WorldWideScience

Sample records for non-linear effective lagrangians

  1. Constructing metric gravity's N-body non-linear Lagrangian from iterative, linear algebraic scaling equations

    CERN Document Server

    Nordtvedt, Kenneth

    2015-01-01

    A method for constructing metric gravity's N-body Lagrangian is developed which uses iterative, liner algebraic euqations which enforce invariance properties of gravity --- exterior effacement, interior effacement, and the time dilation and Lorentz contraction of matter under boosts. The method is demonstrated by obtaining the full 1/c^4 order Lagrangian, and a combination of exterior and interior effacement enforcement permits construction of the full Schwarzschild temporal and spatial metric potentials.

  2. Lagrangian perturbations and the matter bispectrum I: fourth-order model for non-linear clustering

    Energy Technology Data Exchange (ETDEWEB)

    Rampf, Cornelius [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen, Physikzentrum RWTH-Melaten, D-52056 Aachen (Germany); Buchert, Thomas, E-mail: rampf@physik.rwth-aachen.de, E-mail: buchert@obs.univ-lyon1.fr [Université de Lyon, Observatoire de Lyon, Centre de Recherche Astrophysique de Lyon, CNRS UMR 5574: Université Lyon 1 and École Normale Supérieure de Lyon, 9 avenue Charles André, F-69230 Saint-Genis-Laval (France)

    2012-06-01

    We investigate the Lagrangian perturbation theory of a homogeneous and isotropic universe in the non-relativistic limit, and derive the solutions up to the fourth order. These solutions are needed for example for the next-to-leading order correction of the (resummed) Lagrangian matter bispectrum, which we study in an accompanying paper. We focus on flat cosmologies with a vanishing cosmological constant, and provide an in-depth description of two complementary approaches used in the current literature. Both approaches are solved with two different sets of initial conditions — both appropriate for modelling the large-scale structure. Afterwards we consider only the fastest growing mode solution, which is not affected by either of these choices of initial conditions. Under the reasonable approximation that the linear density contrast is evaluated at the initial Lagrangian position of the fluid particle, we obtain the nth-order displacement field in the so-called initial position limit: the nth order displacement field consists of 3(n-1) integrals over n linear density contrasts, and obeys self-similarity. Then, we find exact relations between the series in Lagrangian and Eulerian perturbation theory, leading to identical predictions for the density contrast and the peculiar-velocity divergence up to the fourth order.

  3. A comparison of Eulerian and Lagrangian transport and non-linear reaction algorithms

    Science.gov (United States)

    Benson, David A.; Aquino, Tomás; Bolster, Diogo; Engdahl, Nicholas; Henri, Christopher V.; Fernàndez-Garcia, Daniel

    2017-01-01

    When laboratory-measured chemical reaction rates are used in simulations at the field-scale, the models typically overpredict the apparent reaction rates. The discrepancy is primarily due to poorer mixing of chemically distinct waters at the larger scale. As a result, realistic field-scale predictions require accurate simulation of the degree of mixing between fluids. The Lagrangian particle-tracking (PT) method is a now-standard way to simulate the transport of conservative or sorbing solutes. The method's main advantage is the absence of numerical dispersion (and its artificial mixing) when simulating advection. New algorithms allow particles of different species to interact in nonlinear (e.g., bimolecular) reactions. Therefore, the PT methods hold a promise of more accurate field-scale simulation of reactive transport because they eliminate the masking effects of spurious mixing due to advection errors inherent in grid-based methods. A hypothetical field-scale reaction scenario is constructed and run in PT and Eulerian (finite-volume/finite-difference) simulators. Grid-based advection schemes considered here include 1st- to 3rd-order spatially accurate total-variation-diminishing flux-limiting schemes, both of which are widely used in current transport/reaction codes. A homogeneous velocity field in which the Courant number is everywhere unity, so that the chosen Eulerian methods incur no error when simulating advection, shows that both the Eulerian and PT methods can achieve convergence in the L1 (integrated concentration) norm, but neither shows stricter pointwise convergence. In this specific case with a constant dispersion coefficient and bimolecular reaction A + B → P , the correct total amount of product is 0.221MA0, where MA0 is the original mass of reactant A. When the Courant number drops, the grid-based simulations can show remarkable errors due to spurious over- and under-mixing. In a heterogeneous velocity field (keeping the same constant and

  4. Non-linear effects in bunch compressor of TARLA

    Science.gov (United States)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  5. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  6. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  7. Effective Lagrangians and Light Gravitino Phenomenology

    CERN Document Server

    Luty, M A; Luty, Markus A.; Ponton, Eduardo

    1998-01-01

    We construct the low-energy effective lagrangian for supersymmetry breaking models with a light gravitino. Our effective lagrangian is written in terms of the spin-1/2 Goldstino (the longitudinal component of the gravitino) transforming under a non-linear realization of supersymmetry. The Goldstino is derivatively coupled. We use this lagrangian to place bounds on the supersymmetry breaking scale \\sqrt{F} from Goldstino phenomenology. The most stringent bounds come from the coupling of a single photon to Goldstino pairs. For gauge-mediated models, this coupling arises at one loop in the effective lagrangian, and supernova cooling allows \\sqrt{F} > 610 GeV or \\sqrt{F} 140 GeV for tan\\beta = 2.

  8. Measuring the Non-Linear Effects of Monetary Policy

    OpenAIRE

    Christian Matthes; Regis Barnichon

    2015-01-01

    This paper proposes a method to identify the non-linear effects of structural shocks by using Gaussian basis functions to parametrize impulse response functions. We apply our approach to monetary policy and find that the effect of a monetary intervention depends strongly on (i) the sign of the intervention, (ii) the size of the intervention, and (iii) the state of the business cycle at the time of the intervention. A contractionary policy has a strong adverse effect on output, much stronger t...

  9. Non-linear effects for cylindrical gravitational two-soliton

    CERN Document Server

    Tomizawa, Shinya

    2015-01-01

    Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.

  10. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  11. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  12. Renormalization and effective lagrangians

    Science.gov (United States)

    Polchinski, Joseph

    1984-01-01

    There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional λø 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed.

  13. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  14. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  15. Systematic treatment of non-linear effects in Baryon Acoustic Oscillations

    CERN Document Server

    Ivanov, Mikhail M

    2016-01-01

    In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.

  16. Polarization effects in the non-linear Compton scattering

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2005-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.

  17. Effective Lagrangian for Nonrelativistic Systems

    Directory of Open Access Journals (Sweden)

    Haruki Watanabe

    2014-09-01

    Full Text Available The effective Lagrangian for Nambu-Goldstone bosons (NGBs in systems without Lorentz invariance has a novel feature that some of the NGBs are canonically conjugate to each other, hence describing 1 dynamical degree of freedom by two NGB fields. We develop explicit forms of their effective Lagrangian up to the quadratic order in derivatives. We clarify the counting rules of NGB degrees of freedom and completely classify possibilities of such canonically conjugate pairs based on the topology of the coset spaces. Its consequence on the dispersion relations of the NGBs is clarified. We also present simple scaling arguments to see whether interactions among NGBs are marginal or irrelevant, which justifies a lore in the literature about the possibility of symmetry breaking in 1+1 dimensions.

  18. Non-linear effects of soda taxes on consumption and weight outcomes.

    Science.gov (United States)

    Fletcher, Jason M; Frisvold, David E; Tefft, Nathan

    2015-05-01

    The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects.

  19. Non-linear effects in transition edge sensors for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)]. E-mail: sbandler@milkyway.gsfc.nasa.gov; Figueroa-Feliciano, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Iyomoto, N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R.L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Murphy, K.D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Porter, F.S. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Saab, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sadleir, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2006-04-15

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter.

  20. Correction of non-linearity effects in detectors for electron spectroscopy

    CERN Document Server

    Mannella, N; Kay, A W; Nambu, A; Gresch, T; Yang, S H; Mun, B S; Bussat, J M; Rosenhahn, A; Fadley, C S

    2004-01-01

    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at di...

  1. Isotopic effects on non-linearity, molecular radius and intermolecular free length

    Indian Academy of Sciences (India)

    Ranjan Dey; Arvind K Singh; N K Soni; B S Bisht; J D Pandey

    2006-08-01

    Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an attempt to study the isotopic effects on the non-linearity parameter and the physicochemical properties of the liquids, which in turn has been used to study their effect on the intermolecular interactions produced thereof.

  2. Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)

    2015-05-01

    Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.

  3. Gravitational-wave tail effects to quartic non-linear order

    CERN Document Server

    Marchand, Tanguy; Faye, Guillaume

    2016-01-01

    Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. Also known are the "tails-of-tails", which are cubically non-linear effects appearing at the 3PN order in the waveform. Here we derive still higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.

  4. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-09-12

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. eHDECAY: an Implementation of the Higgs Effective Lagrangian into HDECAY

    CERN Document Server

    Contino, Roberto; Grojean, Christophe; Muhlleitner, Margarete; Spira, Michael

    2014-01-01

    We present eHDECAY, a modified version of the program HDECAY which includes the full list of leading bosonic operators of the Higgs effective Lagrangian with a linear or non-linear realization of the electroweak symmetry and implements two benchmark composite Higgs models.

  6. Anomalous effective lagrangians and vector resonance models

    NARCIS (Netherlands)

    Pallante, E.; Petronzio, R.

