
Denisov, A.M.; Krylov, A.S.
1985-01-01
The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table
Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography
DEFF Research Database (Denmark)
Hoffmann, Kristoffer; Knudsen, Kim
2014-01-01
For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...
PREFACE: Inverse Problems in Applied Sciences—towards breakthrough
Cheng, Jin; Iso, Yuusuke; Nakamura, Gen; Yamamoto, Masahiro
2007-06-01
These are the proceedings of the international conference `Inverse Problems in Applied Sciences—towards breakthrough' which was held at Hokkaido University, Sapporo, Japan on 3-7 July 2006 (http://coe.math.sci.hokudai.ac.jp/sympo/inverse/). There were 88 presentations and more than 100 participants, and we are proud to say that the conference was very successful. Nowadays, many new activities on inverse problems are flourishing at many centers of research around the world, and the conference has successfully gathered a world-wide variety of researchers. We believe that this volume contains not only main papers, but also conveys the general status of current research into inverse problems. This conference was the third biennial international conference on inverse problems, the core of which is the Pan-Pacific Asian area. The purpose of this series of conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries, and to lead the organization of activities concerning inverse problems centered in East Asia. The first conference was held at City University of Hong Kong in January 2002 and the second was held at Fudan University in June 2004. Following the preceding two successes, the third conference was organized in order to extend the scope of activities and build useful bridges to the next conference in Seoul in 2008. Therefore this third biennial conference was intended not only to establish collaboration and links between researchers in Asia and leading researchers worldwide in inverse problems but also to nurture interdisciplinary collaboration in theoretical fields such as mathematics, applied fields and evolving aspects of inverse problems. For these purposes, we organized tutorial lectures, serial lectures and a panel discussion as well as conference research presentations. This volume contains three lecture notes from the tutorial and serial lectures, and 22 papers. Especially at this
Non-linear elastic deformations
Ogden, R W
1997-01-01
Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.
A Survey on Inverse Problems for Applied Sciences
Directory of Open Access Journals (Sweden)
Fatih Yaman
2013-01-01
Full Text Available The aim of this paper is to introduce inversion-based engineering applications and to investigate some of the important ones from mathematical point of view. To do this we employ acoustic, electromagnetic, and elastic waves for presenting different types of inverse problems. More specifically, we first study location, shape, and boundary parameter reconstruction algorithms for the inaccessible targets in acoustics. The inverse problems for the time-dependent differential equations of isotropic and anisotropic elasticity are reviewed in the following section of the paper. These problems were the objects of the study by many authors in the last several decades. The physical interpretations for almost all of these problems are given, and the geophysical applications for some of them are described. In our last section, an introduction with many links into the literature is given for modern algorithms which combine techniques from classical inverse problems with stochastic tools into ensemble methods both for data assimilation as well as for forecasting.
A tutorial on inverse problems for anomalous diffusion processes
International Nuclear Information System (INIS)
Jin, Bangti; Rundell, William
2015-01-01
Over the last two decades, anomalous diffusion processes in which the mean squares variance grows slower or faster than that in a Gaussian process have found many applications. At a macroscopic level, these processes are adequately described by fractional differential equations, which involves fractional derivatives in time or/and space. The fractional derivatives describe either history mechanism or long range interactions of particle motions at a microscopic level. The new physics can change dramatically the behavior of the forward problems. For example, the solution operator of the time fractional diffusion diffusion equation has only limited smoothing property, whereas the solution for the space fractional diffusion equation may contain weak singularity. Naturally one expects that the new physics will impact related inverse problems in terms of uniqueness, stability, and degree of ill-posedness. The last aspect is especially important from a practical point of view, i.e., stably reconstructing the quantities of interest. In this paper, we employ a formal analytic and numerical way, especially the two-parameter Mittag-Leffler function and singular value decomposition, to examine the degree of ill-posedness of several ‘classical’ inverse problems for fractional differential equations involving a Djrbashian–Caputo fractional derivative in either time or space, which represent the fractional analogues of that for classical integral order differential equations. We discuss four inverse problems, i.e., backward fractional diffusion, sideways problem, inverse source problem and inverse potential problem for time fractional diffusion, and inverse Sturm–Liouville problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning
International Nuclear Information System (INIS)
Hamman, E.; Zorgati, R.
1995-01-01
Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an 'optimization' type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append
DEFF Research Database (Denmark)
Du, Yigang
.3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS......) with a linear array transducer. The second harmonic imaging is obtained by a pulse inversion technique. The received data is beamformed by the SASB using a Beamformation Toolbox. In the measurements the lateral resolution at -6 dB is improved by 66% compared to the conventional imaging algorithm. There is also...... a 35% improvement for the lateral resolution at -6 dB compared with the sole harmonic imaging and a 46% improvement compared with merely using the SASB....
Data-Driven Model Order Reduction for Bayesian Inverse Problems
Cui, Tiangang
2014-01-06
One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve
Solution of Milne problem by Laplace transformation with numerical inversion
International Nuclear Information System (INIS)
Campos Velho, H.F. de.
1987-12-01
The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
Department of Production Engineering, Faculty of Technical Science, ... ductivity of manufacturing and high levels of machining quality and accuracy, are the most ... inverse problems are today successfully applied in identification, design, control and optimiza- ...... of Machine Tools and Manufacture, 35(5): 751–760.
A mathematical framework for inverse wave problems in heterogeneous media
Blazek, K.D.; Stolk, C.; Symes, W.W.
2013-01-01
This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations
A general approach to posterior contraction in nonparametric inverse problems
Knapik, Bartek; Salomond, Jean Bernard
In this paper, we propose a general method to derive an upper bound for the contraction rate of the posterior distribution for nonparametric inverse problems. We present a general theorem that allows us to derive contraction rates for the parameter of interest from contraction rates of the related
Toward precise solution of one-dimensional velocity inverse problems
International Nuclear Information System (INIS)
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent
International Nuclear Information System (INIS)
Kılıç, Emre; Eibert, Thomas F.
2015-01-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained
Energy Technology Data Exchange (ETDEWEB)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
An inverse Sturm–Liouville problem with a fractional derivative
Jin, Bangti
2012-05-01
In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.
Bayesian inverse problems for functions and applications to fluid mechanics
International Nuclear Information System (INIS)
Cotter, S L; Dashti, M; Robinson, J C; Stuart, A M
2009-01-01
In this paper we establish a mathematical framework for a range of inverse problems for functions, given a finite set of noisy observations. The problems are hence underdetermined and are often ill-posed. We study these problems from the viewpoint of Bayesian statistics, with the resulting posterior probability measure being defined on a space of functions. We develop an abstract framework for such problems which facilitates application of an infinite-dimensional version of Bayes theorem, leads to a well-posedness result for the posterior measure (continuity in a suitable probability metric with respect to changes in data), and also leads to a theory for the existence of maximizing the posterior probability (MAP) estimators for such Bayesian inverse problems on function space. A central idea underlying these results is that continuity properties and bounds on the forward model guide the choice of the prior measure for the inverse problem, leading to the desired results on well-posedness and MAP estimators; the PDE analysis and probability theory required are thus clearly dileneated, allowing a straightforward derivation of results. We show that the abstract theory applies to some concrete applications of interest by studying problems arising from data assimilation in fluid mechanics. The objective is to make inference about the underlying velocity field, on the basis of either Eulerian or Lagrangian observations. We study problems without model error, in which case the inference is on the initial condition, and problems with model error in which case the inference is on the initial condition and on the driving noise process or, equivalently, on the entire time-dependent velocity field. In order to undertake a relatively uncluttered mathematical analysis we consider the two-dimensional Navier–Stokes equation on a torus. The case of Eulerian observations—direct observations of the velocity field itself—is then a model for weather forecasting. The case of
Uhlmann, Gunther
2008-07-01
This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology
On form factors of the conjugated field in the non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
Applicability of refined Born approximation to non-linear equations
International Nuclear Information System (INIS)
Rayski, J.
1990-01-01
A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)
Numerical simulation of non-linear phenomena in geotechnical engineering
DEFF Research Database (Denmark)
Sørensen, Emil Smed
Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...
Solving of L0 norm constrained EEG inverse problem.
Xu, Peng; Lei, Xu; Hu, Xiao; Yao, Dezhong
2009-01-01
l(0) norm is an effective constraint used to solve EEG inverse problem for a sparse solution. However, due to the discontinuous and un-differentiable properties, it is an open issue to solve the l(0) norm constrained problem, which is usually instead solved by using some alternative functions like l(1) norm to approximate l(0) norm. In this paper, a continuous and differentiable function having the same form as the transfer function of Butterworth low-pass filter is introduced to approximate l(0) norm constraint involved in EEG inverse problem. The new approximation based approach was compared with l(1) norm and LORETA solutions on a realistic head model using simulated sources. The preliminary results show that this alternative approximation to l(0) norm is promising for the estimation of EEG sources with sparse distribution.
Application of the kernel method to the inverse geosounding problem.
Hidalgo, Hugo; Sosa León, Sonia; Gómez-Treviño, Enrique
2003-01-01
Determining the layered structure of the earth demands the solution of a variety of inverse problems; in the case of electromagnetic soundings at low induction numbers, the problem is linear, for the measurements may be represented as a linear functional of the electrical conductivity distribution. In this paper, an application of the support vector (SV) regression technique to the inversion of electromagnetic data is presented. We take advantage of the regularizing properties of the SV learning algorithm and use it as a modeling technique with synthetic and field data. The SV method presents better recovery of synthetic models than Tikhonov's regularization. As the SV formulation is solved in the space of the data, which has a small dimension in this application, a smaller problem than that considered with Tikhonov's regularization is produced. For field data, the SV formulation develops models similar to those obtained via linear programming techniques, but with the added characteristic of robustness.
Numerical investigation of the inverse blackbody radiation problem
International Nuclear Information System (INIS)
Xin Tan, Guo-zhen Yang, Ben-yuan Gu
1994-01-01
A numerical algorithm for the inverse blackbody radiation problem, which is the determination of the temperature distribution of a thermal radiator (TDTR) from its total radiated power spectrum (TRPS), is presented, based on the general theory of amplitude-phase retrieval. With application of this new algorithm, the ill-posed nature of the Fredholm equation of the first kind can be largely overcome and a convergent solution to high accuracy can be obtained. By incorporation of the hybrid input-output algorithm into our algorithm, the convergent process can be substantially expedited and the stagnation problem of the solution can be averted. From model calculations it is found that the new algorithm can also provide a robust reconstruction of the TDTR from the noise-corrupted data of the TRPS. Therefore the new algorithm may offer a useful approach to solving the ill-posed inverse problem. 18 refs., 9 figs
SIAM conference on inverse problems: Geophysical applications. Final technical report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
Integral geometry and inverse problems for hyperbolic equations
Romanov, V G
1974-01-01
There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Non-linear realizations and bosonic branes
International Nuclear Information System (INIS)
West, P.
2001-01-01
In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-01-01
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
A hybrid algorithm for solving inverse problems in elasticity
Directory of Open Access Journals (Sweden)
Barabasz Barbara
2014-12-01
Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
MAP estimators and their consistency in Bayesian nonparametric inverse problems
Dashti, M.
2013-09-01
We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ0. We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μy. Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager-Machlup functional defined on the Cameron-Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. © 2013 IOP Publishing Ltd.
MAP estimators and their consistency in Bayesian nonparametric inverse problems
International Nuclear Information System (INIS)
Dashti, M; Law, K J H; Stuart, A M; Voss, J
2013-01-01
We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map G applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ 0 . We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μ y . Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager–Machlup functional defined on the Cameron–Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of G(u) can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier–Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. (paper)
Potentials of the inverse scattering problem in the three-nucleon problem
International Nuclear Information System (INIS)
Pushkash, A.M.; Simenog, I.V.; Shapoval, D.V.
