WorldWideScience

Sample records for non-linear inverse problem

  1. Automatic versus manual model differentiation to compute sensitivities and solve non-linear inverse problems

    Science.gov (United States)

    Elizondo, D.; Cappelaere, B.; Faure, Ch.

    2002-04-01

    Emerging tools for automatic differentiation (AD) of computer programs should be of great benefit for the implementation of many derivative-based numerical methods such as those used for inverse modeling. The Odyssée software, one such tool for Fortran 77 codes, has been tested on a sample model that solves a 2D non-linear diffusion-type equation. Odyssée offers both the forward and the reverse differentiation modes, that produce the tangent and the cotangent models, respectively. The two modes have been implemented on the sample application. A comparison is made with a manually-produced differentiated code for this model (MD), obtained by solving the adjoint equations associated with the model's discrete state equations. Following a presentation of the methods and tools and of their relative advantages and drawbacks, the performances of the codes produced by the manual and automatic methods are compared, in terms of accuracy and of computing efficiency (CPU and memory needs). The perturbation method (finite-difference approximation of derivatives) is also used as a reference. Based on the test of Taylor, the accuracy of the two AD modes proves to be excellent and as high as machine precision permits, a good indication of Odyssée's capability to produce error-free codes. In comparison, the manually-produced derivatives (MD) sometimes appear to be slightly biased, which is likely due to the fact that a theoretical model (state equations) and a practical model (computer program) do not exactly coincide, while the accuracy of the perturbation method is very uncertain. The MD code largely outperforms all other methods in computing efficiency, a subject of current research for the improvement of AD tools. Yet these tools can already be of considerable help for the computer implementation of many numerical methods, avoiding the tedious task of hand-coding the differentiation of complex algorithms.

  2. Non-Linear Logging Parameters Inversion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,

  3. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    Science.gov (United States)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  4. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  5. Non linear inversion of gravity gradients and the GGI gradiometer

    Science.gov (United States)

    Talwani, Manik

    2011-12-01

    All gradiometers currently operating for exploration in the field are based on Lockheed Martin's GGI gradiometer. The working of this gradiometer is described and a method for robust non linear inversion of gravity gradients is presented. The inversion method involves obtaining the gradient response of a trial body consisting of vertical rectangular prisms. The inversion adjusts the depth to the tops or bases of the prisms. In the trial model all the prisms are not required to have the same area of cross section or the same density (which can also be allowed to vary with depth). The depth to the tops and bottoms of each prism can also be different. This response is compared with the observed values of gradient and through an iterative procedure, the difference is minimized in a least square sense to arrive at a best fitting model by varying the position of the tops or bottoms of the prisms. Each gradient can be individually inverted or one or more gradients can be jointly inverted. The method is extended to invert gravity values individually or jointly with gradient values. The use of Differential Curvature, a quantity which is directly obtained by current gradiometers in use and which is an invariant under a rotation in the horizontal plane, is emphasized. Synthetic examples as well as a field example of inversion are given.

  6. THE APPLICATION OF GENETIC ALGORITHM IN NON-LINEAR INVERSION OF ROCK MECHANICS PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    赵晓东

    1998-01-01

    The non-linear inversion of rock mechanics parameters based on genetic algorithm ispresented. The principle and step of genetic algorithm is also given. A brief discussion of thismethod and an application example is presented at the end of this paper. From the satisfied re-sult, quick, convenient and practical new approach is developed to solve this kind of problems.

  7. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  8. Non-linear magnetorheological behaviour of an inverse ferrofluid

    NARCIS (Netherlands)

    de Gans, B.J.; Hoekstra, Hans; Mellema, J.

    1999-01-01

    The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made

  9. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  10. Fast non-linear gravity inversion in spherical coordinates with application to the South American Moho

    Science.gov (United States)

    Uieda, Leonardo; Barbosa, Valéria C. F.

    2016-10-01

    Estimating the relief of the Moho from gravity data is a computationally intensive non-linear inverse problem. What is more, the modeling must take the Earths curvature into account when the study area is of regional scale or greater. We present a regularized non-linear gravity inversion method that has a low computational footprint and employs a spherical Earth approximation. To achieve this, we combine the highly efficient Bott's method with smoothness regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The computational efficiency of our method is attained by harnessing the fact that all matrices involved are sparse. The inversion results are controlled by three hyper-parameters: the regularization parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate the regularization parameter using the method of hold-out cross-validation. Additionally, we estimate the density-contrast and the reference depth using knowledge of the Moho depth at certain points. We apply the proposed method to estimate the Moho depth for the South American continent using satellite gravity data and seismological data. The final Moho model is in accordance with previous gravity-derived models and seismological data. The misfit to the gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismological data are greatest in the Guyana Shield, the central Solimões and Amazonas Basins, the Paraná Basins, and the Borborema province. These differences suggest the existence of crustal or mantle density anomalies that were unaccounted for during gravity data processing.

  11. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  12. The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    ZANG Zhen-chun

    2001-01-01

    In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.

  13. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... is obtained by assuming that the a priori beliefs about the solution before having observed any data can be described by a prior distribution. The solution to the statistical inverse problem is then given by the posterior distribution obtained by Bayes' formula. Hence the solution of an ill-posed inverse...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation...

  14. Linearized versus non-linear inverse methods for seismic localization of underground sources

    DEFF Research Database (Denmark)

    Oh, Geok Lian; Jacobsen, Finn

    2013-01-01

    The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem...... Difference elastic wave-field numerical method. In this paper, the accuracy and performance of the linear beamformer and nonlinear inverse methods to localize a underground seismic source are checked and compared using computer generated synthetic experimental data. © 2013 Acoustical Society of America....

  15. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation

    Directory of Open Access Journals (Sweden)

    G. Forget

    2015-10-01

    Full Text Available This paper presents the ECCO v4 non-linear inverse modeling framework and its baseline solution for the evolving ocean state over the period 1992–2011. Both components are publicly available and subjected to regular, automated regression tests. The modeling framework includes sets of global conformal grids, a global model setup, implementations of data constraints and control parameters, an interface to algorithmic differentiation, as well as a grid-independent, fully capable Matlab toolbox. The baseline ECCO v4 solution is a dynamically consistent ocean state estimate without unidentified sources of heat and buoyancy, which any interested user will be able to reproduce accurately. The solution is an acceptable fit to most data and has been found to be physically plausible in many respects, as documented here and in related publications. Users are being provided with capabilities to assess model–data misfits for themselves. The synergy between modeling and data synthesis is asserted through the joint presentation of the modeling framework and the state estimate. In particular, the inverse estimate of parameterized physics was instrumental in improving the fit to the observed hydrography, and becomes an integral part of the ocean model setup available for general use. More generally, a first assessment of the relative importance of external, parametric and structural model errors is presented. Parametric and external model uncertainties appear to be of comparable importance and dominate over structural model uncertainty. The results generally underline the importance of including turbulent transport parameters in the inverse problem.

  16. Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions

    Directory of Open Access Journals (Sweden)

    Dr. M. S. Annie Christi

    2016-11-01

    Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.

  17. Scenarios for solving a non-linear transportation problem in multi-agent systems

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    2017-01-01

    We introduce and provide an evaluation on two scenarios and related algorithms for implementation of a multi-agent system to solve a type of non-linear transportation problem using distributed optimization algorithms based on dual decomposition and consensus. The underlying fundamental optimization...

  18. Towards adjoint-based inversion of time-dependent mantle convection with non-linear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-01-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature- and strain rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a preconditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  19. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation

    Directory of Open Access Journals (Sweden)

    G. Forget

    2015-05-01

    Full Text Available This paper presents the ECCO v4 non-linear inverse modeling framework and its baseline solution for the evolving ocean state over the period 1992–2011. Both components are publicly available and highly integrated with the MITgcm. They are both subjected to regular, automated regression tests. The modeling framework includes sets of global conformal grids, a global model setup, implementations of model-data constraints and adjustable control parameters, an interface to algorithmic differentiation, as well as a grid-independent, fully capable Matlab toolbox. The reference ECCO v4 solution is a dynamically consistent ocean state estimate (ECCO-Production, release 1 without un-identified sources of heat and buoyancy, which any interested user will be able to reproduce accurately. The solution is an acceptable fit to most data and has been found physically plausible in many respects, as documented here and in related publications. Users are being provided with capabilities to assess model-data misfits for themselves. The synergy between modeling and data synthesis is asserted through the joint presentation of the modeling framework and the state estimate. In particular, the inverse estimate of parameterized physics was instrumental in improving the fit to the observed hydrography, and becomes an integral part of the ocean model setup available for general use. More generally, a first assessment of the relative importance of external, parametric and structural model errors is presented. Parametric and external model uncertainties appear to be of comparable importance and dominate over structural model uncertainty. The results generally underline the importance of including turbulent transport parameters in the inverse problem.

  20. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    Science.gov (United States)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  1. Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems

    Directory of Open Access Journals (Sweden)

    J. Thomas

    2016-09-01

    Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.

  2. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    -numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  3. Solving Directly Two Point Non Linear Boundary Value Problems Using Direct Adams Moulton Method

    Directory of Open Access Journals (Sweden)

    Zanariah A. Majid

    2011-01-01

    Full Text Available Problem statement: In this study, a direct method of Adams Moulton type was developed for solving non linear two point Boundary Value Problems (BVPs directly. Most of the existence researches involving BVPs will reduced the problem to a system of first order Ordinary Differential Equations (ODEs. This approach is very well established but it obviously will enlarge the systems of first order equations. However, the direct method in this research will solved the second order BVPs directly without reducing it to first order ODEs. Approach: Lagrange interpolation polynomial was applied in the derivation of the proposed method. The method was implemented using constant step size via shooting technique in order to determine the approximated solutions. The shooting technique will employ the Newton’s method for checking the convergent of the guessing values for the next iteration. Results: Numerical results confirmed that the direct method gave better accuracy and converged faster compared to the existing method. Conclusion: The proposed direct method is suitable for solving two point non linear boundary value problems.

  4. A Reduced Basis Framework: Application to large scale non-linear multi-physics problems

    Directory of Open Access Journals (Sweden)

    Daversin C.

    2013-12-01

    Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.

  5. Dynamical inverse problems

    CERN Document Server

    Gladwell, Graham ML

    2011-01-01

    The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.

  6. Non linear regularization for helioseismic inversions Application for the study of the solar tachocline

    CERN Document Server

    Corbard, T; Berthomieu, G; Provost, J P

    1999-01-01

    Inversions of rotational splittings have shown that there exists at the base of the solar convection zone a region called the tachocline in which high radial gradients of the rotation rate occur. The usual linear regularization methods tend to smooth out any high gradients in the solution, and may not be appropriate for the study of this zone. In this paper we use, in the helioseismic context of rotation inversions, regularization methods that have been developed for edge-preserving regularization in computed imaging. It is shown from Monte-Carlo simulations that this approach can lead directly to results similar to those reached by linear inversions which however required some assumptions on the shape of the transition in order to be deconvolved. The application of this method to LOWL data leads to a very thin tachocline. From the discussions on the parameters entering the inversion and the Monte-Carlo simulations, our conclusion is that the tachocline width is very likely below 0.05R_sun which lowers our pr...

  7. Generalized emissivity inverse problem.

    Science.gov (United States)

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.

  8. A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

    Directory of Open Access Journals (Sweden)

    Murray L. Ireland

    2015-06-01

    Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.

  9. The Stewart-Lyth Inverse Problem

    CERN Document Server

    Ayón-Beato, E; Mansilla, R; Terrero-Escalante, C A; Ay\\'on-Beato, Eloy; Garc\\'{\\i}a, Alberto; Mansilla, Ricardo

    2000-01-01

    In this paper the Stewart-Lyth inverse problem is introduced. It consists of solving two non-linear differential equations for the first slow-roll parameter and finding the inflaton potential. The equations are derived from the Stewart-Lyth equations for the scalar and tensorial perturbations produced during the inflationary period. The geometry of the phase planes transverse to the trajectories is analyzed, and conclusions about the possible behaviour for general solutions are drawn.

  10. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  11. SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. V. Bosakov

    2008-01-01

    Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems. 

  12. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm

    Science.gov (United States)

    Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil

    2017-01-01

    3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.

  13. The late Universe with non-linear interaction in the dark sector: The coincidence problem

    Science.gov (United States)

    Bouhmadi-López, Mariam; Morais, João; Zhuk, Alexander

    2016-12-01

    We study the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such a scale the Universe is highly inhomogeneous and filled with discretely distributed inhomogeneities in the form of galaxies and groups of galaxies. As a matter source, we consider dark matter (DM) and dark energy (DE) with a non-linear interaction Q = 3 HγεbarDEεbarDM /(εbarDE +εbarDM) , where γ is a constant. We assume that DM is pressureless and DE has a constant equation of state parameter w. In the considered model, the energy densities of the dark sector components present a scaling behaviour with εbarDM /εbarDE ∼(a0 / a) - 3(w + γ). We investigate the possibility that the perturbations of DM and DE, which are interacting among themselves, could be coupled to the galaxies with the former being concentrated around them. To carry our analysis, we consider the theory of scalar perturbations (within the mechanical approach), and obtain the sets of parameters (w , γ) which do not contradict it. We conclude that two sets: (w = - 2 / 3 , γ = 1 / 3) and (w = - 1 , γ = 1 / 3) are of special interest. First, the energy densities of DM and DE on these cases are concentrated around galaxies confirming that they are coupled fluids. Second, we show that for both of them, the coincidence problem is less severe than in the standard ΛCDM. Third, the set (w = - 1 , γ = 1 / 3) is within the observational constraints. Finally, we also obtain an expression for the gravitational potential in the considered model.

  14. Inverse problems and uncertainty quantification

    KAUST Repository

    Litvinenko, Alexander

    2013-12-18

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.

  15. Inverse Problems and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.

  16. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...

  17. The Fukushima Inverse Problem

    OpenAIRE

    Martinez-Camara, Marta; Dokmanic, Ivan; Ranieri, Juri; Scheibler, Robin; Vetterli, Martin; STOHL Andreas

    2013-01-01

    Knowing what amount of radioactive material was released from Fukushima in March 2011 and at what time instants is crucial to assess the risk, the pollution, and to understand the scope of the consequences. Moreover, it could be used in forward simulations to obtain accurate maps of deposition. But these data are often not publicly available. We propose to estimate the emission waveforms by solving an inverse problem. Previous approaches have relied on a detailed expert guess of how the relea...

  18. The inverse problem for Schwinger pair production

    Energy Technology Data Exchange (ETDEWEB)

    Hebenstreit, F., E-mail: hebenstreit@itp.unibe.ch

    2016-02-10

    The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  19. An inverse problem for Schwinger pair production

    CERN Document Server

    Hebenstreit, Florian

    2016-01-01

    The production of electron-positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  20. The inverse problem for Schwinger pair production

    Directory of Open Access Journals (Sweden)

    F. Hebenstreit

    2016-02-01

    Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  1. A numerical modelling of non linear 2D-frictional multicontact problems: application to post-buckling in cellular media

    Science.gov (United States)

    Alart, P.; Barboteu, M.; Gril, J.

    2004-09-01

    In this paper a numerical modelling of non linear problems involving large deformations and frictional contact conditions is proposed. The motivation of this work comes from the study of the cellular materials (such as wood or foams) undergoing strong deformations. We restrict our study to a regular cellular network of hexagonal cells with thin walls. Strong loadings can generate at first buckling phenomena, then self-contact in the cell. Renouncing homogenization procedures, not always pertinent in this case, we have developed direct simulations. After giving the mechanical and mathematical formulations of the problem, we present two advanced numerical tools to solve large non linear frictional multicontact problems. This numerical modelling is based on an arc-length continuation method which permits to snap through singular points due to buckling phenomena and on an optimal domain decomposition method adapted to frictional contact problems. Finally, mechanical investigations of the contactless buckling and the post-buckling provide some pertinent parameters controlling the deformation process.

  2. Analyticity of solutions of analytic non-linear general elliptic boundary value problems,and some results about linear problems

    Institute of Scientific and Technical Information of China (English)

    WANG Rouhuai

    2006-01-01

    The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.

  3. Constrained non-linear optimization in 3D reflexion tomography; Problemes d'optimisation non-lineaire avec contraintes en tomographie de reflexion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Delbos, F.

    2004-11-01

    Reflexion tomography allows the determination of a subsurface velocity model from the travel times of seismic waves. The introduction of a priori information in this inverse problem can lead to the resolution of a constrained non-linear least-squares problem. The goal of the thesis is to improve the resolution techniques of this optimization problem, whose main difficulties are its ill-conditioning, its large scale and an expensive cost function in terms of CPU time. Thanks to a detailed study of the problem and to numerous numerical experiments, we justify the use of a sequential quadratic programming method, in which the tangential quadratic programs are solved by an original augmented Lagrangian method. We show the global linear convergence of the latter. The efficiency and robustness of the approach are demonstrated on several synthetic examples and on two real data cases. (author)

  4. Data-driven non-linear elasticity: constitutive manifold construction and problem discretization

    Science.gov (United States)

    Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco

    2017-07-01

    The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.

  5. Analog fault diagnosis by inverse problem technique

    KAUST Repository

    Ahmed, Rania F.

    2011-12-01

    A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.

  6. Solving probabilistic inverse problems rapidly with prior samples

    NARCIS (Netherlands)

    Käufl, Paul; Valentine, Andrew P.; de Wit, Ralph W.; Trampert, Jeannot

    2016-01-01

    Owing to the increasing availability of computational resources, in recent years the probabilistic solution of non-linear, geophysical inverse problems by means of sampling methods has become increasingly feasible. Nevertheless, we still face situations in which a Monte Carlo approach is not

  7. Solving probabilistic inverse problems rapidly with prior samples

    NARCIS (Netherlands)

    Käufl, Paul; Valentine, Andrew P.|info:eu-repo/dai/nl/364418680; de Wit, Ralph W.|info:eu-repo/dai/nl/344668908; Trampert, Jeannot|info:eu-repo/dai/nl/304829250

    2016-01-01

    Owing to the increasing availability of computational resources, in recent years the probabilistic solution of non-linear, geophysical inverse problems by means of sampling methods has become increasingly feasible. Nevertheless, we still face situations in which a Monte Carlo approach is not practic

  8. Dimensionality Reduction and Uncertainty Quantification for Inverse Problems

    NARCIS (Netherlands)

    van Leeuwen, Tristan

    2015-01-01

    Many inverse problems in science and engineering involve multi-experiment data and thus require a large number of forward simulations. Dimensionality reduction techniques aim at reducing the number of forward solves by (randomly) subsampling the data. In the special case of non-linear least-squares

  9. The late Universe with non-linear interaction in the dark sector: the coincidence problem

    CERN Document Server

    Bouhmadi-López, Mariam; Zhuk, Alexander

    2016-01-01

    We study the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such a scale the Universe is highly inhomogeneous and filled with discretely distributed inhomogeneities in the form of galaxies and groups of galaxies. As a matter source, we consider dark matter (DM) and dark energy (DE) with a non-linear interaction $Q = 3\\mathcal{H}\\gamma \\overline\\varepsilon_{\\mathrm{DE}} \\overline\\varepsilon_{\\mathrm{DM}} / (\\overline\\varepsilon_{\\mathrm{DE}} + \\overline\\varepsilon_{\\mathrm{DM}})$, where $\\gamma$ is a constant. We assume that DM is pressureless and DE has a constant equation of state parameter $w$. In the considered model, the energy densities of the dark sector components present a scaling behaviour with $\\overline\\varepsilon_{\\mathrm{DM}} / \\overline\\varepsilon_{\\mathrm{DE}} \\sim \\left({a_0} / {a} \\right)^{-3(w+\\gamma)}$. We investigate the possibility that the perturbations of DM and DE, which are interacting among themselves, could be coupled to the galaxies with the ...

  10. A rainbow inverse problem

    Directory of Open Access Journals (Sweden)

    Calvez V.

    2010-12-01

    Full Text Available We consider the radiative transfer equation (RTE with reflection in a three-dimensional domain, infinite in two dimensions, and prove an existence result. Then, we study the inverse problem of retrieving the optical parameters from boundary measurements, with help of existing results by Choulli and Stefanov. This theoretical analysis is the framework of an attempt to model the color of the skin. For this purpose, a code has been developed to solve the RTE and to study the sensitivity of the measurements made by biophysicists with respect to the physiological parameters responsible for the optical properties of this complex, multi-layered material. On étudie l’équation du transfert radiatif (ETR dans un domaine tridimensionnel infini dans deux directions, et on prouve un résultat d’existence. On s’intéresse ensuite à la reconstruction des paramètres optiques à partir de mesures faites au bord, en s’appuyant sur des résultats de Choulli et Stefanov. Cette analyse sert de cadre théorique à un travail de modélisation de la couleur de la peau. Dans cette perspective, un code à été développé pour résoudre l’ETR et étudier la sensibilité des mesures effectuées par les biophysiciens par rapport aux paramètres physiologiques tenus pour responsables des propriétés optiques de ce complexe matériau multicouche.

  11. Inverse problem in hydrogeology

    Science.gov (United States)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le

  12. Basic Problems in Design and Inverse Engineering Solution for Outer Characteristic of Vehicle Suspension Shock Absorbers

    Institute of Scientific and Technical Information of China (English)

    俞德孚; 陈庆东; 李文君

    2003-01-01

    Based on the theory and the practical experiences of linearity design of feasible design area and inverse solution of non-linear outer characteristic of suspension shock absorber, in accordance with non-linearity outer characteristic formed by open-up damping coefficient, full-open damping coefficient and smoothness to safety ratio of suspension shock absorber, a method and a research conclusion of the feasible design and inverse solution for the basic problems of designing and inverse solution of non-linear outer characteristic of suspension damping components are provided.

  13. Inverse problems for Maxwell's equations

    CERN Document Server

    Romanov, V G

    1994-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  14. Multiscale Modelling and Inverse Problems

    CERN Document Server

    Nolen, J; Stuart, A M

    2010-01-01

    The need to blend observational data and mathematical models arises in many applications and leads naturally to inverse problems. Parameters appearing in the model, such as constitutive tensors, initial conditions, boundary conditions, and forcing can be estimated on the basis of observed data. The resulting inverse problems are often ill-posed and some form of regularization is required. These notes discuss parameter estimation in situations where the unknown parameters vary across multiple scales. We illustrate the main ideas using a simple model for groundwater flow. We will highlight various approaches to regularization for inverse problems, including Tikhonov and Bayesian methods. We illustrate three ideas that arise when considering inverse problems in the multiscale context. The first idea is that the choice of space or set in which to seek the solution to the inverse problem is intimately related to whether a homogenized or full multiscale solution is required. This is a choice of regularization. The ...

  15. An inverse problem by boundary element method

    Energy Technology Data Exchange (ETDEWEB)

    Tran-Cong, T.; Nguyen-Thien, T. [University of Southern Queensland, Toowoomba, QLD (Australia); Graham, A.L. [Los Alamos National Lab., NM (United States)

    1996-02-01

    Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.

  16. Bayesian Approach to Inverse Problems

    CERN Document Server

    2008-01-01

    Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation

  17. Performance evaluation of firefly algorithm with variation in sorting for non-linear benchmark problems

    Science.gov (United States)

    Umbarkar, A. J.; Balande, U. T.; Seth, P. D.

    2017-06-01

    The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.

  18. Intuitionistic Fuzzy Goal Programming Technique for Solving Non-Linear Multi-objective Structural Problem

    Directory of Open Access Journals (Sweden)

    Samir Dey

    2015-07-01

    Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.

  19. Sensitivity problems related to certain bifurcations in non-linear recurrence relations

    CERN Document Server

    Gumowski, I.

    1969-01-01

    This paper is concerned with certain qualitative aspects of the sensitivity problem in relation to small variations of a parameter of a system, the behaviour of which can be described by an autonomous recurrence relation: V$_{n+1}$ = F(V$_{n}, \\lambda$) (1) V being a vector, $\\lambda$ the parameter. The problem consists in the determination of the bifurcation values $\\lambda_{0}$ of $\\lambda$, i.e. values such that the qualitative behaviour of a solution of (1) should be different for $\\lambda = \\lambda \\pm \\epsilon$ where $\\epsilon$ is a small quantity. Bifurcations that correspond to a critical case in the Liapunov sense, and the crossing through this critical case, are considered. Examples of bifurcations, not connected with the presence of a critical case, and which correspond to a large deformation of the stability domain boundary of an equilibrium point, a fixed point of (1), under the effect of a parameter variation, are given where V is a two dimensional vector.

  20. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    Energy Technology Data Exchange (ETDEWEB)

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  1. The electric vehicle routing problem with non-linear charging functions

    OpenAIRE

    2015-01-01

    International audience; The use of electric vehicles (EVs) in freight and passenger transportation gives birth to a new family of vehicle routing problems (VRPs), the so-called electric VRPs (e-VRPs). As their name suggests, e-VRPs extend classical VRPs to account (mainly) for two constraining EV features: the short driving range and the long battery charging time. As a matter of fact, routes performed by EVs usually need to include time-consuming detours to charging stations. Most of the exi...

  2. Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems

    DEFF Research Database (Denmark)

    Clausen, Johan

    of foundations, mainly due to its simplicity which allows simple solutions with simple geometries. But for complex geometries a numerical solution is needed. It turns out that the apparently simple Mohr-Coulomb model is non-trivial to implement in the finite-element method. This is due to the fact that the Mohr...... with the safety factors obtained with a linear Mohr envelope, with which they are directly comparable, when the presented method is used. The classical problem of yield surfaces with corners and apexes is elaborated upon. A small modification to the formulation of the constitutive matrices on corners and apexes...

  3. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  4. The method of varying amplitudes for solving (non)linear problems involving strong parametric excitation

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...

  5. Prior Information in Inverse Boundary Problems

    DEFF Research Database (Denmark)

    Garde, Henrik

    This thesis gives a threefold perspective on the inverse problem of inclusion detection in electrical impedance tomography: depth dependence, monotonicitybased reconstruction, and sparsity-based reconstruction. The depth dependence is given in terms of explicit bounds on the datum norm, which shows...... be regularized against noise with a uniform regularization parameter, and that the method can be generalized to discrete electrode models. We give examples in 2D and 3D with noisy simulated data as well as real measurements, and give a comparison of reconstructions based on a non-linear and a linear formulation...... of the reconstruction. Numerical examples are given in both 2D and 3D for partial data using noisy simulated data as well as real measurements....

  6. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  7. A natural neighbour method based on Fraeijs de Veubeke variational principle for materially non-linear problems

    Institute of Scientific and Technical Information of China (English)

    Xiang Li; Serge Cescotto; Barbara Rossi

    2009-01-01

    The natural neighbour method can be considered as one of many variants of the meshless methods. In the present paper, a new approach based on the Fraeijs de Veubeke (FdV) functional, which is initially developed for linear elasticity, is extended to the case of geometrically linear but materially non-linear solids. The new approach provides an original treatment to two classical problems: the numerical evaluation of the integrals over the domain A and the enforcement of boundary conditions of the type ui = uion Su. In the absence of body forces (Fi = 0), it will be shown that the calculation of integrals of the type fA .dA can be avoided and that boundary conditions of the type ui = ui on Su can be imposed in the average sense in general and exactly if ui is linear between two contour nodes, which is obviously the case for ui = 0.