    1993-01-01

    Chiral lagrangians including vector resonances have been shown to saturate the finite part of some of the counterterms needed to regularize ordinary one-loop effective lagrangians of pseudoscalar interactions with external currents. The equivalence between different models has been discussed in the

  7. Non-linear effects on solute transfer between flowing water and a sediment bed.

    Science.gov (United States)

    Higashino, Makoto; Stefan, Heinz G

    2011-11-15

    A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.

  8. Non linear field correction effects on the dynamic aperture of the FCC-hh

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361058; Seryi, Andrei; Maclean, Ewen Hamish; Martin, Roman; Tomas Garcia, Rogelio

    2017-01-01

    The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.

  9. Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets three-dimensional effects

    CERN Document Server

    Keppens, R

    1999-01-01

    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important ...

  10. Non-linear magnetization effects within the Kosterlitz-Thouless theory

    Science.gov (United States)

    Benfatto, Lara; Castellani, Claudio; Giamarchi, Thierry

    2008-03-01

    Recent experiments in cuprate superconductors have attracted the attention on the role of vortex fluctuations. Measurements of the field-induced magnetization showed that the correlation length diverge exponentially, as predicted within the Kosterlitz-Thouless (KT) theory. However, it is somehow puzzling thepersistence of strong non-linear magnetization effects at low field. Here we address this issue by means of a new theoretical approach to the KT transition at finite magnetic field, based on the sine-Gordon model. This approach is particularly useful in two respects. First, it leads to a straightforward definition of the field-induced magnetization as a function of the external magnetic field H instead of the magnetic induction B, which is crucial to get a consistent description of the Meissner phase. Second, it allows us to identify the cross-over field Hcr from linear to non-linear magnetization both below and above the transition. Above TKT Hcr turns out to scale as the inverse correlation length, so that it decreases as the transition is approached. As a consequence, the fact that only the non-linear regime is accessible experimentally should be interpreted as a typical signature of the fast divergence of the correlation length within the KT theory. L.Benfatto, C.Castellani and T.Giamarchi, Phys. Rev. Lett. 99, 207002 (2007)

  11. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.

  12. Using high-frequency vibrations and non-linear inclusions to create metamaterials with adjustable effective properties

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel

    2009-01-01

    We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...

  13. Current distribution effects in patterned non-linear magnetoresistive tunnel junctions

    CERN Document Server

    Montaigne, F; Schuhl, A

    2000-01-01

    To be used in submicronic devices like magnetic memories, magnetic tunnel junctions require low resistances. Four-probe measurements of such resistances are often altered by non-uniformity of the current distribution in the junction. The measured resistance is decreased by localised preferential conduction and increased by voltage drop in the measure electrode. Competition between these two effects is investigated as a function of the geometry. The non-linear conduction of tunnel junctions amplifies dramatically these phenomena and can modify by more than 50% the measured resistance.

  14. High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel

    2010-01-01

    -like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....

  15. An effective description of dark matter and dark energy in the mildly non-linear regime

    CERN Document Server

    Lewandowski, Matthew; Senatore, Leonardo

    2016-01-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark en...

  16. The Non-Linear Effect of Corporate Taxes on Economic Growth

    Directory of Open Access Journals (Sweden)

    Huňady Ján

    2015-03-01

    Full Text Available The paper deals with the problem of taxation and its potential impact on economic growth and presents some new empirical insights into this topic. The main aim of the paper is to verify an assumed nonlinear impact of corporate tax rates on economic growth. Based on the theory of public finance and taxation, we hypothesize that at relatively low tax rates it is possible that the impact of taxation on economic growth become slightly positive. On the other hand when the tax rates are higher a negative impact of taxation on economic growth could be expected. Despite the fact that the most of the existing studies find a negative linear relationship between these variables, we can also find strong support for a non-linear relationship from several theoretical models as well as some empirical studies. Based on panel data fixed-effects econometric models, we, as well, find empirical evidence for a non-linear relationship between nominal and effective corporate tax rates and economic growth. Our data consists of annual observations for the period 1999 to 2011 for EU Member States. Based on the results, we also estimated the optimal level of the corporate tax rate in terms of maximizing economic growth in the average of the EU countries.

  17. GaN/AlGaN microcavities for enhancement of non linear optical effects

    CERN Document Server

    Tasco, V; Campa, A; Massaro, A; Stomeo, T; Epifani, G; Passaseo, A; Braccini, M; Larciprete, M C; Sibilia, C; Bovino, F A

    2011-01-01

    We present a study on the design, growth and optical characterization of a GaN/AlGaN microcavity for the enhancement of second order non linear effects. The proposed system exploits the high second order nonlinear optical response of GaN due to the non centrosymmetric crystalline structure of this material. It consists of a GaN cavity embedded between two GaN/AlGaN Distributed Bragg Reflectors designed for a reference mode coincident with a second harmonic field generated in the near UV region (~ 400 nm). Critical issues for this target are the crystalline quality of the material, together with sharp and abrupt interfaces among the multi-stacked layers. A detailed investigation on the growth evolution of GaN and AlGaN epilayers in such a configuration is reported, with the aim to obtain high quality factor in the desiderated spectral range. Non linear second harmonic generation experiments have been performed and the results were compared with bulk GaN sample, highlighting the effect of the microcavity on the...

  18. Strong Glacial Cooling In The Middle Tropical Troposphere Due To Non-linear Effects

    Science.gov (United States)

    Lorenz, S. J.; Lohmann, G.

    Numerical experiments with an atmospheric general circulation model for glacial and interglacial climates have been performed. Our model experiments reveal that slightly cooler tropical sea surface temperatures (SST) relative to the ones previously recon- structed by the CLIMAP project (1981) are sufficient to exhibit a strong glacial cool- ing reconstructed by tropical snow lines. The increased cooling in our experiments can be attributed to two non-linear effects: Firstly, there is an increased environmental lapse rate in the free atmosphere. Slightly cooler glacial SSTs provide for less abso- lute moisture content and the Clausius-Clapeyron equation of moisture is accountable for an increased lapse rate. In our LGM simulation we find an additional two degrees cooling in the tropical middle troposphere. Secondly, the surface air temperature near tropical glaciers is further cooled by a longer duration of snow cover. Our model result provides a consistent view of the last glacial maximum climate with much colder tem- peratures than today in the tropical mountains in concordance with moderate lowering of tropical SSTs. We propose that these non-linearities in the climate system are also important when detecting global warming from tropical snow lines.

  19. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  20. Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects

    Science.gov (United States)

    Green Robert O.; Moreno, Jose F.

    1996-01-01

    AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially

  1. Analysis of structural seismic behaviour: from non stationary to non linear effects

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Monaco, Lisa

    2014-05-01

    The change in fundamental frequency of a building is considered the simplest way to detect the onset of damage. Several authors in the past proposed that the difference in periods that can be observed among ambient noise, earthquake weak-motion measurements can be attributed to transient non-linearity due to reversible modification of the building characteristic (e.g. the degree of coupling between frame and infill in reinforced concrete buildings). The necessity of effective and efficient seismic protection of vast and aging structures and infrastructure has increased markedly the interest in the development of structural monitoring techniques. Damage to any structure alters its dynamic properties and for that dynamic monitoring techniques enable the identification of damage by comparing pre and post seismic excitation characteristic. The principle parameters usually monitored are: fundamental period, damping factors and modal shapes. Several damage identification and localization techniques are based on variations in these parameters (see, e.g Ponzo et al. 2010 and reference therein). Non Destructive Evaluation (NDE) methods can be rank on four different levels with the higher levels requiring increased quality and quantity of available information. The most common methods are therefore related to Level 1, due to their simplified and economic implementation. These methods are based mainly upon the variation of vibration frequencies and/or variations in Equivalent Viscous Damping associated with these vibration modes. It is important to underline however that although the presence of damage will lead to alterations in vibration modes the opposite does not necessarily hold true. Two types of frequency variation can be distinguished; long time period variations (due to variations in temperature, foundation soil moisture content etc.) and short period variations (for example due to a seismic event). For short period variations, changes in frequency can be attributed

  2. Higher order effects in non-linear evolution from a veto in rapidities

    Science.gov (United States)

    Chachamis, G.; Lublinsky, M.; Sabio Vera, A.

    2005-02-01

    Higher order corrections to the Balitsky-Kovchegov equation have been estimated by introducing a rapidity veto which forbids subsequent emissions to be very close in rapidity and is known to mimic higher order corrections to the linear BFKL equation. The rapidity veto constraint has been first introduced using analytical arguments obtaining a power growth with energy, Q(Y)˜e, of the saturation scale of λ˜0.45. Then a numerical analysis for the non-linear Balitsky-Kovchegov equation has been carried out for phenomenological rapidities: when a veto of about two units of rapidity is introduced for a fixed value of the coupling constant of α=0.2 the saturation scale λ decreases from ˜0.6 to ˜0.3, and when running coupling effects are taken into account it decreases from ˜0.4 to ˜0.3.

  3. Imprint of non-linear effects on HI intensity mapping on large scales

    CERN Document Server

    Umeh, Obinna

    2016-01-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We consider how non-linear effects associated with the HI bias and redshift space distortions contribute to the clustering of cosmic neutral Hydrogen on large scales. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result to show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortions leads to about 10\\% modulation of the HI power spectrum on large scales.