1993-01-01
Possibilities of using the method of the inverse scattering problem for describing simultaneously the two-nucleon and the low-energy three-nucleon data in the S-interaction approximation are examined. 20 refs., 3 figs., 1 tab
On multiple level-set regularization methods for inverse problems
International Nuclear Information System (INIS)
DeCezaro, A; Leitão, A; Tai, X-C
2009-01-01
We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional G α based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikhonov method. A multiple level-set algorithm is derived from the first-order optimality conditions for the Tikhonov functional G α , similarly as the iterated Tikhonov method. The proposed multiple level-set method is tested on an inverse potential problem. Numerical experiments show that the method is able to recover multiple objects as well as multiple contrast levels
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.
Relevance vector machine technique for the inverse scattering problem
International Nuclear Information System (INIS)
Wang Fang-Fang; Zhang Ye-Rong
2012-01-01
A novel method based on the relevance vector machine (RVM) for the inverse scattering problem is presented in this paper. The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered. The nonlinearity is embodied in the relation between the scattered field and the target property, which can be obtained through the RVM training process. Besides, rather than utilizing regularization, the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output. Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy, convergence, robustness, generalization, and improved performance in terms of sparse property in comparison with the support vector machine (SVM) based approach. (general)
Multi-frequency direct sampling method in inverse scattering problem
Kang, Sangwoo; Lambert, Marc; Park, Won-Kwang
2017-10-01
We consider the direct sampling method (DSM) for the two-dimensional inverse scattering problem. Although DSM is fast, stable, and effective, some phenomena remain unexplained by the existing results. We show that the imaging function of the direct sampling method can be expressed by a Bessel function of order zero. We also clarify the previously unexplained imaging phenomena and suggest multi-frequency DSM to overcome traditional DSM. Our method is evaluated in simulation studies using both single and multiple frequencies.
Quantum method of the inverse scattering problem. Pt. 1
International Nuclear Information System (INIS)
Sklyamin, E.K.; Takhtadzhyan, L.A.; Faddeev, L.D.
1978-12-01
In this work the authors use a formulation for the method of the inverse scattering problem for quantum-mechanical models of the field theory, that can be found in a quantization of these fully integrable systems. As the most important example serves the system (sinγ) 2 with the movement equation: γtt -γxx + m 2 /β sinβγ = 0 that is known under the specification Sine-Gordon-equation. (orig.) [de
Inverse Problems in Systems Biology: A Critical Review.
Guzzi, Rodolfo; Colombo, Teresa; Paci, Paola
2018-01-01
Systems Biology may be assimilated to a symbiotic cyclic interplaying between the forward and inverse problems. Computational models need to be continuously refined through experiments and in turn they help us to make limited experimental resources more efficient. Every time one does an experiment we know that there will be some noise that can disrupt our measurements. Despite the noise certainly is a problem, the inverse problems already involve the inference of missing information, even if the data is entirely reliable. So the addition of a certain limited noise does not fundamentally change the situation but can be used to solve the so-called ill-posed problem, as defined by Hadamard. It can be seen as an extra source of information. Recent studies have shown that complex systems, among others the systems biology, are poorly constrained and ill-conditioned because it is difficult to use experimental data to fully estimate their parameters. For these reasons was born the concept of sloppy models, a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. Furthermore the concept of sloppy models contains also the concept of un-identifiability, because the models are characterized by many parameters that are poorly constrained by experimental data. Then a strategy needs to be designed to infer, analyze, and understand biological systems. The aim of this work is to provide a critical review to the inverse problems in systems biology defining a strategy to determine the minimal set of information needed to overcome the problems arising from dynamic biological models that generally may have many unknown, non-measurable parameters.
Introduction to the 30th volume of Inverse Problems
Louis, Alfred K.
2014-01-01
The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and
From inverse problems to learning: a Statistical Mechanics approach
Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo
2018-01-01
We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.
Solution to the inversely stated transient source-receptor problem
International Nuclear Information System (INIS)
Sajo, E.; Sheff, J.R.
1995-01-01
Transient source-receptor problems are traditionally handled via the Boltzmann equation or through one of its variants. In the atmospheric transport of pollutants, meteorological uncertainties in the planetary boundary layer render only a few approximations to the Boltzmann equation useful. Often, due to the high number of unknowns, the atmospheric source-receptor problem is ill-posed. Moreover, models to estimate downwind concentration invariably assume that the source term is known. In this paper, an inverse methodology is developed, based on downwind measurement of concentration and that of meterological parameters to estimate the source term
The Neuroelectromagnetic Inverse Problem and the Zero Dipole Localization Error
Directory of Open Access Journals (Sweden)
Rolando Grave de Peralta
2009-01-01
Full Text Available A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.
Non linear identification applied to PWR steam generators
International Nuclear Information System (INIS)
Poncet, B.
1982-11-01
For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
International Nuclear Information System (INIS)
Moura, C.A. de.
1976-09-01
We propose an algorithm for computing the potential V(x) associated to the one-dimensional Schroedinger operator E identical to - d 2 /dx 2 + V(x) -infinite < x< infinite from knowledge of the S.matrix, more exactly, of one of the reelection coefficients. The convergence of the algorithm is guaranteed by the stability results obtained for both the direct and inverse problems
Source localization in electromyography using the inverse potential problem
van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.
2011-02-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.
Source localization in electromyography using the inverse potential problem
International Nuclear Information System (INIS)
Van den Doel, Kees; Ascher, Uri M; Pai, Dinesh K
2011-01-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Inverse problem for in vivo NMR spatial localization
Energy Technology Data Exchange (ETDEWEB)
Hasenfeld, A.C.
1985-11-01
The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.
Inverse problem for in vivo NMR spatial localization
International Nuclear Information System (INIS)
Hasenfeld, A.C.
1985-11-01
The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs
Numerical approach to the inverse convection-diffusion problem
International Nuclear Information System (INIS)
Yang, X-H; She, D-X; Li, J-Q
2008-01-01
In this paper, the inverse problem on source term identification in convection-diffusion equation is transformed into an optimization problem. To reduce the computational cost and improve computational accuracy for the optimization problem, a new algorithm, chaos real-coded hybrid-accelerating evolution algorithm (CRHAEA), is proposed, in which an initial population is generated by chaos mapping, and new chaos mutation and simplex evolution operation are used. With the shrinking of searching range, CRHAEA gradually directs to an optimal result with the excellent individuals obtained by real-coded evolution algorithm. Its convergence is analyzed. Its efficiency is demonstrated by 15 test functions. Numerical simulation shows that CRHAEA has some advantages over the real-coded accelerated evolution algorithm, the chaos algorithm and the pure random search algorithm
Incremental projection approach of regularization for inverse problems
Energy Technology Data Exchange (ETDEWEB)
Souopgui, Innocent, E-mail: innocent.souopgui@usm.edu [The University of Southern Mississippi, Department of Marine Science (United States); Ngodock, Hans E., E-mail: hans.ngodock@nrlssc.navy.mil [Naval Research Laboratory (United States); Vidard, Arthur, E-mail: arthur.vidard@imag.fr; Le Dimet, François-Xavier, E-mail: ledimet@imag.fr [Laboratoire Jean Kuntzmann (France)
2016-10-15
This paper presents an alternative approach to the regularized least squares solution of ill-posed inverse problems. Instead of solving a minimization problem with an objective function composed of a data term and a regularization term, the regularization information is used to define a projection onto a convex subspace of regularized candidate solutions. The objective function is modified to include the projection of each iterate in the place of the regularization. Numerical experiments based on the problem of motion estimation for geophysical fluid images, show the improvement of the proposed method compared with regularization methods. For the presented test case, the incremental projection method uses 7 times less computation time than the regularization method, to reach the same error target. Moreover, at convergence, the incremental projection is two order of magnitude more accurate than the regularization method.
Sequential Inverse Problems Bayesian Principles and the Logistic Map Example
Duan, Lian; Farmer, Chris L.; Moroz, Irene M.
2010-09-01
Bayesian statistics provides a general framework for solving inverse problems, but is not without interpretation and implementation problems. This paper discusses difficulties arising from the fact that forward models are always in error to some extent. Using a simple example based on the one-dimensional logistic map, we argue that, when implementation problems are minimal, the Bayesian framework is quite adequate. In this paper the Bayesian Filter is shown to be able to recover excellent state estimates in the perfect model scenario (PMS) and to distinguish the PMS from the imperfect model scenario (IMS). Through a quantitative comparison of the way in which the observations are assimilated in both the PMS and the IMS scenarios, we suggest that one can, sometimes, measure the degree of imperfection.
The isotope density inverse problem in multigroup neutron transport
International Nuclear Information System (INIS)
Zazula, J.M.
1981-01-01
The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)
Point source reconstruction principle of linear inverse problems
International Nuclear Information System (INIS)
Terazono, Yasushi; Matani, Ayumu; Fujimaki, Norio; Murata, Tsutomu
2010-01-01
Exact point source reconstruction for underdetermined linear inverse problems with a block-wise structure was studied. In a block-wise problem, elements of a source vector are partitioned into blocks. Accordingly, a leadfield matrix, which represents the forward observation process, is also partitioned into blocks. A point source is a source having only one nonzero block. An example of such a problem is current distribution estimation in electroencephalography and magnetoencephalography, where a source vector represents a vector field and a point source represents a single current dipole. In this study, the block-wise norm, a block-wise extension of the l p -norm, was defined as the family of cost functions of the inverse method. The main result is that a set of three conditions was found to be necessary and sufficient for block-wise norm minimization to ensure exact point source reconstruction for any leadfield matrix that admit such reconstruction. The block-wise norm that satisfies the conditions is the sum of the cost of all the observations of source blocks, or in other words, the block-wisely extended leadfield-weighted l 1 -norm. Additional results are that minimization of such a norm always provides block-wisely sparse solutions and that its solutions form cones in source space
A direct sampling method to an inverse medium scattering problem
Ito, Kazufumi
2012-01-10
In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.
Solution of inverse localization problem associated to multistatic radar system
Directory of Open Access Journals (Sweden)
Boutkhil M.
2016-01-01
Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.
On Lambda and Time Operators: the Inverse Intertwining Problem Revisited
Gómez-Cubillo, F.; Suchanecki, Z.; Villullas, S.
2011-07-01
An exact theory of irreversibility was proposed by Misra, Prigogine and Courbage, based on non-unitary similarity transformations Λ that intertwine reversible dynamics and irreversible ones. This would advocate the idea that irreversible behavior would originate at the microscopic level. Reversible evolution with an internal time operator have the intertwining property. Recently the inverse intertwining problem has been answered in the negative, that is, not every unitary evolution allowing such Λ-transformation has an internal time. This work contributes new results in this direction.
Time-reversed absorbing condition: application to inverse problems
International Nuclear Information System (INIS)
Assous, F; Kray, M; Nataf, F; Turkel, E
2011-01-01
The aim of this paper is to introduce time-reversed absorbing conditions in time-reversal methods. They enable one to 'recreate the past' without knowing the source which has emitted the signals that are back-propagated. We present two applications in inverse problems: the reduction of the size of the computational domain and the determination, from boundary measurements, of the location and volume of an unknown inclusion. The method does not rely on any a priori knowledge of the physical properties of the inclusion. Numerical tests with the wave and Helmholtz equations illustrate the efficiency of the method. This technique is fairly insensitive to noise in the data
Trinification, the hierarchy problem, and inverse seesaw neutrino masses
International Nuclear Information System (INIS)
Cauet, Christophe; Paes, Heinrich; Wiesenfeldt, Soeren
2011-01-01
In minimal trinification models light neutrino masses can be generated via a radiative seesaw mechanism, where the masses of the right-handed neutrinos originate from loops involving Higgs and fermion fields at the unification scale. This mechanism is absent in models aiming at solving or ameliorating the hierarchy problem, such as low-energy supersymmetry, since the large seesaw scale disappears. In this case, neutrino masses need to be generated via a TeV-scale mechanism. In this paper, we investigate an inverse seesaw mechanism and discuss some phenomenological consequences.