  8. Optimization and geophysical inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  9. Problem of probabilistic calculation of the design on linearly and non-linearly deformable basis with casual parameters

    Directory of Open Access Journals (Sweden)

    Mkrtychev Oleg Vartanovich

    Full Text Available In the article the problem of calculation of a construction basis system in case of earthquake is considered taking into account casual properties of basis soil in various points of the soil body. As a stochastic function in the calculation of linearly deformable basis, the deformation module, which accepts different values in the direction x, y, z, was chosen. In the calculation of the system on non-linearly deformable basis as incidentally distributed sizes the following parameters were accepted: deformation module, shear modulus, specific adhesion, angle of internal friction. The authors of the article offer to consider initial seismic influence in the form of casual stationary process. In order to solve such problems modern software systems are proposed that solve differential equations of motion via direct integration with explicit schemes. The calculation in this case will be held on the synthesized accelerograms. A short review of the task solution of the beam lying on elastic basis, which was received by D.N. Sobolev at casual distribution of pastel coefficient in the direction x, is provided in article. In order to define the objective, D.N. Sobolev gives expressions for a population mean and correlation function of stochastic function. As a result of the task solution population means and dispersions of function of movements and its derivatives were received. The problem formulation considered in the article is more complicated, but at the same time important from a practical standpoint.

  10. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted the project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.

  11. Inverse analysis of thermal conductivities in transient non-homogeneous and non-linear heat conductions using BEM based on complex variable differentiation method

    Science.gov (United States)

    Yu, XiaoChun; Bai, YuGuang; Cui, Miao; Gao, XiaoWei

    2013-05-01

    This paper presents a new inverse analysis approach to sensitivity analysis and material property identification in transient non-homogeneous and non-linear heat conduction Boundary Element Method (BEM) analysis based on Complex Variable Differentiation Method (CVDM). In this approach, the material properties are taken as the optimization variables, and the sensitivity coefficients are computed by CVDM. The advantages of using CVDM are that the computation of partial derivatives of an implicit function is reduced to function calculation in a complex domain, and the parameter sensitivity coefficients can be determined in a more accurate way than the traditional Finite Difference Method (FDM). Based on BEM and CVDM in evaluation of the sensitivity matrix of heat flux, the parameter such as thermal conductivity can be accurately identified. Six numerical examples are given to demonstrate the potential of the proposed approach. The results indicate that the presented method is efficient for identifying the thermal conductivity with single or multiple parameters.

  12. Size Estimates in Inverse Problems

    KAUST Repository

    Di Cristo, Michele

    2014-01-06

    Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.

  13. Inverse Problems in a Bayesian Setting

    KAUST Repository

    Matthies, Hermann G.

    2016-02-13

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.

  14. SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Caroline Looms, Majken

    2013-01-01

    for solving such probabilistically formulated inverse problems by sampling the a posteriori probability density function. In order to describe the a priori probability density function, we consider both simple Gaussian models and more complex (and realistic) a priori models based on higher order statistics....... These a priori models can be used with both linear and non-linear inverse problems. For linear inverse Gaussian problems we make use of least-squares and kriging-based methods to describe the a posteriori probability density function directly. For general non-linear (i.e. non-Gaussian) inverse problems, we make...... use of the extended Metropolis algorithm to sample the a posteriori probability density function. Together with the extended Metropolis algorithm, we use sequential Gibbs sampling that allow computationally efficient sampling of complex a priori models. The toolbox can be applied to any inverse...

  15. Iterative optimization in inverse problems

    CERN Document Server

    Byrne, Charles L

    2014-01-01

    Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more

  16. Use Residual Correction Method and Monotone Iterative Technique to Calculate the Upper and Lower Approximate Solutions of Singularly Perturbed Non-linear Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2013-09-01

    Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.

  17. Deep Convolutional Neural Network for Inverse Problems in Imaging

    Science.gov (United States)

    Jin, Kyong Hwan; McCann, Michael T.; Froustey, Emmanuel; Unser, Michael

    2017-09-01

    In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise non-linearity) when the normal operator (H*H, the adjoint of H times H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 x 512 image on GPU.

  18. SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Looms, Majken Caroline

    2013-01-01

    We present an application of the SIPPI Matlab toolbox, to obtain a sample from the a posteriori probability density function for the classical tomographic inversion problem. We consider a number of different forward models, linear and non-linear, such as ray based forward models that rely...... on the high frequency approximation of the wave-equation and ‘fat’ ray based forward models relying on finite frequency theory. In order to sample the a posteriori probability density function we make use of both least squares based inversion, for linear Gaussian inverse problems, and the extended Metropolis...... sampler, for non-linear non-Gaussian inverse problems. To illustrate the applicability of the SIPPI toolbox to a tomographic field data set we use a cross-borehole traveltime data set from Arrenæs, Denmark. Both the computer code and the data are released in the public domain using open source and open...

  19. Inverse problem of HIV cell dynamics using Genetic Algorithms

    Science.gov (United States)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  20. Some contributions to non-linear physic: Mathematical problems; Contribuciones a problemas matematicos en fisica no-lineal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of {zeta}/{zeta} u{sub {alpha}}, |{alpha} | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs.

  1. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  2. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  3. Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Mosegaard, Klaus

    2012-01-01

    Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis algorithm can be used to sample solutions to non-linear inverse problems. In principle, these methods allow incorporation of prior information of arbitrary complexity. If an analytical closed form description of the pri...... also reduce the computation time for the inversion dramatically. The method works for any statistical model for which sequential simulation can be used to generate realizations. This applies to most algorithms developed in the geostatistical community.......Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis algorithm can be used to sample solutions to non-linear inverse problems. In principle, these methods allow incorporation of prior information of arbitrary complexity. If an analytical closed form description of the prior...... for applying the sequential Gibbs sampler and illustrate how it works. Through two case studies, we demonstrate the application of the method to a linear image restoration problem and to a non-linear cross-borehole inversion problem. We demonstrate how prior information can reduce the complexity of an inverse...

  4. Forward and inverse problems in fundamental and applied magnetohydrodynamics

    Science.gov (United States)

    Giesecke, Andre; Stefani, Frank; Wondrak, Thomas; Xu, Mingtian

    2013-03-01

    This minireview summarizes the recent efforts to solve forward and inverse problems as they occur in different branches of fundamental and applied magnetohydrodynamics. For the forward problem, the main focus is on the numerical treatment of induction processes, including self-excitation of magnetic fields in non-spherical domains and/or under the influence of non-homogeneous material parameters. As an important application of the developed numerical schemes, the functioning of the von-Kármán-sodium (VKS) dynamo experiment is shown to depend crucially on the presence of soft-iron impellers. As for the inverse problem, the main focus is on the mathematical background and some initial practical applications of contactless inductive flow tomography (CIFT), in which flow induced magnetic field perturbations are utilized to reconstruct the velocity field. The promises of CIFT for flow field monitoring in the continuous casting of steel are substantiated by results obtained at a test rig with a low-melting liquid metal. While CIFT is presently restricted to flows with low magnetic Reynolds numbers, some selected problems from non-linear inverse dynamo theory, with possible applications to geo- and astrophysics, are also discussed.

  5. Nonlinear Least Squares for Inverse Problems

    CERN Document Server

    Chavent, Guy

    2009-01-01

    Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability

  6. Modeling Operation Problem of Micro-grids Considering Economical, Technical and Environmental issues as Mixed-Integer Non-Linear Programming

    Directory of Open Access Journals (Sweden)

    Samira Salahi

    2016-08-01

    Full Text Available Reduction of fossil resources, increasing the production of greenhouse gas emissions and demand growth lead to greater use of distributed energy resources in power system especially in distribution networks. Integrating these resources in order to supply local loads creates a new concept called micro-grid. Optimal operation of micro-grid in the specific time period is one of the most important problems of them. In this paper, the operation problem of micro-grids is modeled considering the economical, technical and environmental issues, as well as uncertainties related to loads, wind speed and solar radiation. The resulting model is a Mixed-Integer Non-Linear Programming (MINLP. To demonstrate the effectiveness of the proposed model, Bisheh village in Iran is considered as a case study. The results showed that considering load curtailment costs, the power losses of the main grid, the penalties of pollutant gasses emissions and the elimination of energy subsides will tremendous impacts on the operation of microgrids. Article History: Received March 12, 2016; Received in revised form June 20, 2016; Accepted July 2nd 2016; Available online How to Cite This Article: Salahi, S., and Bahramara, S. (2016 Modeling Operation Problem of Micro-grids Considering Economical, Technical and Environmental issues as Mixed-Integer Non-Linear Programming. Int. Journal of Renewable Energy Development, 5(2, 139-149. http://dx.doi.org/10.14710/ijred.5.2.139-149 

  7. Metaheuristic optimization of acoustic inverse problems.

    NARCIS (Netherlands)

    van Leijen, A.V.; Rothkrantz, L.; Groen, F.

    2011-01-01

    Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance.

  8. Metaheuristic optimization of acoustic inverse problems.

    NARCIS (Netherlands)

    van Leijen, A.V.; Rothkrantz, L.; Groen, F.

    2011-01-01

    Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance. F

  9. Inverse problems in stochastic computational dynamics

    OpenAIRE

    Capiez-Lernout, Evangéline; Soize, Christian

    2008-01-01

    International audience; This paper deals with robust updating of dynamical systems using stochastic computational models for which model and parameter uncertainties are taken into account by the nonparametric probabilistic approach. Such a problem is formulated as an inverse problem consisting in identifying the parameters of the mean computational model and the parameters of the probabilistic model of uncertainties. This inverse problem leads us to solve an optimization problem for which the...

  10. Practical use of SPRINT and a moving grid interface for a class of 1D non-linear transport problems

    NARCIS (Netherlands)

    van Eijkeren JCH; Zegeling PA; Hassanizadeh SM

    1991-01-01

    Environmental problems tend to become of still greater complexity. The mathematical formulation of these problems often results in a set of differential equations, which urges the need for robust differential equation solvers. Moreover, these solvers should be implemented within a user-friendly an

  11. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  12. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  13. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  14. INVERSE COEFFICIENT PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenhai; I.Szántó

    2011-01-01

    This paper is devoted to the class of inverse problems for a nonlinear parabolic hemivariational inequality.The unknown coefficient of the operator depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained.

  15. A geometrically non-linear formulation of a three-dimensional beam element for solving large deflection multibody system problems

    NARCIS (Netherlands)

    Jonker, J.B.; Meijaard, J.P.

    2013-01-01

    A beam finite element formulation for large deflection problems in the analysis of flexible multibody systems has been proposed. In this formulation, a set of independent discrete deformation modes are defined for each element which are related to conventional small deflection beam theory in a co-ro

  16. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    Science.gov (United States)

    Yamamoto, Masahiro

    2003-06-01

    This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight

  17. 3rd Annual Workshop on Inverse Problem

    CERN Document Server

    2015-01-01

    This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.

  18. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  19. Canonically Transformed Detectors Applied to the Classical Inverse Scattering Problem

    CERN Document Server

    Jung, C; Torres, J M

    2005-01-01

    The concept of measurement in classical scattering is interpreted as an overlap of a particle packet with some area in phase space that describes the detector. Considering that usually we record the passage of particles at some point in space, a common detector is described e.g. for one-dimensional systems as a narrow strip in phase space. We generalize this concept allowing this strip to be transformed by some, possibly non-linear, canonical transformation, introducing thus a canonically transformed detector. We show such detectors to be useful in the context of the inverse scattering problem in situations where recently discovered scattering echoes could not be seen without their help. More relevant applications in quantum systems are suggested.

  20. Canonically Transformed Detectors Applied to the Classical Inverse Scattering Problem

    Science.gov (United States)

    Jung, C.; Seligman, T. H.; Torres, J. M.

    The concept of measurement in classical scattering is interpreted as an overlap of a particle packet with some area in phase space that describes the detector. Considering that usually we record the passage of particles at some point in space, a common detector is described e.g. for one-dimensional systems as a narrow strip in phase space. We generalize this concept allowing this strip to be transformed by some, possibly non-linear, canonical transformation, introducing thus a canonically transformed detector. We show such detectors to be useful in the context of the inverse scattering problem in situations where recently discovered scattering echoes could not be seen without their help. More relevant applications in quantum systems are suggested.

  1. Analysis of nonlinear channel friction inverse problem

    Institute of Scientific and Technical Information of China (English)

    CHENG Weiping; LIU Guohua

    2007-01-01

    Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.

  2. An Inverse Problem Statistical Methodology Summary

    Science.gov (United States)

    2008-01-12

    R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002. [36] D. D. Wackerly, W. Mendenhall III, and R. L. Scheaffer , Mathematical Statistics with Applications, Duxbury Thompson Learning, USA, 2002. 56

  3. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    Adrian Deaconu; Eleonor Ciurea

    2013-04-01

    A linear time method to decide if any inverse maximum flow (denoted General Inverse Maximum Flow problems (IMFG)) problem has solution is deduced. If IMFG does not have solution, methods to transform IMFG into a feasible problem are presented. The methods consist of modifying as little as possible the restrictions to the variation of the bounds of the flow. New inverse combinatorial optimization problems are introduced and solved.

  4. An inverse problem in analytical dynamics

    Institute of Scientific and Technical Information of China (English)

    Li Guang-Cheng; Mei-Feng-Xiang

    2006-01-01

    This paper presents an inverse problem in analytical dynamics.The inverse problem is to construct the Lagrangian when the integrals of a system are given.Firstly,the differential equations are obtained by using the time derivative of the integrals.Secondly,the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained.Finally,two examples are given to illustrate the application of the result.

  5. The inverse maximum dynamic flow problem

    Institute of Scientific and Technical Information of China (English)

    BAGHERIAN; Mehri

    2010-01-01

    We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.

  6. Aneesur Rahman Prize: The Inverse Ising Problem

    Science.gov (United States)

    Swendsen, Robert

    2014-03-01

    Many methods are available for carrying out computer simulations of a model Hamiltonian to obtain thermodynamic information by generating a set of configurations. The inverse problem consists of recreating the parameters of the Hamiltonian, given a set of configurations. The problem arises in a variety of contexts, and there has been much interest recently in the inverse Ising problem, in which the configurations consist of Ising spins. I will discuss an efficient method for solving the problem and what it can tell us about the Sherrington-Kirkpatrick model.

  7. Inverse problem in Parker's dynamo

    CERN Document Server

    Reshetnyak, M Yu

    2015-01-01

    The inverse solution of the 1D Parker dynamo equations is considered. The method is based on minimization of the cost-function, which characterize deviation of the model solution properties from the desired ones. The output is the latitude distribution of the magnetic field generation sources: the $\\alpha$- and $\\omega$-effects. Minimization is made using the Monte-Carlo method. The details of the method, as well as some applications, which can be interesting for the broad dynamo community, are considered: conditions when the invisible for the observer at the surface of the planet toroidal part of the magnetic field is much larger than the poloidal counterpart. It is shown that at some particular distributions of $\\alpha$ and $\\omega$ the well-known thesis that sign of the dynamo-number defines equatorial symmetry of the magnetic field to the equator plane, is violated. It is also demonstrated in what circumstances magnetic field in the both hemispheres have different properties, and simple physical explanati...

  8. Linear inverse problem of the reactor dynamics

    Science.gov (United States)

    Volkov, N. P.

    2017-01-01

    The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.

  9. Solving Direct and Inverse Heat Conduction Problems

    CERN Document Server

    Taler, Jan

    2006-01-01

    Presents a solution for direct and inverse heat conduction problems. This work discusses the theoretical basis for the heat transfer process in the first part. It presents selected theoretical and numerical problems in the form of exercises with their subsequent solutions in the second part

  10. Optical tomography: forward and inverse problems

    CERN Document Server

    Arridge, Simon

    2009-01-01

    This paper is a review of recent mathematical and computational advances in optical tomography. We discuss the physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales. We also consider direct and numerical approaches to the inverse problems that arise at each of these scales. Finally, we outline future directions and open problems in the field.

  11. The role of nonlinearity in inverse problems

    Science.gov (United States)

    Snieder, Roel

    1998-06-01

    In many practical inverse problems, one aims to retrieve a model that has infinitely many degrees of freedom from a finite amount of data. It follows from a simple variable count that this cannot be done in a unique way. Therefore, inversion entails more than estimating a model: any inversion is not complete without a description of the class of models that is consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal problem particularly difficult. The first reason for this is that nonlinear error propagation is a difficult problem. The second reason is that for some nonlinear problems the model parameters affect the way in which the model is being interrogated by the data. Two examples are given of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally, three attempts are shown to carry out the model appraisal for nonlinear inverse problems that are based on an analytical approach, a numerical approach and a common sense approach.

  12. Inverse Eigenvalue Problem in Structural Dynamics Design

    Institute of Scientific and Technical Information of China (English)

    Huiqing Xie; Hua Dai

    2006-01-01

    A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.

  13. INVERSE CENTER LOCATION PROBLEM ON A TREE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper discusses the inverse center location problem restricted on a tree with different costs and bound constraints.The authors first show that the problem can be formulated as a series of combinatorial linear programs,then an O(|V|2 log |V|)time algorithm to solve the problem is presented.For the equal cost case,the authors further give an O(|V|)time algorithm.

  14. Direct Problems and Inverse Problems in Biometric Systems

    Directory of Open Access Journals (Sweden)

    Mihailescu Marius Iulian

    2013-10-01

    Full Text Available The article purpose is to describe the two sides of biometrics technologies, direct problems and inverse problems. The advance that we face today in field of Information Technology makes Information Security an inseparable part. The authentication has a huge role when we deal about security. The problems that can appear in implementing and developing biometrics systems is raising many problems, and one of the goal of this article is to focus on direct and inverse problems which is a new and challenging branch in biometrics technologies.

  15. Introduction to inverse problems for differential equations

    CERN Document Server

    Hasanov Hasanoğlu, Alemdar

    2017-01-01

    This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...

  16. Including geological information in the inverse problem of palaeothermal reconstruction

    Science.gov (United States)

    Trautner, S.; Nielsen, S. B.

    2003-04-01

    A reliable reconstruction of sediment thermal history is of central importance to the assessment of hydrocarbon potential and the understanding of basin evolution. However, only rarely do sedimentation history and borehole data in the form of present day temperatures and vitrinite reflectance constrain the past thermal evolution to a useful level of accuracy (Gallagher and Sambridge,1992; Nielsen,1998; Trautner and Nielsen,2003). This is reflected in the inverse solutions to the problem of determining heat flow history from borehole data: The recent heat flow is constrained by data while older values are governed by the chosen a prior heat flow. In this paper we reduce this problem by including geological information in the inverse problem. Through a careful analysis of geological and geophysical data the timing of the tectonic processes, which may influence heat flow, can be inferred. The heat flow history is then parameterised to allow for the temporal variations characteristic of the different tectonic events. The inversion scheme applies a Markov chain Monte Carlo (MCMC) approach (Nielsen and Gallagher, 1999; Ferrero and Gallagher,2002), which efficiently explores the model space and futhermore samples the posterior probability distribution of the model. The technique is demonstrated on wells in the northern North Sea with emphasis on the stretching event in Late Jurassic. The wells are characterised by maximum sediment temperature at the present day, which is the worst case for resolution of the past thermal history because vitrinite reflectance is determined mainly by the maximum temperature. Including geological information significantly improves the thermal resolution. Ferrero, C. and Gallagher,K.,2002. Stochastic thermal history modelling.1. Constraining heat flow histories and their uncertainty. Marine and Petroleum Geology, 19, 633-648. Gallagher,K. and Sambridge, M., 1992. The resolution of past heat flow in sedimentary basins from non-linear inversion

  17. Riemann Zeros and the Inverse Phase Problem

    Science.gov (United States)

    Tourigny, David S.

    2013-10-01

    Finding a universal method of crystal structure solution and proving the Riemann hypothesis are two outstanding challenges in apparently unrelated fields. For centro-symmetric crystals however, a connection arises as the result of a statistical approach to the inverse phase problem. It is shown that parameters of the phase distribution are related to the non-trivial Riemann zeros by a Mellin transform.

  18. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  19. Inverse scattering problem in turbulent magnetic fluctuations

    CERN Document Server

    Treumann, R A; Narita, Y

    2016-01-01

    We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gel$'$fand-Levitan-Marchenko equation of quantum mechanical scattering theory.

  20. RIEMANN ZEROS AND THE INVERSE PHASE PROBLEM

    Science.gov (United States)

    TOURIGNY, DAVID S.

    2013-01-01

    Finding a universal method of crystal structure solution and proving the Riemann hypothesis are two outstanding challenges in apparently unrelated fields. For centrosymmetric crystals however, a connection arises as the result of a statistical approach to the inverse phase problem. It is shown that parameters of the phase distribution are related to the non-trivial Riemann zeros by a Mellin transform. PMID:24293780

  1. The inverse problem of bioelectricity: an evaluation

    NARCIS (Netherlands)

    Oosterom, A. van

    2012-01-01

    This invited paper presents a personal view on the current status of the solution to the inverse problem of bioelectricity. Its focus lies on applications in the field of electrocardiography. The topic discussed is also relevant in other medical domains, such as electroencephalography, electroneurog

  2. Direct and inverse problems of infrared tomography

    DEFF Research Database (Denmark)

    Sizikov, Valery S.; Evseev, Vadim; Fateev, Alexander

    2016-01-01

    The problems of infrared tomography-direct (the modeling of measured functions) and inverse (the reconstruction of gaseous medium parameters)-are considered with a laboratory burner flame as an example of an application. The two measurement modes are used: active (ON) with an external IR source...

  3. General inverse problems for regular variation

    DEFF Research Database (Denmark)

    Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan

    2014-01-01

    Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...

  4. On the Stewart-Lyth Inverse Problem

    CERN Document Server

    Ayón-Beato, E; Mansilla, R; Terrero-Escalante, C A; Ay\\'on-Beato, Eloy; Garc\\'{\\i}a, Alberto; Mansilla, Ricardo

    2000-01-01

    In this paper the Stewart-Lyth inverse problem is rewritten using the comoving scales as the basic parameter. It is shown that some information on the inflaton potential can be obtained from observations taking into account only the scalar power spectrum.

  5. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  6. Inverse Problems in Classical and Quantum Physics

    CERN Document Server

    Almasy, Andrea A

    2009-01-01

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. In this thesis, als...

  7. Numerical linear algebra for reconstruction inverse problems

    Science.gov (United States)

    Nachaoui, Abdeljalil

    2004-01-01

    Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.

  8. PUBLISHER'S ANNOUNCEMENT: New developments for Inverse Problems

    Science.gov (United States)

    2006-12-01

    2006 has proved to be a very successful year for Inverse Problems. After an increase for the fourth successive year, we achieved our highest impact factor to date, 1.541 (Source: 2005 ISI® Journal Citation Report), and the Editorial Board is keen to build on this success by continuing to improve the service we offer to our readers and authors. The Board has observed that Inverse Problems receives very few Letters to the Editor submissions, and that moreover those that we do receive rarely conform to the requirements for Letters to the Editor set out in the journal's editorial policy. The Board has therefore decided to merge the current Letters to the Editor section into our regular Papers section, which will now accommodate all research articles that meet the journal's high quality standards. Any submissions that would previously have been Letters to the Editor are still very welcome as Papers, and can be submitted by e-mail to ip@iop.org or online using our online submissions form at authors.iop.org/submit. Inverse Problems' processing times are already among the fastest in the field—on average, authors receive our decision on their paper in less than three months. Thanks to our easy-to-use online refereeing system, publishing a Paper is now just as fast as publishing a Letter to the Editor, and we are striving to ensure that the journal's high standards are applied consistently to all our Papers, maintaining Inverse Problems' position as the leading journal in the field. Our highly acclaimed Topical Review section will also continue and grow; providing timely insights into the development of all topical fields within Inverse Problems. We have many exciting Topical Reviews currently in preparation for 2007 and will continue to commission articles at the cutting edge of research. We look forward to receiving your contributions and to continuing to provide the best publication service available.

  9. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  10. TOPICAL REVIEW: Inverse problems in elasticity

    Science.gov (United States)

    Bonnet, Marc; Constantinescu, Andrei

    2005-04-01

    This review is devoted to some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. These inverse problems are considered mainly for three-dimensional elastic media under equilibrium or dynamical conditions, and also for thin elastic plates. The main goal is to overview some recent results, in an effort to bridge the gap between studies of a mathematical nature and problems defined from engineering practice. Accordingly, emphasis is given to formulations and solution techniques which are well suited to general-purpose numerical methods for solving elasticity problems on complex configurations, in particular the finite element method and the boundary element method. An underlying thread of the discussion is the fact that useful tools for the formulation, analysis and solution of inverse problems arising in linear elasticity, namely the reciprocity gap and the error in constitutive equation, stem from variational and virtual work principles, i.e., fundamental principles governing the mechanics of deformable solid continua. In addition, the virtual work principle is shown to be instrumental for establishing computationally efficient formulae for parameter or geometrical sensitivity, based on the adjoint solution method. Sensitivity formulae are presented for various situations, especially in connection with contact mechanics, cavity and crack shape perturbations, thus enriching the already extensive known repertoire of such results. Finally, the concept of topological derivative and its implementation for the identification of cavities or inclusions are expounded.

  11. Compressed word problems for inverse monoids

    CERN Document Server

    Lohrey, Markus

    2011-01-01

    The compressed word problem for a finitely generated monoid M asks whether two given compressed words over the generators of M represent the same element of M. For string compression, straight-line programs, i.e., context-free grammars that generate a single string, are used in this paper. It is shown that the compressed word problem for a free inverse monoid of finite rank at least two is complete for Pi^p_2 (second universal level of the polynomial time hierarchy). Moreover, it is shown that there exists a fixed finite idempotent presentation (i.e., a finite set of relations involving idempotents of a free inverse monoid), for which the corresponding quotient monoid has a PSPACE-complete compressed word problem. It was shown previously that the ordinary uncompressed word problem for such a quotient can be solved in logspace. Finally, a PSPACE-algorithm that checks whether a given element of a free inverse monoid belongs to a given rational subset is presented. This problem is also shown to be PSPACE-complet...

  12. The inverse variational problem in classical mechanics

    CERN Document Server

    Lopuszánski, Jan T

    1999-01-01

    This book provides a concise description of the current status of a fascinating scientific problem - the inverse variational problem in classical mechanics. The essence of this problem is as follows: one is given a set of equations of motion describing a certain classical mechanical system, and the question to be answered is: Do these equations of motion correspond to some Lagrange function as its Euler-Lagrange equations? In general, not for every system of equations of motion does a Lagrange function exist; it can, however, happen that one may modify the given equations of motion in such a w

  13. Inverse problems biomechanical imaging (Conference Presentation)

    Science.gov (United States)

    Oberai, Assad A.