  4. Non-linear diffusion of cosmic rays escaping from supernova remnants I: the effect of neutrals

    CERN Document Server

    Nava, Lara; Marcowith, Alexandre; Morlino, Giovanni; Ptuskin, Vladimir S

    2016-01-01

    Supernova remnants are believed to be the main sources of galactic Cosmic Rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disk volume, where most supernovae explode, and are characterised by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that stream...

  5. Non-linear plasma effects on laser-induced terahertz emission from the atmosphere

    Science.gov (United States)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-02-01

    Power, spectral characteristics, and angle distribution of terahertz (THz) radiation from air irradiated by a single (ω) or coupled (ω, 2ω) femtosecond laser pulses are analyzed for higher intensities, for which non-linear plasma effects on the pulse propagation become essential, by means of multidimensional particle-in-cell simulations exploiting the self-consistent plasma kinetics. THz radiation is shown to be a result of beat waves generated at ionization front with fundamental and second harmonic waves. At lower intensities, the THz power growth is far faster than the linear; at pulse intensities over I > 1015 W/cm2, the power increases slower than the linear. Along with the forward emission, strong power in around 30o angles occurs at high intensities. Ionization of air results in poor focusing of laser pulses and, therefore, lower efficiency of THz emission.

  6. Effective Lagrangian in de Sitter Spacetime

    CERN Document Server

    Kitamoto, Hiroyuki

    2016-01-01

    Scale invariant fluctuations of metric are universal feature of quantum gravity in de Sitter spacetime. We construct an effective Lagrangian which summarizes their implications on local physics by integrating super-horizon metric fluctuations. It shows infrared quantum effects are local and render fundamental couplings time dependent. We impose Lorenz invariance on the effective Lagrangian as it is required by the principle of general covariance. We show that such a requirement leads to unique physical predictions by fixing the quantization ambiguities. We explain how the gauge parameter dependence of observables is canceled. In particular the relative evolution speed of the couplings are shown to be gauge invariant.

  7. Day of the week effect on the Zimbabwe Stock Exchange: A non-linear GARCH analysis

    Directory of Open Access Journals (Sweden)

    Batsirai Winmore Mazviona

    2015-11-01

    Full Text Available This study analysed the day of the week effect on the Zimbabwe Stock Exchange (ZSE by taking into account volatility of returns. The purpose of the study was to establish whether daily mean returns across a trading week differ from each other. We employ a non-linear approach in modelling the day of the week effects. In particular, we used the Generalised Autoregressive Conditional Heteroscedasticity (GARCH and the Exponential GARCH (EGARCH models. We used industrial and mining daily closing indices data from 19 February 2009 to 31 December 2013. The data was retrieved from the ZSE website. EViews 7 software was utilised for data analysis. In order to test the null hypothesis of equality of daily mean returns, a Wald test was carried out. The Wald F-statistic rejected the null hypothesis of equality of mean returns for the industrial index. We found the traditional negative Monday and positive Friday effect for the industrial index in GARCH (1,1 and EGARCH (1,1 models. The GARCH (1,1 detected a negative Friday effect and the EGARCH (1,1 detected negative Wednesday effect for the mining index. We found evidence of model dependency for the mining index results.

  8. Fingerprints of heavy scales in electroweak effective Lagrangians

    CERN Document Server

    Pich, Antonio; Santos, Joaquin; Sanz-Cillero, Juan Jose

    2016-01-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking $SU(2)_L\\otimes SU(2)_R\\to SU(2)_{L+R}$, which couples the known particle fields to heavier states with bosonic quantum numbers $J^P=0^\\pm$ and $1^\\pm$. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equiva...

  9. Non-linear hydrodynamics of axion dark matter: relative velocity effects and "quantum forces"

    CERN Document Server

    Marsh, David J E

    2015-01-01

    The non-linear hydrodynamic equations for axion/scalar field dark matter (DM) in the non-relativistic Madelung-Shcr\\"{o}dinger form are derived in a simple manner, including the effects of universal expansion and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are necessary for accurately modelling the effects of axion DM on the formation of the first cosmic structures, and suggest that the 21cm power spectrum could improve constraints on axion mass by up to four orders of magnitude with respect to the current best constraints. A further application of these results uses the "quantum force" analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics ...

  10. The Gaussian streaming model and Lagrangian effective field theory

    CERN Document Server

    Vlah, Zvonimir; White, Martin

    2016-01-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of int...

  11. The Gaussian streaming model and convolution Lagrangian effective field theory

    Science.gov (United States)

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  12. A non-linear induced polarization effect on transient electromagnetic soundings

    Science.gov (United States)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  13. Towards effective Lagrangians for adelic strings

    CERN Document Server

    Dragovich, Branko

    2009-01-01

    p-Adic strings are important objects of string theory, as well as of p-adic mathematical physics and nonlocal cosmology. By a concept of adelic string one can unify and simultaneously study various aspects of ordinary and p-adic strings. By this way, one can consider adelic strings as a very useful instrument in the further investigation of modern string theory. It is remarkable that for some scalar p-adic strings exist effective Lagrangians, which are based on real instead of p-adic numbers and describe not only four-point scattering amplitudes but also all higher ones at the tree level. In this work, starting from p-adic Lagrangians, we consider some approaches to construction of effective field Lagrangians for p-adic sector of adelic strings. It yields Lagrangians for nonlinear and nonlocal scalar field theory, where spacetime nonlocality is determined by an infinite number of derivatives contained in the operator-valued Riemann zeta function. Owing to the Riemann zeta function in the dynamics of these sca...

  14. Measuring safety treatment effects using full Bayes non-linear safety performance intervention functions.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2012-03-01

    Full Bayes linear intervention models have been recently proposed to conduct before-after safety studies. These models assume linear slopes to represent the time and treatment effects across the treated and comparison sites. However, the linear slope assumption can only furnish some restricted treatment profiles. To overcome this problem, a first-order autoregressive (AR1) safety performance function (SPF) that has a dynamic regression equation (known as the Koyck model) is proposed. The non-linear 'Koyck' model is compared to the linear intervention model in terms of inference, goodness-of-fit, and application. Both models were used in association with the Poisson-lognormal (PLN) hierarchy to evaluate the safety performance of a sample of intersections that have been improved in the Greater Vancouver area. The two models were extended by incorporating random parameters to account for the correlation between sites within comparison-treatment pairs. Another objective of the paper is to compute basic components related to the novelty effects, direct treatment effects, and indirect treatment effects and to provide simple expressions for the computation of these components in terms of the model parameters. The Koyck model is shown to furnish a wider variety of treatment profiles than those of the linear intervention model. The analysis revealed that incorporating random parameters among matched comparison-treatment pairs in the specification of SPFs can significantly improve the fit, while reducing the estimates of the extra-Poisson variation. Also, the proposed PLN Koyck model fitted the data much better than the Poisson-lognormal linear intervention (PLNI) model. The novelty effects were short lived, the indirect (through traffic volumes) treatment effects were approximately within ±10%, whereas the direct treatment effects indicated a non-significant 6.5% reduction during the after period under PLNI compared to a significant 12.3% reduction in predicted collision

  15. Experimental constraints on non-linearities induced by two-photon effects in elastic and inelastic Rosenbluth separations

    Energy Technology Data Exchange (ETDEWEB)

    Vladas Tvaskis; John Arrington; Michael Christy; Rolf Ent; Cynthia Keppel; Yongguang Liang; Grahame Vittorini

    2006-01-26

    The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q{sup 2} and W{sup 2} values measured.

  16. The Non-Linear Effect of Chinese Financial Developments on Energy Supply Structures

    Directory of Open Access Journals (Sweden)

    Jian Chai

    2016-10-01

    Full Text Available Currently, oversupply coal and coal-based power in China poses a great challenge to energy structure optimization and emissions reduction. The energy industry, however, is closely linked to the financial sector. In view of this, using a non-linear Panel Smooth Transition Regression (PSTR model, this paper examines the threshold effects of financial developments on energy supply structures for 17 energy supply provinces in China observed over 2000–2014. The main results are: (1 The ratio of coal supply (LCSR specification is seen to be a four-regime PSTR model with added value in the financial industry/GDP (LFIR as the threshold variable. The LFIR and LCSR show a positive correlation, and the elastic coefficients change between 0.02 and ~0.085; the impact of financial institutions’ loan balance/GDP (LLAN on LCSR takes on an inverse U-shaped curve: first positive, then negative, and again positive with the financial crisis in 2008 as the turning point; (2 The ratio of thermal power generation (LTPG specification is seen to be a two-regime PSTR model with investment in the coal industry/GDP (LCIR as the threshold variable. Results show that LFIR has a negative effect on LTPG, and the coefficients in the low regime tend to be 0.344%, then gradually decrease to 0.051% in the high regime. The influence of LLAN on the LTPG is positive before and negative after the financial crisis. The influence of the foreign direct investment GDP proportion (LFDI, the degree of financial openness on the LCSR and LTPG both remain negative. Therefore, in the process of formulating energy conservation policies and adjusting energy-intensive industrial structures, the government should fully consider the effect of financial developments.

  17. Estimation of saturation and coherence effects in the KGBJS equation - a non-linear CCFM equation

    CERN Document Server

    Deak, Michal

    2012-01-01

    We solve the modified non-linear extension of the CCFM equation - KGBJS equation - numerically for certain initial conditions and compare the resulting gluon Green functions with those obtained from solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.