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
Directory of Open Access Journals (Sweden)
Fatemeh Mohammad
2014-05-01
Full Text Available In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011 1697-1715]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
The Adjoint Method for the Inverse Problem of Option Pricing
Directory of Open Access Journals (Sweden)
Shou-Lei Wang
2014-01-01
Full Text Available The estimation of implied volatility is a typical PDE inverse problem. In this paper, we propose the TV-L1 model for identifying the implied volatility. The optimal volatility function is found by minimizing the cost functional measuring the discrepancy. The gradient is computed via the adjoint method which provides us with an exact value of the gradient needed for the minimization procedure. We use the limited memory quasi-Newton algorithm (L-BFGS to find the optimal and numerical examples shows the effectiveness of the presented method.
One-dimensional scattering problem for inverse square potential
International Nuclear Information System (INIS)
Mineev, V.S.
1990-01-01
Analytical continuation of the solution for the Schroedinger equation of inverse square potential, together with the modified method for variation of constants makes it possible to construct admittable self-adjoint extensions and to completely analyze the respective scattering problem along the entire line. In this case, the current density conservation and the wave function continuity when passing through the singular point x=0 require, that a 8-shaped induced potential should be introduced in the Schroedinger equation. The relevant calculations have shown that the potential x -2 can be either absolutely penetrable or absolutely impenetrable. 16 refs
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer; Laleg-Kirati, Taous-Meriem; Liu, Da Yan
2016-01-01
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic
6th International Workshop on New Computational Methods for Inverse Problems
International Nuclear Information System (INIS)
2016-01-01
methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, nondestructive evaluation...). NCMIP 2016 was a one-day workshop held in May 2016 which attracted around seventy attendees. Each of the submitted papers has been reviewed by two reviewers. There have been eleven accepted papers. In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks: GDR ISIS, GDR MIA, GDR MOA, GDR Ondes. The program committee acknowledges the following research laboratories: CMLA, LMT, LURPA and SATIE. Eric Vourc'h and Thomas Rodet Workshop co-chairs: Eric Vourc'h, SATIE laboratory, Ecole Normale Supérieure de Cachan, CNRS, France Thomas Rodet, SATIE laboratory, Ecole Normale Supérieure de Cachan, CNRS, France Technical program committee: Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Laure Blanc-Féraud, I3S laboratory and INRIA Nice Sophia-Antipolis, France Antonin Chambolle, CMAP, Ecole Polytechnique, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Cécile Durieu, SATIE, ENS Cachan, CNRS, France Laurent Fribourg, LSV, ENS Cachan, CNRS, France Jerôme Idier, IRCCyN Laboratory, Ecole Centrale de Nantes, France Pierre-Yves Joubert, IEF, Paris-Sud University, CNRS, France Marc Lambert, Geeps Laboratory, CNRS, CentraleSupElec, Paris-Sud University, France Giacomo Oliveri, eledia research center/eledia@L2S group, University of Trento, Italy Dominique Lesselier, L2S Laboratory, CNRS, CentraleSupElec, Paris-Sud University, France Matteo Pastorino, DIBE, University of Genoa, Italy Gabriel Peyré, Ceremade laboratory, University of Paris Dauphine, France Anthony Quinn
Review on solving the inverse problem in EEG source analysis
Directory of Open Access Journals (Sweden)
Fabri Simon G
2008-11-01
Full Text Available Abstract In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF, SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF
Macroscopic and non-linear quantum games
International Nuclear Information System (INIS)
Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.
2005-01-01
Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)
Using Inverse Problem Methods with Surveillance Data in Pneumococcal Vaccination
Sutton, Karyn L.; Banks, H. T.; Castillo-Chavez, Carlos
2010-01-01
The design and evaluation of epidemiological control strategies is central to public health policy. While inverse problem methods are routinely used in many applications, this remains an area in which their use is relatively rare, although their potential impact is great. We describe methods particularly relevant to epidemiological modeling at the population level. These methods are then applied to the study of pneumococcal vaccination strategies as a relevant example which poses many challenges common to other infectious diseases. We demonstrate that relevant yet typically unknown parameters may be estimated, and show that a calibrated model may used to assess implemented vaccine policies through the estimation of parameters if vaccine history is recorded along with infection and colonization information. Finally, we show how one might determine an appropriate level of refinement or aggregation in the age-structured model given age-stratified observations. These results illustrate ways in which the collection and analysis of surveillance data can be improved using inverse problem methods. PMID:20209093
Digital holography of particles: benefits of the 'inverse problem' approach
International Nuclear Information System (INIS)
Gire, J; Denis, L; Fournier, C; Soulez, F; Ducottet, C; Thiébaut, E
2008-01-01
The potential of in-line digital holography to locate and measure the size of particles distributed throughout a volume (in one shot) has been established. These measurements are fundamental for the study of particle trajectories in fluid flow. The most important issues in digital holography today are poor depth positioning accuracy, transverse field-of-view limitations, border artifacts and computational burdens. We recently suggested an 'inverse problem' approach to address some of these issues for the processing of particle digital holograms. The described algorithm improves axial positioning accuracy, gives particle diameters with sub-micrometer accuracy, eliminates border effects and increases the size of the studied volume. This approach for processing particle holograms pushes back some classical constraints. For example, the Nyquist criterion is no longer a restriction for the recording step and the studied volume is no longer confined to the field of view delimited by the sensor borders. In this paper we present a review of the limitations commonly found in digital holography. We then discuss the benefits of the 'inverse problem' approach and the influence of some experimental parameters in this framework
Reconstructing the Hopfield network as an inverse Ising problem
International Nuclear Information System (INIS)
Huang Haiping
2010-01-01
We test four fast mean-field-type algorithms on Hopfield networks as an inverse Ising problem. The equilibrium behavior of Hopfield networks is simulated through Glauber dynamics. In the low-temperature regime, the simulated annealing technique is adopted. Although performances of these network reconstruction algorithms on the simulated network of spiking neurons are extensively studied recently, the analysis of Hopfield networks is lacking so far. For the Hopfield network, we found that, in the retrieval phase favored when the network wants to memory one of stored patterns, all the reconstruction algorithms fail to extract interactions within a desired accuracy, and the same failure occurs in the spin-glass phase where spurious minima show up, while in the paramagnetic phase, albeit unfavored during the retrieval dynamics, the algorithms work well to reconstruct the network itself. This implies that, as an inverse problem, the paramagnetic phase is conversely useful for reconstructing the network while the retrieval phase loses all the information about interactions in the network except for the case where only one pattern is stored. The performances of algorithms are studied with respect to the system size, memory load, and temperature; sample-to-sample fluctuations are also considered.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
NON-INVASIVE INVERSE PROBLEM IN CIVIL ENGINEERING
Directory of Open Access Journals (Sweden)
Jan Havelka
2017-11-01
Full Text Available In this contribution we focus on recovery of spatial distribution of material parameters utilizing only non-invasive boundary measurements. Such methods has gained its importance as imaging techniques in medicine, geophysics or archaeology. We apply similar principles for non-stationary heat transfer in civil engineering. In oppose to standard technique which rely on external loading devices, we assume the natural fluctuation of temperature throughout day and night can provide sufficient information to recover the underlying material parameters. The inverse problem was solved by a modified regularised Gauss-Newton iterative scheme and the underlying forward problem is solved with a finite element space-time discretisation. We show a successful reconstruction of material parameters on a synthetic example with real measurements. The virtual experiment also reveals the insensitivity to practical precision of sensor measurements.
Splines employment for inverse problem of nonstationary thermal conduction
International Nuclear Information System (INIS)
Nikonov, S.P.; Spolitak, S.I.
1985-01-01
An analytical solution has been obtained for an inverse problem of nonstationary thermal conduction which is faced in nonstationary heat transfer data processing when the rewetting in channels with uniform annular fuel element imitators is investigated. In solving the problem both boundary conditions and power density within the imitator are regularized via cubic splines constructed with the use of Reinsch algorithm. The solution can be applied for calculation of temperature distribution in the imitator and the heat flux in two-dimensional approximation (r-z geometry) under the condition that the rewetting front velocity is known, and in one-dimensional r-approximation in cases with negligible axial transport or when there is a lack of data about the temperature disturbance source velocity along the channel
The Inverse Problem of Identification of Hydrogen Permeability Model
Directory of Open Access Journals (Sweden)
Yury V. Zaika
2018-01-01
Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.
Optimization method for an evolutional type inverse heat conduction problem
International Nuclear Information System (INIS)
Deng Zuicha; Yu Jianning; Yang Liu
2008-01-01
This paper deals with the determination of a pair (q, u) in the heat conduction equation u t -u xx +q(x,t)u=0, with initial and boundary conditions u(x,0)=u 0 (x), u x vertical bar x=0 =u x vertical bar x=1 =0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced
Optimization method for an evolutional type inverse heat conduction problem
Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu
2008-01-01
This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.
Inverse problem and uncertainty quantification: application to compressible gas dynamics
International Nuclear Information System (INIS)
Birolleau, Alexandre
2014-01-01
This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr
Comparison of optimal design methods in inverse problems
International Nuclear Information System (INIS)
Banks, H T; Holm, K; Kappel, F
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst–Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667–77; De Gaetano A and Arino O 2000 J. Math. Biol. 40 136–68; Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979–90)
Comparison of optimal design methods in inverse problems
Banks, H. T.; Holm, K.; Kappel, F.
2011-07-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).
FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2012-09-01
, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, applications (bio-medical imaging, non-destructive evaluation etc). NCMIP 2012 was a one-day workshop. Each of the submitted papers was reviewed by 2 to 4 reviewers. Among the accepted papers, there are 8 oral presentations and 5 posters. Three international speakers were invited for a long talk. This second edition attracted 60 registered attendees in May 2012. NCMIP 2012 was supported by Institut Farman (ENS Cachan) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following laboratories CMLA, LMT, LSV, LURPA, SATIE, as well as DIGITEO Network. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop Co-chairs Laure Blanc-Féraud, I3S laboratory, CNRS, France Pierre-Yves Joubert, IEF laboratory, Paris-Sud University, CNRS, France Technical Program Committee Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Anthony Quinn, Trinity College, Dublin, Ireland Christian Rey, LMT, ENS Cachan, CNRS, France Joachim Weickert, Saarland University, Germany Local Chair Alejandro Mottini, Morpheme group I3S-INRIA Sophie Abriet, SATIE, ENS Cachan, CNRS, France Béatrice Bacquet, SATIE, ENS Cachan, CNRS, France Reviewers Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Laure Blanc-Féraud, I3S laboratory, CNRS, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK G
FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)
Blanc-Féraud, Laure; Joubert, Pierre-Yves
2013-10-01
aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2013 was a one-day workshop held in May 2013 which attracted around 60 attendees. Each of the submitted papers has been reviewed by three reviewers. Among the accepted papers, there are seven oral presentations, five posters and one invited poster (On a deconvolution challenge presented by C Vonesch from EPFL, Switzerland). In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following research laboratories CMLA, LMT, LSV, LURPA, SATIE. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop co-chair Laure Blanc-Féraud, I3S laboratory and INRIA Nice Sophia-Antipolis, France Pierre-Yves Joubert, IEF, Paris-Sud University, CNRS, France Technical program committee Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Nabil Anwer, LURPA, ENS Cachan, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Antonin Chambolle, CMAP, Ecole Polytechnique, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Cécile Durieu, SATIE, ENS Cachan, CNRS, France Gérard Favier, I3S Laboratory, University of Nice Sophia-Antipolis, France Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Dominique Lesselier, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Matteo
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Basis set expansion for inverse problems in plasma diagnostic analysis
Jones, B.; Ruiz, C. L.
2013-07-01
A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.
Basis set expansion for inverse problems in plasma diagnostic analysis
Energy Technology Data Exchange (ETDEWEB)
Jones, B.; Ruiz, C. L. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185 (United States)
2013-07-15
A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Non-linear Capital Taxation Without Commitment
Emmanuel Farhi; Christopher Sleet; Iván Werning; Sevin Yeltekin
2012-01-01
We study efficient non-linear taxation of labour and capital in a dynamic Mirrleesian model incorporating political economy constraints. Policies are chosen sequentially over time, without commitment. Our main result is that the marginal tax on capital income is progressive, in the sense that richer agents face higher marginal tax rates. Copyright , Oxford University Press.
Information criteria to estimate hyperparameters in groundwater inverse problems
Zanini, A.; Tanda, M. G.; Woodbury, A. D.