    2016-03-01

    It is now well recognized that a host of imaging modalities (a list that includes Ultrasound, MRI, Optical Coherence Tomography, and optical microscopy) can be used to "watch" tissue as it deforms in response to an internal or external excitation. The result is a detailed map of the deformation field in the interior of the tissue. This deformation field can be used in conjunction with a material mechanical response to determine the spatial distribution of material properties of the tissue by solving an inverse problem. Images of material properties thus obtained can be used to quantify the health of the tissue. Recently, they have been used to detect, diagnose and monitor cancerous lesions, detect vulnerable plaque in arteries, diagnose liver cirrhosis, and possibly detect the onset of Alzheimer's disease. In this talk I will describe the mathematical and computational aspects of solving this class of inverse problems, and their applications in biology and medicine. In particular, I will discuss the well-posedness of these problems and quantify the amount of displacement data necessary to obtain a unique property distribution. I will describe an efficient algorithm for solving the resulting inverse problem. I will also describe some recent developments based on Bayesian inference in estimating the variance in the estimates of material properties. I will conclude with the applications of these techniques in diagnosing breast cancer and in characterizing the mechanical properties of cells with sub-cellular resolution.

  14. Estimating uncertainties in complex joint inverse problems

    Science.gov (United States)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related

  15. Variational Bayesian Approximation methods for inverse problems

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2012-09-01

    Variational Bayesian Approximation (VBA) methods are recent tools for effective Bayesian computations. In this paper, these tools are used for inverse problems where the prior models include hidden variables and where where the estimation of the hyper parameters has also to be addressed. In particular two specific prior models (Student-t and mixture of Gaussian models) are considered and details of the algorithms are given.

  16. INVERSE SCATTERING PROBLEMS BY SINGULAR SOURCE METHODS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The inverse scattering problems are to detect the property of obstacles from the measurements outside the obstacles. One of important research areas in this topic is the recovery of boundary property for impenetrable obstacles. In this paper, we would like to give a brief review about the recently developed singular source methods. There are three different methods in this category, namely, linear sampling method, pointsource method and probe method. We also present some recent new results about the probe method.

  17. Inverse scattering problem for quantum graph vertices

    CERN Document Server

    Cheon, Taksu; Turek, Ondrej

    2011-01-01

    We demonstrate how the inverse scattering problem of a quantum star graph can be solved by means of diagonalization of Hermitian unitary matrix when the vertex coupling is of the scale invariant (or F\\"ul\\H{o}p-Tsutsui) form. This enables the construction of quantum graphs with desired properties in a tailor-made fashion. The procedure is illustrated on the example of quantum vertices with equal transmission probabilities.

  18. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  19. Voltammetry: mathematical modelling and Inverse Problem

    CERN Document Server

    Koshev, N A; Kuzina, V V

    2016-01-01

    We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.

  20. About some inverse problems of nuclear physics

    CERN Document Server

    Belashev, B Z

    2002-01-01

    Some inverse problems of high energy physics and NMR spectroscopy are observed. The methods of the Fourier transformation and the maximum entropy technique have been applied for their solutions. The integral images of the experimental distributions are informative for determination of the space-time characteristics of the particles generation domain and for the analysis of blurring spectra. These methods have been tested in comparison with the results which have been obtained independently

  1. Homometric Point Sets and Inverse Problems

    CERN Document Server

    Grimm, Uwe

    2008-01-01

    The inverse problem of diffraction theory in essence amounts to the reconstruction of the atomic positions of a solid from its diffraction image. From a mathematical perspective, this is a notoriously difficult problem, even in the idealised situation of perfect diffraction from an infinite structure. Here, the problem is analysed via the autocorrelation measure of the underlying point set, where two point sets are called homometric when they share the same autocorrelation. For the class of mathematical quasicrystals within a given cut and project scheme, the homometry problem becomes equivalent to Matheron's covariogram problem, in the sense of determining the window from its covariogram. Although certain uniqueness results are known for convex windows, interesting examples of distinct homometric model sets already emerge in the plane. The uncertainty level increases in the presence of diffuse scattering. Already in one dimension, a mixed spectrum can be compatible with structures of different entropy. We ex...

  2. Computationally efficient Bayesian inference for inverse problems.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.

    2007-10-01

    Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

  3. Inverse problems in classical and quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Almasy, A.A.

    2007-06-29

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A

  4. An Entropic Estimator for Linear Inverse Problems

    Directory of Open Access Journals (Sweden)

    Amos Golan

    2012-05-01

    Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.

  5. A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem

    Science.gov (United States)

    Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar

    2017-07-01

    The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.

  6. THE INVERSE PROBLEM FOR BOOLEAN EQUATIONS

    Directory of Open Access Journals (Sweden)

    Hussain Mobarak Albarakati

    2012-01-01

    Full Text Available The Forward Problem (FB of Boolean equations consists of finding solutions of a system of Boolean equations, or equivalently, a single Boolean equation of the form f(X = 0 where f(X: Bn → B and B is an arbitrary Boolean algebra. By contrast, the Inverse Problem (IB of Boolean equations aims to reconstruct the equation f (X = 0 given the set of solutions and hence to verify the correctness of this set. This study derives methods that handle this inverse problem for the main types of solutions of Boolean equations. These include: (a Subsumptive general solutions, in which each of the variables is expressed as an interval by deriving successive conjunctive or disjunctive eliminants of the original function, (b Parametric general solutions, in which each of the variables is expressed via arbitrary parameters which are freely chosen elements of the underlying Boolean algebra and (c Particular solutions, each of which is an assignment from the underlying Boolean algebra to every pertinent variable that makes the Boolean equation an identity. The reconstructed function f(X in every case is set in a canonical form, such as the complete-sum form, to facilitate proving its equivalence to the original function. The methods presented herein are demonstrated with carefully-chosen illustrative examples over big Boolean algebras of various sizes. Among the methods utilized in handling the inverse problem for Boolean equations, the ones utilizing the variable-entered Karnaugh map offered pictorial insight and exhibited an efficient divide-and-conquer strategy.

  7. Inverse scattering problem in turbulent magnetic fluctuations

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang; Narita, Yasuhito

    2016-08-01

    We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand-Levitan-Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes advantage of a particular

  8. Prior Information in Inverse Boundary Problems

    DEFF Research Database (Denmark)

    Garde, Henrik

    This thesis gives a threefold perspective on the inverse problem of inclusion detection in electrical impedance tomography: depth dependence, monotonicitybased reconstruction, and sparsity-based reconstruction. The depth dependence is given in terms of explicit bounds on the datum norm, which shows...... into how much noise that can be allowed in the datum before an inclusion cannot be detected. The monotonicity method is a direct reconstruction method that utilizes a monotonicity property of the forward problem in order to characterize the inclusions. Here we rigorously prove that the method can...... of the method. Sparsity-based reconstruction is an iterative method, that through an optimization problem with a sparsity prior, approximates the inhomogeneities. Here we make use of prior information, that can cheaply be obtained from the monotonicity method, to improve both the contrast and resolution...

  9. The Inverse Problem for the Dipole Field

    CERN Document Server

    Epp, V

    2015-01-01

    The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.

  10. Microlocal analysis of a seismic linearized inverse problem

    NARCIS (Netherlands)

    Stolk, C.C.

    2001-01-01

    The seismic inverse problem is to determine the wavespeed c x in the interior of a medium from measurements at the boundary In this paper we analyze the linearized inverse problem in general acoustic media The problem is to nd a left inverse of the linearized forward map F or equivalently to nd the

  11. Generalized Inverse Eigenvalue Problem for Centrohermitian Matrices

    Institute of Scientific and Technical Information of China (English)

    刘仲云; 谭艳祥; 田兆录

    2004-01-01

    In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP) : given a set of n-dimension complex vectors { xj }jm = 1 and a set of complex numbers { λj} jm = 1, find two n × n centrohermitian matrices A, B such that { xj }jm = 1 and { λj }jm= 1 are the generalized eigenvectors and generalized eigenvalues of Ax = λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, A-, B- ∈Cn×n , we find two matrices A* and B* such that the matrix (A* ,B* ) is closest to (A- ,B-) in the Frobenius norm, where the matrix (A*, B* ) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.

  12. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  13. Data quality for the inverse lsing problem

    Science.gov (United States)

    Decelle, Aurélien; Ricci-Tersenghi, Federico; Zhang, Pan

    2016-09-01

    There are many methods proposed for inferring parameters of the Ising model from given data, that is a set of configurations generated according to the model itself. However little attention has been paid until now to the data, e.g. how the data is generated, whether the inference error using one set of data could be smaller than using another set of data, etc. In this paper we discuss the data quality problem in the inverse Ising problem, using as a benchmark the kinetic Ising model. We quantify the quality of data using effective rank of the correlation matrix, and show that data gathered in a out-of-equilibrium regime has a better quality than data gathered in equilibrium for coupling reconstruction. We also propose a matrix-perturbation based method for tuning the quality of given data and for removing bad-quality (i.e. redundant) configurations from data.

  14. Minimax approach to inverse problems of geophysics

    Science.gov (United States)

    Balk, P. I.; Dolgal, A. S.; Balk, T. V.; Khristenko, L. A.

    2016-03-01

    A new approach is suggested for solving the inverse problems that arise in the different fields of applied geophysics (gravity, magnetic, and electrical prospecting, geothermy) and require assessing the spatial region occupied by the anomaly-generating masses in the presence of different types of a priori information. The interpretation which provides the maximum guaranteed proximity of the model field sources to the real perturbing object is treated as the best interpretation. In some fields of science (game theory, economics, operations research), the decision-making principle that lies in minimizing the probable losses which cannot be prevented if the situation develops by the worst-case scenario is referred to as minimax. The minimax criterion of choice is interesting as, instead of being confined to the indirect (and sometimes doubtful) signs of the "optimal" solution, it relies on the actual properties of the information in the results of a particular interpretation. In the hierarchy of the approaches to the solution of the inverse problems of geophysics ordered by the volume and quality of the retrieved information about the sources of the field, the minimax approach should take special place.

  15. Inverse Variational Problem for Nonstandard Lagrangians

    Science.gov (United States)

    Saha, A.; Talukdar, B.

    2014-06-01

    In the mathematical physics literature the nonstandard Lagrangians (NSLs) were introduced in an ad hoc fashion rather than being derived from the solution of the inverse problem of variational calculus. We begin with the first integral of the equation of motion and solve the associated inverse problem to obtain some of the existing results for NSLs. In addition, we provide a number of alternative Lagrangian representations. The case studies envisaged by us include (i) the usual modified Emden-type equation, (ii) Emden-type equation with dissipative term quadratic in velocity, (iii) Lotka-Volterra model and (vi) a number of the generic equations for dissipative-like dynamical systems. Our method works for nonstandard Lagrangians corresponding to the usual action integral of mechanical systems but requires modification for those associated with the modified actions like S =∫abe L(x ,x˙ , t) dt and S =∫abL 1 - γ(x ,x˙ , t) dt because in the latter case one cannot construct expressions for the Jacobi integrals.

  16. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  17. The inverse gravimetric problem in gravity modelling

    Science.gov (United States)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  18. Inverse acoustic scattering problem in half-space with anisotropic random impedance

    Science.gov (United States)

    Helin, Tapio; Lassas, Matti; Päivärinta, Lassi

    2017-02-01

    We study an inverse acoustic scattering problem in half-space with a probabilistic impedance boundary value condition. The Robin coefficient (surface impedance) is assumed to be a Gaussian random function with a pseudodifferential operator describing the covariance. We measure the amplitude of the backscattered field averaged over the frequency band and assume that the data is generated by a single realization of λ. Our main result is to show that under certain conditions the principal symbol of the covariance operator of λ is uniquely determined. Most importantly, no approximations are needed and we can solve the full non-linear inverse problem. We concentrate on anisotropic models for the principal symbol, which leads to the analysis of a novel anisotropic spherical Radon transform and its invertibility.

  19. Large Deviation Strategy for Inverse Problem

    CERN Document Server

    Ojima, Izumi

    2011-01-01

    Taken traditionally as a no-go theorem against the theorization of inductive processes, Duheme-Quine thesis may interfere with the essence of statistical inference. This difficulty can be resolved by \\textquotedblleft Micro-Macro duality\\textquotedblright\\ \\cite{Oj03, Oj05} which clarifies the importance of specifying the pertinent aspects and accuracy relevant to concrete contexts of scientific discussions and which ensures the matching between what to be described and what to describe in the form of the validity of duality relations. This consolidates the foundations of the inverse problem, induction method, and statistical inference crucial for the sound relations between theory and experiments. To achieve the purpose, we propose here Large Deviation Strategy (LDS for short) on the basis of Micro-Macro duality, quadrality scheme, and large deviation principle. According to the quadrality scheme emphasizing the basic roles played by the dynamics, algebra of observables together with its representations and ...

  20. Numerical Methods for Bayesian Inverse Problems

    KAUST Repository

    Ernst, Oliver

    2014-01-06

    We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.

  1. Stochastic inverse problems: Models and metrics

    Energy Technology Data Exchange (ETDEWEB)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim [Victor Technologies, LLC, Bloomington, IN 47407-7706 (United States); Aldrin, John C. [Computational Tools, Gurnee, IL 60031 (United States); Annis, Charles [Statistical Engineering, Palm Beach Gardens, FL 33418 (United States); Knopp, Jeremy S. [Air Force Research Laboratory (AFRL/RXCA), Wright Patterson AFB, OH 45433-7817 (United States)

    2015-03-31

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  2. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  3. The relativistic inverse stellar structure problem

    Energy Technology Data Exchange (ETDEWEB)

    Lindblom, Lee [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-01-14

    The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.

  4. The Relativistic Inverse Stellar Structure Problem

    CERN Document Server

    Lindblom, Lee

    2014-01-01

    The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein's equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein's equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or thr...

  5. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...

  6. Inverse problem approaches for digital hologram reconstruction

    Science.gov (United States)

    Fournier, Corinne; Denis, Loic; Thiebaut, Eric; Fournel, Thierry; Seifi, Mozhdeh

    2011-06-01

    Digital holography (DH) is being increasingly used for its time-resolved three-dimensional (3-D) imaging capabilities. A 3-D volume can be numerically reconstructed from a single 2-D hologram. Applications of DH range from experimental mechanics, biology, and fluid dynamics. Improvement and characterization of the 3-D reconstruction algorithms is a current issue. Over the past decade, numerous algorithms for the analysis of holograms have been proposed. They are mostly based on a common approach to hologram processing: digital reconstruction based on the simulation of hologram diffraction. They suffer from artifacts intrinsic to holography: twin-image contamination of the reconstructed images, image distortions for objects located close to the hologram borders. The analysis of the reconstructed planes is therefore limited by these defects. In contrast to this approach, the inverse problems perspective does not transform the hologram but performs object detection and location by matching a model of the hologram. Information is thus extracted from the hologram in an optimal way, leading to two essential results: an improvement of the axial accuracy and the capability to extend the reconstructed field beyond the physical limit of the sensor size (out-of-field reconstruction). These improvements come at the cost of an increase of the computational load compared to (typically non iterative) classical approaches.

  7. Dark Energy as an Inverse Problem

    CERN Document Server

    Espana-Bonet, C; Espana-Bonet, Cristina; Ruiz-Lapuente, Pilar

    2005-01-01

    A model--independent approach to dark energy is here developed by considering the determination of its equation of state as an inverse problem. The reconstruction of w(z) as a non--parametric function using the current SNe Ia data is explored. It is investigated as well how results would improve when considering other samples of cosmic distance indicators at higher redshift. This approach reveals the lack of information in the present samples to conclude on the behavior of w(z) at z > 0.6. At low level of significance a preference is found for w_{0} 0 at z ~ 0.2--0.3. The solution of w(z) along redshift never departs more than 1.95\\sigma from the cosmological constant w(z)=-1, and this only occurs when using various cosmic distance indicators. The determination of w(z) as a function is readdressed considering samples of large number of SNe Ia as those to be provided by SNAP. It is found an improvement in the resolution of w(z) when using those synthetic samples, which is favored by adding data at very high z...

  8. PREFACE: International Conference on Inverse Problems 2010

    Science.gov (United States)

    Hon, Yiu-Chung; Ling, Leevan

    2011-03-01

    Following the first International Conference on Inverse Problems - Recent Theoretical Development and Numerical Approaches held at the City University of Hong Kong in 2002, the fifth International Conference was held again at the City University during December 13-17, 2010. This fifth conference was jointly organized by Professor Yiu-Chung Hon (Co-Chair, City University of Hong Kong, HKSAR), Dr Leevan Ling (Co-Chair, Hong Kong Baptist University, HKSAR), Professor Jin Cheng (Fudan University, China), Professor June-Yub Lee (Ewha Womans University, South Korea), Professor Gui-Rong Liu (University of Cincinnati, USA), Professor Jenn-Nan Wang (National Taiwan University, Taiwan), and Professor Masahiro Yamamoto (The University of Tokyo, Japan). It was agreed to alternate holding the conference among the above places (China, Japan, Korea, Taiwan, and Hong Kong) once every two years. The next conference has been scheduled to be held at the Southeast University (Nanjing, China) in 2012. The purpose of this series of conferences is to establish a strong collaborative link among the universities of the Asian-Pacific regions and worldwide leading researchers in inverse problems. The conference addressed both theoretical (mathematics), applied (engineering) and developmental aspects of inverse problems. The conference was intended to nurture Asian-American-European collaborations in the evolving interdisciplinary areas and it was envisioned that the conference would lead to long-term commitments and collaborations among the participating countries and researchers. There was a total of more than 100 participants. A call for the submission of papers was sent out after the conference, and a total of 19 papers were finally accepted for publication in this proceedings. The papers included in the proceedings cover a wide scope, which reflects the current flourishing theoretical and numerical research into inverse problems. Finally, as the co-chairs of the Inverse Problems

  9. Large-Scale Inverse Problems and Quantification of Uncertainty

    CERN Document Server

    Biegler, Lorenz; Ghattas, Omar

    2010-01-01

    Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca

  10. Non-linear canonical correlation

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1983-01-01

    Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An

  11. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  12. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  13. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  14. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  15. Symmetries in Non-Linear Mechanics

    CERN Document Server

    Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco

    2014-01-01

    In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...

  16. Pseudo almost periodic solutions to parabolic boundary value inverse problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We first define the pseudo almost periodic functions in a more general setting.Then we show the existence,uniqueness and stability of pseudo almost periodic solutions of parabolic inverse problems for a type of boundary value problems.

  17. Perturbative methods for inverse problems on degenerate differential equations

    Directory of Open Access Journals (Sweden)

    Angelo Favini

    2012-12-01

    Full Text Available Pertubation results for linear relations satisfying a resolvent condition of weak parabolic type are established. Such results are applied to solve some inverse problems for degenerate differential equations, supplying a new method which avoids any fixed-point argument and essentially consists in reducing the original inverse problem to an auxiliary direct one.

  18. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  19. A Forward Glimpse into Inverse Problems through a Geology Example

    Science.gov (United States)

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  20. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  1. Solutions of inverse problems for biodegradation of xenobiotic polymers

    Science.gov (United States)

    Watanabe, Masaji; Kawai, Fusako

    2016-02-01

    Mathematical techniques are applied to a microbial depolymerization process. A mathematical model for the transition of the weight distribution and the microbial population is described. Inverse problems for a molecular factor and a time factor of a degradation rate are derived. Numerical techniques to solve the inverse problems are illustrated, and numerical results are presented.

  2. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  3. CUDA Parallel Algorithms for Forward and Inverse Structural Gravity Problems

    OpenAIRE

    2015-01-01

    This paper describes usage of CUDA parallelization scheme for forward and inverse gravity problems for structural boundaries. Forward problem is calculated using the finite elements approach. This means that the whole calculation volume is split into parallelepipeds and then the gravity effect of each is calculated using known formula. Inverse problem solution is found using iteration local corrections method. This method requires only forward problem calculation on each iteration and does no...

  4. Electromagnetic tomography (EMT): image reconstruction based on the inverse problem

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Starting from Maxwell's equations for inhomogeneous media, nonlinear integral equations of the inverse problem of the electromagnetic tomography (EMT) are derived, whose kernel is the dyadic Green's function for the EMT sensor with a homogeneous medium in the object space. Then in terms of ill-posedness of the inverse problem, a Tikhonov-type regularization model is established based on a linearization-approximation of the nonlinear inverse problem. Finally, an iterative algorithm of image reconstruction based on the inverse problem and reconstruction images of some object flows for simplified sensor are given. Initial results of the image reconstruction show that the algorithm based on the inverse problem is superior to those based on the linear back-projection in the quality of image reconstruction.

  5. 基于贝叶斯理论的逐次迭代非线性 AVA 反演方法%Non-Linear Pre-Stack Seismic AVA Inversion Based on Bayesian Theory Using Successive Iteration Method

    Institute of Scientific and Technical Information of China (English)

    代荣获; 张繁昌; 刘汉卿; 李灿灿

    2014-01-01

    Conventional three-term AVA inversion methods are based on the assumption thatγ (the ratio of S-wave velocity to P-wave velocity)is a constant value usually considered to be 0.5,whileγ is horizontally and vertically varied gradually in many cases.The estimated parameters of the inversion is bound to deviate from its true values with γ invariably being 0.5.and the selection γ needs to be reasonably.Based on Bayesian theory,we presents a nonlinear pre-stack seismic AVA inversion using successive iterative method,which considered the ratio’s initial background varying horizontally and vertically and being calculated by the-given initial model,and the nonlinear inversion problem was solved by successive iteration.The proposed method gived a reasonable solution for the selection of γ and solved the nonlinear problem caused by variable ratioγ.And the accuracy and stability of the three-term AVA inversion were improved.%常规 AVA 三参数反演方法均基于横波速度与纵波速度之比γ为常数这一假设条件,且常被近似地取为0.5。然而在许多情况下γ并不为常数,而是在横向与纵向都渐变。若一概假定γ等于0.5,反演出的岩性参数势必要偏离真实值,因此有必要合理地选择γ。笔者基于贝叶斯理论,提出逐次迭代非线性AVA 的反演方法。该方法把γ看成横向与纵向都渐变的反演初始背景,通过给定初始模型计算初始背景γ,并采用逐次迭代的策略求解该反演问题,解决了关于γ的选取问题以及由于引入变γ值而带来的非线性问题,提高了 AVA 三参数反演结果的精确度。

  6. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...

  7. Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU

    2008-01-01

    This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.

  8. Local regularization of linear inverse problems via variational filtering

    Science.gov (United States)

    Lamm, Patricia K.

    2017-08-01

    We develop local regularization methods for ill-posed linear inverse problems governed by general Fredholm integral operators. The methods are executed as filtering algorithms which are simple to implement and computationally efficient for a large class of problems. We establish a convergence theory and give convergence rates for such methods, and illustrate their computational speed in numerical tests for inverse problems in geomagnetic exploration and imaging.

  9. An Efficient Pseudo-Inverse Solution to the Inverse Kinematic Problem for 6-Joint Manipulators

    Directory of Open Access Journals (Sweden)

    Stefano Chiaverini

    1990-10-01

    Full Text Available The use of the pseudo-inverse Jacobian matrix makes the solution of the inverse kinematic problem well-defined even at singular configurations of the robot arm, in the neighbourhood of a singularity, however, the computed solution often results in high joint velocities which may not be feasible to the real manipulator. Furthermore, the pseudo-inverse solution is computationally expensive, thus preventing real-time applications.

  10. Index Theory-Based Algorithm for the Gradiometer Inverse Problem

    Science.gov (United States)

    2015-03-28

    field generated by the positive eigenvector of the gradiometer tensor to the closeness of fit of the proposed inverse solution to the mass and...line field generated by the positive eigenvector of the gradiometer tensor to the closeness of fit of the proposed inverse solution to the mass and...2015). The inverse source problem for the gradiometer tensor can be stated generally as follows: given a gradiometer tensor field, extract

  11. An Inverse Eigenvalue Problem for Jacobi Matrices

    Directory of Open Access Journals (Sweden)

    Zhengsheng Wang

    2011-01-01

    eigenvectors. The solvability of the problem is discussed, and some sufficient conditions for existence of the solution of this problem are proposed. Furthermore, a numerical algorithm and two examples are presented.

  12. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  13. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM

    DEFF Research Database (Denmark)

    Knudsen, Kim; Lassas, Matti; Mueller, Jennifer;

    2009-01-01

    A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...

  14. Applications of elliptic Carleman inequalities to Cauchy and inverse problems

    CERN Document Server

    Choulli, Mourad

    2016-01-01

    This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.

  15. Inverse problem of Ocean Acoustic Tomography (OAT) - A numerical experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Mahadevan, R.; Murty, C.S.

    layers, or grids developEd. by solving the forward problem of the acoustic model enable build the generalized inverse operator (GIO) that operates on the travel time perturbation data. Resolution matrices obtained through SVD helped to examine...

  16. Modeling and inverse problems in the presence of uncertainty

    CERN Document Server

    Banks, H T; Thompson, W Clayton

    2014-01-01

    Modeling and Inverse Problems in the Presence of Uncertainty collects recent research-including the authors' own substantial projects-on uncertainty propagation and quantification. It covers two sources of uncertainty: where uncertainty is present primarily due to measurement errors and where uncertainty is present due to the modeling formulation itself. After a useful review of relevant probability and statistical concepts, the book summarizes mathematical and statistical aspects of inverse problem methodology, including ordinary, weighted, and generalized least-squares formulations. It then

  17. Inverse Coefficient Problems for Nonlinear Elliptic Variational Inequalities

    Institute of Scientific and Technical Information of China (English)

    Run-sheng Yang; Yun-hua Ou

    2011-01-01

    This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic variational inequalities. The unknown coefficient of elliptic variational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic variational inequalities is unique solvable for the given class of coefficients. The existence of quasisolutions of the inverse problems is obtained.

  18. Analysis of the Gibbs Sampler for Hierarchical Inverse Problems

    OpenAIRE

    Agapiou, Sergios; Bardsley, Johnathan M.; Papaspiliopoulos, Omiros; Stuart, Andrew M.

    2014-01-01

    Many inverse problems arising in applications come from continuum models where the unknown parameter is a field. In practice the unknown field is discretized resulting in a problem in $\\mathbb{R}^N$, with an understanding that refining the discretization, that is increasing $N$, will often be desirable. In the context of Bayesian inversion this situation suggests the importance of two issues: (i) defining hyper-parameters in such a way that they are interpretable in the continuum limit $N \\to...