  18. Non-linear uptake and hormesis effects of selenium in red-winged blackbirds (Agelaius phoeniceus).

    Science.gov (United States)

    Harding, Lee E

    2008-01-25

    Effects of selenium on reproductive success were assessed in red-winged blackbirds (Agelaius phoeniceus). Mean egg selenium (MES) ranged from 2.96 to 21.7 mg/kg dry weight with individual eggs up to 40 mg/kg. Uptake was non-linear: increments in MES declined as aqueous selenium increased; the asymptote was approximately 23 mg/kg. Eggs were heavier and more were laid in 2004 compared to 2005, a year of record rainfall and below-normal temperatures. Mortality of embryos that were incubated to full term was low (2.6% in 2004 and 3.2% in 2005), as was the prevalence of embryonic defects (2.7% in 2004 and 5.1% in 2005). Abnormalities in nestlings were also rare. Egg mortality was caused by predation, weather, and parental abandonment. Nestlings died from predation, starvation, and hypothermia associated with rain and cold, drowning, and bacterial infections. Nestling liver concentrations reached 81 mg/kg dry wt. selenium and were highest at the most highly selenium-exposed sites. Blood glutathione peroxidase (a selenium-dependent enzyme indicative of selenium exposure) was unrelated to liver selenium concentrations, egg selenium, or ambient selenium exposure. The selenium concentration in prey that parents fed to nestlings was higher at the selenium-exposed sites (up to 37 mg/kg dry wt. Se) compared to reference sites. Aqueous selenate:selenite ratios were related to redox differences and were much higher at the site with the highest MES, liver selenium, and prey item selenium concentrations. Hatchability showed U-shaped, or hormesis, relationships with MES: productivity increased with selenium concentrations at low exposures and decreased at high exposures. The effects threshold was approximately 22 mg/kg dry wt. MES.

  19. Non-linear diffusion of cosmic rays escaping from supernova remnants - I. The effect of neutrals

    Science.gov (United States)

    Nava, L.; Gabici, S.; Marcowith, A.; Morlino, G.; Ptuskin, V. S.

    2016-10-01

    Supernova remnants are believed to be the main sources of galactic cosmic rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disc volume, where most supernovae explode, and are characterized by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that streaming instability affects the propagation of CRs even in the presence of ion-neutral friction. The diffusion coefficient can be suppressed by more than a factor of ˜2 over a region of few tens of pc around the remnant. The suppression increases for smaller distances. The propagation of ≈10 GeV particles is affected for several tens of kiloyears after escape, while ≈1 TeV particles are affected for few kiloyears. This might have a great impact on the interpretation of gamma-ray observations of molecular clouds located in the vicinity of supernova remnants.

  20. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P;

    2010-01-01

    with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...

  1. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    NARCIS (Netherlands)

    Ayten, B.; Westerhof, E.; ASDEX Upgrade team,

    2014-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived

  2. Linear Text vs. Non-Linear Hypertext in Handheld Computers: Effects on Declarative and Structural Knowledge, and Learner Motivation

    Science.gov (United States)

    Son, Chanhee; Park, Sanghoon; Kim, Minjeong

    2011-01-01

    This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…

  3. Multiloop Information from the QED Effective Lagrangian

    CERN Document Server

    Dunne, G V; Dunne, Gerald V.; Schubert, Christian

    2006-01-01

    We obtain information on the QED photon amplitudes at high orders in perturbation theory starting from known results on the QED effective Lagrangian in a constant electric field. A closed-form all-order result for the weak field limit of the imaginary part of this Lagrangian has been given years ago by Affleck, Alvarez and Manton (for scalar QED) and by Lebedev and Ritus (for spinor QED). We discuss the evidence for its correctness, and conjecture an analogous formula for the case of a self-dual field. From this extension we then obtain, using Borel analysis, the leading asymptotic growth for large N of the maximally helicity violating component of the L - loop N - photon amplitude in the low energy limit. The result leads us to conjecture that the perturbation series converges for the on-shell renormalized QED N - photon amplitudes in the quenched approximation.

  4. Effects of non-linear rheology on the electrospinning process: a model study

    CERN Document Server

    Pontrelli, Giuseppe; Coluzza, Ivan; Pisignano, Dario; Succi, Sauro

    2014-01-01

    We develop an analytical bead-spring model to investigate the role of non-linear rheology on the dynamics of electrified jets in the early stage of the electrospinning process. Qualitative arguments, parameter studies as well as numerical simulations, show that the elongation of the charged jet filament is significantly reduced in the presence of a non-zero yield stress. This may have beneficial implications for the optimal design of future electrospinning experiments.

  5. The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion

    OpenAIRE

    Leyva, J. Francisco; Malaga, Carlos; Plaza, Ramon G.

    2013-01-01

    This paper introduces a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (J. of Theor. Biol. 188(2) 1997) and it includes a suitable nutrient chemotactic term compatible with such type of diffusion. High resolution numerical simulations using Graphic Processing Units (GPUs) of the new model are presented, showing that the chemotactic term enhance...

  6. Seismic response of structures: from non-stationary to non-linear effects

    Science.gov (United States)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias

    2013-04-01

    cases it is possible to confuse apparent frequencies variations with real ones (related to nonlinear phenomena) which could lead to an incorrect assessment of the structural safety. In this paper a new theoretical approach is proposed to discriminate non-stationary from non-linear effects, it was tested on both numerical and experimental accelerometric recordings respectively retrieved from one degree of freedom oscillator and one timber framed structure monitored during the 2011 Canterbury Seismic Sequence.

  7. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    Science.gov (United States)

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  8. BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2007-01-01

    attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...

  9. Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors

    Science.gov (United States)

    Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.

    2016-11-01

    In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.

  10. Benefits of Non-Linear Mixed Effect Modeling and Optimal Design : Pre-Clinical and Clinical Study Applications

    OpenAIRE

    Ernest II, Charles Steven

    2013-01-01

    Despite the growing promise of pharmaceutical research, inferior experimentation or interpretation of data can inhibit breakthrough molecules from finding their way out of research institutions and reaching patients. This thesis provides evidence that better characterization of pre-clinical and clinical data can be accomplished using non-linear mixed effect modeling (NLMEM) and more effective experiments can be conducted using optimal design (OD).  To demonstrate applicability of NLMEM and OD...

  11. A kinetic formulation of piezoresistance in N-type silicon: Application to non-linear effects

    Science.gov (United States)

    Charbonnieras, A. R.; Tellier, C. R.

    1999-07-01

    This paper is devoted to the theoretical study of the influence of the temperature and of the doping on the piezoresistance of N-type silicon. In the first step the fractional change in the resistivity caused by stresses is calculated in the framework of a multivalley model using a kinetic transport formulation based on the Boltzmann transport equation. In the second step shifts in the minima of the conduction band and the resulting shift of the Fermi level are expressed in terms of deformation potentials and of stresses. General expressions for the fundamental linear, π_{11} and π_{12}, and non-linear, π_{111}, π_{112}, π_{122} and π_{123}, piezoresistance coefficients are then derived. Plots of the non-linear piezoresistance coefficients against the reduced shift of the Fermi level or against temperature allow us to characterize the influence of doping and temperature. Finally some attempts are made to estimate the non-linearity for heavily doped semiconductor gauges. Cette publication est consacrée à l'étude théorique de l'influence de la température et du dopage sur la piezorésistivité du silicium type N. Dans une première étape nous adoptons le modèle de vallées et nous utilisons une formulation cinétique du transport électronique faisant appel à l'équation de transport de Boltzmann pour calculer la variation de la résistivité du semiconducteur sous contrainte. Dans la deuxième étape nous exprimons les déplacements des minima de la bande de conduction et du niveau de Fermi en termes de potentiels de déformation et de contraintes. Nous proposons ensuite des expressions générales pour les coefficients piezorésistifs fondamentaux linéaires, π_{11} et π_{12}, et non-linéaires, π_{111}, π_{112}, π_{122} et π_{123}. Des représentations graphiques des variations des coefficients non-linéaires permettent de caractériser l'influence du dopage et de la température. Enfin nous fournissons une première pré-estimation des effets

  12. The effects of nutrient chemotaxis on bacterial aggregation patterns with non-linear degenerate cross diffusion

    Science.gov (United States)

    Leyva, J. Francisco; Málaga, Carlos; Plaza, Ramón G.

    2013-11-01

    This paper studies a reaction-diffusion-chemotaxis model for bacterial aggregation patterns on the surface of thin agar plates. It is based on the non-linear degenerate cross diffusion model proposed by Kawasaki et al. (1997) [5] and it includes a suitable nutrient chemotactic term compatible with such type of diffusion, as suggested by Ben-Jacob et al. (2000) [20]. An asymptotic estimation predicts the growth velocity of the colony envelope as a function of both the nutrient concentration and the chemotactic sensitivity. It is shown that the growth velocity is an increasing function of the chemotactic sensitivity. High resolution numerical simulations using Graphic Processing Units (GPUs), which include noise in the diffusion coefficient for the bacteria, are presented. The numerical results verify that the chemotactic term enhances the velocity of propagation of the colony envelope. In addition, the chemotaxis seems to stabilize the formation of branches in the soft-agar, low-nutrient regime.

  13. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    CERN Document Server

    Ayten, B

    2013-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al, Phys. Rev. Lett. 62 (1989) 426. We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in case of...

  14. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model

    Science.gov (United States)

    Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko

    2016-08-01

    We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.