2017-12-01
One of the main issues in groundwater modeling is the knowledge of the hydraulic parameters such as transmissivity and storativity. In literature there are several efficacious inverse methods that are able to estimate these unknown properties. Most methods assume, as a priori knowledge, the form of the variogram (or covariance function) of the unknown parameters. The hyperparameters of the variogram (or covariance function) can be inferred from observations, assumed known or estimated. Information criteria are widely used in inverse problems in several disciplines (such as geophysics, hydrology, ...) to estimate the hyperparameters. In this work, in order to estimate the hyperparameters, we consider the Akaike Information Criterion (AIC) and the Akaike Bayesian Information Criterion (ABIC). AIC is computed as -2 ln[fitted model]+2 number of unknown parameters. The iterative procedure allows to identify the hyperparameters that minimize the AIC. The ABIC is similar to the AIC in form and is computed in terms of the Bayesian likelihood; it is appropriate when prior information is considered in the form of prior probability. ABIC = -2 ln[predictive distribution]+2 (number of hyperparameters). The predictive distribution is the normalizing constant that is at the denominator of the Bayes theorem and represents the pdf of observing the data with the uncertainty in the model parameters marginalized out of consideration. The correct hyperparameters are evaluated at the minimum value of the ABIC. In this work we compare the results obtained from AIC to ABIC, using a literature example and we describe pros and cons of the two approaches.
Solution accelerators for large scale 3D electromagnetic inverse problems
International Nuclear Information System (INIS)
Newman, Gregory A.; Boggs, Paul T.
2004-01-01
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti; Rundell, William
2012-01-01
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique
An inverse problem for a mathematical model of aquaponic agriculture
Bobak, Carly; Kunze, Herb
2017-01-01
Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.
Alloy design as an inverse problem of cluster expansion models
DEFF Research Database (Denmark)
Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren
2017-01-01
Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...
Using mixed data in the inverse scattering problem
International Nuclear Information System (INIS)
Lassaut, M.; Larsen, S.Y.; Sofianos, S.A.; Wallet, J.C.
2008-01-01
Consider the fixed-l inverse scattering problem. We show that the zeros of the regular solution of the Schroedinger equation, τ n (E), which are monotonic functions of the energy, determine a unique potential when the domain of the energy is such that the τ n (E) range from zero to infinity. This suggest that the use of the mixed data of phase-shifts (δ(l 0 , k),k ≥ k 0 ) set-theoretic union (δ(l,k 0 ),l ≥ l 0 ), for which the zeros of the regular solution are monotonic in both domains, and range from zero to infinity, offers the possibility of determining the potential in a unique way. (author)
Resolving the existence of Higgsinos in the LHC inverse problem
International Nuclear Information System (INIS)
Jung, Sunghoon
2014-01-01
The LHC inverse problem is infamously challenging when neutralinos and charginos are heavy and pure and other superparticles are decoupled. This limit is becoming more relevant to particle physics nowadays. Fortunately, in this limit, Higgsinos produce a distinctive signature if they are the LSPs or NLSPs. The identifying signature is the presence of equal numbers of Z bosons and Higgs bosons in NLSP productions and subsequent decays at hadron colliders. The signature is derived from the Goldstone equivalence theorem by which partial widths into Z and Higgs bosons are inherently related and from the fact that Higgsinos consist of two indistinguishable neutralinos. Thus it is valid in general for many supersymmetry models; exceptions may happen when Higgsino NLSPs decay to weakly coupled LSPs such as axinos or gravitinos.
On the inverse problem of dissipative scattering theory. 3
International Nuclear Information System (INIS)
Neidhardt, H.
1988-01-01
Considering a scattering theory in the class of contractions on Hilbert spaces one solves the inverse problem in an operaor-theoretical manner. The solution is obtained underthe very general assumptions that the free evolutions are different for different time directions that not only the perturbed or full evolutions but also the free evolutions are given by contractions. It is shown that the class of contractive Hankel operators can be viewed as a set of scattering operators. This implies the possibility that the scattering operator can be compact. Moreover, the result is applied to the so-called Lax-Phillips scattering theory with losses restoring a result of B.S. Pavlov on the completion of this theory in a quite different manner. 15 refs
Linear Algebraic Method for Non-Linear Map Analysis
International Nuclear Information System (INIS)
Yu, L.; Nash, B.
2009-01-01
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Inverse problem of Ocean Acoustic Tomography (OAT) - A numerical experiment
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.
Acoustic model simulation experiments related to the forward and inverse aspects of ocean tomography have been taken up with a view to estimate the vertical sound speed field by inverting the travel time data. Two methods of inversion have been...
Hermite Polynomials and the Inverse Problem for Collisionless Equilibria
Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.
2017-12-01
It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82
Comparative study of direct and inverse problems of cracked beams
Directory of Open Access Journals (Sweden)
Mahieddine Chettah
2018-01-01
Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply
Generalized non-linear Schroedinger hierarchy
International Nuclear Information System (INIS)
Aratyn, H.; Gomes, J.F.; Zimerman, A.H.
1994-01-01
The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy
Non-linear soil-structure interaction
International Nuclear Information System (INIS)
Wolf, J.P.
1984-01-01
The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt
Inverse Problems in Geodynamics Using Machine Learning Algorithms
Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.
2018-01-01
During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.
Non-linear Loudspeaker Unit Modelling
DEFF Research Database (Denmark)
Pedersen, Bo Rohde; Agerkvist, Finn T.
2008-01-01
Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
Subspace-based analysis of the ERT inverse problem
Ben Hadj Miled, Mohamed Khames; Miller, Eric L.
2004-05-01
In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.
Non-linear aeroelastic prediction for aircraft applications
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Useful tools for non-linear systems: Several non-linear integral inequalities
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.
2013-01-01
Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf
Direct sampling methods for inverse elastic scattering problems
Ji, Xia; Liu, Xiaodong; Xi, Yingxia
2018-03-01
We consider the inverse elastic scattering of incident plane compressional and shear waves from the knowledge of the far field patterns. Specifically, three direct sampling methods for location and shape reconstruction are proposed using the different component of the far field patterns. Only inner products are involved in the computation, thus the novel sampling methods are very simple and fast to be implemented. With the help of the factorization of the far field operator, we give a lower bound of the proposed indicator functionals for sampling points inside the scatterers. While for the sampling points outside the scatterers, we show that the indicator functionals decay like the Bessel functions as the sampling point goes away from the boundary of the scatterers. We also show that the proposed indicator functionals continuously dependent on the far field patterns, which further implies that the novel sampling methods are extremely stable with respect to data error. For the case when the observation directions are restricted into the limited aperture, we firstly introduce some data retrieval techniques to obtain those data that can not be measured directly and then use the proposed direct sampling methods for location and shape reconstructions. Finally, some numerical simulations in two dimensions are conducted with noisy data, and the results further verify the effectiveness and robustness of the proposed sampling methods, even for multiple multiscale cases and limited-aperture problems.
Solving Inverse Detection Problems Using Passive Radiation Signatures
International Nuclear Information System (INIS)
Favorite, Jeffrey A.; Armstrong, Jerawan C.; Vaquer, Pablo A.
2012-01-01
The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.
Beamforming Through Regularized Inverse Problems in Ultrasound Medical Imaging.
Szasz, Teodora; Basarab, Adrian; Kouame, Denis
2016-12-01
Beamforming (BF) in ultrasound (US) imaging has significant impact on the quality of the final image, controlling its resolution and contrast. Despite its low spatial resolution and contrast, delay-and-sum (DAS) is still extensively used nowadays in clinical applications, due to its real-time capabilities. The most common alternatives are minimum variance (MV) method and its variants, which overcome the drawbacks of DAS, at the cost of higher computational complexity that limits its utilization in real-time applications. In this paper, we propose to perform BF in US imaging through a regularized inverse problem based on a linear model relating the reflected echoes to the signal to be recovered. Our approach presents two major advantages: 1) its flexibility in the choice of statistical assumptions on the signal to be beamformed (Laplacian and Gaussian statistics are tested herein) and 2) its robustness to a reduced number of pulse emissions. The proposed framework is flexible and allows for choosing the right tradeoff between noise suppression and sharpness of the resulted image. We illustrate the performance of our approach on both simulated and experimental data, with in vivo examples of carotid and thyroid. Compared with DAS, MV, and two other recently published BF techniques, our method offers better spatial resolution, respectively contrast, when using Laplacian and Gaussian priors.
Inverse Ising problem in continuous time: A latent variable approach
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Time reversal imaging, Inverse problems and Adjoint Tomography}
Montagner, J.; Larmat, C. S.; Capdeville, Y.; Kawakatsu, H.; Fink, M.
2010-12-01
With the increasing power of computers and numerical techniques (such as spectral element methods), it is possible to address a new class of seismological problems. The propagation of seismic waves in heterogeneous media is simulated more and more accurately and new applications developed, in particular time reversal methods and adjoint tomography in the three-dimensional Earth. Since the pioneering work of J. Claerbout, theorized by A. Tarantola, many similarities were found between time-reversal methods, cross-correlations techniques, inverse problems and adjoint tomography. By using normal mode theory, we generalize the scalar approach of Draeger and Fink (1999) and Lobkis and Weaver (2001) to the 3D- elastic Earth, for theoretically understanding time-reversal method on global scale. It is shown how to relate time-reversal methods on one hand, with auto-correlations of seismograms for source imaging and on the other hand, with cross-correlations between receivers for structural imaging and retrieving Green function. Time-reversal methods were successfully applied in the past to acoustic waves in many fields such as medical imaging, underwater acoustics, non destructive testing and to seismic waves in seismology for earthquake imaging. In the case of source imaging, time reversal techniques make it possible an automatic location in time and space as well as the retrieval of focal mechanism of earthquakes or unknown environmental sources . We present here some applications at the global scale of these techniques on synthetic tests and on real data, such as Sumatra-Andaman (Dec. 2004), Haiti (Jan. 2010), as well as glacial earthquakes and seismic hum.
Non-linear calculation of PCRV using dynamic relaxation
International Nuclear Information System (INIS)
Schnellenbach, G.
1979-01-01
A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered
Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation
Klibanov, Michael V.; Romanov, Vladimir G.
2014-01-01
The inverse scattering problem of the reconstruction of the unknown potential with compact support in the 3-d Schr\\"odinger equation is considered. Only the modulus of the scattering complex valued wave field is known, whereas the phase is unknown. It is shown that the unknown potential can be reconstructed via the inverse Radon transform. Therefore, a long standing problem posed in 1977 by K. Chadan and P.C. Sabatier in their book "Inverse Problems in Quantum Scattering Theory" is solved.
Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters
2017-03-07
knowledge and capabilities in the use and development of inverse problem techniques to deduce atmospheric parameters. WORK COMPLETED The research completed...please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine
Children's strategies to solving additive inverse problems: a preliminary analysis
Ding, Meixia; Auxter, Abbey E.
2017-03-01
Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.
Non-linear dynamics in Parkinsonism
Directory of Open Access Journals (Sweden)
Olivier eDarbin
2013-12-01
Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2016-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries
Development of non-linear TWB parts
Energy Technology Data Exchange (ETDEWEB)
Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.
2005-07-01
New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)
Non linear effects in piezoelectric materials
Directory of Open Access Journals (Sweden)
Gonnard, P.
2002-02-01
Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε ^{T}_{33} and the piezoelectric constant and nul for the voltage constant d_{33} and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.
Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad ε^{T}_{33} y la constantes piezoléctrica d_{33} y nulos para la constante g_{33} y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.
From inverse problems in mathematical physiology to quantitative differential diagnoses.
Directory of Open Access Journals (Sweden)
Sven Zenker
2007-11-01
Full Text Available The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting, using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge. We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of
From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses
Zenker, Sven; Rubin, Jonathan; Clermont, Gilles
2007-01-01
The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses
Inverse Problem Approach for the Alignment of Electron Tomographic Series
International Nuclear Information System (INIS)
Tran, V.D.; Moreaud, M.; Thiebaut, E.; Denis, L.; Becker, J.M.