  19. THE INVERSE PROBLEM OF CENTROSYMMETRIC MATRICES WITH A SUBMATRIX CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    Zhen-yun Peng; Xi-yan Hu; Lei Zhang

    2004-01-01

    By using Moore-Penrose generalized inverse and the general singular value decomposition of matrices, this paper establishes the necessary and sufficient conditions for the existence of and the expressions for the centrosymmetric solutions with a submatrix constraint of matrix inverse problem AX = B. In addition, in the solution set of corresponding problem, the expression of the optimal approximation solution to a given matrix is derived.

  20. Piecewise polynomial solutions to linear inverse problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Mosegaard, K.

    1996-01-01

    We have presented a new algorithm PP-TSVD that computes piecewise polynomial solutions to ill-posed problems, without a priori knowledge about the positions of the break points. In particular, we can compute piecewise constant functions that describe layered models. Such solutions are useful, e.g.......g., in seismological problems, and the algorithm can also be used as a preprocessor for other methods where break points/discontinuities must be incorporated explicitly....

  1. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...... be based on a theoretical analysis of the underlying inverse problem....

  2. Structured Sparsity Regularization Approach to the EEG Inverse Problem

    DEFF Research Database (Denmark)

    Montoya-Martinez, Jair; Artes-Rodriguez, Antonio; Hansen, Lars Kai

    2012-01-01

    Localization of brain activity involves solving the EEG inverse problem, which is an undetermined ill-posed problem. We propose a novel approach consisting in estimating, using structured sparsity regularization techniques, the Brain Electrical Sources (BES) matrix directly in the spatio-temporal......Localization of brain activity involves solving the EEG inverse problem, which is an undetermined ill-posed problem. We propose a novel approach consisting in estimating, using structured sparsity regularization techniques, the Brain Electrical Sources (BES) matrix directly in the spatio...

  3. Inverse problems in vision and 3D tomography

    CERN Document Server

    Mohamad-Djafari, Ali

    2013-01-01

    The concept of an inverse problem is a familiar one to most scientists and engineers, particularly in the field of signal and image processing, imaging systems (medical, geophysical, industrial non-destructive testing, etc.) and computer vision. In imaging systems, the aim is not just to estimate unobserved images, but also their geometric characteristics from observed quantities that are linked to these unobserved quantities through the forward problem. This book focuses on imagery and vision problems that can be clearly written in terms of an inverse problem where an estimate for the image a

  4. Reconstruction Methods for Inverse Problems with Partial Data

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer

    This thesis presents a theoretical and numerical analysis of a general mathematical formulation of hybrid inverse problems in impedance tomography. This includes problems from several existing hybrid imaging modalities such as Current Density Impedance Imaging, Magnetic Resonance Electrical...... Impedance Tomography, and Ultrasound Modulated Electrical Impedance Tomography. After giving an introduction to hybrid inverse problems in impedance tomography and the mathematical tools that facilitate the related analysis, we explain in detail the stability properties associated with the classification...... of a linearised hybrid inverse problem. This is done using pseudo-differential calculus and theory for overdetermined boundary value problem. Using microlocal analysis we then present novel results on the propagation of singularities, which give a precise description of the distinct features of solutions...

  5. Ensemble methods for large scale inverse problems

    NARCIS (Netherlands)

    Heemink, A.W.; Umer Altaf, M.; Barbu, A.L.; Verlaan, M.

    2013-01-01

    Variational data assimilation, also sometimes simply called the ‘adjoint method’, is used very often for large scale model calibration problems. Using the available data, the uncertain parameters in the model are identified by minimizing a certain cost function that measures the difference between t

  6. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  7. NICMOS non-linearity tests

    Science.gov (United States)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  8. Stabilizing inverse problems by internal data

    KAUST Repository

    Kuchment, Peter

    2012-07-30

    Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low-resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kinds of interior data stabilize the reconstruction, and why. Namely, we show when the linearized problem becomes an elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality. © 2012 IOP Publishing Ltd.

  9. Stabilizing Inverse Problems by Internal Data

    CERN Document Server

    Kuchment, Peter

    2011-01-01

    Several newly developing hybrid imaging methods (e.g., those combining electrical impedance or optical imaging with acoustics) enable one to obtain some auxiliary interior information (usually some combination of the electrical conductivity and the current) about the parameters of the tissues. This information, in turn, happens to stabilize the exponentially unstable and thus low resolution optical and electrical impedance tomography. Various known instances of this effect have been studied individually. We show that there is a simple general technique (covering all known cases) that shows what kind of interior data stabilizes the reconstruction, and why. Namely, we show when the linearized problem becomes elliptic pseudo-differential one, and thus stable. Stability here is meant as the problem being Fredholm, so the local uniqueness is not shown and probably does not hold in such generality.

  10. One-dimensional inverse problems of mathematical physics

    CERN Document Server

    Lavrent'ev, M M; Yakhno, V G; Schulenberger, J R

    1986-01-01

    This monograph deals with the inverse problems of determining a variable coefficient and right side for hyperbolic and parabolic equations on the basis of known solutions at fixed points of space for all times. The problems are one-dimensional in nature since the desired coefficient of the equation is a function of only one coordinate, while the desired right side is a function only of time. The authors use methods based on the spectral theory of ordinary differential operators of second order and also methods which make it possible to reduce the investigation of the inverse problems to the in

  11. Minimax theory for a class of nonlinear statistical inverse problems

    Science.gov (United States)

    Ray, Kolyan; Schmidt-Hieber, Johannes

    2016-06-01

    We study a class of statistical inverse problems with nonlinear pointwise operators motivated by concrete statistical applications. A two-step procedure is proposed, where the first step smoothes the data and inverts the nonlinearity. This reduces the initial nonlinear problem to a linear inverse problem with deterministic noise, which is then solved in a second step. The noise reduction step is based on wavelet thresholding and is shown to be minimax optimal (up to logarithmic factors) in a pointwise function-dependent sense. Our analysis is based on a modified notion of Hölder smoothness scales that are natural in this setting.

  12. Inverse problems in ordinary differential equations and applications

    CERN Document Server

    Llibre, Jaume

    2016-01-01

    This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.

  13. Inverse problems basics, theory and applications in geophysics

    CERN Document Server

    Richter, Mathias

    2016-01-01

    The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

  14. The Inverse Source Problem for Maxwell’s Equations

    Science.gov (United States)

    2006-10-01

    of applied biomedical engineering and also as a mathematical problem (see for example [3, 22, 15, 7, 14, 9, 6, 121 where we have emphasized...BLEISTEIN AND J. COHEN, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, Journal of Mathematical Physics, 18 (1977), pp. 194

  15. Unfolding in particle physics: a window on solving inverse problems

    Directory of Open Access Journals (Sweden)

    Spanò Francesco

    2013-07-01

    Full Text Available Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments.

  16. TOPICAL REVIEW: Optical tomography: forward and inverse problems

    Science.gov (United States)

    Arridge, Simon R.; Schotland, John C.

    2009-12-01

    This is a review of recent mathematical and computational advances in optical tomography. We discuss the physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales. We also consider direct and numerical approaches to the inverse problems that arise at each of these scales. Finally, we outline future directions and open problems in the field.

  17. AN INVERSE MAXIMUM CAPACITY PATH PROBLEM WITH LOWER BOUND CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    杨超; 陈学旗

    2002-01-01

    The computational complexity of inverse mimimum capacity path problem with lower bound on capacity of maximum capacity path is examined, and it is proved that solution of this problem is NP-complete. A strong polynomial algorithm for a local optimal solution is provided.

  18. On a class of inverse electrostatic and elasticity problems

    OpenAIRE

    Artemev, Andrei; Parnovski, Leonid; Polterovich, Iosif

    2012-01-01

    We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. The uniqueness of solutions of these problems is proved for piecewise constant electric charge and internal stress distributions having a checkered structure: they are constant on rectangular blocks. Such distributions appear naturally in practical applications. We also discuss computational challenges arising in the numerical implementation of our method.

  19. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    Science.gov (United States)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    , reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, applications (bio-medical imaging, non-destructive evaluation etc). NCMIP 2012 was a one-day workshop. Each of the submitted papers was reviewed by 2 to 4 reviewers. Among the accepted papers, there are 8 oral presentations and 5 posters. Three international speakers were invited for a long talk. This second edition attracted 60 registered attendees in May 2012. NCMIP 2012 was supported by Institut Farman (ENS Cachan) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following laboratories CMLA, LMT, LSV, LURPA, SATIE, as well as DIGITEO Network. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop Co-chairs Laure Blanc-Féraud, I3S laboratory, CNRS, France Pierre-Yves Joubert, IEF laboratory, Paris-Sud University, CNRS, France Technical Program Committee Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Anthony Quinn, Trinity College, Dublin, Ireland Christian Rey, LMT, ENS Cachan, CNRS, France Joachim Weickert, Saarland University, Germany Local Chair Alejandro Mottini, Morpheme group I3S-INRIA Sophie Abriet, SATIE, ENS Cachan, CNRS, France Béatrice Bacquet, SATIE, ENS Cachan, CNRS, France Reviewers Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Laure Blanc-Féraud, I3S laboratory, CNRS, France Marc Bonnet, ENSTA, ParisTech, France Jerôme Darbon, CMLA, ENS Cachan, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK G

  20. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    Science.gov (United States)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition, reduced models for the inversion, non-linear inverse scattering, image reconstruction and restoration, and applications (bio-medical imaging, non-destructive evaluation...). NCMIP 2013 was a one-day workshop held in May 2013 which attracted around 60 attendees. Each of the submitted papers has been reviewed by three reviewers. Among the accepted papers, there are seven oral presentations, five posters and one invited poster (On a deconvolution challenge presented by C Vonesch from EPFL, Switzerland). In addition, three international speakers were invited to present a longer talk. The workshop was supported by Institut Farman (ENS Cachan, CNRS) and endorsed by the following French research networks (GDR ISIS, GDR Ondes, GDR MOA, GDR MSPC). The program committee acknowledges the following research laboratories CMLA, LMT, LSV, LURPA, SATIE. Laure Blanc-Féraud and Pierre-Yves Joubert Workshop co-chair Laure Blanc-Féraud, I3S laboratory and INRIA Nice Sophia-Antipolis, France Pierre-Yves Joubert, IEF, Paris-Sud University, CNRS, France Technical program committee Gilles Aubert, J-A Dieudonné Laboratory, CNRS and University of Nice-Sophia Antipolis, France Nabil Anwer, LURPA, ENS Cachan, France Alexandre Baussard, ENSTA Bretagne, Lab-STICC, France Marc Bonnet, ENSTA, ParisTech, France Antonin Chambolle, CMAP, Ecole Polytechnique, CNRS, France Oliver Dorn, School of Mathematics, University of Manchester, UK Cécile Durieu, SATIE, ENS Cachan, CNRS, France Gérard Favier, I3S Laboratory, University of Nice Sophia-Antipolis, France Mário Figueiredo, Instituto Superior Técnico, Lisbon, Portugal Laurent Fribourg, LSV, ENS Cachan, CNRS, France Marc Lambert, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Dominique Lesselier, L2S Laboratory, CNRS, SupElec, Paris-Sud University, France Matteo

  1. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  2. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    a sequence of estimation problems for linearized models is solved. In the testing we apply four estimators to ten non-linear data fitting problems. The test problems are also solved by the Generalized Levenberg-Marquardt method and standard optimization BFGS method. It turns out that the new method...

  3. The inverse problem based on a full dispersive wave equation

    Institute of Scientific and Technical Information of China (English)

    Gegentana Bao; Naranmandula Bao

    2012-01-01

    The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.

  4. On numerical methods for direct and inverse problems in electromagnetism

    OpenAIRE

    Zemanova, Viera

    2009-01-01

    This thesis is devoted to the study of processes in the propagation of electromagnetic fields. We do not aim at one particular problem, actually very different kinds of topics are analyzed here. We deal with direct problems as well as with inverse ones, low frequency electromagnetism is discussed and consequently the wave propagation problem in high frequency domain is studied. Study of electromagnetic materials and their behavior is of a huge interest for the technological world. Its impo...

  5. Eddy current imaging. Limits of the born approximation and advantages of an exact solution to the inverse problem; Imagerie par courants de Foucault. Limites de l`approximation de Born et interet d`une resolution exacte du probleme inverse

    Energy Technology Data Exchange (ETDEWEB)

    Hamman, E.; Zorgati, R.

    1995-12-31

    Eddy current non-destructive testing is used by EDF to detect flaws affecting conductive objects such as steam generator tubes. With a view to obtaining ever more accurate information on equipment integrity, thereby facilitating diagnosis, studies aimed at using measurements to reconstruct an image of the flaw have been proceeding now for about ten years. In this context, our approach to eddy current imaging is based on inverse problem formalism. The direct problem, involving a mathematical model linking measurements provided by a probe with variables characterizing the defect, is dealt with elsewhere. Using the model results, we study the possibility of inverting it, i.e. of reconstructing an image of the flaw from the measurements. We first give an overview of the different inversion techniques, representative of the state of the art and all based on linearization of the inverse problem by means of the Born approximation. The model error resulting from an excessive Born approximation nevertheless severely limits the quantity of the images which can be obtained. In order to counteract this often critical error and extend the eddy current imaging application field, we have to del with the non-linear inverse problem. A method derived from recent research is proposed and implemented to ensure consistency with the exact model. Based on an `optimization` type approach and provided with a convergence theorem, the method is highly efficient. (authors). 17 refs., 7 figs., 1 append.

  6. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  7. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  8. A Survey on Inverse Problems for Applied Sciences

    Directory of Open Access Journals (Sweden)

    Fatih Yaman

    2013-01-01

    Full Text Available The aim of this paper is to introduce inversion-based engineering applications and to investigate some of the important ones from mathematical point of view. To do this we employ acoustic, electromagnetic, and elastic waves for presenting different types of inverse problems. More specifically, we first study location, shape, and boundary parameter reconstruction algorithms for the inaccessible targets in acoustics. The inverse problems for the time-dependent differential equations of isotropic and anisotropic elasticity are reviewed in the following section of the paper. These problems were the objects of the study by many authors in the last several decades. The physical interpretations for almost all of these problems are given, and the geophysical applications for some of them are described. In our last section, an introduction with many links into the literature is given for modern algorithms which combine techniques from classical inverse problems with stochastic tools into ensemble methods both for data assimilation as well as for forecasting.

  9. SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information. Part 2—Application to crosshole GPR tomography

    Science.gov (United States)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Looms, Majken Caroline; Mosegaard, Klaus

    2013-03-01

    We present an application of the SIPPI Matlab toolbox, to obtain a sample from the a posteriori probability density function for the classical tomographic inversion problem. We consider a number of different forward models, linear and non-linear, such as ray based forward models that rely on the high frequency approximation of the wave-equation and 'fat' ray based forward models relying on finite frequency theory. In order to sample the a posteriori probability density function we make use of both least squares based inversion, for linear Gaussian inverse problems, and the extended Metropolis sampler, for non-linear non-Gaussian inverse problems. To illustrate the applicability of the SIPPI toolbox to a tomographic field data set we use a cross-borehole traveltime data set from Arrenæs, Denmark. Both the computer code and the data are released in the public domain using open source and open data licenses. The code has been developed to facilitate inversion of 2D and 3D travel time tomographic data using a wide range of possible a priori models and choices of forward models.

  10. A time domain sampling method for inverse acoustic scattering problems

    Science.gov (United States)

    Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu

    2016-06-01

    This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.

  11. Inverse problem for multi-body interaction of nonlinear waves

    CERN Document Server

    Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2016-01-01

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.

  12. A new method of solving the coefficient inverse problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper is concerned with the new method for solving the coefficient inverse problem in the reproducing kernel space. It is different from the previous studies. This method gives accurate results and shows that it is valid by the numerical example.

  13. Hidden information in ill-posed inverse problems

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori, M.; Joosten, G.J.P.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    It is well known that parameter updating of large-scale numerical reservoir flow models (a.k.a. ‘computer assisted history matching’) is an ill-posed inverse problem. Typically the number of uncertain parameters in a reservoir flow model is very large whereas the available information for estimating

  14. A comparative analysis of algorithms for the magnetoencephalography inverse problem

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, A [CNR-INFM LAMIA, Genova (Italy); Pascarella, A; Piana, M [Dipartimento di Informatica, Universita di Verona, Ca Vignal 2, Strada le Grazie 15, 37134, Verona (Italy); Campi, C [Dipartimento di Matematica, Universita di Genova, via Dodecaneso 35, 16146, Genova (Italy)], E-mail: sorrentino@fisica.unige.it

    2008-11-01

    We present a comparison of three methods for the solution of the magnetoencephalography inverse problem. The methods are: an eigenspace projected beamformer, an algorithm implementing multiple signal classification with recursively applied projection and a particle filter for Bayesian tracking. Synthetic data with neurophysiological significance are analyzed by the three methods to recover position and amplitude time course of the active sources.

  15. Solving the Inverse-Square Problem with Complex Variables

    Science.gov (United States)

    Gauthier, N.

    2005-01-01

    The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…

  16. Hidden information in ill-posed inverse problems

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori, M.; Joosten, G.J.P.; Van den Hof, P.M.J.; Jansen, J.D.

    2014-01-01

    It is well known that parameter updating of large-scale numerical reservoir flow models (a.k.a. ‘computer assisted history matching’) is an ill-posed inverse problem. Typically the number of uncertain parameters in a reservoir flow model is very large whereas the available information for estimating

  17. A mathematical framework for inverse wave problems in heterogeneous media

    NARCIS (Netherlands)

    Blazek, K.D.; Stolk, C.; Symes, W.W.

    2013-01-01

    This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations re

  18. Data-Driven Model Order Reduction for Bayesian Inverse Problems

    KAUST Repository

    Cui, Tiangang

    2014-01-06

    One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.

  19. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  20. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2017-01-01

    Detecting inhomogeneities in the electrical conductivity is a special case of the inverse problem in electrical impedance tomography, that leads to fast direct reconstruction methods. One such method can, under reasonable assumptions, exactly characterize the inhomogeneities based on monotonicity....... For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  1. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  2. Canonical structure of evolution equations with non-linear dispersive terms

    Indian Academy of Sciences (India)

    B Talukdar; J Shamanna; S Ghosh

    2003-07-01

    The inverse problem of the variational calculus for evolution equations characterized by non-linear dispersive terms is analysed with a view to clarify why such a system does not follow from Lagrangians. Conditions are derived under which one could construct similar equations which admit a Lagrangian representation. It is shown that the system of equations thus obtained can be Hamiltonized by making use of the Dirac’s theory of constraints. The specific results presented refer to the third- and fifth-order equations of the so-called distinguished subclass.

  3. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  4. Inverse Eigenvalue Problems for Two Special Acyclic Matrices

    Directory of Open Access Journals (Sweden)

    Debashish Sharma

    2016-03-01

    Full Text Available In this paper, we study two inverse eigenvalue problems (IEPs of constructing two special acyclic matrices. The first problem involves the reconstruction of matrices whose graph is a path, from given information on one eigenvector of the required matrix and one eigenvalue of each of its leading principal submatrices. The second problem involves reconstruction of matrices whose graph is a broom, the eigen data being the maximum and minimum eigenvalues of each of the leading principal submatrices of the required matrix. In order to solve the problems, we use the recurrence relations among leading principal minors and the property of simplicity of the extremal eigenvalues of acyclic matrices.

  5. A regularized GMRES method for inverse blackbody radiation problem

    Directory of Open Access Journals (Sweden)

    Wu Jieer

    2013-01-01

    Full Text Available The inverse blackbody radiation problem is focused on determining temperature distribution of a blackbody from measured total radiated power spectrum. This problem consists of solving a first kind of Fredholm integral equation and many numerical methods have been proposed. In this paper, a regularized GMRES method is presented to solve the linear ill-posed problem caused by the discretization of such an integral equation. This method projects the orignal problem onto a lower dimensional subspaces by the Arnoldi process. Tikhonov regularization combined with GCV criterion is applied to stabilize the numerical iteration process. Three numerical examples indicate the effectiveness of the regularized GMRES method.

  6. An inverse Sturm–Liouville problem with a fractional derivative

    KAUST Repository

    Jin, Bangti

    2012-05-01

    In this paper, we numerically investigate an inverse problem of recovering the potential term in a fractional Sturm-Liouville problem from one spectrum. The qualitative behaviors of the eigenvalues and eigenfunctions are discussed, and numerical reconstructions of the potential with a Newton method from finite spectral data are presented. Surprisingly, it allows very satisfactory reconstructions for both smooth and discontinuous potentials, provided that the order . α∈. (1,. 2) of fractional derivative is sufficiently away from 2. © 2012 Elsevier Inc.

  7. Forward and inverse problems in fundamental and applied magnetohydrodynamics

    OpenAIRE

    2012-01-01

    This Minireview summarizes the recent efforts to solve forward and inverse problems as they occur in different branches of fundamental and applied magnetohydrodynamics. As for the forward problem, the main focus is on the numerical treatment of induction processes, including self-excitation of magnetic fields in non-spherical domains and/or under the influence of non-homogeneous material parameters. As an important application of the developed numerical schemes, the functioning of the von-K\\'...

  8. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  9. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  10. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)

    1995-12-31

    Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.

  11. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    Science.gov (United States)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  12. Non-linear Elasticity and Monitoring of Stress in the Focus of an Earthquake

    Science.gov (United States)

    Bakulin, V.; Bakulin, A.

    2001-05-01

    Non-linear elasticity proved to give comprehensive framework for relating seismic velocities in rocks to stress. This powerful theory allows attacking the problem of estimating stress state at the focus of earthquakes. Such idea has been proposed long time ago [Kostrov and Nikitin, 1968] however its implementation requires a-priori knowledge of non-linear rock properties. Three non-linear constants needed to describe variation of any velocity with stress are typically estimated from core measurements [Bakulin et al., 2000]. More reliable estimates can be obtained from multi-mode inversions of borehole acoustic data [Sinha, 1996]. Nevertheless database of non-linear formation constants is still very limited. More measurements are required to estimate non-linear rock properties on larger scale and with independent stress constraints. Such measurements can be done in mines [Bakulin and Bakulin, 1999] or in hydrocarbon reservoirs where time-dependent pressure measurements are available. Without knowledge of non-linear rock properties seismic waves can still bring information about directions of tectonic stresses. In particular, shear wave polarizations can deliver directions of principal stresses in the focus of an earthquake, provided the overburden effects were removed. If rock non-linear properties are independently derived then estimation of stress magnitudes becomes feasible. Such techniques were applied in mining environment [Bakulin and Bakulin, 1999]. They may become routine for monitoring stress state in the focus of earthquakes and therefore can be used for forecasting the seismic activity. Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., 2000, Acoustoelasticity of rocks, St. Petersburg (in Russian). Bakulin, V. and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual Internat. Mtg., Soc. Expl. Geophys., 1971-1974. Kostrov, B.V., and Nikitin, L.V., 1968, Influence of initial

  13. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  14. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  15. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  16. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  17. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  18. Iterative total variation schemes for nonlinear inverse problems

    Science.gov (United States)

    Bachmayr, Markus; Burger, Martin

    2009-10-01

    In this paper we discuss the construction, analysis and implementation of iterative schemes for the solution of inverse problems based on total variation regularization. Via different approximations of the nonlinearity we derive three different schemes resembling three well-known methods for nonlinear inverse problems in Hilbert spaces, namely iterated Tikhonov, Levenberg-Marquardt and Landweber. These methods can be set up such that all arising subproblems are convex optimization problems, analogous to those appearing in image denoising or deblurring. We provide a detailed convergence analysis and appropriate stopping rules in the presence of data noise. Moreover, we discuss the implementation of the schemes and the application to distributed parameter estimation in elliptic partial differential equations.

  19. Frechet derivatives for shallow water ocean acoustic inverse problems

    Science.gov (United States)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  20. Integral geometry and inverse problems for hyperbolic equations

    CERN Document Server

    Romanov, V G

    1974-01-01

    There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re­ search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...

  1. Obtaining sparse distributions in 2D inverse problems

    Science.gov (United States)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-08-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxation-relaxation, T1-T2, and diffusion-relaxation, D-T2, correlation experiments in NMR, which have found widespread applications in a number of areas including probing surface interactions in catalysis and characterizing fluid composition and pore structures in rocks. We introduce a robust algorithm for solving the L1 regularization problem and provide a guide to implementing it, including the choice of the amount of regularization used and the assignment of error estimates. We then show experimentally that L1 regularization has significant advantages over both the Non-Negative Least Squares (NNLS) algorithm and Tikhonov regularization. It is shown that the L1 regularization algorithm stably recovers a distribution at a signal to noise ratio direct spectroscopic discrimination is impossible, and hence measurement of chemical composition within porous media, such as catalysts or rocks, is possible while still being stable to high levels of noise.

  2. A hybrid algorithm for solving inverse problems in elasticity

    Directory of Open Access Journals (Sweden)

    Barabasz Barbara

    2014-12-01

    Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.

  3. General bounds for electrode mislocation on the EEG inverse problem.

    Science.gov (United States)

    Beltrachini, L; von Ellenrieder, N; Muravchik, C H

    2011-07-01

    We analyze the effect of electrode mislocation on the electroencephalography (EEG) inverse problem using the Cramér-Rao bound (CRB) for single dipolar source parameters. We adopt a realistic head shape model, and solve the forward problem using the Boundary Element Method; the use of the CRB allows us to obtain general results which do not depend on the algorithm used for solving the inverse problem. We consider two possible causes for the electrode mislocation, errors in the measurement of the electrode positions and an imperfect registration between the electrodes and the scalp surfaces. For 120 electrodes placed in the scalp according to the 10-20 standard, and errors on the electrode location with a standard deviation of 5mm, the lower bound on the standard deviation in the source depth estimation is approximately 1mm in the worst case. Therefore, we conclude that errors in the electrode location may be tolerated since their effect on the EEG inverse problem are negligible from a practical point of view. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Analyses of non-linear systems and their application to biology: a review.

    Science.gov (United States)

    Sato, S

    1994-01-01

    In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.

  5. MAP estimators and their consistency in Bayesian nonparametric inverse problems

    Science.gov (United States)

    Dashti, M.; Law, K. J. H.; Stuart, A. M.; Voss, J.

    2013-09-01

    We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map {G} applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ0. We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μy. Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager-Machlup functional defined on the Cameron-Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of {G}(u) can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics.

  6. MAP estimators and their consistency in Bayesian nonparametric inverse problems

    KAUST Repository

    Dashti, M.