  15. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2012-09-01

    Full Text Available Abstract Background Although many studies have documented health effects of ambient temperature, little evidence is available in subtropical or tropical regions, and effect modifiers remain uncertain. We examined the effects of daily mean temperature on mortality and effect modification in the subtropical city of Guangzhou, China. Methods A Poisson regression model combined with distributed lag non-linear model was applied to assess the non-linear and lag patterns of the association between daily mean temperature and mortality from 2003 to 2007 in Guangzhou. The case-only approach was used to determine whether the effect of temperature was modified by individual characteristics, including sex, age, educational attainment and occupation class. Results Hot effect was immediate and limited to the first 5 days, with an overall increase of 15.46% (95% confidence interval: 10.05% to 20.87% in mortality risk comparing the 99th and the 90th percentile temperature. Cold effect persisted for approximately 12 days, with a 20.39% (11.78% to 29.01% increase in risk comparing the first and the 10th percentile temperature. The effects were especially remarkable for cardiovascular and respiratory mortality. The effects of both hot and cold temperatures were greater among the elderly. Females suffered more from hot-associated mortality than males. We also found significant effect modification by educational attainment and occupation class. Conclusions There are significant mortality effects of hot and cold temperatures in Guangzhou. The elderly, females and subjects with low socioeconomic status have been identified as especially vulnerable to the effect of ambient temperatures.

  16. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou.

    Science.gov (United States)

    Yang, Jun; Ou, Chun-Quan; Ding, Yan; Zhou, Ying-Xue; Chen, Ping-Yan

    2012-09-14

    Although many studies have documented health effects of ambient temperature, little evidence is available in subtropical or tropical regions, and effect modifiers remain uncertain. We examined the effects of daily mean temperature on mortality and effect modification in the subtropical city of Guangzhou, China. A Poisson regression model combined with distributed lag non-linear model was applied to assess the non-linear and lag patterns of the association between daily mean temperature and mortality from 2003 to 2007 in Guangzhou. The case-only approach was used to determine whether the effect of temperature was modified by individual characteristics, including sex, age, educational attainment and occupation class. Hot effect was immediate and limited to the first 5 days, with an overall increase of 15.46% (95% confidence interval: 10.05% to 20.87%) in mortality risk comparing the 99th and the 90th percentile temperature. Cold effect persisted for approximately 12 days, with a 20.39% (11.78% to 29.01%) increase in risk comparing the first and the 10th percentile temperature. The effects were especially remarkable for cardiovascular and respiratory mortality. The effects of both hot and cold temperatures were greater among the elderly. Females suffered more from hot-associated mortality than males. We also found significant effect modification by educational attainment and occupation class. There are significant mortality effects of hot and cold temperatures in Guangzhou. The elderly, females and subjects with low socioeconomic status have been identified as especially vulnerable to the effect of ambient temperatures.

  17. How reliable is the mean-field nuclear matter description for supporting chiral effective lagrangians?

    CERN Document Server

    Delfino, A; Frederico, T

    1996-01-01

    The link between non-linear chiral effective Lagrangians and the Walecka model description of bulk nuclear matter [1] is questioned. This fact is by itself due to the Mean Field Approximation (MFA) which in nuclear mater makes the picture of a nucleon-nucleon interaction based on scalar(vector) meson exchange, equivalent to the description of a nuclear matter based on attractive and repulsive contact interactions. We present a linear chiral model where this link between the Walecka model and an underlying to chiral symmetry realization still holds, due to MFA.

  18. Non-linear effects in the post-Newtonian approximation of a spherically symmetric field

    Energy Technology Data Exchange (ETDEWEB)

    Gambi, J.M.; Zamorano, P. [Madrid Univ. Carlos 3, Madrid (Spain). Dept. de Matematicas; Romero, P.; Garcia del Pino, M.L. [Madrid Univ. Complutense, Madrid (Spain). Dept. de Astronomia y Geodesia

    2000-02-01

    Conditions for the compatibility of the exterior metric of a spherically symmetric object with the field equations for the empty space and equations of motion and of trajectories for test particles, written in polar Gaussian and Fermi coordinates, are obtained to show that, although their explicit exact solutions cannot be derived in these coordinates, the post-Newtonian limits of these solutions can, nevertheless, be obtained. With these limits, it is next shown that the cited post-Newtonian equations do not fit into the standard post-Newtonian approximation either. It is then shown that these coordinates can, nevertheless, be included in a more general formalism together with the usual post-Newtonian (standard, harmonic, Painleve and isotropic) coordinates so that their respective equations of motion may be compared to each other and, finally, it is demonstrated that the only non-linear term taken in the Christoffel symbols with these usual coordinates in the standard post-Newtonian equations of motion to explain some known perturbations is not needed when polar Gaussian or Fermi coordinates are used to explain also those perturbations. In fact, it is demonstrated that these are the only coordinates for which that term becomes zero.

  19. Simulating the Effect of Non-Linear Mode-Coupling in Cosmological Parameter Estimation

    CERN Document Server

    Kiessling, A; Heavens, A F

    2011-01-01

    Fisher Information Matrix methods are commonly used in cosmology to estimate the accuracy that cosmological parameters can be measured with a given experiment, and to optimise the design of experiments. However, the standard approach usually assumes both data and parameter estimates are Gaussian-distributed. Further, for survey forecasts and optimisation it is usually assumed the power-spectra covariance matrix is diagonal in Fourier-space. But in the low-redshift Universe, non-linear mode-coupling will tend to correlate small-scale power, moving information from lower to higher-order moments of the field. This movement of information will change the predictions of cosmological parameter accuracy. In this paper we quantify this loss of information by comparing naive Gaussian Fisher matrix forecasts with a Maximum Likelihood parameter estimation analysis of a suite of mock weak lensing catalogues derived from N-body simulations, based on the SUNGLASS pipeline, for a 2-D and tomographic shear analysis of a Eucl...

  20. Role of light scalar resonances in strongly interacting chiral effective Lagrangians

    Science.gov (United States)

    Abdel-Rehim, Abdou M.

    We studied the role of a putative nonet of light scalar mesons in the isospin violating decay eta → 3pi. The framework is a non-linear chiral effective Lagrangian. The contributions from the scalars is found to enhance the result for the decay width by 15% at leading order. Due to cancellations among different scalar contributions, their effect is less than expected. A preliminary discussion of the related process eta' → 3pi is given. We apply the K-matrix unitarization method to the case of strongly coupled Higgs sector of the electro-weak theory. The complex pole position of the scattering amplitude of the Goldstone bosons are evaluated for the whole range of bare Higgs masses. We compare the unitarized amplitude obtained from the K-matrix to the Breit-Wigner shape for narrow resonances. We apply the same technique to study the effect of final state interactions in the gluon fusion process. Finally, the K-matrix unitarization is used to study the properties of the scalar resonances sigma(550) and f 0(980) in the framework of non-linear chiral Lagrangian. The physical mass and width of these resonances are determined from the pole position of the I = 0, J = 0 partial wave of the pipi scattering amplitude. It is found that, to a great extent, the results are very similar to those obtained in the framework of linear chiral Lagrangian unitarized by the K-matrix method or the nonlinear chiral Lagrangian approximately unitarized by a modified Breit-Wigner resonance shape. A discussion of the effect of sigma(550) and f0(980) in the I = 1, J = 1 and I = 2, J = 0 partial waves, where the rho(770) vector resonance dominates, is given.

  1. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    Directory of Open Access Journals (Sweden)

    Hongbo Liu

    2015-11-01

    Full Text Available The electrocaloric (EC effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  2. Non-linear Realizations of Conformal Symmetry and Effective Field Theory for the Pseudo-Conformal Universe

    CERN Document Server

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of ...

  3. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  4. A displacement-based approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    Science.gov (United States)

    Giaccu, Gian Felice; Caracoglia, Luca

    2017-04-01

    Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called ;cable-cross-tie systems; forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the ;Equivalent Linearization Method;. A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, ;mode by mode;. It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may

  5. First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

    Science.gov (United States)

    Bagarello, F.; Haven, E.

    2016-02-01

    We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).

  6. First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

    CERN Document Server

    Bagarello, Fabio

    2016-01-01

    We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the \\emph{interest} of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call \\emph{the decision functions} is deduced by introducing a suitable hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their \\emph{environments}, {which are }generated by their electors and by people who still have no clear {idea }for which party to vote (or even if to vote). The hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).

  7. One-loop effective lagrangians after matching

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)

    2016-05-15

    We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)

  8. Effect of Sb addition on linear and non-linear optical properties of amorphous Ge-Se-Sn thin films

    Science.gov (United States)

    Sharma, Navjeet; Sharma, Surbhi; Sarin, Amit; Kumar, Rajesh

    2016-01-01

    Optical characterization of amorphous thin films of Ge20Sn10Se70-xSbx (x = 0, 3, 6, 9, 12, 15) has been carried out. Thin films were deposited onto pre cleaned glass substrates using thermal evaporation technique. Transmission spectra of the films were recorded, for normal incidence, in range 400-2400 nm. Refractive index of the films was calculated using the envelope method by Swanepoel. Dispersion analysis has been carried out using single effective oscillator model. Other optical constants such as absorption coefficients, extinction coefficients have also been evaluated. Tauc plots were used to evaluate the optical band gap. The refractive index has been found to be increasing while the band gap decreases with increasing Sb concentration. The observed optical behavior of the films has been explained using chemical bond approach. Cohesive energy is found to be decreasing in the present work, which reflects that bond strength decreases with the increasing content of Sb. Non-linear optical parameters (i.e. n2 and χ(3)) have been derived from linear optical parameters (i.e. n, k, Eg). Observed changes in linear and non-linear parameters have been reported in this study.