2014-01-01
In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physico-chemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nano-tomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nano-metric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We
A solution to the inverse problem in ocean acoustics
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.; Sastry, J.S.
stratified ocean, considering the range independent nature of the medium, geophysical inverse techniques are employed to reconstruct the sound speed profile. The reconstructed profile for a six layer ocean, with five energetic modes, is in good agreement...
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Solving inverse problems of mathematical physics by means of the PHOENICS software package
Energy Technology Data Exchange (ETDEWEB)
Matsevity, Y; Lushpenko, S [Institute for Problems in Machinery, National Academy of Sciences of Ukraine Pozharskogo, Kharkov (Ukraine)
1998-12-31
Several approaches on organizing solution of inverse problems by means of PHOENICS on the basis of the technique of automated fitting are proposing. A version of a `nondestructive` method of using PHOENICS in the inverse problem solution regime and the ways of altering the program in the case of introducing optimization facilities in it are under consideration. (author) 12 refs.
An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra
Rundell, William; Sacks, Paul
2013-01-01
A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative
Solving inverse problems of mathematical physics by means of the PHOENICS software package
Energy Technology Data Exchange (ETDEWEB)
Matsevity, Y.; Lushpenko, S. [Institute for Problems in Machinery, National Academy of Sciences of Ukraine Pozharskogo, Kharkov (Ukraine)
1997-12-31
Several approaches on organizing solution of inverse problems by means of PHOENICS on the basis of the technique of automated fitting are proposing. A version of a `nondestructive` method of using PHOENICS in the inverse problem solution regime and the ways of altering the program in the case of introducing optimization facilities in it are under consideration. (author) 12 refs.
International Nuclear Information System (INIS)
Ziqi Sun
1993-01-01
During the past few years a considerable interest has been focused on the inverse boundary value problem for the Schroedinger operator with a scalar (electric) potential. The popularity gained by this subject seems to be due to its connection with the inverse scattering problem at fixed energy, the inverse conductivity problem and other important inverse problems. This paper deals with an inverse boundary value problem for the Schroedinger operator with vector (electric and magnetic) potentials. As in the case of the scalar potential, results of this study would have immediate consequences in the inverse scattering problem for magnetic field at fixed energy. On the other hand, inverse boundary value problems for elliptic operators are of independent interest. The study is partly devoted to the understanding of the inverse boundary value problem for a class of general elliptic operator of second order. Note that a self-adjoint elliptic operator of second order with Δ as its principal symbol can always be written as a Schroedinger operator with vector potentials
Image denoising using non linear diffusion tensors
International Nuclear Information System (INIS)
Benzarti, F.; Amiri, H.
2011-01-01
Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
Non linear self consistency of microtearing modes
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.
1987-01-01
The self consistency of a microtearing turbulence is studied in non linear regimes where the ergodicity of the flux lines determines the electron response. The current which sustains the magnetic perturbation via the Ampere law results from the combines action of the radial electric field in the frame where the island chains are static and of the thermal electron diamagnetism. Numerical calculations show that at usual values of β pol in Tokamaks the turbulence can create a diffusion coefficient of order ν th p 2 i where p i is the ion larmor radius and ν th the electron ion collision frequency. On the other hand, collisionless regimes involving special profiles of each mode near the resonant surface seem possible
Non Linear Beam Dynamics Studies at SPEAR
International Nuclear Information System (INIS)
Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.
2011-01-01
The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
International Nuclear Information System (INIS)
Huang, C.-H.; Wu, H.-H.
2006-01-01
In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study
A projected back-tracking line-search for constrained interactive inverse kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten Pol; Erleben, Kenny
2011-01-01
Inverse kinematics is the problem of manipulating the pose of an articulated figure in order to achieve a desired goal disregarding inertia and forces. One can approach the problem as a non-linear optimization problem or as non-linear equation solving. The former approach is superior in its...... of joint limits in an interactive solver. This makes it possible to compute the pose in each frame without the discontinuities exhibited by existing key frame animation techniques....
International Nuclear Information System (INIS)
Barnea, N.; Liverts, E.
2010-01-01
In this paper we present an analytic expression for the Lorentz integral transform of an arbitrary response function expressed as a polynomial times a decaying exponent. The resulting expression is applied to the inversion problem of the Lorentz integral transform, simplifying the inversion procedure and improving the accuracy of the procedure. We have presented analytic formulae for a family of basis function often used in the inversion of the LIT function. These formulae allow for an efficient and accurate inversion. The quality and the stability of the resulting inversions were demonstrated through two different examples yielding outstanding results. (author)
The inverse problem: Ocean tides derived from earth tide observations
Kuo, J. T.
1978-01-01
Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.
Energy Technology Data Exchange (ETDEWEB)
Aguilo Valentin, Miguel Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
Convergence of hybrid methods for solving non-linear partial ...
African Journals Online (AJOL)
This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...
Non-linear dynamic response of reactor containment
International Nuclear Information System (INIS)
Takemori, T.; Sotomura, K.; Yamada, M.
1975-01-01
A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
An Inverse Problem Formulation Methodology for Stochastic Models
2010-05-02
form the surveillance data Infection control measures were implemented in the form of health care worker hand - hygiene before and after patients contact...manuscript derives from our interest in understanding the spread of infectious diseases in particular, nosocomial infections , in order to prevent major...given by the inverse of the parameter of the exponential distribution. A hand - hygiene policy applied to health care workers on isolated VRE colonized
Identification of the Thermophysical Properties of the Soil by Inverse Problem
Mansour , Salwa; Canot , Édouard; Muhieddine , Mohamad
2016-01-01
International audience; This paper introduces a numerical strategy to estimate the thermophysical properties of a saturated porous medium (volumetric heat capacity (ρC)s , thermal conductivity λs and porosity φ) where a phase change problem (liquid/vapor) appears due strong heating. The estimation of these properties is done by inverse problem knowing the heating curves at selected points of the medium. To solve the inverse problem, we use both the Damped Gauss Newton and the Levenberg Marqua...
Inverse problems in the design, modeling and testing of engineering systems
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
International Nuclear Information System (INIS)
Agaltsov, A. D.; Novikov, R. G.
2014-01-01
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given
Propagation of Singularities and Some Inverse Problems in Wave Propagation
National Research Council Canada - National Science Library
Symes, William W
1989-01-01
... in various useful coefficient classes, separation of scales,...We explain the essential role of travel time in the study of these problems, and show how its function may be generalized to multidimensional (i.e. non-layered) problems.
Non-Linear Metamodeling Extensions to the Robust Parameter Design of Computer Simulations
2016-09-15
The combined-array RSM approach has been applied to a piston simulation [11] and an economic order quantity inventory model [12, 13]. A textbook ...are limited when applied to simulations. In the former case, the mean and variance models can be inadequate due to a high level of non-linearity...highly non-linear nature of typical simulations. In the multi-response RPD problem, the objective is to find the optimal control parameter levels
Collage-based approaches for elliptic partial differential equations inverse problems
Yodzis, Michael; Kunze, Herb
2017-01-01
The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo
2014-01-01
forward models, can be more than an order of magnitude larger than the measurement uncertainty. We also found that the modeling error is strongly linked to the spatial variability of the assumed velocity field, i.e., the a priori velocity model.We discovered some general tools by which the modeling error...... synthetic ground-penetrating radar crosshole tomographic inverse problems. Ignoring the modeling error can lead to severe artifacts, which erroneously appear to be well resolved in the solution of the inverse problem. Accounting for the modeling error leads to a solution of the inverse problem consistent...
Solving inverse two-point boundary value problems using collage coding
Kunze, H.; Murdock, S.
2006-08-01
The method of collage coding, with its roots in fractal imaging, is the central tool in a recently established rigorous framework for solving inverse initial value problems for ordinary differential equations (Kunze and Vrscay 1999 Inverse Problems 15 745-70). We extend these ideas to solve the following inverse problem: given a function u(x) on [A, B] (which may be the interpolation of data points), determine a two-point boundary value problem on [A, B] which admits u(x) as a solution as closely as desired. The solution of such inverse problems may be useful in parameter estimation or determination of potential functional forms of the underlying differential equation. We discuss ways to improve results, including the development of a partitioning scheme. Several examples are considered.
An inverse problem for a one-dimensional time-fractional diffusion problem
Jin, Bangti
2012-06-26
We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique identifiability of the potential is shown for two cases, i.e. the flux at one end and the net flux, provided that the set of input sources forms a complete basis in L 2(0, 1). An algorithm of the quasi-Newton type is proposed for the efficient and accurate reconstruction of the coefficient from finite data, and the injectivity of the Jacobian is discussed. Numerical results for both exact and noisy data are presented. © 2012 IOP Publishing Ltd.
The inverse problem to the evaluation of magnetic fields
Caspi, S.; Helm, M.; Laslett, L. J.; Brady, V.
1992-12-01
In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative ('inverse') procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes them to evaluate the current distribution on the specified winding surface that would provide this desired field. We may note that in undertaking such an inverse procedure we would wish, on practical grounds, to avoid the use of any 'double-layer' distributions of current on the winding surface or interface but would not demand that no fields be generated in the exterior region, so that in this respect the goal would differ in detail from that discussed by other authors, in analogy to the distribution sought in electrostatics by the so-caged Green's equivalent stratum.
Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction
International Nuclear Information System (INIS)
Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.
1990-01-01
In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis
Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro
2005-01-01
The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in
Active Subspace Methods for Data-Intensive Inverse Problems
Energy Technology Data Exchange (ETDEWEB)
Wang, Qiqi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-04-27
The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.
Desmal, Abdulla; Bagci, Hakan
2014-01-01
A numerical framework that incorporates recently developed iterative shrinkage thresholding (IST) algorithms within the Born iterative method (BIM) is proposed for solving the two-dimensional inverse electromagnetic scattering problem. IST
DEFF Research Database (Denmark)
Lange, Katrine; Frydendall, Jan; Cordua, Knud Skou
2012-01-01
The frequency matching method defines a closed form expression for a complex prior that quantifies the higher order statistics of a proposed solution model to an inverse problem. While existing solution methods to inverse problems are capable of sampling the solution space while taking into account...... arbitrarily complex a priori information defined by sample algorithms, it is not possible to directly compute the maximum a posteriori model, as the prior probability of a solution model cannot be expressed. We demonstrate how the frequency matching method enables us to compute the maximum a posteriori...... solution model to an inverse problem by using a priori information based on multiple point statistics learned from training images. We demonstrate the applicability of the suggested method on a synthetic tomographic crosshole inverse problem....
SQUIDs and inverse problem techniques in nondestructive evaluation of metals
Bruno, A C
2001-01-01
Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.
Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time
Wang, Yu
1995-08-01
The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.
Duality in non-linear programming
Jeyalakshmi, K.
2018-04-01
In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.
Khan, Junaid Ahmad; Mustafa, M.
2018-03-01
Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.
Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Solving inverse problems for biological models using the collage method for differential equations.
Capasso, V; Kunze, H E; La Torre, D; Vrscay, E R
2013-07-01
In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.
Collage-type approach to inverse problems for elliptic PDEs on perforated domains
Directory of Open Access Journals (Sweden)
Herb E. Kunze
2015-02-01
Full Text Available We present a collage-based method for solving inverse problems for elliptic partial differential equations on a perforated domain. The main results of this paper establish a link between the solution of an inverse problem on a perforated domain and the solution of the same model on a domain with no holes. The numerical examples at the end of the paper show the goodness of this approach.
Review of the inverse scattering problem at fixed energy in quantum mechanics
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
International Nuclear Information System (INIS)
Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A
2009-01-01
The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
Well-posedness of inverse problems for systems with time dependent parameters
DEFF Research Database (Denmark)
Banks, H. T.; Pedersen, Michael
2009-01-01
on the data of the problem. We also consider well-posedness as well as finite element type approximations in associated inverse problems. The problem above is a weak formulation that includes models in abstract differential operator form that include plate, beam and shell equations with several important...
International Nuclear Information System (INIS)
Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.