    2013-09-01

    We consider the inverse problem of estimating an unknown function u from noisy measurements y of a known, possibly nonlinear, map applied to u. We adopt a Bayesian approach to the problem and work in a setting where the prior measure is specified as a Gaussian random field μ0. We work under a natural set of conditions on the likelihood which implies the existence of a well-posed posterior measure, μy. Under these conditions, we show that the maximum a posteriori (MAP) estimator is well defined as the minimizer of an Onsager-Machlup functional defined on the Cameron-Martin space of the prior; thus, we link a problem in probability with a problem in the calculus of variations. We then consider the case where the observational noise vanishes and establish a form of Bayesian posterior consistency for the MAP estimator. We also prove a similar result for the case where the observation of can be repeated as many times as desired with independent identically distributed noise. The theory is illustrated with examples from an inverse problem for the Navier-Stokes equation, motivated by problems arising in weather forecasting, and from the theory of conditioned diffusions, motivated by problems arising in molecular dynamics. © 2013 IOP Publishing Ltd.

  7. Inverse minimum spanning tree problem and reverse shortest-path problem with discrete values

    Institute of Scientific and Technical Information of China (English)

    LIU Longcheng; HE Yong

    2006-01-01

    In this paper, we consider two network improvement problems with given discrete values: the inverse minimum spanning tree problem and the reverse shortest-path problem, where the decrements of the weight of the edges are given discrete values. First,for the three models of the inverse minimum spanning tree problem (the sum-type, the bottleneck-type and the constrained bottlenecktype), we present their respective strongly polynomial algorithms. Then, we show that the reverse shortest-path problem is strongly NP-complete.

  8. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.

  9. Relevance vector machine technique for the inverse scattering problem

    Institute of Scientific and Technical Information of China (English)

    Wang Fang-Fang; Zhang Ye-Rong

    2012-01-01

    A novel method based on the relevance vector machine(RVM)for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM)based approach.

  10. Bayesian Inference Applied to the Electromagnetic Inverse Problem

    CERN Document Server

    Schmidt, D M; Wood, C C; Schmidt, David M.; George, John S.

    1998-01-01

    We present a new approach to the electromagnetic inverse problem that explicitly addresses the ambiguity associated with its ill-posed character. Rather than calculating a single ``best'' solution according to some criterion, our approach produces a large number of likely solutions that both fit the data and any prior information that is used. While the range of the different likely results is representative of the ambiguity in the inverse problem even with prior information present, features that are common across a large number of the different solutions can be identified and are associated with a high degree of probability. This approach is implemented and quantified within the formalism of Bayesian inference which combines prior information with that from measurement in a common framework using a single measure. To demonstrate this approach, a general neural activation model is constructed that includes a variable number of extended regions of activation and can incorporate a great deal of prior informati...

  11. Inverse Problem in the Surface EMG: A Feasibility Study

    Science.gov (United States)

    2007-11-02

    the arm containing the studied muscle is modelised (figure 1). The multi- electrode recording system is composed of 16 electrodes regularly...nature of this study (feasibility of the inverse problem in SEMG), the modelisation was made with a few simplifying hypotheses in mind to facilitate the...implementation of the localisation algorithm. This modelisation is nevertheless inspired by previous works [6], and the shapes of the synthetic MUAPs

  12. Inverse Problems for Matrix Exponential in System Identification: System Aliasing

    OpenAIRE

    Yue, Zuogong; Thunberg, Johan; Goncalves, Jorge

    2016-01-01

    This note addresses identification of the $A$-matrix in continuous time linear dynamical systems on state-space form. If this matrix is partially known or known to have a sparse structure, such knowledge can be used to simplify the identification. We begin by introducing some general conditions for solvability of the inverse problems for matrix exponential. Next, we introduce "system aliasing" as an issue in the identification of slow sampled systems. Such aliasing give rise to non-unique mat...

  13. Forward and inverse problems of electrocardiography : clinical investigations

    OpenAIRE

    2008-01-01

    The non-invasive reconstruction of cardiac activity can significantly improve the quality of cardiac diagnostics. Two major approaches are considered. The model-based method consists in the optimization of an electrophysiological cardiac model until the measured and simulated ECGs are similar. The inverse problem of electrocardiography is solved to compute the cardiac sources distributions from body surface potential maps. The results and their interpretation are shown for several patients.

  14. Explicit inverse distance weighting mesh motion for coupled problems

    OpenAIRE

    Witteveen, J.A.S.; Bijl, H.

    2009-01-01

    An explicit mesh motion algorithm based on inverse distance weighting interpolation is presented. The explicit formulation leads to a fast mesh motion algorithm and an easy implementation. In addition, the proposed point-by-point method is robust and flexible in case of large deformations, hanging nodes, and parallelization. Mesh quality results and CPU time comparisons are presented for triangular and hexahedral unstructured meshes in an airfoil flutter fluid-structure interaction problem.

  15. Explicit solution for an infinite dimensional generalized inverse eigenvalue problem

    Directory of Open Access Journals (Sweden)

    Kazem Ghanbari

    2001-01-01

    Full Text Available We study a generalized inverse eigenvalue problem (GIEP, Ax=λBx, in which A is a semi-infinite Jacobi matrix with positive off-diagonal entries ci>0, and B= diag (b0,b1,…, where bi≠0 for i=0,1,…. We give an explicit solution by establishing an appropriate spectral function with respect to a given set of spectral data.

  16. Diffuse interface methods for inverse problems: case study for an elliptic Cauchy problem

    Science.gov (United States)

    Burger, Martin; Løseth Elvetun, Ole; Schlottbom, Matthias

    2015-12-01

    Many inverse problems have to deal with complex, evolving and often not exactly known geometries, e.g. as domains of forward problems modeled by partial differential equations. This makes it desirable to use methods which are robust with respect to perturbed or not well resolved domains, and which allow for efficient discretizations not resolving any fine detail of those geometries. For forward problems in partial differential equations methods based on diffuse interface representations have gained strong attention in the last years, but so far they have not been considered systematically for inverse problems. In this work we introduce a diffuse domain method as a tool for the solution of variational inverse problems. As a particular example we study ECG inversion in further detail. ECG inversion is a linear inverse source problem with boundary measurements governed by an anisotropic diffusion equation, which naturally cries for solutions under changing geometries, namely the beating heart. We formulate a regularization strategy using Tikhonov regularization and, using standard source conditions, we prove convergence rates. A special property of our approach is that not only operator perturbations are introduced by the diffuse domain method, but more important we have to deal with topologies which depend on a parameter \\varepsilon in the diffuse domain method, i.e. we have to deal with \\varepsilon -dependent forward operators and \\varepsilon -dependent norms. In particular the appropriate function spaces for the unknown and the data depend on \\varepsilon . This prevents the application of some standard convergence techniques for inverse problems, in particular interpreting the perturbations as data errors in the original problem does not yield suitable results. We consequently develop a novel approach based on saddle-point problems. The numerical solution of the problem is discussed as well and results for several computational experiments are reported. In

  17. THE INVERSE PROBLEM OF A REPRODUCTION MODEL OF NATIONAL INCOME

    Directory of Open Access Journals (Sweden)

    Laipanova Z. M.

    2016-02-01

    Full Text Available In practice, there were developed and tested some mathematical models of balance relationships (balance model, economic growth, expanding economy, labour market, theories of consumption, production, competitive equilibrium models of the economy in conditions of imperfect competition and others. The basis of these models were based on linear algebra, mathematical analysis, mathematical programming, differential equations, optimization methods, optimal control theory, probability theory, stochastic processes, operations research, game theory, statistical analysis. The inverse problem in various models of mathematical Economics was considered quite rare. These tasks were sufficiently investigated in the study of physical processes. As shown by the analysis of the theoretical and applied studies of economic processes, they represent considerable interest for practice. Therefore, the considered in the study inverse problems of the mathematical model, as it is shown by the already introduced results of other mathematical models, are of considerable interest in applied and theoretical research. In this article, the authors have formulated and investigated an inverse problem for a model of economic growth. For its solution the authors propose to build a system of algebraic equations, using a reproduction model of national income; then, using methods of quadratic programming, to find the best average quadratic estimates of the model parameter

  18. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  19. Introduction to the 30th volume of Inverse Problems

    Science.gov (United States)

    Louis, Alfred K.

    2014-01-01

    The field of inverse problems is a fast-developing domain of research originating from the practical demands of finding the cause when a result is observed. The woodpecker, searching for insects, is probing a tree using sound waves: the information searched for is whether there is an insect or not, hence a 0-1 decision. When the result has to contain more information, ad hoc solutions are not at hand and more sophisticated methods have to be developed. Right from its first appearance, the field of inverse problems has been characterized by an interdisciplinary nature: the interpretation of measured data, reinforced by mathematical models serving the analyzing questions of observability, stability and resolution, developing efficient, stable and accurate algorithms to gain as much information as possible from the input and to feedback to the questions of optimal measurement configuration. As is typical for a new area of research, facets of it are separated and studied independently. Hence, fields such as the theory of inverse scattering, tomography in general and regularization methods have developed. However, all aspects have to be reassembled to arrive at the best possible solution to the problem at hand. This development is reflected by the first and still leading journal in the field, Inverse Problems. Founded by pioneers Roy Pike from London and Pierre Sabatier from Montpellier, who enjoyably describes the journal's nascence in his book Rêves et Combats d'un Enseignant-Chercheur, Retour Inverse [1], the journal has developed successfully over the last few decades. Neither the Editors-in-Chief, formerly called Honorary Editors, nor the board or authors could have set the path to success alone. Their fruitful interplay, complemented by the efficient and highly competent publishing team at IOP Publishing, has been fundamental. As such it is my honor and pleasure to follow my renowned colleagues Pierre Sabatier, Mario Bertero, Frank Natterer, Alberto Grünbaum and

  20. Stochastic reduced order models for inverse problems under uncertainty.

    Science.gov (United States)

    Warner, James E; Aquino, Wilkins; Grigoriu, Mircea D

    2015-03-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.

  1. The Neuroelectromagnetic Inverse Problem and the Zero Dipole Localization Error

    Directory of Open Access Journals (Sweden)

    Rolando Grave de Peralta

    2009-01-01

    Full Text Available A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.

  2. Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: Theory and application to atmospheric inversions and data assimilation

    CERN Document Server

    Bousserez, Nicolas

    2016-01-01

    This paper provides a detailed theoretical analysis of methods to approximate the solutions of high-dimensional (>10^6) linear Bayesian problems. An optimal low-rank projection that maximizes the information content of the Bayesian inversion is proposed and efficiently constructed using a scalable randomized SVD algorithm. Useful optimality results are established for the associated posterior error covariance matrix and posterior mean approximations, which are further investigated in a numerical experiment consisting of a large-scale atmospheric tracer transport source-inversion problem. This method proves to be a robust and efficient approach to dimension reduction, as well as a natural framework to analyze the information content of the inversion. Possible extensions of this approach to the non-linear framework in the context of operational numerical weather forecast data assimilation systems based on the incremental 4D-Var technique are also discussed, and a detailed implementation of a new Randomized Incr...

  3. Source localization in electromyography using the inverse potential problem

    Science.gov (United States)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  4. Inverse problem for in vivo NMR spatial localization

    Energy Technology Data Exchange (ETDEWEB)

    Hasenfeld, A.C.

    1985-11-01

    The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.

  5. ROBUST PARTIAL INVERSE NETWORK FLOW PROBLEMS%强部分逆网络流问题

    Institute of Scientific and Technical Information of China (English)

    杨晓光

    2001-01-01

    In this paper,a new model for inverse network flow problems,robust partial inverse problem is presented. For a given partial solution,the robust partial inverse problem is to modify the coefficients optimally such that all full solutions containing the partial solution become optimal under new coefficients. It has been shown that the robust partial inverse spanning tree problem can be formulated as a combinatorial linear program,while the robust partial inverse minimum cut problem and the robust partial inverse assignment problem can be solved by combinatorial strongly polynomial algorithms.

  6. Inverse problem of pulsed eddy current field of ferromagnetic plates

    Science.gov (United States)

    Chen, Xing-Le; Lei, Yin-Zhao

    2015-03-01

    To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters, it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. Project supported by the National Defense Basic Technology Research Program of China (Grant No. Z132013T001).

  7. OREGANO_VE: a new parallelised 3D solver for the general (non-)linear Maxwell visco-elastic problem: validation and application to the calculation of surface deformation in the earthquake cycle

    Science.gov (United States)

    Yamasaki, Tadashi; Houseman, Gregory; Hamling, Ian; Postek, Elek

    2010-05-01

    We have developed a new parallelized 3-D numerical code, OREGANO_VE, for the solution of the general visco-elastic problem in a rectangular block domain. The mechanical equilibrium equation is solved using the finite element method for a (non-)linear Maxwell visco-elastic rheology. Time-dependent displacement and/or traction boundary conditions can be applied. Matrix assembly is based on a tetrahedral element defined by 4 vertex nodes and 6 nodes located at the midpoints of the edges, and within which displacement is described by a quadratic interpolation function. For evaluating viscoelastic relaxation, an explicit time-stepping algorithm (Zienkiewicz and Cormeau, Int. J. Num. Meth. Eng., 8, 821-845, 1974) is employed. We test the accurate implementation of the OREGANO_VE by comparing numerical and analytic (or semi-analytic half-space) solutions to different problems in a range of applications: (1) equilibration of stress in a constant density layer after gravity is switched on at t = 0 tests the implementation of spatially variable viscosity and non-Newtonian viscosity; (2) displacement of the welded interface between two blocks of differing viscosity tests the implementation of viscosity discontinuities, (3) displacement of the upper surface of a layer under applied normal load tests the implementation of time-dependent surface tractions (4) visco-elastic response to dyke intrusion (compared with the solution in a half-space) tests the implementation of all aspects. In each case, the accuracy of the code is validated subject to use of a sufficiently small time step, providing assurance that the OREGANO_VE code can be applied to a range of visco-elastic relaxation processes in three dimensions, including post-seismic deformation and post-glacial uplift. The OREGANO_VE code includes a capability for representation of prescribed fault slip on an internal fault. The surface displacement associated with large earthquakes can be detected by some geodetic observations

  8. Inverse problem for multi-body interaction of nonlinear waves.

    Science.gov (United States)

    Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2017-06-14

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.

  9. The physical and mathematical aspects of inverse problems in radiation detection and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Esam M.A., E-mail: hussein@unb.ca [Laboratory for Threat Material Detection, Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3 (Canada)

    2012-07-15

    The inverse problem is the problem of converting detectable measurements into useful quantifiable indications. It is the problem of spectrum unfolding, image reconstruction, identifying a threat material, or devising a radiotherapy plan. The solution of an inverse problem requires a forward model that relates the quantities of interest to measurements. This paper explores the physical issues associated with formulating a radiation-transport forward model best suited for inversion, and the mathematical challenges associated with the solution of the corresponding inverse problem.

  10. Non-linear effects for cylindrical gravitational two-soliton

    CERN Document Server

    Tomizawa, Shinya

    2015-01-01

    Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.

  11. A toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment.

    Science.gov (United States)

    Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S

    2011-01-01

    Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems.

  12. Network connections that evolve to circumvent the inverse optics problem.

    Science.gov (United States)

    Ng, Cherlyn; Sundararajan, Janani; Hogan, Michael; Purves, Dale

    2013-01-01

    A fundamental problem in vision science is how useful perceptions and behaviors arise in the absence of information about the physical sources of retinal stimuli (the inverse optics problem). Psychophysical studies show that human observers contend with this problem by using the frequency of occurrence of stimulus patterns in cumulative experience to generate percepts. To begin to understand the neural mechanisms underlying this strategy, we examined the connectivity of simple neural networks evolved to respond according to the cumulative rank of stimulus luminance values. Evolved similarities with the connectivity of early level visual neurons suggests that biological visual circuitry uses the same mechanisms as a means of creating useful perceptions and behaviors without information about the real world.

  13. Network connections that evolve to circumvent the inverse optics problem.

    Directory of Open Access Journals (Sweden)

    Cherlyn Ng

    Full Text Available A fundamental problem in vision science is how useful perceptions and behaviors arise in the absence of information about the physical sources of retinal stimuli (the inverse optics problem. Psychophysical studies show that human observers contend with this problem by using the frequency of occurrence of stimulus patterns in cumulative experience to generate percepts. To begin to understand the neural mechanisms underlying this strategy, we examined the connectivity of simple neural networks evolved to respond according to the cumulative rank of stimulus luminance values. Evolved similarities with the connectivity of early level visual neurons suggests that biological visual circuitry uses the same mechanisms as a means of creating useful perceptions and behaviors without information about the real world.

  14. Inverse problem for porosity estimation during solidification of TNT

    Directory of Open Access Journals (Sweden)

    Aldélio Bueno Caldeira

    2016-08-01

    Full Text Available In the present study, the porosity formed during the solidification process is estimated by an inverse problem technique based on particle swarm optimization. The effective heat capacity method is adopted to model the heat transfer problem. The transient-diffusive heat transfer equation is solved numerically by the finite volume method with an explicit scheme, employing the central difference interpolation function. The solution of the direct problem is compared to reference solutions. The model is applied to trinitrotoluene (TNT solidification process. The results show that the proposed procedure was able to estimate the porosity for different Stefan numbers. The analysis of the heat flux in the mold is indicated to predict the porosity formation during the casting process.

  15. Forward and inverse problems in fundamental and applied magnetohydrodynamics

    CERN Document Server

    Giesecke, Andre; Wondrak, Thomas; Xu, Mingtian

    2012-01-01

    This Minireview summarizes the recent efforts to solve forward and inverse problems as they occur in different branches of fundamental and applied magnetohydrodynamics. As for the forward problem, the main focus is on the numerical treatment of induction processes, including self-excitation of magnetic fields in non-spherical domains and/or under the influence of non-homogeneous material parameters. As an important application of the developed numerical schemes, the functioning of the von-K\\'{a}rm\\'{a}n-sodium (VKS) dynamo experiment is shown to depend crucially on the presence of soft-iron impellers. As for the inverse problem, the main focus is on the mathematical background and some first practical applications of the Contactless Inductive Flow Tomography (CIFT), in which flow induced magnetic field perturbations are utilized for the reconstruction of the velocity field. The promises of CIFT for flow field monitoring in the continuous casting of steel are substantiated by results obtained at a test rig wit...

  16. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  17. Inverse Problem Solution in Landmines Detection Based on Active Thermography

    Directory of Open Access Journals (Sweden)

    B. Szymanik

    2014-12-01

    Full Text Available Landmines still affect numerous territories in the whole world and pose a serious threat, mostly to civilians. Widely used non-metallic landmines are undetectable using metal detector. Therefore, there is an urging need to improve methods of detecting such objects. In the present study we introduce relatively new method of landmines' detection: active infrared thermography with microwave excitation. In this paper we present the optimization based method of solving inverse problem for microwave heating. This technique will be used in the reconstruction of detected landmines geometric and material properties.

  18. THE INVERSE PROBLEM OF OPTIMAL REGULATORS AND ITS AP PLICATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov's second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system.

  19. Solution of inverse localization problem associated to multistatic radar system

    Directory of Open Access Journals (Sweden)

    Boutkhil M.

    2016-01-01

    Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.

  20. Bayesian inference for inverse problems occurring in uncertainty analysis

    OpenAIRE

    Fu, Shuai; Celeux, Gilles; Bousquet, Nicolas; Couplet, Mathieu

    2012-01-01

    The inverse problem considered here is to estimate the distribution of a non-observed random variable $X$ from some noisy observed data $Y$ linked to $X$ through a time-consuming physical model $H$. Bayesian inference is considered to take into account prior expert knowledge on $X$ in a small sample size setting. A Metropolis-Hastings within Gibbs algorithm is proposed to compute the posterior distribution of the parameters of $X$ through a data augmentation process. Since calls to $H$ are qu...

  1. Combined approach to the inverse protein folding problem. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  2. A direct sampling method to an inverse medium scattering problem

    KAUST Repository

    Ito, Kazufumi

    2012-01-10

    In this work we present a novel sampling method for time harmonic inverse medium scattering problems. It provides a simple tool to directly estimate the shape of the unknown scatterers (inhomogeneous media), and it is applicable even when the measured data are only available for one or two incident directions. A mathematical derivation is provided for its validation. Two- and three-dimensional numerical simulations are presented, which show that the method is accurate even with a few sets of scattered field data, computationally efficient, and very robust with respect to noises in the data. © 2012 IOP Publishing Ltd.

  3. Stability of charge inversion, Thomson problem, and application to electrophoresis

    Science.gov (United States)

    Patra, Michael; Patriarca, Marco; Karttunen, Mikko

    2003-03-01

    We analyze charge inversion in colloidal systems at zero temperature using stability concepts, and connect this to the classical Thomson problem of arranging electrons on sphere. We show that for a finite microion charge, the globally stable, lowest-energy state of the complex formed by the colloid and the oppositely charged microions is always overcharged. This effect disappears in the continuous limit. Additionally, a layer of at least twice as many microions as required for charge neutrality is always locally stable. In an applied external electric field the stability of the microion cloud is reduced. Finally, this approach is applied to a system of two colloids at low but finite temperature.

  4. On Inverse Topology Problem for Laplace Operators on Graphs

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Ershova

    2014-12-01

    Full Text Available Laplacian operators on finite compact metric graphs are considered under the assumption that matching conditions at graph vertices are of $\\delta$ type. Under one additional assumption, the inverse topology problem is treated. Using the apparatus of boundary triples, we generalize and extend existing results on necessary conditions of isospectrality of two Laplacians defined on different graphs. A result is also given covering the case of Schrodinger operators.

  5. On a dense minimizer of empirical risk in inverse problems

    Directory of Open Access Journals (Sweden)

    Jacek Podlewski

    2016-01-01

    Full Text Available Properties of estimators of a functional parameter in an inverse problem setup are studied. We focus on estimators obtained through dense minimization (as opposed to minimization over \\(\\delta\\-nets of suitably defined empirical risk. At the cost of imposition of a sort of local finite-dimensionality assumption, we fill some gaps in the proofs of results published by Klemelä and Mammen [Ann. Statist. 38 (2010, 482-511]. We also give examples of functional classes that satisfy the modified assumptions.

  6. A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

    Directory of Open Access Journals (Sweden)

    Fatemeh Mohammad

    2014-05-01

    Full Text Available In this paper‎, ‎we represent an inexact inverse‎ ‎subspace iteration method for computing a few eigenpairs of the‎ ‎generalized eigenvalue problem $Ax = \\lambda Bx$[Q.~Ye and P.~Zhang‎, ‎Inexact inverse subspace iteration for generalized eigenvalue‎ ‎problems‎, ‎Linear Algebra and its Application‎, ‎434 (2011 1697-1715‎‎]‎. ‎In particular‎, ‎the linear convergence property of the inverse‎ ‎subspace iteration is preserved‎.

  7. Stability analysis of the inverse transmembrane potential problem in electrocardiography

    Science.gov (United States)

    Burger, Martin; Mardal, Kent-André; Nielsen, Bjørn Fredrik

    2010-10-01

    In this paper we study some mathematical properties of an inverse problem arising in connection with electrocardiograms (ECGs). More specifically, we analyze the possibility for recovering the transmembrane potential in the heart from ECG recordings, a challenge currently investigated by a growing number of groups. Our approach is based on the bidomain model for the electrical activity in the myocardium, and leads to a parameter identification problem for elliptic partial differential equations (PDEs). It turns out that this challenge can be split into two subproblems: the task of recovering the potential at the heart surface from body surface recordings; the problem of computing the transmembrane potential inside the heart from the potential determined at the heart surface. Problem (1), which can be formulated as the Cauchy problem for an elliptic PDE, has been extensively studied and is well known to be severely ill-posed. The main purpose of this paper is to prove that problem (2) is stable and well posed if a suitable prior is available. Moreover, our theoretical findings are illuminated by a series of numerical experiments. Finally, we discuss some aspects of uniqueness related to the anisotropy in the heart.

  8. A Frequency Matching Method: Solving Inverse Problems by Use of Geologically Realistic Prior Information

    DEFF Research Database (Denmark)

    Lange, Katrine; Frydendall, Jan; Cordua, Knud Skou;

    2012-01-01

    The frequency matching method defines a closed form expression for a complex prior that quantifies the higher order statistics of a proposed solution model to an inverse problem. While existing solution methods to inverse problems are capable of sampling the solution space while taking into account...... solution model to an inverse problem by using a priori information based on multiple point statistics learned from training images. We demonstrate the applicability of the suggested method on a synthetic tomographic crosshole inverse problem....

  9. Resolution of an inverse heat conduction problem with a nonlinear least square method in the Hankel space. Application to photothermal infrared thermography

    Science.gov (United States)

    Legaie, D.; Pron, H.; Bissieux, C.

    2008-11-01

    Integral transforms (Laplace, Fourier, Hankel) are widely used to solve the heat diffusion equation. Moreover, it often appears relevant to realize the estimation of thermophysical properties in the transformed space. Here, an analytical model has been developed, leading to a well-posed inverse problem of parameter identification. Two black coatings, a thin black paint layer and an amorphous carbon film, were studied by photothermal infrared thermography. A Hankel transform has been applied on both thermal model and data and the estimation of thermal diffusivity has been achieved in the Hankel space. The inverse problem is formulated as a non-linear least square problem and a Gauss-Newton algorithm is used for the parameter identification.

  10. Review on solving the inverse problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Fabri Simon G

    2008-11-01

    Full Text Available Abstract In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF, SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF

  11. Non-Linear Relativity in Position Space

    CERN Document Server

    Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João

    2003-01-01

    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.

  12. Non-linear (loop) quantum cosmology

    CERN Document Server

    Bojowald, Martin; Dantas, Christine C; Jaffe, Matthew; Simpson, David

    2012-01-01

    Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a non-linear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of non-linear and non-local equations suggests new questions for mathematical and computational investigations, and general properties of non-linear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny local contributions adding up coherently in large regions.

  13. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  14. Cardiac electromechanics and the forward/inverse problems of electrocardiology.

    Science.gov (United States)

    Buist, M; Smith, N P; Pullan, A J

    2005-01-01

    The mechanical motion of the heart plays a role in determining the waveforms observed in an ECG. This study is designed to ascertain, from a theoretical perspective, the influence of this motion. This is achieved through an analysis of a detailed forward model including a full bidomain description and a strongly coupled model of cardiac electromechanics. Simulations were run on identical problems with and without the inclusion of mechanical deformation and the results were analyzed with a view towards the inverse problem of electrocardiology. Initial results have shown the QRS complex to be largely invariant under deformation, but significant changes in T wave morphology have been observed. Further analysis has revealed that it is the effect of the cell-level mechanics on repolarization that is primarily responsible for these changes as opposed to the tissue deformation.

  15. Comparison of optimal design methods in inverse problems

    Science.gov (United States)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  16. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E;

    1996-01-01

    OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from...... corresponding surrogate time series. RESULTS: A small significant amount of non-linear dynamics exists in heart rate variability. Correlation dimensions and non-linear predictability are relatively specific parameters for each individual examined. The correlation dimension is inversely correlated to the heart...