  9. Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation.

    Science.gov (United States)

    Xu, Bing; Rollo, Ben; Stamp, Lincon A; Zhang, Dongcheng; Fang, Xiya; Newgreen, Donald F; Chen, Qizhi

    2013-09-01

    An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.

  10. The linear-non-linear frontier for the Goldstone Higgs

    CERN Document Server

    Gavela, M B; Machado, P A N; Saa, S

    2016-01-01

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...

  11. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  12. Non-linear effects in hopping conduction of single-crystal La2CuO4 + δ

    Science.gov (United States)

    Belevtsev, B. I.; Dalakova, N. V.; Panfilov, A. S.

    1998-11-01

    The unusual non-linear effects in hopping conduction of single-crystal La2CuO4+δ with excess oxygen has been observed. The resistance is measured as a function of the applied voltage U (voltage controlled regime) in the temperature range 5 K⩽T⩽300 K and voltage range 10-3-25 V. At relatively high voltage (approximately at U>0.1 V) the conduction of sample investigated corresponds well to variable-range hopping (VRH). That is, in the range 0.1 Vconductivity does not depend on U (Ohmic behavior) and the temperature dependence of resistance R(T) follows closely Mott's law of VRH [R∝exp(T0/T)1/4]. In the range of highest applied voltage the conduction has been non-Ohmic: the resistance decreases with increasing U. This non-linear effect is quite expected in the frame of VRH mechanism, since the applied electric field increases the hopping probability. A completely different and unusual conduction behavior is found, however, in the low voltage range (approximately below 0.1 V), where the influence of electric field and (or) electron heating effect on VRH ought to be neglected. Here we have observed strong increase in resistance at increasing U at T⩽20 K, whereas at T>20 K the resistance decreases with increasing U. The magnetoresistance of the sample below 20 K has been positive at low voltage and negative at high voltage. The observed unusual non-Ohmic behavior at low voltage range is attributable to inhomogeneity of the sample, namely, to the enrichment of sample surface with oxygen during the course of the heat treatment of the sample in helium and air atmosphere before measurements. At low enough temperature (below ≈20 K) the surface layer with increased oxygen concentration is presumed to consist of disconnected superconducting regions in a poorly conducting (dielectric) matrix. This allows us to explain the observed unusual non-linear effects in the conduction of sample studied. The results obtained demonstrate that in some cases the measured transport

  13. Affective Organizational Commitment and Citizenship Behavior: Linear and Non-linear Moderating Effects of Organizational Tenure

    Science.gov (United States)

    Ng, Thomas W. H.; Feldman, Daniel C.

    2011-01-01

    Utilizing a meta-analytical approach for testing moderating effects, the current study investigated organizational tenure as a moderator in the relation between affective organizational commitment and organizational citizenship behavior (OCB). We observed that, across 40 studies (N = 11,416 respondents), the effect size for the relation between…

  14. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    NARCIS (Netherlands)

    Holmgren, M.; Gomez-Aparicio, L.; Quero, J.L.; Valladares, F.

    2012-01-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical model

  15. Affective Organizational Commitment and Citizenship Behavior: Linear and Non-linear Moderating Effects of Organizational Tenure

    Science.gov (United States)

    Ng, Thomas W. H.; Feldman, Daniel C.

    2011-01-01

    Utilizing a meta-analytical approach for testing moderating effects, the current study investigated organizational tenure as a moderator in the relation between affective organizational commitment and organizational citizenship behavior (OCB). We observed that, across 40 studies (N = 11,416 respondents), the effect size for the relation between…

  16. Effect of higher order non-linearity in frequency variation of self-phase modulation in optical fiber communication

    Institute of Scientific and Technical Information of China (English)

    Abhijit Sinha; Sourangshu Mukhopadhyay

    2004-01-01

    In optical soliton propagation through a single mode optical fiber,it is established that self-phase mod ulation is maintained by the third order non-linearity of the silica-based glass material of the fiber.In this paper we show that the fifth order non-linearity has also some contribution in frequency variation of self-phase modulation.

  17. Imprint of non-linear effects on HI intensity mapping on large scales

    Science.gov (United States)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  18. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P

    2010-01-01

    Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...... in 1 s (FEV(1)); however, this assumption has not been evaluated empirically in cohorts with a wide spectrum of COPD severity. Methods The relationship between FEV(1) and pack-years of smoking exposure was examined in four large cohorts assembled for the purpose of identifying genetic associations...... with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...

  19. Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

    Directory of Open Access Journals (Sweden)

    H. M. Abdelhafez

    2016-03-01

    Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.

  20. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    Science.gov (United States)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  1. Linear and non-linear effects of gradient artifact filtering methods in simultaneous EEG-FMRI - biomed 2010.

    Science.gov (United States)

    Cusenza, Monica; Accardo, Agostino; Monti, Fabrizio; Bramanti, Placido

    2010-01-01

    Simultaneous EEG-fMRI is a powerful emerging tool in functional neuroimaging that exploits the relationship between neuronal electrophysiological activity and its hemodynamic response. It has found application in the study of both spontaneous and evoked brain activity. Combining the complementary advantages of the two techniques it provides a measurement with high temporal and spatial resolution, allowing a reliable localization of event generators. However, EEG data recorded inside MRI scanner are heavily corrupted by different types of artifacts due to the interactions between the patient, EEG electrodes wires and the magnetic fields inside the scanner. In particular, gradient switching and RF pulses, necessary to acquire fMRI data, generate large artifacts that can completely obscure EEG signals. Many methods have been proposed to eliminate or at least reduce gradient artifact. In this paper both a qualitative and a quantitative evaluation of two different algorithms used for gradient artifact removal are presented. Linear and non-linear characteristics of EEG, such as power spectra, fractal dimension and beta scaling exponent, are evaluated for EEGs recorded outside and inside the scanner, in MR static and dynamic conditions. The study highlights how residual artifacts after correction and artifacts induced by correction itself could still considerably affect EEG signals. The results suggest that the quality of both these gradient artifact filtering methods is not yet sufficient to preserve EEG characteristics and thus it must be further improved. The aim of this study is to make neurophysiologists aware of the filtering effects that can compromise linear and non-linear analysis of EEG recorded during functional MRI.

  2. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    Science.gov (United States)

    Kandel, Tanka P.; Lærke, Poul Erik; Elsgaard, Lars

    2016-09-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment fluxes by linear regression techniques. Thus, usually the cumulative flux curve becomes downward concave due to the decreased gas diffusion rate. Non-linear models based on biophysical theory usually fit to such curvatures and may reduce the underestimation of fluxes. In this study, we examined the effect of increasing chamber enclosure time on SR flux rates calculated using a linear, an exponential and a revised Hutchinson and Mosier model (HMR). Soil respiration rates were measured with a closed chamber in combination with an infrared gas analyzer. During SR flux measurements the chamber was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15-300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation was only about 10% after 45 min for regular flux curves. For irregular flux curves with a rapid increase in CO2 concentration immediately after chamber deployment it was shown that short enclosure times were prone to overestimation of pre-deployment fluxes, but this was mitigated by longer enclosure times (>10-15 min).

  3. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, M.; Morteza, Izadifard [Faculty of Physics, Shahrood University of technology, Shahrood (Iran, Islamic Republic of); Arabshahi, H., E-mail: arabshahi@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Physics Department, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Reza, Sarkardehi Mohammad [Physics Department, Al-Zahra University, Vanak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al{sub x}Ga{sub (1-x)}As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: Black-Right-Pointing-Pointer OptiOptical Non-Linear. Black-Right-Pointing-Pointer Total Effective Length. Black-Right-Pointing-Pointer Multiple Quantum Wells System - genetic algorithm Black-Right-Pointing-Pointer Schroedinger equation solution. Black-Right-Pointing-Pointer Nanostructure.

  4. A model of estrogen-related gene expression reveals non-linear effects in transcriptional response to tamoxifen

    Directory of Open Access Journals (Sweden)

    Lebedeva Galina

    2012-11-01

    Full Text Available Abstract Background Estrogen receptors alpha (ER are implicated in many types of female cancers, and are the common target for anti-cancer therapy using selective estrogen receptor modulators (SERMs, such as tamoxifen. However, cell-type specific and patient-to-patient variability in response to SERMs (from suppression to stimulation of cancer growth, as well as frequent emergence of drug resistance, represents a serious problem. The molecular processes behind mixed effects of SERMs remain poorly understood, and this strongly motivates application of systems approaches. In this work, we aimed to establish a mathematical model of ER-dependent gene expression to explore potential mechanisms underlying the variable actions of SERMs. Results We developed an equilibrium model of ER binding with 17β-estradiol, tamoxifen and DNA, and linked it to a simple ODE model of ER-induced gene expression. The model was parameterised on the broad range of literature available experimental data, and provided a plausible mechanistic explanation for the dual agonism/antagonism action of tamoxifen in the reference cell line used for model calibration. To extend our conclusions to other cell types we ran global sensitivity analysis and explored model behaviour in the wide range of biologically plausible parameter values, including those found in cancer cells. Our findings suggest that transcriptional response to tamoxifen is controlled in a complex non-linear way by several key parameters, including ER expression level, hormone concentration, amount of ER-responsive genes and the capacity of ER-tamoxifen complexes to stimulate transcription (e.g. by recruiting co-regulators of transcription. The model revealed non-monotonic dependence of ER-induced transcriptional response on the expression level of ER, that was confirmed experimentally in four variants of the MCF-7 breast cancer cell line. Conclusions We established a minimal mechanistic model of ER-dependent gene