2016-10-01
The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)
Integral equations of the first kind, inverse problems and regularization: a crash course
International Nuclear Information System (INIS)
Groetsch, C W
2007-01-01
This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided
A non-Linear transport model for determining shale rock characteristics
Ali, Iftikhar; Malik, Nadeem
2016-04-01
Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007
Non-linear iterative strategy for nem refinement and extension
International Nuclear Information System (INIS)
Engrand, P.R.; Maldonado, G.I.; Al-Chalabi, R.; Turinsky, P.J.
1994-10-01
The following work is related to the non-linear iterative strategy developed by K. Smith to solve the Nodal Expansion Method (NEM) representation of the neutron diffusion equations. We show how to improve this strategy and how to adapt it to time dependant problems. This work has been done in the NESTLE code, developed at North Carolina State University. When using Smith's strategy, one ends up with a two-node problem which corresponds to a matrix with a fixed structure and a size of 16 x 16 (for a 2 group representation). We show how to reduce this matrix into 2 equivalent systems which sizes are 4 x 4 and 8 x 8. The whole problem needs many of these 2 node problems solution. Therefore the gain in CPU time reaches 45% in the nodal part of the code. To adapt Smith's strategy to time dependent problems, the idea is to get the same structure of the 2 node problem system as in steady-state calculation. To achieve this, one has to approximate the values of the past time-step and of the previous by a second order polynomial and to treat it as a source term. We show here how to make this approximation consistent and accurate. (authors). 1 tab., 2 refs
Magnetodynamic non-linearity of electric properties of uncompensated metals
International Nuclear Information System (INIS)
Sobol', V.R.; Mazurenko, O.N.
2001-01-01
Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids
On modulated complex non-linear dynamical systems
International Nuclear Information System (INIS)
Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.
1999-01-01
This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed
Non-linear calibration models for near infrared spectroscopy
DEFF Research Database (Denmark)
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-01-01
by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...
Robust C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...
The ''INVERSE PROBLEM'' to the evaluation of magnetic fields
International Nuclear Information System (INIS)
Caspi, S.; Helm, M.; Laslett, L.J.
1996-01-01
In the design of superconducting magnet elements, such as may be required to guide and focus ions in a particle accelerator, one frequently premises some particular current distribution and then proceeds to compute the consequent magnetic field through use of the laws of Biot and Savart or of Ampere. When working in this manner one of course may need to revise frequently the postulated current distribution before arriving at a resulting magnetic field of acceptable field quality. It therefore is of interest to consider an alternative (inverse) procedure in which one specifies a desired character for the field required in the region interior to the winding and undertakes then to evaluate the current distribution on the specified winding surface that would provide this desired field. By evaluating the specified potential in the region interior to the winding along the interface, the authors have determined that a relaxation solution to the potential in the region outside the winding can be converged and used to calculate wire location. They have demonstrated this method by applying a slightly modified version of the program POISSON to a periodic alternating sinusoidal quadrupole field
Directory of Open Access Journals (Sweden)
Junaid Ahmad Khan
2018-03-01
Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
On rational approximation methods for inverse source problems
Rundell, William; Hanke, Martin
2011-01-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace's equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
The algebraic method of the scattering inverse problem solution under untraditional statements
Popushnoj, M N
2001-01-01
The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated
Non linear structures seismic analysis by modal synthesis
International Nuclear Information System (INIS)
Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.
1987-01-01
The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr
SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA
Tanuj Kumar Pandey; Vinod Kumar
2014-01-01
The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...
Hamiltonian structures of some non-linear evolution equations
International Nuclear Information System (INIS)
Tu, G.Z.
1983-06-01
The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)
International Nuclear Information System (INIS)
Azimi, A.; Hannani, S.K.; Farhanieh, B.
2005-01-01
In this article, a comparison between two iterative inverse techniques to solve simultaneously two unknown functions of axisymmetric transient inverse heat conduction problems in semi complex geometries is presented. The multi-block structured grid together with blocked-interface nodes is implemented for geometric decomposition of physical domain. Numerical scheme for solution of transient heat conduction equation is the finite element method with frontal technique to solve algebraic system of discrete equations. The inverse heat conduction problem involves simultaneous unknown time varying heat generation and time-space varying boundary condition estimation. Two parameter-estimation techniques are considered, Levenberg-Marquardt scheme and conjugate gradient method with adjoint problem. Numerically computed exact and noisy data are used for the measured transient temperature data needed in the inverse solution. The results of the present study for a configuration including two joined disks with different heights are compared to those of exact heat source and temperature boundary condition, and show good agreement. (author)
Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura
2014-05-01
Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed
Liouville's theorem and the method of the inverse problem
International Nuclear Information System (INIS)
Its, A.R.
1985-01-01
An approach to the investigation of the Zakharov-Shabat equations is developed. This approach is based on a classical theorem of Liouville and is the synthesis of ''finite-zone'' integration, the matrix Riemann problem method and the theory of isomonodromy deformations of differential equations. The effectiveness of the proposed scheme is demonstrated by developing ''dressing procedures'' for the Bullough-Dodd equation
Uniqueness of inverse scattering problem in local quantum physics
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br
2001-06-01
It is shown that the a Bisognano-Wichmann-Unruh inspired formulation of local quantum physics which starts from wedge-localized algebras, leads to a uniqueness proof for the scattering problem. The important mathematical tool is the thermal KMS aspect of localization and its strengthening by the requirement of crossing symmetry for generalized formfactors. (author)
On uniqueness of an inverse problem in electromagnetic obstacle scattering for an impedance cylinder
International Nuclear Information System (INIS)
Nakamura, Gen; Wang, Haibing; Sleeman, Brian D
2012-01-01
We consider an inverse problem for the scattering of an obliquely incident electromagnetic wave by an impedance cylinder. In previous work, we have shown that the direct scattering problem is governed by a pair of Helmholtz equations subject to coupled oblique boundary conditions, where the wave number depends on the frequency and the incident angle with respect to the axis of the cylinder. In this paper, we are concerned with the inverse problem of uniquely identifying the cross-section of an unknown cylinder and the impedance function from the far-field patterns at fixed frequency and a range of incident angles. A uniqueness result for such an inverse scattering problem is established. Our method is based on the analyticity of solution to the direct scattering problem, which is justified by using the Lax–Phillips method together with the perturbation theory of Fredholm operators. (paper)
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Uniqueness for the inverse backscattering problem for angularly controlled potentials
International Nuclear Information System (INIS)
Rakesh; Uhlmann, Gunther
2014-01-01
We consider the problem of recovering a smooth, compactly supported potential on R 3 from its backscattering data. We show that if two such potentials have the same backscattering data and the difference of the two potentials has controlled angular derivatives, then the two potentials are identical. In particular, if two potentials differ by a finite linear combination of spherical harmonics with radial coefficients and have the same backscattering data then the two potentials are identical. (paper)
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
Apagyi, B; Scheid, W
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure.
Solution of the Cox-Thompson inverse scattering problem using finite set of phase shifts
International Nuclear Information System (INIS)
Apagyi, Barnabas; Harman, Zoltan; Scheid, Werner
2003-01-01
A system of nonlinear equations is presented for the solution of the Cox-Thompson inverse scattering problem (1970 J. Math. Phys. 11 805) at fixed energy. From a given finite set of phase shifts for physical angular momenta, the nonlinear equations determine related sets of asymptotic normalization constants and nonphysical (shifted) angular momenta from which all quantities of interest, including the inversion potential itself, can be calculated. As a first application of the method we use input data consisting of a finite set of phase shifts calculated from Woods-Saxon and box potentials representing interactions with diffuse or sharp surfaces, respectively. The results for the inversion potentials, their first moments and asymptotic properties are compared with those provided by the Newton-Sabatier quantum inversion procedure. It is found that in order to achieve inversion potentials of similar quality, the Cox-Thompson method requires a smaller set of phase shifts than the Newton-Sabatier procedure
Estimation of non-linear effective permeability of magnetic materials with fine structure
International Nuclear Information System (INIS)
Waki, H.; Igarashi, H.; Honma, T.
2006-01-01
This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P G [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1998-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
Energy Technology Data Exchange (ETDEWEB)
Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)
1997-12-31
The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.
Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems
International Nuclear Information System (INIS)
Helin, T; Burger, M
2015-01-01
A demanding challenge in Bayesian inversion is to efficiently characterize the posterior distribution. This task is problematic especially in high-dimensional non-Gaussian problems, where the structure of the posterior can be very chaotic and difficult to analyse. Current inverse problem literature often approaches the problem by considering suitable point estimators for the task. Typically the choice is made between the maximum a posteriori (MAP) or the conditional mean (CM) estimate. The benefits of either choice are not well-understood from the perspective of infinite-dimensional theory. Most importantly, there exists no general scheme regarding how to connect the topological description of a MAP estimate to a variational problem. The recent results by Dashti and others (Dashti et al 2013 Inverse Problems 29 095017) resolve this issue for nonlinear inverse problems in Gaussian framework. In this work we improve the current understanding by introducing a novel concept called the weak MAP (wMAP) estimate. We show that any MAP estimate in the sense of Dashti et al (2013 Inverse Problems 29 095017) is a wMAP estimate and, moreover, how the wMAP estimate connects to a variational formulation in general infinite-dimensional non-Gaussian problems. The variational formulation enables to study many properties of the infinite-dimensional MAP estimate that were earlier impossible to study. In a recent work by the authors (Burger and Lucka 2014 Maximum a posteriori estimates in linear inverse problems with logconcave priors are proper bayes estimators preprint) the MAP estimator was studied in the context of the Bayes cost method. Using Bregman distances, proper convex Bayes cost functions were introduced for which the MAP estimator is the Bayes estimator. Here, we generalize these results to the infinite-dimensional setting. Moreover, we discuss the implications of our results for some examples of prior models such as the Besov prior and hierarchical prior. (paper)
A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication
Tillema, Erik; Gatza, Andrew
2016-01-01
We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…
NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS
NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI
2017-01-01
In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...
Statistical method for resolving the photon-photoelectron-counting inversion problem
International Nuclear Information System (INIS)
Wu Jinlong; Li Tiejun; Peng, Xiang; Guo Hong
2011-01-01
A statistical inversion method is proposed for the photon-photoelectron-counting statistics in quantum key distribution experiment. With the statistical viewpoint, this problem is equivalent to the parameter estimation for an infinite binomial mixture model. The coarse-graining idea and Bayesian methods are applied to deal with this ill-posed problem, which is a good simple example to show the successful application of the statistical methods to the inverse problem. Numerical results show the applicability of the proposed strategy. The coarse-graining idea for the infinite mixture models should be general to be used in the future.
A gradient based algorithm to solve inverse plane bimodular problems of identification
Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing
2018-02-01
This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.
Inverse problem theory methods for data fitting and model parameter estimation
Tarantola, A
2002-01-01
Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi
Two numerical methods for an inverse problem for the 2-D Helmholtz equation
Gryazin, Y A; Lucas, T R
2003-01-01
Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form
Directory of Open Access Journals (Sweden)
Kairi Kasemets
2013-01-01
Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.
On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs
Karve, Pranav M.; Kucukcoban, Sezgin; Kallivokas, Loukas F.
2014-01-01
to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem
Bayes procedures for adaptive inference in inverse problems for the white noise model
Knapik, B.T.; Szabó, B.T.; van der Vaart, A.W.; van Zanten, J.H.
2016-01-01
We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed
Observation and inverse problems in coupled cell networks
International Nuclear Information System (INIS)
Joly, Romain
2012-01-01
A coupled cell network is a model for many situations such as food webs in ecosystems, cellular metabolism and economic networks. It consists in a directed graph G, each node (or cell) representing an agent of the network and each directed arrow representing which agent acts on which. It yields a system of differential equations .x(t)=f(x(t)), where the component i of f depends only on the cells x j (t) for which the arrow j → i exists in G. In this paper, we investigate the observation problems in coupled cell networks: can one deduce the behaviour of the whole network (oscillations, stabilization, etc) by observing only one of the cells? We show that the natural observation properties hold for almost all the interactions f
Wave propagation in non-linear media
Broer, L.J.F.