  17. Numerical methods for forward and inverse problems in optical imaging

    Science.gov (United States)

    Gao, Hao

    The main objective of this work is to develop efficient and accurate numerical algorithms for mathematical problems in optical imaging: forward modeling and inverse problems. Radiative transfer equation (RTE) can be regarded as the gold standard of modeling in vivo photon migration, however an efficient solver of RTE is extremely computationally challenging. In this work we develop a fast multigrid solver for steady-state or frequency-domain RTE on 2D and 3D structured and unstructured meshes with vacuum or reflection boundary condition. The error estimate and convergence analysis of the algorithm is given. The subsequent effort is devoted to quantitatively improve the reconstruction from ill-posed problems, such as multilevel approach with L1+TV regularization for bioluminescence tomography, multilevel regularization for diffuse optical tomography, linear complex-source method for fluorescence tomography, and Bregman method for quantitative photoacoustic tomography. Most of the developed methods are general in the sense that they are not limited to a particular reconstruction problem and can be combined in a synergetic way.

  18. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  19. Oscillatons formed by non linear gravity

    CERN Document Server

    Obregón, O; Schunck, F E; Obregon, Octavio; Schunck, Franz E.

    2004-01-01

    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.

  20. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  1. Basis set expansion for inverse problems in plasma diagnostic analysis

    Science.gov (United States)

    Jones, B.; Ruiz, C. L.

    2013-07-01

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)], 10.1063/1.1482156 is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20-25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  2. Basis set expansion for inverse problems in plasma diagnostic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.; Ruiz, C. L. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185 (United States)

    2013-07-15

    A basis set expansion method [V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)] is applied to recover physical information about plasma radiation sources from instrument data, which has been forward transformed due to the nature of the measurement technique. This method provides a general approach for inverse problems, and we discuss two specific examples relevant to diagnosing fast z pinches on the 20–25 MA Z machine [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland, in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, 2007), p. 979]. First, Abel inversion of time-gated, self-emission x-ray images from a wire array implosion is studied. Second, we present an approach for unfolding neutron time-of-flight measurements from a deuterium gas puff z pinch to recover information about emission time history and energy distribution. Through these examples, we discuss how noise in the measured data limits the practical resolution of the inversion, and how the method handles discontinuities in the source function and artifacts in the projected image. We add to the method a propagation of errors calculation for estimating uncertainties in the inverted solution.

  3. Defects in the discrete non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)

    2012-01-01

    The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.

  4. Linear Algebraic Method for Non-Linear Map Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  5. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for no...... for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions....

  6. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  7. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  8. An inverse problem for a mathematical model of aquaponic agriculture

    Science.gov (United States)

    Bobak, Carly; Kunze, Herb

    2017-01-01

    Aquaponic agriculture is a sustainable ecosystem that relies on a symbiotic relationship between fish and macrophytes. While the practice has been growing in popularity, relatively little mathematical models exist which aim to study the system processes. In this paper, we present a system of ODEs which aims to mathematically model the population and concetrations dynamics present in an aquaponic environment. Values of the parameters in the system are estimated from the literature so that simulated results can be presented to illustrate the nature of the solutions to the system. As well, a brief sensitivity analysis is performed in order to identify redundant parameters and highlight those which may need more reliable estimates. Specifically, an inverse problem with manufactured data for fish and plants is presented to demonstrate the ability of the collage theorem to recover parameter estimates.

  9. The inverse problem of estimating the gravitational time dilation

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, A. V., E-mail: avg@sai.msu.ru; Litvinov, D. A.; Rudenko, V. N. [Moscow State University, Sternberg Astronomical Institute (Russian Federation)

    2016-11-15

    Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class of distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f){sup γ}, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.

  10. Detecting multi-spin interactions in the inverse Ising problem

    Science.gov (United States)

    Albert, Joseph; Swendsen, Robert H.

    2017-10-01

    While the usual goal in Monte Carlo (MC) simulations of Ising models is the efficient generation of spin configurations with Boltzmann probabilities, the inverse problem is to determine the coupling constants from a given set of spin configurations. Most recent work has been limited to local magnetic fields and pair-wise interactions. We have extended solutions to multi-spin interactions, using correlation function matching (CFM). A more serious limitation of previous work has been the uncertainty of whether a chosen set of interactions is capable of faithfully representing real data. We show how our confirmation testing method uses an additional MC simulation to detect significant interactions that might be missing in the assumed representation of the data.

  11. Geometric MCMC for infinite-dimensional inverse problems

    Science.gov (United States)

    Beskos, Alexandros; Girolami, Mark; Lan, Shiwei; Farrell, Patrick E.; Stuart, Andrew M.

    2017-04-01

    Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon mesh-refinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and thus are expensive as a function of dimension. Recently, a new class of MCMC methods with mesh-independent convergence times has emerged. However, few of them take into account the geometry of the posterior informed by the data. At the same time, recently developed geometric MCMC algorithms have been found to be powerful in exploring complicated distributions that deviate significantly from elliptic Gaussian laws, but are in general computationally intractable for models defined in infinite dimensions. In this work, we combine geometric methods on a finite-dimensional subspace with mesh-independent infinite-dimensional approaches. Our objective is to speed up MCMC mixing times, without significantly increasing the computational cost per step (for instance, in comparison with the vanilla preconditioned Crank-Nicolson (pCN) method). This is achieved by using ideas from geometric MCMC to probe the complex structure of an intrinsic finite-dimensional subspace where most data information concentrates, while retaining robust mixing times as the dimension grows by using pCN-like methods in the complementary subspace. The resulting algorithms are demonstrated in the context of three challenging inverse problems arising in subsurface flow, heat conduction and incompressible flow control. The algorithms exhibit up to two orders of magnitude improvement in sampling efficiency when compared with the pCN method.

  12. Uncertainty quantification and weak approximation of an elliptic inverse problem

    CERN Document Server

    Dashti, Masoumeh

    2011-01-01

    We consider the inverse problem of determining the permeability from the pressure in a Darcy model of flow in a porous medium. Mathematically the problem is to find the diffusion coefficient for a linear uniformly elliptic partial differential equation in divergence form, in a bounded domain in dimension $d \\le 3$, from measurements of the solution in the interior. We adopt a Bayesian approach to the problem. We place a prior random field measure on the log permeability, specified through the Karhunen-Lo\\`eve expansion of its draws. We consider Gaussian measures constructed this way, and study the regularity of functions drawn from them. We also study the Lipschitz properties of the observation operator mapping the log permeability to the observations. Combining these regularity and continuity estimates, we show that the posterior measure is well-defined on a suitable Banach space. Furthermore the posterior measure is shown to be Lipschitz with respect to the data in the Hellinger metric, giving rise to a for...

  13. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  14. Methodes entropiques appliquees au probleme inverse en magnetoencephalographie

    Science.gov (United States)

    Lapalme, Ervig

    2005-07-01

    This thesis is devoted to biomagnetic source localization using magnetoencephalography. This problem is known to have an infinite number of solutions. So methods are required to take into account anatomical and functional information on the solution. The work presented in this thesis uses the maximum entropy on the mean method to constrain the solution. This method originates from statistical mechanics and information theory. This thesis is divided into two main parts containing three chapters each. The first part reviews the magnetoencephalographic inverse problem: the theory needed to understand its context and the hypotheses for simplifying the problem. In the last chapter of this first part, the maximum entropy on the mean method is presented: its origins are explained and also how it is applied to our problem. The second part is the original work of this thesis presenting three articles; one of them already published and two others submitted for publication. In the first article, a biomagnetic source model is developed and applied in a theoretical con text but still demonstrating the efficiency of the method. In the second article, we go one step further towards a realistic modelization of the cerebral activation. The main priors are estimated using the magnetoencephalographic data. This method proved to be very efficient in realistic simulations. In the third article, the previous method is extended to deal with time signals thus exploiting the excellent time resolution offered by magnetoencephalography. Compared with our previous work, the temporal method is applied to real magnetoencephalographic data coming from a somatotopy experience and results agree with previous physiological knowledge about this kind of cognitive process.

  15. Direct and inverse source problems for a space fractional advection dispersion equation

    KAUST Repository

    Aldoghaither, Abeer

    2016-05-15

    In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.

  16. Non-linear Young's double-slit experiment.

    Science.gov (United States)

    San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis

    2006-04-01

    The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.

  17. An inverse problem approach to modelling coastal effluent plumes

    Science.gov (United States)

    Lam, D. C. L.; Murthy, C. R.; Miners, K. C.

    Formulated as an inverse problem, the diffusion parameters associated with length-scale dependent eddy diffusivities can be viewed as the unknowns in the mass conservation equation for coastal zone transport problems. The values of the diffusion parameters can be optimized according to an error function incorporated with observed concentration data. Examples are given for the Fickian, shear diffusion and inertial subrange diffusion models. Based on a new set of dyeplume data collected in the coastal zone off Bronte, Lake Ontario, it is shown that the predictions of turbulence closure models can be evaluated for different flow conditions. The choice of computational schemes for this diagnostic approach is based on tests with analytic solutions and observed data. It is found that the optimized shear diffusion model produced a better agreement with observations for both high and low advective flows than, e.g., the unoptimized semi-empirical model, Ky=0.075 σy1.2, described by Murthy and Kenney.

  18. Non-linear estimation is easy

    OpenAIRE

    Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt

    2008-01-01

    International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line ...

  19. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  20. Non-linear estimation is easy

    CERN Document Server

    Fliess, Michel; Sira-Ramirez, Hebertt

    2007-01-01

    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.

  1. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  2. Variational iteration method for solving non-linear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, A.A. [Department of Mathematics, Faculty of Science, University of Tanta, Tanta (Egypt)], E-mail: aahemeda@yahoo.com

    2009-02-15

    In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV-MKdV equation and Camassa-Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.

  3. HOMOTOPY SOLUTION OF THE INVERSE GENERALIZED EIGENVALUE PROBLEMS IN STRUCTURAL DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    李书; 王波; 胡继忠

    2004-01-01

    The structural dynamics problems, such as structural design, parameter identification and model correction, are considered as a kind of the inverse generalized eigenvalue problems mathematically. The inverse eigenvalue problems are nonlinear. In general, they could be transformed into nonlinear equations to solve. The structural dynamics inverse problems were treated as quasi multiplicative inverse eigenalue problems which were solved by homotopy method for nonlinear equations. This method had no requirements for initial value essentially because of the homotopy path to solution. Numerical examples were presented to illustrate the homotopy method.

  4. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  5. Solving Inverse Detection Problems Using Passive Radiation Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Laboratory; Armstrong, Jerawan C. [Los Alamos National Laboratory; Vaquer, Pablo A. [Los Alamos National Laboratory

    2012-08-15

    The ability to reconstruct an unknown radioactive object based on its passive gamma-ray and neutron signatures is very important in homeland security applications. Often in the analysis of unknown radioactive objects, for simplicity or speed or because there is no other information, they are modeled as spherically symmetric regardless of their actual geometry. In these presentation we discuss the accuracy and implications of this approximation for decay gamma rays and for neutron-induced gamma rays. We discuss an extension of spherical raytracing (for uncollided fluxes) that allows it to be used when the exterior shielding is flat or cylindrical. We revisit some early results in boundary perturbation theory, showing that the Roussopolos estimate is the correct one to use when the quantity of interest is the flux or leakage on the boundary. We apply boundary perturbation theory to problems in which spherically symmetric systems are perturbed in asymmetric nonspherical ways. We apply mesh adaptive direct search (MADS) algorithms to object reconstructions. We present a benchmark test set that may be used to quantitatively evaluate inverse detection methods.

  6. Forward and inverse problems of EEG dipole localization.

    Science.gov (United States)

    Musha, T; Okamoto, Y

    1999-01-01

    Mathematical procedures are discussed in detail of numerical solutions for obtaining scalp potentials from the electric sources. The finite-element method for an inhomogeneous volume conductor, the boundary-element method for a compartment model, and their hybrid for more general cases are discussed. Construction of the head model and typical estimation of electric conductivity of the compartment model is described, which can reduce errors in estimated dipole location caused by incorrect head geometry. The concept of reciprocity is explained, which is applied to understanding a relation between the electrode configuration and its sensitivity for various source conditions. Typical techniques for solving the inverse problem are reviewed for discrete source models. Methods of estimating accuracy of the dipole location in the presence of noise are discussed, together with some numerical examples. The dipolarity is a goodness-of-fit of the dipole approximation, and lowering of the dipolarity is related to inhomogeneous neuronal activity in the cortex. Finally, a criterion of determining the optimal number of model parameters is given in terms of AIC (Akaike Information Criterion), which is applied to decide the most probable number of equivalent dipoles.

  7. Inverse modeling for heat conduction problem in human abdominal phantom.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2011-01-01

    Noninvasive methods for deep body temperature measurement are based on the principle of heat equilibrium between the thermal sensor and the target location theoretically. However, the measurement position is not able to be definitely determined. In this study, a 2-dimensional mathematical model was built based upon some assumptions for the physiological condition of the human abdomen phantom. We evaluated the feasibility in estimating the internal organs temperature distribution from the readings of the temperature sensors arranged on the skin surface. It is a typical inverse heat conduction problem (IHCP), and is usually mathematically ill-posed. In this study, by integrating some physical and physiological a-priori information, we invoked the quasi-linear (QL) method to reconstruct the internal temperature distribution. The solutions of this method were improved by increasing the accuracy of the sensors and adjusting their arrangement on the outer surface, and eventually reached the state of converging at the best state accurately. This study suggests that QL method is able to reconstruct the internal temperature distribution in this phantom and might be worthy of a further study in an anatomical based model.

  8. Parameter Identification Of Multilayer Thermal Insulation By Inverse Problems

    Science.gov (United States)

    Nenarokomov, Aleksey V.; Alifanov, Oleg M.; Gonzalez, Vivaldo M.

    2012-07-01

    The purpose of this paper is to introduce an iterative regularization method in the research of radiative and thermal properties of materials with further applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (heat capacity, emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the IHTP, based on sensitivity function approach, is presented too. The practical testing was performed for specimen of the real MLI. This paper consists of recent researches, which developed the approach suggested at [1].

  9. Non Linear Behaviour in Learning Processes

    OpenAIRE

    Manfredi, Paolo; Manfredi, Vicenzo Rosario

    2003-01-01

    This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...

  10. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  11. Limits on Non-Linear Electrodynamics

    CERN Document Server

    Fouché, M; Rizzo, C

    2016-01-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  12. Children's strategies to solving additive inverse problems: a preliminary analysis

    Science.gov (United States)

    Ding, Meixia; Auxter, Abbey E.

    2017-03-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  13. Children's strategies to solving additive inverse problems: a preliminary analysis

    Science.gov (United States)

    Ding, Meixia; Auxter, Abbey E.

    2017-01-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  14. Identification of a Non-Linear Landing Gear Model Using Nature-Inspired Optimization

    Directory of Open Access Journals (Sweden)

    Felipe A.C. Viana

    2008-01-01

    Full Text Available This work deals with the application of a nature-inspired optimization technique to solve an inverse problem represented by the identification of an aircraft landing gear model. The model is described in terms of the landing gear geometry, internal volumes and areas, shock absorber travel, tire type, and gas and oil characteristics of the shock absorber. The solution to this inverse problem can be obtained by using classical gradient-based optimization methods. However, this is a difficult task due to the existence of local minima in the design space and the requirement of an initial guess. These aspects have motivated the authors to explore a nature-inspired approach using a method known as LifeCycle Model. In the present formulation two nature-based methods, namely the Genetic Algorithms and the Particle Swarm Optimization were used. An optimization problem is formulated in which the objective function represents the difference between the measured characteristics of the system and its model counterpart. The polytropic coefficient of the gas and the damping parameter of the shock absorber are assumed as being unknown: they are considered as design variables. As an illustration, experimental drop test data, obtained under zero horizontal speed, were used in the non-linear landing gear model updating of a small aircraft.

  15. H∞ Synthesis Method for Control of Non-linear Flexible Joint Models

    OpenAIRE

    Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael

    2014-01-01

    An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...

  16. Forward- vs. Inverse Problems in Modeling Seismic Attenuation

    Science.gov (United States)

    Morozov, I. B.

    2015-12-01

    Seismic attenuation is an important property of wave propagation used in numerous applications. However, the attenuation is also a complex phenomenon, and it is important to differentiate between its two typical uses: 1) in forward problems, to model the amplitudes and spectral contents of waves required for hazard assessment and geotechnical engineering, and 2) in inverse problems, to determine the physical properties of the subsurface. In the forward-problem sense, the attenuation is successfully characterized in terms of empirical parameters of geometric spreading, radiation patterns, scattering amplitudes, t-star, alpha, kappa, or Q. Arguably, the predicted energy losses can be correct even if the underlying attenuation model is phenomenological and not sufficiently based on physics. An example of such phenomenological model is the viscoelasticity based on the correspondence principle and the Q-factor assigned to the material. By contrast, when used to invert for in situ material properties, models addressing the specific physics are required. In many studies (including in this session), a Q-factor is interpreted as a property of a point within the subsurface; however this property is only phenomenological and may be physically insufficient or inconsistent. For example, the bulk or shear Q at the same point can be different when evaluated from different wave modes. The cases of frequency-dependent Q are particularly prone of ambiguities such as trade-off with the assumed background geometric spreading. To rigorously characterize the in situ material properties responsible for seismic-wave attenuation, it is insufficient to only focus on the seismic energy loss. Mechanical models of the material need to be considered. Such models can be constructed by using Lagrangian mechanics. These models should likely contain no Q but will be based on parameters of microstructure such as heterogeneity, fractures, or fluids. I illustrate several such models based on viscosity

  17. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  18. Residual homogenization for seismic forward and inverse problems in layered media

    Science.gov (United States)

    Capdeville, Yann; Stutzmann, Éléonore; Wang, Nian; Montagner, Jean-Paul

    2013-07-01

    An elastic wavefield propagating in an inhomogeneous elastic medium is only sensitive in an effective way to inhomogeneities much smaller than its minimum wavelength. The corresponding effective medium, or homogenized medium, can be computed thanks to the non-periodic homogenization technique. In the seismic imaging context, limiting ourselves to layered media, we numerically show that a tomographic elastic model which results of the inversion of limited frequency band seismic data is an homogenized model. Moreover, we show that this homogenized model is the same as the model that can be computed with the non-periodic homogenization technique. We first introduce the notion of residual homogenization, which is computing the effective properties of the difference between a reference model and a `real' model. This is necessary because most imaging technique parametrizations use a reference model that often contains small scales, such as elastic discontinuities. We then use a full-waveform inversion method to numerically show that the result of the inversion is indeed the homogenized residual model. The full-waveform inversion method used here has been specifically developed for that purpose. It is based on the iterative Gauss-Newton least-square non-linear optimization technique, using full normal mode coupling to compute the partial Hessian and gradient. The parametrization has been designed according to the residual homogenized parameters allowing to build a real multiscale inversion with progressive frequency band enrichment along the Gauss-Newton iterations.

  19. From inverse problems in mathematical physiology to quantitative differential diagnoses.

    Directory of Open Access Journals (Sweden)

    Sven Zenker

    2007-11-01

    Full Text Available The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting, using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge. We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of

  20. From inverse problems in mathematical physiology to quantitative differential diagnoses.

    Science.gov (United States)

    Zenker, Sven; Rubin, Jonathan; Clermont, Gilles

    2007-11-01

    The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In particular, the application of mathematical models of experimentally elucidated physiological mechanisms could augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of this procedure is a probability density function on the space of model parameters and initial conditions for a particular patient, based on prior population information together with patient-specific clinical observations. We show that multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the solution process, provides a novel link between mathematically described physiological knowledge and the clinical concept of differential diagnoses

  1. IPDO-2007: Inverse Problems, Design and Optimization Symposium

    Science.gov (United States)

    2007-08-01

    108 INVERSE APPROACHES IN IMPROVEMENT OF AIR POLUTION PLUME DISPERSION MODELS FOR REGULATORY APPLICATIONS 517 109 USING OF THE IOSO NM SOFTWARE FOR...Dulikravich, G.S., Orlande, H.R.B., Tanaka, M. and Colaco, M.J.), Miami Beach, FL, April 16-18, 2007. 5. Inverse Approaches in Improvement of Air Pollution...A. Woodbury (USA) Prof. Anatoly G. Yagola (Russia) 5.4 SPONSORS AND PROMOTERS OF IPDO-2007 AFOSR/Numerical Mathematics (United States Air Force

  2. Inverse transient heat conduction problems and identification of thermal parameters

    Science.gov (United States)

    Atchonouglo, K.; Banna, M.; Vallée, C.; Dupré, J.-C.

    2008-04-01

    This work deals with the estimation of polymers properties. An inverse analysis based on finite element method is applied to identify simultaneously the constants thermal conductivity and heat capacity per unit volume. The inverse method algorithm constructed is validated from simulated transient temperature recording taken at several locations on the surface of the solid. Transient temperature measures taped with infrared camera on polymers were used for identifying the thermal properties. The results show an excellent agreement between manufacturer and identified values.

  3. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  4. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  5. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  6. Non-linear scalable TFETI domain decomposition based contact algorithm

    Science.gov (United States)

    Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.

    2010-06-01

    The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.

  7. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  8. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  9. Uniqueness and stability in an inverse problem for a Poisson’s equation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Consider the Poisson’s equation(?)″(x)=-ev-(?)+e(?)-v-N(x)with the Diriehlet boundary data,and we mainly investigate the inverse problem of determining the unknown function N(x)from a parameter function family.Some uniqueness and stability results in the inverse problem are obtained.

  10. A Frequency Matching Method: Solving Inverse Problems by Use of Geologically Realistic Prior Information

    DEFF Research Database (Denmark)

    Lange, Katrine; Frydendall, Jan; Cordua, Knud Skou

    2012-01-01

    The frequency matching method defines a closed form expression for a complex prior that quantifies the higher order statistics of a proposed solution model to an inverse problem. While existing solution methods to inverse problems are capable of sampling the solution space while taking into accou...

  11. Solving inverse problems of mathematical physics by means of the PHOENICS software package

    Energy Technology Data Exchange (ETDEWEB)

    Matsevity, Y.; Lushpenko, S. [Institute for Problems in Machinery, National Academy of Sciences of Ukraine Pozharskogo, Kharkov (Ukraine)

    1997-12-31

    Several approaches on organizing solution of inverse problems by means of PHOENICS on the basis of the technique of automated fitting are proposing. A version of a `nondestructive` method of using PHOENICS in the inverse problem solution regime and the ways of altering the program in the case of introducing optimization facilities in it are under consideration. (author) 12 refs.

  12. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  13. Chaotic Discrimination and Non-Linear Dynamics

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2005-01-01

    Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.

  14. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {{v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( 1 + {\\overline {M_s}} ^{-1/2})R\\overline D_{II}, where \\overline {M_s} = (1 + {\\overline {D_{II}} }^2 \\big/ {nD{_{II}^*}^2}) \\big/ ( 1 + {\\overline {D_{II}}^2} \\big/ D{_{II}^*}^2) and \\overline {D_{II}} is the second invariant of the far

  15. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    Science.gov (United States)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially

  16. A PDE-Constrained Optimization Approach to Uncertainty Quantification in Inverse Problems, with Applications to Inverse Scattering

    Science.gov (United States)

    2010-02-28

    illuminations. Inverse medium problems are encountered in acoustic, elastic, and electromagnetic wave propagation. We use a Lippmann- Schwinger formulation...Na. (5) This is a Born-approximation Lippmann- Schwinger scattering equation, where G(-, •;u) is the Green’s function (in the reference medium

  17. Modified Landweber Algorithm for Solving the Inverse Problem in EIT

    Institute of Scientific and Technical Information of China (English)

    WANGChao; WANGHuaxiang

    2005-01-01

    This paper analyses the Landweber iteration method and demonstrates that Landweber method is a modified of the generalized inverse constructed using the iteration solution. The phenomenon is explained that the image reconstructed using Landweber iteration algorithm through a large numbers of iteration steps is similar tothe minimum norm solution of the generalized inverse. A new reconstruction algorithm called the modified Landweber method is proposed, which divides the image reconstruction process into two steps, off-line pre-iteration and on-line one-step reconstruction. The reconstruction speed is markedly improved.

  18. Inverse Eigenvalue Problems for a Structure with Linear Parameters

    Institute of Scientific and Technical Information of China (English)

    WU Liang-sheng; YANG Jia-hua; WEI Yuan-qian; MEN Hao; YANG Qing-kun; LIU Zhen-yu

    2005-01-01

    The inverse design method of a dynamic system with linear parameters has been studied. For some specified eigenvalues and eigenvectors, the design parameter vector which is often composed of whole or part of coefficients of spring and mass of the system can be obtained and the rigidity and mass matrices of an initially designed structure can be reconstructed through solving linear algebra equations. By using implicit function theorem, the conditions of existence and uniqueness of the solution are also deduced. The theory and method can be used for inverse vibration design of complex structure system.

  19. Spectral inverse problem for q-deformed harmonic oscillator

    Indian Academy of Sciences (India)

    P K Bera; J Datta

    2006-12-01

    The supersymmetric quantization condition is used to study the wave functions of SWKB equivalent -deformed harmonic oscillator which are obtained by using only the knowledge of bound-state spectra of -deformed harmonic oscillator. We have also studied the nonuniqueness of the obtained interactions by this spectral inverse method.

  20. Explicit inverse distance weighting mesh motion for coupled problems

    NARCIS (Netherlands)

    Witteveen, J.A.S.; Bijl, H.

    2009-01-01

    An explicit mesh motion algorithm based on inverse distance weighting interpolation is presented. The explicit formulation leads to a fast mesh motion algorithm and an easy implementation. In addition, the proposed point-by-point method is robust and flexible in case of large deformations, hanging n

  1. Underground water quality model inversion of genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    MA Ruijie; LI Xin

    2009-01-01

    The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.

  2. MCMC for non-linear state space models using ensembles of latent sequences

    OpenAIRE

    2013-01-01

    Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble ...

  3. Freely generated vertex algebras and non-linear Lie conformal algebras

    OpenAIRE

    De Sole, Alberto; Kac, Victor

    2003-01-01

    We introduce the notion of a non--linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a non--linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.

  4. Higher order Nevanlinna functions and the inverse three spectra problem

    Directory of Open Access Journals (Sweden)

    Olga Boyko

    2016-01-01

    Full Text Available The three spectra problem of recovering the Sturm-Liouville equation by the spectrum of the Dirichlet-Dirichlet boundary value problem on \\([0,a]\\, the Dirichlet-Dirichlet problem on \\([0,a/2]\\ and the Neumann-Dirichlet problem on \\([a/2,a]\\ is considered. Sufficient conditions of solvability and of uniqueness of the solution to such a problem are found.

  5. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  6. On t-local solvability of inverse scattering problems in two-dimensional layered media

    Science.gov (United States)

    Baev, A. V.

    2015-06-01

    The solvability of two-dimensional inverse scattering problems for the Klein-Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier-Stokes equation is solvable.