  5. Comparative population pharmacokinetics of fentanyl using non-linear mixed effect modeling: burns vs. non-burns.

    Science.gov (United States)

    Kaneda, Kotaro; Han, Tae-Hyung

    2009-09-01

    Fentanyl is a commonly used analgesic and sedative for the burned in the operating theater as well as the burn care units. The aim of this study was to characterize fentanyl population pharmacokinetics in burns and to identify clinically significant covariates. Twenty adults, aged 37+/-3 years, with 49+/-4% (mean+/-S.E.) total body surface area burn, were enrolled at 17+/-3 days after the injury. Twenty non-burn adults served as controls. After an intravenous bolus of 200 mcg fentanyl, the plasma concentrations were sequentially determined up to 4.5 h. Concentration-time profiles were subjected to non-linear mixed effect modeling. Cardiac indices were estimated with esophageal Doppler monitor. Burned patients have higher cardiac index than the non-burned. Three-compartment model was the best fit. The volumes of distribution were considerably expanded in all three compartments (27.9 L vs. 63.4 L, 64.7 L vs. 92.9 L, 153 L vs. 301 L, respectively) compared to the non-burned. BURN was the single most important covariate significantly improving the model. The primary effect of burn trauma on fentanyl pharmacokinetics is substantially expanded volumes of distribution, i.e., dilutional. Difference in simulation, however, was insufficient to explain the augmented resistance to fentanyl, implying the importance of titrating analgesics to the clinical effect.

  6. Non-linear interactions between {CO}_2 radiative and physiological effects on Amazonian evapotranspiration in an Earth system model

    Science.gov (United States)

    Halladay, Kate; Good, Peter

    2016-11-01

    We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased {CO}_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric {CO}_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s ), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to {CO}_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.

  7. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI.

    Science.gov (United States)

    Alonso, E; Zenobi, R

    2016-07-20

    The mechanism of negative ion formation in matrix-assisted laser desorption/ionization (MALDI) is less well understood than that of positive ions: electron capture, disproportionation, and liberation of negatively charged sample molecules or clusters have been proposed to produce the initial anions in MALDI. Here, we propose that the non-linear photoelectric effect can explain the emission of electrons from the metallic target material. Moreover, electrons with sufficient kinetic energy (0-10 eV) could be responsible for the formation of initial negative ions. Gas-phase electron capture by neutral 2,5-dihydroxy benzoic acid (DHB) to yield M(-) is investigated on the basis of a coupled physical and chemical dynamics (CPCD) theory from the literature. A three-layer energy mass balance model is utilized to calculate the surface temperature of the matrix, which is used to determine the translational temperature, the number of desorbed matrix molecules per unit area, and the ion velocity. Calculations of dissociative attachment and autoionization rates of DHB are presented. It was found that both processes contribute significantly to the formation of [M - H](-) and [M - H2](-), although the predicted yield in the fluence range of 5-100 mJ cm(-2) is low, certainly less than that for positive ions M(+). This work represents the first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI.

  8. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites.

    Science.gov (United States)

    Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain

    2016-10-01

    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system.

  9. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.

    Science.gov (United States)

    Morales-Orcajo, Enrique; Souza, Thales R; Bayod, Javier; Barbosa de Las Casas, Estevam

    2017-08-11

    A three-dimensional foot finite element model with actual geometry and non-linear behavior of tendons is presented. The model is intended for analysis of the lower limb tendon forces effect in the inner foot structure. The geometry of the model was obtained from computational tomographies and magnetic resonance images. Tendon tissue was characterized with the first order Ogden material model based on experimental data from human foot tendons. Kinetic data was employed to set the load conditions. After model validation, a force sensitivity study of the five major foot extrinsic tendons was conducted to evaluate the function of each tendon. A synergic work of the inversion-eversion tendons was predicted. Pulling from a peroneus or tibialis tendon stressed the antagonist tendons while reducing the stress in the agonist. Similar paired action was predicted for the Achilles tendon with the tibialis anterior. This behavior explains the complex control motion performed by the foot. Furthermore, the stress state at the plantar fascia, the talocrural joint cartilage, the plantar soft tissue and the tendons were estimated in the early and late midstance phase of walking. These estimations will help in the understanding of the functional role of the extrinsic muscle-tendon-units in foot pronation-supination. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Estimation of hull girder vertical bending moments including non-linear and flexibility effects using closed form expressions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Jensen, Jørgen Juncher

    2009-01-01

    -induced loads are evaluated for specific operational profiles. Non-linearity in the wave bending moment is modeled using results derived from a second-order strip theory and water entry solutions for wedge type sections. Hence, bow flare slamming is accounted for through a momentum type of approach....... The stochastic properties of this non-linear response are calculated through a monotonic Hermite transformation. In addition, the impulse loading due to e.g. bottom slamming or a rapid change in bow flare is included using a modal expansion in the two lowest vertical vibration modes. These whipping vibrations...

  11. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects

    Science.gov (United States)

    Mustafa, M.; Khan, Junaid Ahmad

    2015-07-01

    Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

  12. The Lagrangian-space Effective Field Theory of Large Scale Structures

    CERN Document Server

    Porto, Rafael A.; Zaldarriaga, Matias

    2014-01-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in an expansion in powers of the ratio of the wavenumber of interest $k$ over the non-linear scale $k_{\\rm NL}$. The multipoles encode the effects of the short distance modes on the long-wavelength Universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law Universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  13. The effect of non-linear capacitances in the localization properties of aperiodic dual electric transmission lines

    Science.gov (United States)

    Lazo, Edmundo; Garrido, Alejandro; Neira, Félix

    2016-11-01

    This study investigates the localization properties of dual electric transmission lines with non-linear capacitances. The VC,n voltage across each capacitor is selected as a non-linear function of the electric charge qn, i.e., VC,n = qn(1/Cn -ɛn|qn|2) where Cn is the linear part of the capacitance and ɛn the amplitude of the non-linear term. We follow a binary distribution of values of ɛn, according to the Thue-Morse m-tupling sequence. The localization behavior of this non-linear case indicates that the case m = 2 does not belong to the m ≥ 3, family because when m changes from m = 2 to m = 3, the number of extended states diminishes dramatically. This proves the topological difference of the m = 2 and m = 3 families. However, by increasing m values, localization behavior of the m-tupling family resembles that of the m = 2, case because the system begins to regain its extended states. The exact same result was obtained recently in the study of linear direct transmission lines with m-tupling distribution of inductances. Consequently, we state that the localization behavior of the m-tupling family as a function of the m value is independent of both the linear and the non-linear system under study, but independent of the kind of transmission line (dual or direct). This is curious behavior of the m-tupling family and thus deserves more scholarly attention.

  14. Effect of -OH functionalization, C2 methylation, and high radiation fields on the non-linear optical response of imidazolium ionic liquids

    Science.gov (United States)

    Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.

    2017-04-01

    Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.

  15. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits.

    Science.gov (United States)

    Silverwood, Richard J; Holmes, Michael V; Dale, Caroline E; Lawlor, Debbie A; Whittaker, John C; Smith, George Davey; Leon, David A; Palmer, Tom; Keating, Brendan J; Zuccolo, Luisa; Casas, Juan P; Dudbridge, Frank

    2014-12-01

    Mendelian randomization studies have so far restricted attention to linear associations relating the genetic instrument to the exposure, and the exposure to the outcome. In some cases, however, observational data suggest a non-linear association between exposure and outcome. For example, alcohol consumption is consistently reported as having a U-shaped association with cardiovascular events. In principle, Mendelian randomization could address concerns that the apparent protective effect of light-to-moderate drinking might reflect 'sick-quitters' and confounding. The Alcohol-ADH1B Consortium was established to study the causal effects of alcohol consumption on cardiovascular events and biomarkers, using the single nucleotide polymorphism rs1229984 in ADH1B as a genetic instrument. To assess non-linear causal effects in this study, we propose a novel method based on estimating local average treatment effects for discrete levels of the exposure range, then testing for a linear trend in those effects. Our method requires an assumption that the instrument has the same effect on exposure in all individuals. We conduct simulations examining the robustness of the method to violations of this assumption, and apply the method to the Alcohol-ADH1B Consortium data. Our method gave a conservative test for non-linearity under realistic violations of the key assumption. We found evidence for a non-linear causal effect of alcohol intake on several cardiovascular traits. We believe our method is useful for inferring departure from linearity when only a binary instrument is available. We estimated non-linear causal effects of alcohol intake which could not have been estimated through standard instrumental variable approaches. © The Author 2014; Published by Oxford University Press on behalf of the International Epidemiological Association.

  16. Low energy effective Lagrangians in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ricardo [Universidade Federal de Itajuba, MG (Brazil). Inst. de Ciencias Exatas

    2008-07-01

    The low energy effective Lagrangian describes the interactions of the massless modes of String Theory. Present work is being done to obtain all alpha'{sup 3} terms (bosonic and fermionic) by means of the known 5-point amplitudes and SUSY.