1965-01-01
The problem of the propagation of electromagnetic waves through solids is essentially one of interaction between light quanta and matter. The most fundamental and general treatment of this subject is therefore undoubtedly based on the quantummechanical theory of this interaction. Nevertheless, a
International Nuclear Information System (INIS)
Van Aert, S.; Chen, J.H.; Van Dyck, D.
2010-01-01
A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
Inverse problem for the mean-field monomer-dimer model with attractive interaction
International Nuclear Information System (INIS)
Contucci, Pierluigi; Luzi, Rachele; Vernia, Cecilia
2017-01-01
The inverse problem method is tested for a class of monomer-dimer statistical mechanics models that contain also an attractive potential and display a mean-field critical point at a boundary of a coexistence line. The inversion is obtained by analytically identifying the parameters in terms of the correlation functions and via the maximum-likelihood method. The precision is tested in the whole phase space and, when close to the coexistence line, the algorithm is used together with a clustering method to take care of the underlying possible ambiguity of the inversion. (paper)
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Non-linearity aspects in the design of submarine pipelines
Fernández, M.L.
1981-01-01
An arbitrary attempt has been made to classify and discuss some non-linearity aspects related to design, construction and operation of submarine pipelines. Non-linearities usually interrelate and take part of a comprehensive design, making difficult to quantify their individual influence or
Non-linear dynamics of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Linearity and Non-linearity of Photorefractive effect in Materials ...
African Journals Online (AJOL)
In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...
Algorithms for non-linear M-estimation
DEFF Research Database (Denmark)
Madsen, Kaj; Edlund, O; Ekblom, H
1997-01-01
In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...
Some mathematical problems in non-linear Physics
International Nuclear Information System (INIS)
1983-01-01
The main results contained in this report are the following: I) A general analysis of non-autonomous conserved densities for simple linear evolution systems. II) Partial differential systems within a wide class are converted into Lagrange an form. III) Rigorous criteria for existence of integrating factor matrices. IV) Isolation of all third-order evolution equations with high order symmetries and conservation laws. (Author) 3 refs
THE DIDACTIC ANALYSIS OF STUDIES ON THE INVERSE PROBLEMS FOR THE DIFFERENTIAL EQUATIONS
Directory of Open Access Journals (Sweden)
В С Корнилов
2017-12-01
Full Text Available In article results of the didactic analysis of the organization and carrying out seminar classes in the inverse problems for the differential equations for students of higher educational institutions of the physical and mathematical directions of preparation are discussed. Such analysis includes a general characteristic of mathematical content of seminar occupations, the analysis of structure of seminar occupation, the analysis of realization of the developing and educational purposes, allocation of didactic units and informative means which have to be acquired by students when training each section of content of training in the inverse problems and other important psychology and pedagogical aspects. The attention to establishment of compliance to those of seminar occupations to lecture material and identification of functions in teaching and educational process which are carried out at the solution of the inverse problems, and also is paid to need to show various mathematical receptions and methods of their decision. Such didactic analysis helps not only to reveal such inverse problems at which solution students can collectively join in creative process of search of their decision, but also effectively organize control of assimilation of knowledge and abilities of students on the inverse problems for the differential equations.
Non-linear dielectric monitoring of biological suspensions
International Nuclear Information System (INIS)
Treo, E F; Felice, C J
2007-01-01
Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response
A Bayesian setting for an inverse problem in heat transfer
Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul
2014-01-01
In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.
A Bayesian setting for an inverse problem in heat transfer
Ruggeri, Fabrizio
2014-01-06
In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Directory of Open Access Journals (Sweden)
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
A solution approach for non-linear analysis of concrete members
International Nuclear Information System (INIS)
Hadi, N. M.; Das, S.
1999-01-01
Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,
Efficient generalized Golub-Kahan based methods for dynamic inverse problems
Chung, Julianne; Saibaba, Arvind K.; Brown, Matthew; Westman, Erik
2018-02-01
We consider efficient methods for computing solutions to and estimating uncertainties in dynamic inverse problems, where the parameters of interest may change during the measurement procedure. Compared to static inverse problems, incorporating prior information in both space and time in a Bayesian framework can become computationally intensive, in part, due to the large number of unknown parameters. In these problems, explicit computation of the square root and/or inverse of the prior covariance matrix is not possible, so we consider efficient, iterative, matrix-free methods based on the generalized Golub-Kahan bidiagonalization that allow automatic regularization parameter and variance estimation. We demonstrate that these methods for dynamic inversion can be more flexible than standard methods and develop efficient implementations that can exploit structure in the prior, as well as possible structure in the forward model. Numerical examples from photoacoustic tomography, space-time deblurring, and passive seismic tomography demonstrate the range of applicability and effectiveness of the described approaches. Specifically, in passive seismic tomography, we demonstrate our approach on both synthetic and real data. To demonstrate the scalability of our algorithm, we solve a dynamic inverse problem with approximately 43 000 measurements and 7.8 million unknowns in under 40 s on a standard desktop.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Random fixed point equations and inverse problems using "collage method" for contraction mappings
Kunze, H. E.; La Torre, D.; Vrscay, E. R.
2007-10-01
In this paper we are interested in the direct and inverse problems for the following class of random fixed point equations T(w,x(w))=x(w) where is a given operator, [Omega] is a probability space and X is a Polish metric space. The inverse problem is solved by recourse to the collage theorem for contractive maps. We then consider two applications: (i) random integral equations, and (ii) random iterated function systems with greyscale maps (RIFSM), for which noise is added to the classical IFSM.
Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.
Kalenichenko, V. V.
A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.
Inverse Problems in Geosciences: Modelling the Rock Properties of an Oil Reservoir
DEFF Research Database (Denmark)
Lange, Katrine
. We have developed and implemented the Frequency Matching method that uses the closed form expression of the a priori probability density function to formulate an inverse problem and compute the maximum a posteriori solution to it. Other methods for computing models that simultaneously fit data...... of the subsurface of the reservoirs. Hence the focus of this work has been on acquiring models of spatial parameters describing rock properties of the subsurface using geostatistical a priori knowledge and available geophysical data. Such models are solutions to often severely under-determined, inverse problems...
Hybrid inverse problems for a system of Maxwell’s equations
International Nuclear Information System (INIS)
Bal, Guillaume; Zhou, Ting
2014-01-01
This paper concerns the quantitative step of the medical imaging modality thermo-acoustic tomography (TAT). We model the radiation propagation by a system of Maxwell’s equations. We show that the index of refraction of light and the absorption coefficient (conductivity) can be uniquely and stably reconstructed from a sufficiently large number of TAT measurements. Our method is based on verifying that the linearization of the inverse problem forms a redundant elliptic system of equations. We also observe that the reconstructions are qualitatively quite different from the setting where radiation is modeled by a scalar Helmholtz equation as in Bal G et al (2011 Inverse Problems 27 055007). (paper)
Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis
Directory of Open Access Journals (Sweden)
Bárbara D. L. Ferreira
2013-01-01
Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.
Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art
Directory of Open Access Journals (Sweden)
Herb E. Kunze
2014-01-01
Full Text Available We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on a perforated domain.
Energy Technology Data Exchange (ETDEWEB)
Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)
2017-01-15
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.
International Nuclear Information System (INIS)
Balci, Murat; Gundogdu, Omer
2017-01-01
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed
Mathematical and Numerical Methods for Non-linear Beam Dynamics
International Nuclear Information System (INIS)
Herr, W
2014-01-01
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
International Nuclear Information System (INIS)
Wu, Sheng-Jhih; Chu, Moody T
2017-01-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing–Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations. (paper)
Henten, van E.J.; Schenk, E.J.J.; Willigenburg, van L.G.; Meuleman, J.; Barreiro, P.
2010-01-01
The paper presents results of research on an inverse kinematics algorithm that has been used in a functional model of a cucumber-harvesting robot consisting of a redundant P6R manipulator. Within a first generic approach, the inverse kinematics problem was reformulated as a non-linear programming
Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara
2012-10-01
Inverse problems can usually be modelled as operator equations in infinite-dimensional spaces with a forward operator acting between Hilbert or Banach spaces—a formulation which quite often also serves as the basis for defining and analyzing solution methods. The additional amount of structure and geometric interpretability provided by the concept of an inner product has rendered these methods amenable to a convergence analysis, a fact which has led to a rigorous and comprehensive study of regularization methods in Hilbert spaces over the last three decades. However, for numerous problems such as x-ray diffractometry, certain inverse scattering problems and a number of parameter identification problems in PDEs, the reasons for using a Hilbert space setting seem to be based on conventions rather than an appropriate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, non-Hilbertian regularization and data fidelity terms incorporating a priori information on solution and noise, such as general Lp-norms, TV-type norms, or the Kullback-Leibler divergence, have recently become very popular. These facts have motivated intensive investigations on regularization methods in Banach spaces, a topic which has emerged as a highly active research field within the area of inverse problems. Meanwhile some of the most well-known regularization approaches, such as Tikhonov-type methods requiring the solution of extremal problems, and iterative ones like the Landweber method, the Gauss-Newton method, as well as the approximate inverse method, have been investigated for linear and nonlinear operator equations in Banach spaces. Convergence with rates has been proven and conditions on the solution smoothness and on the structure of nonlinearity have been formulated. Still, beyond the existing results a large number of challenging open questions have arisen, due to the more involved handling of general Banach spaces and the larger variety
The inverse problems of reconstruction in the X-rays, gamma or positron tomographic imaging systems
International Nuclear Information System (INIS)
Grangeat, P.
1999-01-01
The revolution in imagery, brought by the tomographic technic in the years 70, allows the computation of local values cartography for the attenuation or the emission activity. The reconstruction techniques thus allow the connection from integral measurements to characteristic information distribution by inversion of the measurement equations. They are a main application of the solution technic for inverse problems. In a first part the author recalls the physical principles for measures in X-rays, gamma and positron imaging. Then he presents the various problems with their associated inversion techniques. The third part is devoted to the activity sector and examples, to conclude in the last part with the forecast. (A.L.B.)
Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium
International Nuclear Information System (INIS)
Sofiyev, A.H.; Kuruoglu, N.
2013-01-01
In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated
Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR
Energy Technology Data Exchange (ETDEWEB)
Kebadze, B V; Adamovski, L A
1975-06-01
Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.
Fourier imaging of non-linear structure formation
International Nuclear Information System (INIS)
Brandbyge, Jacob; Hannestad, Steen
2017-01-01
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.
Linear and non-linear optics of condensed matter
International Nuclear Information System (INIS)
McLean, T.P.
1977-01-01
Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)
Fourier imaging of non-linear structure formation
Energy Technology Data Exchange (ETDEWEB)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)
2017-04-01
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.
Sphaleron in a non-linear sigma model
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1989-08-01
We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)
Alternative theories of the non-linear negative mass instability
International Nuclear Information System (INIS)
Channell, P.J.
1974-01-01
A theory non-linear negative mass instability is extended to include resistance. The basic assumption is explained physically and an alternative theory is offered. The two theories are compared computationally. 7 refs., 8 figs
The non-linear paradigm: The climate system as an egg box''
International Nuclear Information System (INIS)
Iversen, Trond
2000-01-01
The article is the last of three dealing with the problems of climatic forecasting. It presents various ways of applying models and points out that regarding the climate system as non-linear and chaotic may be useful for interpreting observations and models. Some applications of the paradigm are presented. The emphasis is on climatic changes due to energy and human activities
Non-Linear Multi-Physics Analysis and Multi-Objective Optimization in Electroheating Applications
Czech Academy of Sciences Publication Activity Database
di Barba, P.; Doležel, Ivo; Mognaschi, M. E.; Savini, A.; Karban, P.
2014-01-01
Roč. 50, č. 2 (2014), s. 7016604-7016604 ISSN 0018-9464 Institutional support: RVO:61388998 Keywords : coupled multi-physics problems * finite element method * non-linear equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.386, year: 2014
Gain scheduling for non-linear time-delay systems using approximated model
Pham, H.T.; Lim, J.T
2012-01-01
The authors investigate a regulation problem of non-linear systems driven by an exogenous signal and time-delay in the input. In order to compensate for the input delay, they propose a reduction transformation containing the past information of the control input. Then, by utilising the Euler
Scene matching based on non-linear pre-processing on reference image and sensed image
Institute of Scientific and Technical Information of China (English)
Zhong Sheng; Zhang Tianxu; Sang Nong
2005-01-01
To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.