  7. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

    CERN Document Server

    Baudouin, Lucie; Crépeau, Emmanuelle; Mercado, Alberto

    2010-01-01

    This paper presents an inverse problem for the Kuramoto-Sivashinsky (K-S) equation. The problem of retrieving the anti-diusion coefficient from a measurement of the solution is discussed. This measurement consists of the solution at some positive time and partial boundary data. Uniqueness and Lipschitz stability for this inverse problem are proven with the Bukhgeim-Klibanov method. The proof is based on a global Carleman inequality for the linearized K-S equation.

  8. Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media

    Science.gov (United States)

    Baev, A. V.

    2016-12-01

    A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.

  9. New progress in the inverse problem in the calculus of variations

    OpenAIRE

    2014-01-01

    We present a new class of solutions for the inverse problem in the calculus of variations in arbitrary dimension $n$. This is the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. We also provide a number of new theorems concerning the inverse problem using exterior differential systems theory (EDS). Concentrating on the differential step of the EDS process, our new results provide a significant advance in the u...

  10. The forward and inverse problems in time-distance helioseismology

    Science.gov (United States)

    Jackiewicz, Jason; Gizon, Laurent; Birch, Aaron C.

    2008-10-01

    Time-distance helioseismology is a set of tools for peering into the solar interior. In this paper we discuss and provide examples of the steps that go into current high-resolution time-distance helioseismic analyses. These steps include observations (cross covariances, travel times), modeling of the seismic wavefield for a weakly inhomogeneous solar model, and inversion of the travel times. The discussion is framed in the context of studying quiet-Sun flows, although the extension to other solar perturbations is straightforward and analogous. The two-plus-one-dimensional (2+1D) inversion procedure implemented here produces maps of vector flows in the near-surface layers of the photosphere. We examine the flows obtained by compromising, or 'trading off', between different observation times, spatial resolutions, and noise levels. Also studied is the correlation of the flows at different depths and over different time intervals.

  11. The forward and inverse problems in time-distance helioseismology

    Energy Technology Data Exchange (ETDEWEB)

    Jackiewicz, Jason; Gizon, Laurent [Max-Planck-Institut fuer Sonnensystemforschung, 37191 Katlenburg-Lindau (Germany); Birch, Aaron C [Colorado Research Associates, NWRA, 3380 Mitchell Lane, Boulder, CO 80301 (United States)], E-mail: jackiewicz@mps.mpg.de

    2008-10-15

    Time-distance helioseismology is a set of tools for peering into the solar interior. In this paper we discuss and provide examples of the steps that go into current high-resolution time-distance helioseismic analyses. These steps include observations (cross covariances, travel times), modeling of the seismic wavefield for a weakly inhomogeneous solar model, and inversion of the travel times. The discussion is framed in the context of studying quiet-Sun flows, although the extension to other solar perturbations is straightforward and analogous. The two-plus-one-dimensional (2+1D) inversion procedure implemented here produces maps of vector flows in the near-surface layers of the photosphere. We examine the flows obtained by compromising, or 'trading off', between different observation times, spatial resolutions, and noise levels. Also studied is the correlation of the flows at different depths and over different time intervals.

  12. Non-Linear Sigma Model on Conifolds

    CERN Document Server

    Parthasarathy, R

    2002-01-01

    Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...

  13. Non-Linear Electrohydrodynamics in Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Jun Zeng

    2011-03-01

    Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.

  14. Inverse problem of elastica of a variable-arc-length beam subjected to a concentrated load

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Zhang; Jialing Yang; Keren Wang

    2005-01-01

    An inverse problem of elastica of a variable-arclength beam subjected to a concentrated load is investigated.The beam is fixed at one end, and can slide freely over a hinge support at the other end. The inverse problem is to determine the value of the load when the deflection of the action point of the load is given. Based on the elasitca equations and the elliptic integrals, a set of nonlinear equations for the inverse problem are derived, and an analytical solution by means of iterations and Quasi-Newton method is presented. From the results, the relationship between the loads and deflections of the loading point is obtained.

  15. Accounting for imperfect forward modeling in geophysical inverse problems — Exemplified for crosshole tomography

    DEFF Research Database (Denmark)

    Hansen, Thomas Mejer; Cordua, Knud Skou; Holm Jacobsen, Bo

    2014-01-01

    forward models, can be more than an order of magnitude larger than the measurement uncertainty. We also found that the modeling error is strongly linked to the spatial variability of the assumed velocity field, i.e., the a priori velocity model.We discovered some general tools by which the modeling error...... synthetic ground-penetrating radar crosshole tomographic inverse problems. Ignoring the modeling error can lead to severe artifacts, which erroneously appear to be well resolved in the solution of the inverse problem. Accounting for the modeling error leads to a solution of the inverse problem consistent...

  16. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    Science.gov (United States)

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine...19b. TELEPHONE NUMBER (Include area code) 843-349-4087 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Physics -Based Inverse Problem To

  17. A unified approach to the helioseismic forward and inverse problems of differential rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ritzwoller, M.H.; Lavely, E.M. (Colorado Univ., Boulder (USA) MIT, Cambridge, MA (USA))

    1991-03-01

    A general, degenerate perturbation theoretic treatment of the helioseismic forward and inverse problem for solar differential rotation is presented. For the forward problem, differential rotation is represented as the axisymmetric component of a general toroidal flow field using velocity spherical harmonics. This approach allows each degree of differential rotation to be estimated independently from all other degrees. In the inverse problem, the splitting caused by differential rotation is expressed as an expansion in a set of orthonormal polynomials that are intimately related to the solution of the forward problem. The combined use of vector spherical harmonics as basis functions for differential ratio and the Clebsch-Gordon coefficients to represent splitting provides a unified approach to the forward and inverse problems of differential rotation which greatly simplify inversion. 43 refs.

  18. Non Linear Analysis of MPPT for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    S. Sankar

    2015-08-01

    Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.

  19. Direct Waveform Inversion by Iterative Inverse Propagation

    CERN Document Server

    Schlottmann, R B

    2009-01-01

    Seismic waves are the most sensitive probe of the Earth's interior we have. With the dense data sets available in exploration, images of subsurface structures can be obtained through processes such as migration. Unfortunately, relating these surface recordings to actual Earth properties is non-trivial. Tomographic techniques use only a small amount of the information contained in the full seismogram and result in relatively low resolution images. Other methods use a larger amount of the seismogram but are based on either linearization of the problem, an expensive statistical search over a limited range of models, or both. We present the development of a new approach to full waveform inversion, i.e., inversion which uses the complete seismogram. This new method, which falls under the general category of inverse scattering, is based on a highly non-linear Fredholm integral equation relating the Earth structure to itself and to the recorded seismograms. An iterative solution to this equation is proposed. The res...

  20. An inverse problem for a one-dimensional time-fractional diffusion problem

    KAUST Repository

    Jin, Bangti

    2012-06-26

    We study an inverse problem of recovering a spatially varying potential term in a one-dimensional time-fractional diffusion equation from the flux measurements taken at a single fixed time corresponding to a given set of input sources. The unique identifiability of the potential is shown for two cases, i.e. the flux at one end and the net flux, provided that the set of input sources forms a complete basis in L 2(0, 1). An algorithm of the quasi-Newton type is proposed for the efficient and accurate reconstruction of the coefficient from finite data, and the injectivity of the Jacobian is discussed. Numerical results for both exact and noisy data are presented. © 2012 IOP Publishing Ltd.

  1. Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

    Science.gov (United States)

    Corrado, Cesare; Gerbeau, Jean-Frédéric; Moireau, Philippe

    2015-02-01

    This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.

  2. Considerations about the solution space of a VTI marine CSEM Inversion problem using vertical antennas

    NARCIS (Netherlands)

    Hunziker, J.W.; Thorbecke, J.W.; Slob, E.C.

    2015-01-01

    We exploit the randomness of a genetic inversion algorithm to map the global minimum of the solution space of Controlled-Source Electromagnetic inversion problems. In this study, we focus on the information content that vertical electric or magnetic receivers could add to solve for anisotropic condu

  3. Investigation of the Solution Space of Marine Controlled-Source Electromagnetic Inversion Problems By Using a Genetic Algorithm

    Science.gov (United States)

    Hunziker, J.; Thorbecke, J.; Slob, E. C.

    2014-12-01

    Commonly, electromagnetic measurements for exploring and monitoring hydrocarbon reservoirs are inverted for the subsurface conductivity distribution by minimizing the difference between the actual data and a forward modeled dataset. The convergence of the inversion process to the correct solution strongly depends on the shape of the solution space. Since this is a non-linear problem, there exist a multitude of minima of which only the global one provides the correct conductivity values. To easily find the global minimum we desire it to have a broad cone of attraction, while it should also feature a very narrow bottom in order to obtain the subsurface conductivity with high resolution. In this study, we aim to determine which combination of input data corresponds to a favorable shape of the solution space. Since the solution space is N-dimensional, with N being the number of unknown subsurface parameters, plotting it is out of the question. In our approach, we use a genetic algorithm (Goldberg, 1989) to probe the solution space. Such algorithms have the advantage that every run of the same problem will end up at a different solution. Most of these solutions are expected to lie close to the global minimum. A situation where only few runs end up in the global minimum indicates that the solution space consists of a lot of local minima or that the cone of attraction of the global minimum is small. If a lot of runs end up with a similar data-misfit but with a large spread of the subsurface medium parameters in one or more direction, it can be concluded that the chosen data-input is not sensitive with respect to that direction. Compared to the study of Hunziker et al. 2014, we allow also to invert for subsurface boundaries and include more combinations of input datasets. The results so far suggest that it is essential to include the magnetic field in the inversion process in order to find the anisotropic conductivity values. ReferencesGoldberg, D. E., 1989. Genetic

  4. THE INVERSE PROBLEM FOR PART SYMMETRIC MATRICES ON A SUBSPACE

    Institute of Scientific and Technical Information of China (English)

    Zhen-yun Peng; Xi-yan Hu; Lei Zhang

    2003-01-01

    In this paper, the following two problems are considered:Problem I. Given S ∈ Rn×p, X, B ∈ Rn×m, find A ∈ SRs,n such that AX = B, where SRs,n = {A ∈ Rn×n|xT(A - AT) = 0, for all x ∈ R(S)}.Problem Ⅱ. Given A* ∈ Rn×n, find A ∈ SE such that ‖A^-A*‖ = minA∈sE‖A-A*‖,where SE is the solution set of Problem Ⅰ.The necessary and sufficient conditions for the solvability of and the general form of the solutions of problem Ⅰ are given. For problem Ⅱ, the expression for the solution, a numerical algorithm and a numerical example are provided.

  5. PREFACE: The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches

    Science.gov (United States)

    Cheng, Jin; Hon, Yiu-Chung; Seo, Jin Keun; Yamamoto, Masahiro

    2005-01-01

    The Second International Conference on Inverse Problems: Recent Theoretical Developments and Numerical Approaches was held at Fudan University, Shanghai from 16-21 June 2004. The first conference in this series was held at the City University of Hong Kong in January 2002 and it was agreed to hold the conference once every two years in a Pan-Pacific Asian country. The next conference is scheduled to be held at Hokkaido University, Sapporo, Japan in July 2006. The purpose of this series of biennial conferences is to establish and develop constant international collaboration, especially among the Pan-Pacific Asian countries. In recent decades, interest in inverse problems has been flourishing all over the globe because of both the theoretical interest and practical requirements. In particular, in Asian countries, one is witnessing remarkable new trends of research in inverse problems as well as the participation of many young talents. Considering these trends, the second conference was organized with the chairperson Professor Li Tat-tsien (Fudan University), in order to provide forums for developing research cooperation and to promote activities in the field of inverse problems. Because solutions to inverse problems are needed in various applied fields, we entertained a total of 92 participants at the second conference and arranged various talks which ranged from mathematical analyses to solutions of concrete inverse problems in the real world. This volume contains 18 selected papers, all of which have undergone peer review. The 18 papers are classified as follows: Surveys: four papers give reviews of specific inverse problems. Theoretical aspects: six papers investigate the uniqueness, stability, and reconstruction schemes. Numerical methods: four papers devise new numerical methods and their applications to inverse problems. Solutions to applied inverse problems: four papers discuss concrete inverse problems such as scattering problems and inverse problems in

  6. The inverse problem of constructing a gravimetric geoid

    Science.gov (United States)

    Zlotnicki, V.; Parsons, B.; Wunsch, C.

    1982-01-01

    Computation of a single geoidal height from gravity acceleration data formally requires that the latter be known everywhere on the earth. A computational procedure based on linear inverse theory for estimating geoidal heights from incomplete sets of data is presented. The same scheme can be used to estimate gravity accelerations from altimetry-derived geoids. The systematic error owing to lack of data and the choice of a particular inverse operator is described by using resolution functions and their spherical harmonic expansions. An rms value of this error is also estimated by assuming a spectrum for the unknown geoid. The influence of the size of the data region, the spacing between data, the filtering applied to the data, and the model weighting function chosen are all quantified in a spherical geometry. The examples presented show that when low degree spherical harmonic coefficients are available - from satellite orbit analysis - a band-passed version of the geoid can be constructed from local gravity data, even with a relatively restricted data set.

  7. The inverse problem of constructing a gravimetric geoid

    Science.gov (United States)

    Zlotnicki, V.; Parsons, B.; Wunsch, C.

    1982-01-01

    Computation of a single geoidal height from gravity acceleration data formally requires that the latter be known everywhere on the earth. A computational procedure based on linear inverse theory for estimating geoidal heights from incomplete sets of data is presented. The same scheme can be used to estimate gravity accelerations from altimetry-derived geoids. The systematic error owing to lack of data and the choice of a particular inverse operator is described by using resolution functions and their spherical harmonic expansions. An rms value of this error is also estimated by assuming a spectrum for the unknown geoid. The influence of the size of the data region, the spacing between data, the filtering applied to the data, and the model weighting function chosen are all quantified in a spherical geometry. The examples presented show that when low degree spherical harmonic coefficients are available - from satellite orbit analysis - a band-passed version of the geoid can be constructed from local gravity data, even with a relatively restricted data set.

  8. Variational principles and optimal solutions of the inverse problems of creep bending of plates

    Science.gov (United States)

    Bormotin, K. S.; Oleinikov, A. I.

    2012-09-01

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and elastic unloading are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software.

  9. A New Non-linear Technique for Measurement of Splitting Functions of Normal Modes of the Earth

    Science.gov (United States)

    Pachhai, S.; Masters, G.; Tkalcic, H.

    2014-12-01

    Normal modes are the vibrating patterns of the Earth in response to the large earthquakes. Normal mode spectra are split due to Earth's rotation, ellipticity, and heterogeneity. The normal mode splitting is visualized through splitting functions, which represent the local radial average of Earth's structure seen by a mode of vibration. The analysis of the splitting of normal modes can provide unique information about the lateral variation of the Earth's elastic properties that cannot be directly imaged in body wave tomographic images. The non-linear iterative spectral fitting of the observed complex spectra and autoregressive linear inversion have been widely utilized to compute the Earth's 3-D structure. However, the non-linear inversion requires a model of the earthquake source and the retrieved 3-D structure is sensitive to the initial constraints. In contrast, the autoregressive linear inversion does not require the source model. However, this method requires many events to achieve full convergence. In addition, significant disagreement exists between different studies because of the non-uniqueness of the problem and limitations of different methods. We thus apply the neighbourhood algorithm (NA) to measure splitting functions. The NA is an efficient model space search technique and works in two steps: In the first step, the algorithm finds all the models compatible with given data while the posterior probability density of the model parameters are obtained in the second step. The NA can address the problem of non-uniqueness by taking advantage of random sampling of the full model space. The parameter trade-offs are conveniently visualized using joint marginal distributions. In addition, structure coefficients uncertainties can be extracted from the posterior probability distribution. After demonstrating the feasibility of NA with synthetic examples, we compute the splitting functions for the mode 13S2 (sensitive to the inner core) from several large

  10. Non-linear dynamics of a spur gear pair

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1990-10-01

    Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.

  11. Active Subspace Methods for Data-Intensive Inverse Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiqi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-04-27

    The project has developed theory and computational tools to exploit active subspaces to reduce the dimension in statistical calibration problems. This dimension reduction enables MCMC methods to calibrate otherwise intractable models. The same theoretical and computational tools can also reduce the measurement dimension for calibration problems that use large stores of data.

  12. An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

    Directory of Open Access Journals (Sweden)

    Yongxin Yuan

    2009-01-01

    analytical mass and stiffness matrices, so that ( has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient conditions under which this quadratic inverse eigenvalue problem is solvable are specified.

  13. Error Analysis in the Joint Event Location/Seismic Calibration Inverse Problem

    National Research Council Canada - National Science Library

    Rodi, William L

    2006-01-01

    ...: The analysis is being done in the context of the multiple-event inverse problem, in which the locations of multiple events are inferred jointly with travel-time corrections for the event-station paths...

  14. The numerical solution of the boundary inverse problem for a parabolic equation

    Science.gov (United States)

    Vasil'ev, V. V.; Vasilyeva, M. V.; Kardashevsky, A. M.

    2016-10-01

    Boundary inverse problems occupy an important place among the inverse problems of mathematical physics. They are connected with the problems of diagnosis, when additional measurements on one of the borders or inside the computational domain are necessary to restore the boundary regime in the other border, inaccessible to direct measurements. The boundary inverse problems belong to a class of conditionally correct problems, and therefore, their numerical solution requires the development of special computational algorithms. The paper deals with the solution of the boundary inverse problem for one-dimensional second-order parabolic equations, consisting in the restoration of boundary regime according to measurements inside the computational domain. For the numerical solution of the inverse problem it is proposed to use an analogue of a computational algorithm, proposed and developed to meet the challenges of identification of the right side of the parabolic equations in the works P.N.Vabishchevich and his students based on a special decomposition of solving the problem at each temporal layer. We present and discuss the results of a computational experiment conducted on model problems with quasi-solutions, including with random errors in the input data.

  15. The Use of Reciprocity in Atmospheric Source Inversion Problems

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J J

    2004-10-13

    The goal of the Event Reconstruction Project is to find the location and strength of atmospheric release points, both stationary and moving. Source inversion relies on observational data as input. The methodology is sufficiently general to allow various forms of data. In this report, the authors will focus primarily on concentration measurements obtained at point monitoring locations at various times. The algorithms being investigated in the Project are the MCMC (Markov Chain Monte Carlo), SMC (Sequential Monte Carlo) Methods, classical inversion methods, and hybrids of these. They refer the reader to the report by Johannesson et al. (2004) for explanations of these methods. These methods require computing the concentrations at all monitoring locations for a given ''proposed'' source characteristic (locations and strength history). It is anticipated that the largest portion of the CPU time will take place performing this computation. MCMC and SMC will require this computation to be done at least tens of thousands of times. Therefore, an efficient means of computing forward model predictions is important to making the inversion practical. In this report they show how Green's functions and reciprocal Green's functions can significantly accelerate forward model computations. First, instead of computing a plume for each possible source strength history, they can compute plumes from unit impulse sources only. By using linear superposition, they can obtain the response for any strength history. This response is given by the forward Green's function. Second, they may use the law of reciprocity. Suppose that they require the concentration at a single monitoring point x{sub m} due to a potential (unit impulse) source that is located at x{sub s}. instead of computing a plume with source location x{sub s}, they compute a ''reciprocal plume'' whose (unit impulse) source is at the monitoring locations x{sub m}. The

  16. A non-Linear transport model for determining shale rock characteristics

    Science.gov (United States)

    Ali, Iftikhar; Malik, Nadeem

    2016-04-01

    Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007

  17. Genetic algorithms and smoothing filters in solving the geophysical inversion problem

    Directory of Open Access Journals (Sweden)

    Šešum Vesna

    2002-01-01

    Full Text Available The combination of genetic algorithms, smoothing filters and geophysical tomography is used in solving the geophysical inversion problem. This hybrid technique is developed to improve the results obtained by using genetic algorithm sonly. The application of smoothing filters can improve the performance of GA implementation for solving the geophysical inversion problem. Some test-examples and the obtained comparative results are presented.

  18. Uniqueness and Nonuniqueness in Inverse Problems for Elliptic Partial Differential Equations and Related Medical Imaging

    Directory of Open Access Journals (Sweden)

    Kiwoon Kwon

    2015-01-01

    measured data for the inverse problem. For anisotropic coefficient with anomaly with or without jumps from known or unknown background, nonuniqueness of the inverse problems is discussed and the relation to cloaking or illusion of the anomaly is explained. The uniqueness and nonuniqueness issues are discussed firstly for EIT and secondly for ISP in similar arguments. Arguing the relation between source-to-detector map and Dirichlet-to-Neumann map in DOT and the uniqueness and nonuniqueness of DOT are also explained.

  19. Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations

    Science.gov (United States)

    Luo, Songting; Tran, Hung V.; Yu, Yifeng

    2016-09-01

    We look at the effective Hamiltonian {overline{H}} associated with the Hamiltonian {H(p,x)=H(p)+V(x)} in the periodic homogenization theory. Our central goal is to understand the relation between {V} and {overline{H}}. We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.

  20. Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

    Directory of Open Access Journals (Sweden)

    Abel Palafox

    2014-01-01

    Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.

  1. Uniqueness of Inversion Problems Described by First-Kind Integral Equations

    Institute of Scientific and Technical Information of China (English)

    徐铁峰

    2002-01-01

    We propose a general method to prove the uniqueness of the inversion problems described by first-kind integral equations. The method depends on the analytical properties of the Fourier transform of the integral kernel and the finiteness of the total states (or probability, if normalized), the integration of the "local" density of states, which is a rather moderate condition and satisfied by many inversion problems arising from physics and engineering.

  2. Uniqueness and local stability for the inverse scattering problem of determining the cavity

    Institute of Scientific and Technical Information of China (English)

    FENG; Lixin; MA; Fuming

    2005-01-01

    Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the inverse problem of determining the shape of the open cavity from the information of the measured scattered field. Results on the uniqueness and the local stability of the inverse problem in the 2-dimensional TM (transverse magnetic) polarization are proved in this paper.

  3. Review of the inverse scattering problem at fixed energy in quantum mechanics

    Science.gov (United States)

    Sabatier, P. C.

    1972-01-01

    Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.

  4. Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art

    OpenAIRE

    Kunze, Herb E.; Davide La Torre; Franklin Mendivil; Manuel Ruiz Galán; Rachad Zaki

    2014-01-01

    We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on ...

  5. Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem

    Directory of Open Access Journals (Sweden)

    Baiyu Wang

    2014-01-01

    Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.

  6. Calculation Error of Numerical Solution for a Boundary—Value Inverse Heat Conduction Problem

    Institute of Scientific and Technical Information of China (English)

    LiXijing; HeQun; 等

    1996-01-01

    A one-dimensional linear inverse heat conduction problem is studied in this paper,This ill-posed problem is replaced by the perturbed problem with a non-localized boundary condition.After the derivation of its closed-from analytical solution,the calculation error can be determinde by the comparison between the numerical and exact solutions.

  7. A Study of Inverse Problems Based on Two Kinds of Special Matrix Equations in Euclidean Space

    Directory of Open Access Journals (Sweden)

    Rui Huang

    2014-01-01

    Full Text Available Two special classes of symmetric coefficient matrices were defined based on characteristics matrix; meanwhile, the expressions of the solution to inverse problems are given and the conditions for the solvability of these problems are studied relying on researching. Finally, the optimal approximation solution of these problems is provided.

  8. SQUIDs and inverse problem techniques in nondestructive evaluation of metals

    CERN Document Server

    Bruno, A C

    2001-01-01

    Superconducting Quantum Interference Devices coupled to gradiometers were used to defect flaws in metals. We detected flaws in aluminium samples carrying current, measuring fields at lift-off distances up to one order of magnitude larger than the size of the flaw. Configured as a susceptometer we detected surface-braking flaws in steel samples, measuring the distortion on the applied magnetic field. We also used spatial filtering techniques to enhance the visualization of the magnetic field due to the flaws. In order to assess its severity, we used the generalized inverse method and singular value decomposition to reconstruct small spherical inclusions in steel. In addition, finite elements and optimization techniques were used to image complex shaped flaws.

  9. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  10. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  11. Non-linear Oscillations of Compact Stars and Gravitational Waves

    CERN Document Server

    Passamonti, A

    2006-01-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...

  12. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  13. Considering Complexity: Toward A Strategy for Non-linear Analysis

    Directory of Open Access Journals (Sweden)

    Ken Hatt

    2009-01-01

    Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.

  14. Non-Linear Unit Root Properties of Crude Oil Production

    OpenAIRE

    Svetlana Maslyuk; Russell Smyth

    2007-01-01

    While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...

  15. Computational experiment on the numerical solution of some inverse problems of mathematical physics

    Science.gov (United States)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Sivtsev, PV

    2016-11-01

    In this article the computational experiment on the numerical solution of the most popular linear inverse problems for equations of mathematical physics are presented. The discretization of retrospective inverse problem for parabolic equation is performed using difference scheme with non-positive weight multiplier. Similar difference scheme is also used for the numerical solution of Cauchy problem for two-dimensional Laplace equation. The results of computational experiment, performed on model problems with exact solution, including ones with randomly perturbed input data are presented and discussed.

  16. The algebraic method of the scattering inverse problem solution under untraditional statements

    CERN Document Server

    Popushnoj, M N

    2001-01-01

    The algebraic method of the scattering inverse problem solution under untraditional statements is proposed consistently in this review, in the framework of which some quantum theory od scattering charged particles problem were researched afterwards. The inverse problem of scattering theory of charged particles on the complex plane of the Coulomb coupling constant (CCC) is considered. A procedure of interaction potential restoration is established for the case when the energy, orbital moment quadrate and CCC are linearly dependent. The relation between one-parametric problems of the potential scattering of charged particles is investigated

  17. Applying neural networks to the solution of forward and inverse heat conduction problems

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Hwang, Y. [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Dashi Jen, Taoyuan 33509, Taiwan (Taiwan)

    2006-12-15

    This paper employs the continuous-time analogue Hopfield neural network to compute the temperature distribution in forward heat conduction problems and solves inverse heat conduction problems by using a back propagation neural (BPN) network to identify the unknown boundary conditions. The weak generalization capacity of BPN networks is improved by employing the Bayesian regularization algorithm. The feasibility of the proposed method is examined in a series of numerical simulations. The results show that the proposed neural network analysis method successfully solves forward heat conduction problems and is capable of predicting the unknown parameters in inverse problems with an acceptable error. (author)

  18. The inverse maximum flow problem with lower and upper bounds for the flow

    Directory of Open Access Journals (Sweden)

    Deaconu Adrian

    2008-01-01

    Full Text Available The general inverse maximum flow problem (denoted GIMF is considered, where lower and upper bounds for the flow are changed so that a given feasible flow becomes a maximum flow and the distance (considering l1 norm between the initial vector of bounds and the modified vector is minimum. Strongly and weakly polynomial algorithms for solving this problem are proposed. In the paper it is also proved that the inverse maximum flow problem where only the upper bound for the flow is changed (IMF is a particular case of the GIMF problem.

  19. On rational approximation methods for inverse source problems

    KAUST Repository

    Rundell, William

    2011-02-01

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.

  20. Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems

    CERN Document Server

    Wahls, Sander

    2016-01-01

    The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...

  1. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    Science.gov (United States)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  2. An inverse problem of thickness design for bilayer textile materials under low temperature

    Science.gov (United States)

    Xu, Dinghua; Cheng, Jianxin; Chen, Yuanbo; Ge, Meibao

    2011-04-01

    The human heat-moisture-comfort level is mainly determined by heat and moisture transfer characteristics in clothing. With respect to the model of steady-state heat and moisture transfer through parallel pore textiles, we propose an inverse problem of thickness design for bilayer textile material under low temperature in this paper. Adopting the idea of regularization method, we formulate the inverse problem solving into a function minimization problem. Combining the finite difference method for ordinary differential equations with direct search method of one-dimensional minimization problems, we derive three kinds of iteration algorithms of regularized solution for the inverse problem of thickness design. Numerical simulation is achieved to verify the efficiency of proposed methods.

  3. The Inverse 1-Median Problem on Tree Networks with Variable Real Edge Lengths

    Directory of Open Access Journals (Sweden)

    Longshu Wu

    2013-01-01

    Full Text Available Location problems exist in the real world and they mainly deal with finding optimal locations for facilities in a network, such as net servers, hospitals, and shopping centers. The inverse location problem is also often met in practice and has been intensively investigated in the literature. As a typical inverse location problem, the inverse 1-median problem on tree networks with variable real edge lengths is discussed in this paper, which is to modify the edge lengths at minimum total cost such that a given vertex becomes a 1-median of the tree network with respect to the new edge lengths. First, this problem is shown to be solvable in linear time with variable nonnegative edge lengths. For the case when negative edge lengths are allowable, the NP-hardness is proved under Hamming distance, and strongly polynomial time algorithms are presented under l1 and l∞ norms, respectively.

  4. Effect of head shape variations among individuals on the EEG/MEG forward and inverse problems.

    Science.gov (United States)

    von Ellenrieder, Nicolás; Muravchik, Carlos H; Wagner, Michael; Nehorai, Arye

    2009-03-01

    We study the effect of the head shape variations on the EEG/magnetoencephalography (MEG) forward and inverse problems. We build a random head model such that each sample represents the head shape of a different individual and solve the forward problem assuming this random head model, using a polynomial chaos expansion. The random solution of the forward problem is then used to quantify the effect of the geometry when the inverse problem is solved with a standard head model. The results derived with this approach are valid for a continuous family of head models, rather than just for a set of cases. The random model consists of three random surfaces that define layers of different electric conductivity, and we built an example based on a set of 30 deterministic models from adults. Our results show that for a dipolar source model, the effect of the head shape variations on the EEG/MEG inverse problem due to the random head model is slightly larger than the effect of the electronic noise present in the sensors. The variations in the EEG inverse problem solutions are due to the variations in the shape of the volume conductor, while the variations in the MEG inverse problem solutions, larger than the EEG ones, are caused mainly by the variations of the absolute position of the sources in a coordinate system based on anatomical landmarks, in which the magnetometers have a fixed position.

  5. Non-linear vorticity upsurge in Burgers flow

    CERN Document Server

    Lam, F

    2016-01-01

    We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...

  6. An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers

    Science.gov (United States)

    2001-05-01

    problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods

  7. INVERSE EIGENVALUE PROBLEM OF HERMITIAN GENERALIZED ANTI-HAMILTONIAN MATRICES%HGAH矩阵的逆特征值问题

    Institute of Scientific and Technical Information of China (English)

    张忠志; Liu Changrong

    2004-01-01

    In this paper, the inverse eigenvalue problem of Hermitian generalized anti-Hamiltonian matrices and relevant optimal approximate problem are considered. The necessary and sufficient conditions of the solvability for inverse eigenvalue problem and an expression of the general solution of the problem are derived. The solution of the relevant optimal approximate problem is given.

  8. Inverse heat conduction problem in a phase change memory device

    Science.gov (United States)

    Battaglia, Jean-Luc; De, Indrayush; Sousa, Véronique

    2017-01-01

    An invers heat conduction problem is solved considering the thermal investigation of a phase change memory device using the scanning thermal microscopy. The heat transfer model rests on system identification for the probe thermal impedance and on a finite element method for the device thermal impedance. Unknown parameters in the model are then identified using a nonlinear least square algorithm that minimizes the quadratic gap between the measured probe temperature and the simulated one.

  9. Method and software to solution of inverse and inverse design fluid flow and heat transfer problems is compatible with CFD-software

    Energy Technology Data Exchange (ETDEWEB)

    Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)

    1997-12-31

    The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.

  10. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.

    Science.gov (United States)

    Van Aert, S; Chen, J H; Van Dyck, D

    2010-10-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  11. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    Science.gov (United States)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  12. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

    CERN Document Server

    Gryazin, Y A; Lucas, T R

    2003-01-01

    Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

  13. Inverse problems in geographical economics: parameter identification in the spatial Solow model.

    Science.gov (United States)

    Engbers, Ralf; Burger, Martin; Capasso, Vincenzo

    2014-11-13

    The identification of production functions from data is an important task in the modelling of economic growth. In this paper, we consider a non-parametric approach to this identification problem in the context of the spatial Solow model which allows for rather general production functions, in particular convex-concave ones that have recently been proposed as reasonable shapes. We formulate the inverse problem and apply Tikhonov regularization. The inverse problem is discretized by finite elements and solved iteratively via a preconditioned gradient descent approach. Numerical results for the reconstruction of the production function are given and analysed at the end of this paper.

  14. Inverse problem theory methods for data fitting and model parameter estimation

    CERN Document Server

    Tarantola, A

    2002-01-01

    Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals wi

  15. Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective

    Science.gov (United States)

    Bilionis, I.; Zabaras, N.

    2014-01-01

    Solving inverse problems based on computationally demanding forward models is ubiquitously difficult since one is necessarily limited to just a few observations of the response surface. The usual practice is to replace the response surface with a surrogate. However, this approach induces additional uncertainties on the posterior distributions. The main contribution of this work is the reformulation of the Bayesian solution of the inverse problem when the expensive forward model is replaced by the surrogate. We derive three approximations of the reformulated solution with increasing complexity and fidelity. We demonstrate numerically that the proposed approximations capture the uncertainty of the solution of the inverse problem induced by the fact that the forward model is replaced by a finite number of simulations. We demonstrate our approach in two different problems: locating the contamination source of a diffusive process and inferring the permeability field of an oil reservoir based on measurements of the oil-cut curves.

  16. Graphical and Analytical Analysis of the Non-Linear PLL

    NARCIS (Netherlands)

    de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper

  17. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  18. Non-linear Frequency Scaling Algorithm for FMCW SAR Data

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran

  19. Non Linear Gauge Fixing for FeynArts

    CERN Document Server

    Gajdosik, Thomas

    2007-01-01

    We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.

  20. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  1. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  2. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  3. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  4. An inverse problem of determining a nonlinear term in an ordinary differential equation

    OpenAIRE

    Kamimura, Yutaka

    1998-01-01

    An inverse problem for a nonlinear ordinary differential equation is discussed. We prove an existence theorem of a nonlinear term with which a boundary value problem admits a solution. This is an improvement of earlier work by A. Lorenzi. We also prove a uniqueness theorem of the nonlinear term.

  5. Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form

    Directory of Open Access Journals (Sweden)

    Kairi Kasemets

    2013-01-01

    Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.

  6. On the inverse problem of blade design for centrifugal pumps and fans

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Westra, R.W.

    2014-01-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is

  7. A smoothing Newton method for a type of inverse semi-definite quadratic programming problem

    Science.gov (United States)

    Xiao, Xiantao; Zhang, Liwei; Zhang, Jianzhong

    2009-01-01

    We consider an inverse problem arising from the semi-definite quadratic programming (SDQP) problem. We represent this problem as a cone-constrained minimization problem and its dual (denoted ISDQD) is a semismoothly differentiable (SC1) convex programming problem with fewer variables than the original one. The Karush-Kuhn-Tucker conditions of the dual problem (ISDQD) can be formulated as a system of semismooth equations which involves the projection onto the cone of positive semi-definite matrices. A smoothing Newton method is given for getting a Karush-Kuhn-Tucker point of ISDQD. The proposed method needs to compute the directional derivative of the smoothing projector at the corresponding point and to solve one linear system per iteration. The quadratic convergence of the smoothing Newton method is proved under a suitable condition. Numerical experiments are reported to show that the smoothing Newton method is very effective for solving this type of inverse quadratic programming problems.

  8. Inverse problems: Fuzzy representation of uncertainty generates a regularization

    Science.gov (United States)

    Kreinovich, V.; Chang, Ching-Chuang; Reznik, L.; Solopchenko, G. N.

    1992-01-01

    In many applied problems (geophysics, medicine, and astronomy) we cannot directly measure the values x(t) of the desired physical quantity x in different moments of time, so we measure some related quantity y(t), and then we try to reconstruct the desired values x(t). This problem is often ill-posed in the sense that two essentially different functions x(t) are consistent with the same measurement results. So, in order to get a reasonable reconstruction, we must have some additional prior information about the desired function x(t). Methods that use this information to choose x(t) from the set of all possible solutions are called regularization methods. In some cases, we know the statistical characteristics both of x(t) and of the measurement errors, so we can apply statistical filtering methods (well-developed since the invention of a Wiener filter). In some situations, we know the properties of the desired process, e.g., we know that the derivative of x(t) is limited by some number delta, etc. In this case, we can apply standard regularization techniques (e.g., Tikhonov's regularization). In many cases, however, we have only uncertain knowledge about the values of x(t), about the rate with which the values of x(t) can change, and about the measurement errors. In these cases, usually one of the existing regularization methods is applied. There exist several heuristics that choose such a method. The problem with these heuristics is that they often lead to choosing different methods, and these methods lead to different functions x(t). Therefore, the results x(t) of applying these heuristic methods are often unreliable. We show that if we use fuzzy logic to describe this uncertainty, then we automatically arrive at a unique regularization method, whose parameters are uniquely determined by the experts knowledge. Although we start with the fuzzy description, but the resulting regularization turns out to be quite crisp.

  9. Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation

    Science.gov (United States)

    Poddar, Banibrata; Giurgiutiu, Victor

    2016-04-01

    Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.

  10. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  11. Non-linear dielectric monitoring of biological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Treo, E F; Felice, C J [Departamento de BioingenierIa, Universidad Nacional de Tucuman and Consejo Nacional de Investigaciones Cientificas y Tecnicas. CC327, CP4000, San Miguel de Tucuman (Argentina)

    2007-11-15

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response.

  12. From Bayes to Tarantola: New insights to understand uncertainty in inverse problems

    Science.gov (United States)

    Fernández-Martínez, J. L.; Fernández-Muñiz, Z.; Pallero, J. L. G.; Pedruelo-González, L. M.

    2013-11-01

    Anyone working on inverse problems is aware of their ill-posed character. In the case of inverse problems, this concept (ill-posed) proposed by J. Hadamard in 1902, admits revision since it is somehow related to their ill-conditioning and the use of local optimization methods to find their solution. A more general and interesting approach regarding risk analysis and epistemological decision making would consist in analyzing the existence of families of equivalent model parameters that are compatible with the prior information and predict the observed data within the same error bounds. Otherwise said, the ill-posed character of discrete inverse problems (ill-conditioning) originates that their solution is uncertain. Traditionally nonlinear inverse problems in discrete form have been solved via local optimization methods with regularization, but linear analysis techniques failed to account for the uncertainty in the solution that it is adopted. As a result of this fact uncertainty analysis in nonlinear inverse problems has been approached in a probabilistic framework (Bayesian approach), but these methods are hindered by the curse of dimensionality and by the high computational cost needed to solve the corresponding forward problems. Global optimization techniques are very attractive, but most of the times are heuristic and have the same limitations than Monte Carlo methods. New research is needed to provide uncertainty estimates, especially in the case of high dimensional nonlinear inverse problems with very costly forward problems. After the discredit of deterministic methods and some initial years of Bayesian fever, now the pendulum seems to return back, because practitioners are aware that the uncertainty analysis in high dimensional nonlinear inverse problems cannot (and should not be) solved via random sampling methodologies. The main reason is that the uncertainty “space” of nonlinear inverse problems has a mathematical structure that is embedded in the

  13. Statistical mechanics of the inverse Ising problem and the optimal objective function

    Science.gov (United States)

    Berg, Johannes

    2017-08-01

    The inverse Ising problem seeks to reconstruct the parameters of an Ising Hamiltonian on the basis of spin configurations sampled from the Boltzmann measure. Over the last decade, many applications of the inverse Ising problem have arisen, driven by the advent of large-scale data across different scientific disciplines. Recently, strategies to solve the inverse Ising problem based on convex optimisation have proven to be very successful. These approaches maximise particular objective functions with respect to the model parameters. Examples are the pseudolikelihood method and interaction screening. In this paper, we establish a link between approaches to the inverse Ising problem based on convex optimisation and the statistical physics of disordered systems. We characterise the performance of an arbitrary objective function and calculate the objective function which optimally reconstructs the model parameters. We evaluate the optimal objective function within a replica-symmetric ansatz and compare the results of the optimal objective function with other reconstruction methods. Apart from giving a theoretical underpinning to solving the inverse Ising problem by convex optimisation, the optimal objective function outperforms state-of-the-art methods, albeit by a small margin.

  14. Predictability of extremes in non-linear hierarchically organized systems

    Science.gov (United States)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    phenomena of highly complex origin, by their nature, implies using problem oriented methods, which design breaks the limits of classical statistical or econometric applications. The unambiguously designed forecast/prediction algorithms of the "yes or no" variety, analyze the observable quantitative integrals and indicators available to a given date, then provides unambiguous answer to the question whether a critical transition should be expected or not in the next time interval. Since the predictability of an originating non-linear dynamical system is limited in principle, the probabilistic component of forecast/prediction algorithms is represented by the empirical probabilities of alarms, on one side, and failures-to-predict, on the other, estimated on control sets achieved in the retro- and prospective experiments. Predicting in advance is the only decisive test of forecast/predictions and the relevant on-going experiments are conducted in the case seismic extremes, recessions, and increases of unemployment rate. The results achieved in real-time testing keep being encouraging and confirm predictability of the extremes.

  15. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  16. The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics

    Science.gov (United States)

    Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.

    2017-07-01

    The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.

  17. Reification of galaxies: cognitive astrophysics and the multiwavelength inverse problem

    Science.gov (United States)

    Madore, Barry F.

    2012-08-01

    Lessons learned in the history and philosophy of science have generally had little immediate impact on how we as individual astronomers conduct our research. And yet we do share many common views on how we undertake basic research, and how we translate observations and theory into communicable knowledge. In this introductory talk I will illustrate how we as extragalactic astronomers have already violated some of the basic tenets of what constitutes ``science'' as seen from a philosophical point of view, and I will predict what the future of astronomy as a science may soon look like. Simple examples of how we are already ``cognitively closed'' to many immediate and tangible aspects of the Universe will be given and some solutions to this dilemma will be proposed. We may be at a point in time where more data is not necessarily the best solution to our problems. Discovering that familiar concepts and even certain objects may not exist in the traditional sense of the word could provide a motivation for broadening our way of conceptualizing the extragalactic Universe, more as a continuum of processes and phase transitions rather than an assembly of discrete objects. Once again the Universe may be ``forcing us to think''.

  18. A Bayesian setting for an inverse problem in heat transfer

    KAUST Repository

    Ruggeri, Fabrizio

    2014-01-06

    In this work a Bayesian setting is developed to infer the thermal conductivity, an unknown parameter that appears into heat equation. Temperature data are available on the basis of cooling experiments. The realistic assumption that the boundary data are noisy is introduced, for a given prescribed initial condition. We show how to derive the global likelihood function for the forward boundary-initial condition problem, given the values of the temperature field plus Gaussian noise. We assume that the thermal conductivity parameter can be modelled a priori through a lognormal distributed random variable or by means of a space-dependent stationary lognormal random field. In both cases, given Gaussian priors for the time-dependent Dirichlet boundary values, we marginalize out analytically the joint posterior distribution of and the random boundary conditions, TL and TR, using the linearity of the heat equation. Synthetic data are used to carry out the inference. We exploit the concentration of the posterior distribution of , using the Laplace approximation and therefore avoiding costly MCMC computations.

  19. Inverse problem for multivariate time series using dynamical latent variables

    Science.gov (United States)

    Zamparo, M.; Stramaglia, S.; Banavar, J. R.; Maritan, A.

    2012-06-01

    Factor analysis is a well known statistical method to describe the variability among observed variables in terms of a smaller number of unobserved latent variables called factors. While dealing with multivariate time series, the temporal correlation structure of data may be modeled by including correlations in latent factors, but a crucial choice is the covariance function to be implemented. We show that analyzing multivariate time series in terms of latent Gaussian processes, which are mutually independent but with each of them being characterized by exponentially decaying temporal correlations, leads to an efficient implementation of the expectation-maximization algorithm for the maximum likelihood estimation of parameters, due to the properties of block-tridiagonal matrices. The proposed approach solves an ambiguity known as the identifiability problem, which renders the solution of factor analysis determined only up to an orthogonal transformation. Samples with just two temporal points are sufficient for the parameter estimation: hence the proposed approach may be applied even in the absence of prior information about the correlation structure of latent variables by fitting the model to pairs of points with varying time delay. Our modeling allows one to make predictions of the future values of time series and we illustrate our method by applying it to an analysis of published gene expression data from cell culture HeLa.

  20. SOLVING A CLASS OF INVERSE QP PROBLEMS BY A SMOOTHING NEWTON METHOD

    Institute of Scientific and Technical Information of China (English)

    Xiantao Xiao; Liwei Zhang

    2009-01-01

    We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC~1) convex program-ming problem with fewer variables than the original one. In this paper a smoothing New-ton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic conver-gence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.

  1. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  2. Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method

    CERN Document Server

    Bruckner, Florian; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter

    2016-01-01

    An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet is demonstrated.

  3. Advanced model of eddy-current NDE inverse problem with sparse grid algorithm

    Science.gov (United States)

    Zhou, Liming; Sabbagh, Harold A.; Sabbagh, Elias H.; Murphy, R. Kim; Bernacchi, William

    2017-02-01

    In model-based inverse problem, some unknown parameters need to be estimated. These parameters are used not only to characterize the physical properties of cracks, but also to describe the position of the probes (such as lift off and angles) in the calibration. After considering the effect of the position of the probes in the inverse problem, the accuracy of the inverse result will be improved. With increasing the number of the parameters in the inverse problems, the burden of calculations will increase exponentially in the traditional full grid method. The sparse grid algorithm, which was introduced by Sergey A. Smolyak, was used in our work. With this algorithm, we obtain a powerful interpolation method that requires significantly fewer support nodes than conventional interpolation on a full grid. In this work, we combined sparse grid toolbox TASMANIAN, which is produced by Oak Ridge National Laboratory, and professional eddy-current NDE software, VIC-3D R◯, to solve a specific inverse problem. An advanced model based on our previous one is used to estimate length and depth of the crack, lift off and two angles of the position of probes. Considering the calibration process, pseudorandom noise is considered in the model and statistical behavior is discussed.

  4. An Inverse Robust Optimisation Approach for a Class of Vehicle Routing Problems under Uncertainty

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-01-01

    Full Text Available There is a trade-off between the total penalty paid to customers (TPC and the total transportation cost (TTC in depot for vehicle routing problems under uncertainty (VRPU. The trade-off refers to the fact that the TTC in depot inevitably increases when the TPC decreases and vice versa. With respect to this issue, the vehicle routing problem (VRP with uncertain customer demand and travel time was studied to optimise the TPC and the TTC in depot. In addition, an inverse robust optimisation approach was proposed to solve this kind of VRPU by combining the ideas of inverse optimisation and robust optimisation so as to improve both the TPC and the TTC in depot. The method aimed to improve the corresponding TTC of the robust optimisation solution under the minimum TPC through minimising the adjustment of benchmark road transportation cost. According to the characteristics of the inverse robust optimisation model, a genetic algorithm (GA and column generation algorithm are combined to solve the problem. Moreover, 39 test problems are solved by using an inverse robust optimisation approach: the results show that both the TPC and TTC obtained by using the inverse robust optimisation approach are less than those calculated using a robust optimisation approach.

  5. Effects of geometric head model perturbations on the EEG forward and inverse problems.

    Science.gov (United States)

    von Ellenrieder, Nicolás; Muravchik, Carlos H; Nehorai, Arye

    2006-03-01

    We study the effect of geometric head model perturbations on the electroencephalography (EEG) forward and inverse problems. Small magnitude perturbations of the shape of the head could represent uncertainties in the head model due to errors on images or techniques used to construct the model. They could also represent small scale details of the shape of the surfaces not described in a deterministic model, such as the sulci and fissures of the cortical layer. We perform a first-order perturbation analysis, using a meshless method for computing the sensitivity of the solution of the forward problem to the geometry of the head model. The effect on the forward problem solution is treated as noise in the EEG measurements and the Cramér-Rao bound is computed to quantify the effect on the inverse problem performance. Our results show that, for a dipolar source, the effect of the perturbations on the inverse problem performance is under the level of the uncertainties due to the spontaneous brain activity. Thus, the results suggest that an extremely detailed model of the head may be unnecessary when solving the EEG inverse problem.

  6. The inverse problem of refraction travel times, part II: Quantifying refraction nonuniqueness using a three-layer model

    Science.gov (United States)

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.

    2005-01-01

    This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information

  7. Preliminary Study of the Feasibility of Inverse Problem Algorithms Used for Arc Magnetic Measurement Method

    Science.gov (United States)

    Wang, Qian; Li, Xingwen; Song, Haoyong; Rong, Mingzhe

    2010-04-01

    Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devoted to investigating different algorithms for this kind of inverse problem preliminarily, including the preconditioned conjugate gradient method, penalty function method and genetic algorithm. The feasibility of each algorithm is analyzed. It is shown that the preconditioned conjugate gradient method is valid only for few arc segments, the estimation accuracy of the penalty function method is dependent on the initial conditions, and the convergence of genetic algorithm should be studied further for more segments in an arc current.

  8. Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis

    Directory of Open Access Journals (Sweden)

    Bárbara D. L. Ferreira

    2013-01-01

    Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

  9. Solution of inverse heat conduction problem using the Tikhonov regularization method

    Science.gov (United States)

    Duda, Piotr

    2017-02-01

    It is hard to solve ill-posed problems, as calculated temperatures are very sensitive to errors made while calculating "measured" temperatures or performing real-time measurements. The errors can create temperature oscillation, which can be the cause of an unstable solution. In order to overcome such difficulties, a variety of techniques have been proposed in literature, including regularization, future time steps and smoothing digital filters. In this paper, the Tikhonov regularization is applied to stabilize the solution of the inverse heat conduction problem. The impact on the inverse solution stability and accuracy is demonstrated.

  10. Entropy description of measured information in mathematical and physical inverse problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    There are two types of inverse problems: Optimization designation and parameter identification. Before the parameter identification of mathematical and physical inverse problems, it is necessary to determine the number and position of measurement points in analysis and evaluation of a large number of measured data. In this paper, a mathematical methodology is proposed to describe the influence of the number and position of measurement points on the reconstruction precision. Information entropy and Bayesian theory are used in the description. Finally, a numerical experiment shows that the methodology is effective.

  11. The Bayesian Formulation and Well-Posedness of Fractional Elliptic Inverse Problems

    CERN Document Server

    Trillos, Nicolas Garcia

    2016-01-01

    We study the inverse problem of recovering the order and the diffusion coefficient of an elliptic fractional partial differential equation from a finite number of noisy observations of the solution. We work in a Bayesian framework and show conditions under which the posterior distribution is given by a change of measure from the prior. Moreover, we show well-posedness of the inverse problem, in the sense that small perturbations of the observed solution lead to small Hellinger perturbations of the associated posterior measures. We thus provide a mathematical foundation to the Bayesian learning of the order ---and other inputs--- of fractional models.

  12. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)

    2017-01-15

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.

  13. Solving the structural inverse gravity problem by the modified gradient methods

    Science.gov (United States)

    Martyshko, P. S.; Akimova, E. N.; Misilov, V. E.

    2016-09-01

    New methods for solving the three-dimensional inverse gravity problem in the class of contact surfaces are described. Based on the approach previously suggested by the authors, new algorithms are developed. Application of these algorithms significantly reduces the number of the iterations and computing time compared to the previous ones. The algorithms have been numerically implemented on the multicore processor. The example of solving the structural inverse gravity problem for a model of four-layer medium (with the use of gravity field measurements) is constructed.

  14. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  15. Distributed adaptive output consensus control of second-order systems containing unknown non-linear control gains

    Science.gov (United States)

    Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan

    2016-10-01

    In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.

  16. Solving an inverse eigenvalue problem with triple constraints on eigenvalues, singular values, and diagonal elements

    Science.gov (United States)

    Wu, Sheng-Jhih; Chu, Moody T.

    2017-08-01

    An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.

  17. Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology

    CERN Document Server

    Ebrahimi, E

    2016-01-01

    In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.

  18. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    Science.gov (United States)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  19. Differential transform method for solving linear and non-linear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kanth, A.S.V. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)], E-mail: asvravikanth@yahoo.com; Aruna, K. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)

    2008-11-17

    In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  20. An automatization of Barnsley's algorithm for the inverse problem of iterated function systems.

    Science.gov (United States)

    Wadströmer, Niclas

    2003-01-01

    We present an automatization of Barnsley's manual algorithm for the solution of the inverse problem of iterated function systems (IFSs). The problem is to retrieve the number of mappings and the parameters of an IFS from a digital binary image approximating the attractor induced by the IFS. M.F. Barnsley et al. described a way to solve manually the inverse problem by identifying the fragments of which the collage is composed, and then computing the parameters of the mappings (Barnsley et al., Proc. Nat. Acad. Sci. USA, vol.83, p.1975-7, 1986; Barnsley, "Fractals Everywhere", Academic, 1988; Barnsley and Hurd, L., "Fractal Image Compression", A.K. Peters, 1992). The automatic algorithm searches through a finite set of points in the parameter space determining a set of affine mappings. The algorithm uses the collage theorem and the Hausdorff metric. The inverse problem of IFSs is related to the image coding of binary images. If the number of mappings and the parameters of an IFS, with not too many mappings, could be obtained from a binary image, then this would give an efficient representation of the image. It is shown that the inverse problem solved by the automatic algorithm has a solution and some experiments show that the automatic algorithm is able to retrieve an IFS, including the number of mappings, from a digital binary image approximating the attractor induced by the IFS.