Solving non-linear Horn clauses using a linear Horn clause solver
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre
2016-01-01
In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....
Single-nary philosophy for non-linear study of mechanics of materials
International Nuclear Information System (INIS)
Tran, C.
2005-01-01
Non-linear study of mechanics of materials is formulated in this paper as a problem of meta-intelligent system analysis. Non-linearity will be singled out as an important concept for understanding of high-order complex systems. Through single-nary thinking, which will be represented in this work, we introduce a modification of Aristotelian philosophy using modal logic and multi-valued logic (these logics we call 'high-order' logic). Next, non-linear cause - effect relations are expressed through non-additive measures and multiple-information aggregation principles based on fuzzy integration. The study of real time behaviors, required experiences and intuition, will be realized using truth measures (non-additive measures) and a procedure for information processing in intelligence levels. (author)
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Heterotic sigma models and non-linear strings
International Nuclear Information System (INIS)
Hull, C.M.
1986-01-01
The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)
Non-linear realization of α0 -extended supersymmetry
International Nuclear Information System (INIS)
Nishino, Hitoshi
2000-01-01
As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time
Non-linear programming method in optimization of fast reactors
International Nuclear Information System (INIS)
Pavelesku, M.; Dumitresku, Kh.; Adam, S.
1975-01-01
Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)
On the solution of the inverse scattering problem on a ray
International Nuclear Information System (INIS)
Egikyan, R.S.; Zhidkov, E.P.
1988-01-01
Quantum inverse scattering problem (ISP) is considered within the framework of two-particle scattering for local interaction case depending only on the scattering between particles. Constructing the solution of secondary integral equation solution of ISP is described in the clear image. Numerical calculations are conducted using a direct method
On the Quantum Inverse problem for the continuous Heisenberg spin chain with axial anisotropy
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Chanda, P.K.
1986-06-01
We have considered the Quantum Inverse problem for the continuous form of Heisenberg spin chain with anisotropy. The form of quantum R-matrix, the commutation rules for the scattering data, and the explicit structure of the excitation spectrum are obtained. (author)
On the inverse problem of the calculus of variations in field theory
International Nuclear Information System (INIS)
Henneaux, M.
1984-01-01
The inverse problem of the calculus of variations is investigated in the case of field theory. Uniqueness of the action principle is demonstrated for the vector Laplace equation in a non-decomposable Riemannian space, as well as for the harmonic map equation. (author)
Presymplectic current and the inverse problem of the calculus of variations
Khavkine, I.
2013-01-01
The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a
Control and System Theory, Optimization, Inverse and Ill-Posed Problems
1988-09-14
Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The
Large scale inverse problems computational methods and applications in the earth sciences
Scheichl, Robert; Freitag, Melina A; Kindermann, Stefan
2013-01-01
This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology
Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca
2017-10-01
In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \
International Nuclear Information System (INIS)
Chaichian, M.; Kulish, P. P.
1978-04-01
Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)
Physics-based models for measurement correlations: application to an inverse Sturm–Liouville problem
International Nuclear Information System (INIS)
Bal, Guillaume; Ren Kui
2009-01-01
In many inverse problems, the measurement operator, which maps objects of interest to available measurements, is a smoothing (regularizing) operator. Its inverse is therefore unbounded and as a consequence, only the low-frequency component of the object of interest is accessible from inevitably noisy measurements. In many inverse problems however, the neglected high-frequency component may significantly affect the measured data. Using simple scaling arguments, we characterize the influence of the high-frequency component. We then consider situations where the correlation function of such an influence may be estimated by asymptotic expansions, for instance as a random corrector in homogenization theory. This allows us to consistently eliminate the high-frequency component and derive a closed form, more accurate, inverse problem for the low-frequency component of the object of interest. We present the asymptotic expression of the correlation matrix of the eigenvalues in a Sturm–Liouville problem with unknown potential. We propose an iterative algorithm for the reconstruction of the potential from knowledge of the eigenvalues and show that using the approximate correlation matrix significantly improves the reconstructions
The black-body radiation inversion problem, its instability and a new universal function set method
International Nuclear Information System (INIS)
Ye, JiPing; Ji, FengMin; Wen, Tao; Dai, Xian-Xi; Dai, Ji-Xin; Evenson, William E.
2006-01-01
The black-body radiation inversion (BRI) problem is ill-posed and requires special techniques to achieve stable solutions. In this Letter, the universal function set method (UFS), is developed in BRI. An improved unique existence theorem is proposed. Asymptotic behavior control (ABC) is introduced. A numerical example shows that practical calculations are possible with UFS
On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak
International Nuclear Information System (INIS)
Demidov, A.; Petrova, V.; Silantiev, V.
1996-01-01
Theorems of existence of simply connected 'plasma' domain for the cylindrical case of the Grad-Shafranov equation Δu = F(u) are given. For the inverse problem upper and lower estimates of normal derivative of u on the boundary of the 'plasma' domain are obtained. (author)
A general approach to regularizing inverse problems with regional data using Slepian wavelets
Michel, Volker; Simons, Frederik J.
2017-12-01
Slepian functions are orthogonal function systems that live on subdomains (for example, geographical regions on the Earth’s surface, or bandlimited portions of the entire spectrum). They have been firmly established as a useful tool for the synthesis and analysis of localized (concentrated or confined) signals, and for the modeling and inversion of noise-contaminated data that are only regionally available or only of regional interest. In this paper, we consider a general abstract setup for inverse problems represented by a linear and compact operator between Hilbert spaces with a known singular-value decomposition (svd). In practice, such an svd is often only given for the case of a global expansion of the data (e.g. on the whole sphere) but not for regional data distributions. We show that, in either case, Slepian functions (associated to an arbitrarily prescribed region and the given compact operator) can be determined and applied to construct a regularization for the ill-posed regional inverse problem. Moreover, we describe an algorithm for constructing the Slepian basis via an algebraic eigenvalue problem. The obtained Slepian functions can be used to derive an svd for the combination of the regionalizing projection and the compact operator. As a result, standard regularization techniques relying on a known svd become applicable also to those inverse problems where the data are regionally given only. In particular, wavelet-based multiscale techniques can be used. An example for the latter case is elaborated theoretically and tested on two synthetic numerical examples.
SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information
DEFF Research Database (Denmark)
Hansen, Thomas Mejer; Cordua, Knud Skou; Caroline Looms, Majken
2013-01-01
on the solution. The combined states of information (i.e. the solution to the inverse problem) is a probability density function typically referred to as the a posteriori probability density function. We present a generic toolbox for Matlab and Gnu Octave called SIPPI that implements a number of methods...
Inverse problem of the vibrational band gap of periodically supported beam
Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei
2017-04-01
The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.
A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems
International Nuclear Information System (INIS)
Le Louër, Frédérique
2015-01-01
The present work is concerned with the shape reconstruction problem of isotropic elastic inclusions from far-field data obtained by the scattering of a finite number of time-harmonic incident plane waves. This paper aims at completing the theoretical framework which is necessary for the application of geometric optimization tools to the inverse transmission problem in elastodynamics. The forward problem is reduced to systems of boundary integral equations following the direct and indirect methods initially developed for solving acoustic transmission problems. We establish the Fréchet differentiability of the boundary to far-field operator and give a characterization of the first Fréchet derivative and its adjoint operator. Using these results we propose an inverse scattering algorithm based on the iteratively regularized Gauß–Newton method and show numerical experiments in the special case of star-shaped obstacles. (paper)
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group
International Nuclear Information System (INIS)
Wang, S.J.
1993-04-01
An algebraic approach to the inverse eigenvalue problem for a quantum system with a dynamical group is formulated for the first time. One dimensional problem is treated explicitly in detail for both the finite dimensional and infinite dimensional Hilbert spaces. For the finite dimensional Hilbert space, the su(2) algebraic representation is used; while for the infinite dimensional Hilbert space, the Heisenberg-Weyl algebraic representation is employed. Fourier expansion technique is generalized to the generator space, which is suitable for analysis of irregular spectra. The polynormial operator basis is also used for complement, which is appropriate for analysis of some simple Hamiltonians. The proposed new approach is applied to solve the classical inverse Sturn-Liouville problem and to study the problems of quantum regular and irregular spectra. (orig.)
Guliyev, Namig J.
2008-01-01
International audience; Inverse problems of recovering the coefficients of Sturm–Liouville problems with the eigenvalue parameter linearly contained in one of the boundary conditions are studied: 1) from the sequences of eigenvalues and norming constants; 2) from two spectra. Necessary and sufficient conditions for the solvability of these inverse problems are obtained.
Oblique projections and standard-form transformations for discrete inverse problems
DEFF Research Database (Denmark)
Hansen, Per Christian
2013-01-01
This tutorial paper considers a specific computational tool for the numerical solution of discrete inverse problems, known as the standard-form transformation, by which we can treat general Tikhonov regularization problems efficiently. In the tradition of B. N. Datta's expositions of numerical li...... linear algebra, we use the close relationship between oblique projections, pseudoinverses, and matrix computations to derive a simple geometric motivation and algebraic formulation of the standard-form transformation....
An inverse source problem of the Poisson equation with Cauchy data
Directory of Open Access Journals (Sweden)
Ji-Chuan Liu
2017-05-01
Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.
Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form
Directory of Open Access Journals (Sweden)
A. Neamaty
2015-03-01
Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.
Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form
A. Neamaty; Sh. Akbarpoor; A. Dabbaghian
2015-01-01
In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.
Banks, H T; Holm, Kathleen; Robbins, Danielle
2010-11-01
We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error which produces non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods.
A numerical study of non-linear crack tip parameters
Directory of Open Access Journals (Sweden)
F.V. Antunes
2015-07-01
Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Posterior consistency for Bayesian inverse problems through stability and regression results
International Nuclear Information System (INIS)
Vollmer, Sebastian J
2013-01-01
In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior. (paper)
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
Analysis of forward and inverse problems in chemical dynamics and spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Rabitz, H. [Princeton Univ., NJ (United States)
1993-12-01
The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.
Sensitivity-based virtual fields for the non-linear virtual fields method
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2017-09-01
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.
Invisibility problem in acoustics, electromagnetism and heat transfer. Inverse design method
Alekseev, G.; Tokhtina, A.; Soboleva, O.
2017-10-01
Two approaches (direct design and inverse design methods) for solving problems of designing devices providing invisibility of material bodies of detection using different physical fields - electromagnetic, acoustic and static are discussed. The second method is applied for solving problems of designing cloaking devices for the 3D stationary thermal scattering model. Based on this method the design problems under study are reduced to respective control problems. The material parameters (radial and tangential heat conductivities) of the inhomogeneous anisotropic medium filling the thermal cloak and the density of auxiliary heat sources play the role of controls. A unique solvability of direct thermal scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and numerical algorithms for solving particular thermal cloaking problem are proposed.
From capture to simulation: connecting forward and inverse problems in fluids
Gregson, James; Ihrke, Ivo; Thuerey, Nils; Heidrich, Wolfgang
2014-01-01
We explore the connection between fluid capture, simulation and proximal methods, a class of algorithms commonly used for inverse problems in image processing and computer vision. Our key finding is that the proximal operator constraining fluid velocities to be divergence-free is directly equivalent to the pressure-projection methods commonly used in incompressible flow solvers. This observation lets us treat the inverse problem of fluid tracking as a constrained flow problem all while working in an efficient, modular framework. In addition it lets us tightly couple fluid simulation into flow tracking, providing a global prior that significantly increases tracking accuracy and temporal coherence as compared to previous techniques. We demonstrate how we can use these improved results for a variety of applications, such as re-simulation, detail enhancement, and domain modification. We furthermore give an outlook of the applications beyond fluid tracking that our proximal operator framework could enable by exploring the connection of deblurring and fluid guiding.
Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation
International Nuclear Information System (INIS)
Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-01-01
Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)