  17. Effective weak Lagrangians in the Standard Model and B decays

    CERN Document Server

    Grozin, Andrey

    2013-01-01

    Weak processes (e.g., B decays) with characteristic energies <effective theory which does not contain W, Z and other heavy particles (Higgs, t). Its Lagrangian contains four-fermion interaction operators. Essentially it is the theory proposed by Fermi and improved by Feynman, Gell-Mann, Marshak, Sudarshan.

  18. Baryon magnetic moments in the effective quark Lagrangian approach

    NARCIS (Netherlands)

    Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.

    2002-01-01

    An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc

  19. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    Science.gov (United States)

    Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.

    2014-11-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.

  20. Characterization and correction of non-linearity effect on oxygen spectra of TANSO-FTS onboard GOSAT

    Science.gov (United States)

    Suto, H.; Frankenberg, C.; Crisp, D.; kuze, A.

    2011-12-01

    The Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) collects high spectral resolution spectra of reflected sunlight in the molecular oxygen (O2) A-band near 760 nm, the carbon dioxide (CO2) bands near 1600 and 2060 nm, and the methane (CH4) band near 1660 nm. The O2 measurements are used to estimate the surface pressure and the dry air column, which are used to define the column-averaged CO2 and CH4 dry air mole fractions, XCO2 and XCH4. O2 measurements are ideal for this application because the O2 dry air mole fraction is almost constant and well known. However, systematic errors in the O2 measurements can introduce biases in the XCO2 and XCH4 retrievals from TANSO-FTS. For example, 1% overestimate of the O2 column retrievals introduced a 10 hPa high bias in surface pressure and a 4 hPa low bias in XCO2 in early retrievals. This near-global bias has been traced to uncertainties in the O2 A-band absorption cross sections. Other spatially-varying O2 errors have been traced to uncertainties in the calibration of the TANSO-FTS A-band channel. For example, non-linearity in the A-band channel response introduces errors in the depths of both O2 lines and solar Fraunhofer lines. There are three possible sources of non-linearity: detector, analogue circuit (amplifier and electric filters), and analogue to digital converter (ADC). Observations acquired with the flight instrument and laboratory experiments with TANSO-FTS engineering model (EM) is being used to discriminate and correct these errors. The EM tests have largely vindicated the silicon photo-diode detector, but show that the non-linearity of the analogue circuit and ADC is almost identical to that seen in data acquired by the on-orbit flight model. We have developed and applied a correction to the measured interferograms from the flight instrument and confirmed it validity by showing that the Fraunhofer

  1. The effective Lagrangian of dark energy from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Raul; Verde, Licia [ICREA and ICC, Institut de Ciencies del Cosmos, Universitat de Barcelona (IEEC-UB), Marti i Franques 1, Barcelona 08028 (Spain); Talavera, P. [DFEN and ICC, Universitat Politècnica de Catalunya, Comte Urgell 187, Barcelona (Spain); Moresco, Michele; Cimatti, Andrea [Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna (Italy); Pozzetti, Lucia, E-mail: raul.jimenez@icc.ub.edu, E-mail: pere.talavera@icc.ub.edu, E-mail: liciaverde@icc.ub.edu, E-mail: michele.moresco@unibo.it, E-mail: a.cimatti@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it [INAF — Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy)

    2012-03-01

    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flatness of the potential or shed some light on possible mechanisms driving the accelerated expansion. Besides the above result, it is shown that the effective Lagrangian of accelerated expansion can be constrained from cosmological observations in a model-independent way and that direct measurements of the expansion rate H(z) are most useful to do so.

  2. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  3. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    Science.gov (United States)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  4. Left-Right Non-Linear Dynamical Higgs

    Science.gov (United States)

    Shu, Jing; Yepes, Juan

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  5. Non Linear Lorentz Transformation and Doubly Special Relativity

    CERN Document Server

    Atehortua, A N; Mira, J M; Vanegas, N

    2012-01-01

    We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.

  6. The Linear-Non-Linear Frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M. B. [Madrid, IFT; Kanshin, K. [Padua U.; Machado, P. A.N. [Madrid, IFT; Saa, S. [Madrid, IFT

    2016-10-25

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.

  7. The effect of high pass filtering and non-linear normalization on the EMG-force relationship during sub-maximal finger exertions.

    Science.gov (United States)

    McDonald, Alison C; Sanei, Kia; Keir, Peter J

    2013-06-01

    Muscle force estimates are important for full understanding of the musculoskeletal system and EMG is a modeling method used to estimate muscle force. The purpose of this investigation was to examine the effect of high pass filtering and non-linear normalization on the EMG-force relationship of sub-maximal finger exertions. Sub-maximal isometric ramp exertions were performed under three conditions (i) extension with restraint at the mid-proximal phalanx, (ii) flexion at the proximal phalanx and (iii) flexion at the distal phalanx. Thirty high pass filter designs were compared to a standardized processing procedure and an exponential fit equation was used for non-linear normalization. High pass filtering significantly reduced the %RMS error and increased the peak cross correlation between EMG and force in the distal flexion condition and in the other two conditions there was a trend towards improving force predictions with high pass filtering. The degree of linearity differed between the three contraction conditions and high pass filtering improved the linearity in all conditions. Non-linear normalization had greater impact on the EMG-force relationship than high pass filtering. The difference in optimal processing parameters suggests that high pass filtering and linearity are dependent on contraction mode as well as the muscle analyzed.

  8. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  9. NICMOS non-linearity tests

    Science.gov (United States)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  10. Symmetries in Non-Linear Mechanics

    CERN Document Server

    Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco

    2014-01-01

    In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...

  11. Non-linear (loop) quantum cosmology

    CERN Document Server

    Bojowald, Martin; Dantas, Christine C; Jaffe, Matthew; Simpson, David

    2012-01-01

    Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a non-linear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of non-linear and non-local equations suggests new questions for mathematical and computational investigations, and general properties of non-linear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny local contributions adding up coherently in large regions.

  12. Pharmacokinetic/Pharmacodynamic Modelling of GnRH Antagonist Degarelix: A Comparison of the Non-linear Mixed-Effects Programs NONMEM and NLME

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Nielsen, Henrik Aalborg

    2004-01-01

    In this paper, the two non-linear mixed-effects programs NONMEM and NLME were compared for their use in population pharmacokinetic/pharmacodynamic (PK/PD) modelling. We have described the first-order conditional estimation (FOCE) method as implemented in NONMEM and the alternating algorithm in NLME...... proposed by Lindstrom and Bates. The two programs were tested using clinical PK/PD data of a new gonadotropin-releasing hormone (GnRH) antagonist degarelix currently being developed for prostate cancer treatment. The pharmacokinetics of intravenous administered degarelix was analysed using a three...

  13. The effective Lagrangian of dark energy from observations

    CERN Document Server

    Jimenez, Raul; Verde, Licia; Moresco, Michele; Cimatti, Andrea; Pozzetti, Lucia

    2012-01-01

    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flat...

  14. Linear wave equations and effective lagrangians for Wigner supermultiplets

    CERN Document Server

    Dahm, R

    1995-01-01

    The relevance of the contracted SU(4) group as a symmetry group of the pion nucleon scattering amplitudes in the large N_c limit of QCD raises the problem on the construction of effective Lagrangians for SU(4) supermultiplets. In the present study we suggest effective Lagrangians for selfconjugate representations of SU(4) in exploiting isomorphism between so(6) and ist universal covering su(4). The model can be viewed as an extension of the linear \\sigma model with SO(6) symmetry in place of SO(4) and generalizes the concept of the linear wave equations for particles with arbitrary spin. We show that the vector representation of SU(4) reduces on the SO(4) level to a complexified quaternion. Its real part gives rise to the standard linear \\sigma model with a hedgehog configuration for the pion field, whereas the imaginary part describes vector meson degrees of freedom via purely transversal \\rho mesons for which a helical field configuration is predicted. As a minimal model, baryonic states are suggested to ap...

  15. A few words about resonances in the electroweak effective Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2016-01-22

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  16. Non-linear canonical correlation

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1983-01-01

    Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An

  17. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  18. Non-Linearity of dose-effect relationship on the example of cytogenetic effects in plant cells at low level exposure to ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, Alla; Geras' kin, Stanislav; Dikarev, Vladimir; Dikareva, Nina; Chernonog, Elena [Russian Institute of Agricultural Radiology and Agroecology, RIARAE, 249032 Obninsk (Russian Federation); Copplestone, David [Environment Agency, Millbank Tower, 25th. Floor, 21/24 Millbank, London, SW1P 4XL (United Kingdom); Evseeva, Tatyana [Institute of Biology, Kommunisticheskaya st., 28 Syktyvkar 167610, Komi Republic (Russian Federation)

    2006-07-01

    Over several decades, modelling the effects of ionizing radiation on biological system has relied on the target principle [Timofeeff-Ressovsky et al., 1935], which assumes that cell damage or modification to genes appear as a direct consequence of the exposure of biological macromolecules to charged particles. Furthermore, it is assumed that there is no threshold for the induction of biological damage and that the effects observed are proportional to the energy absorbed. Following this principle, the average number of hits per target should increase linearly with dose, and the yield of mutations per unit of dose is assumed to be the same at both low and high doses (linearity of response). This principle has served as the scientific background for the linear no-threshold (LNT) concept that forms the basis for the radiological protection for the public and the environment [ICRP, 1990]. It follows from the LNT that there is an additional risk for human health from exposure to any radiation level, even below natural background. Since the mid 50's, however, the scientific basis for the LNT concept has been challenged as experimental data have shown that, at low doses, there was a non linear relationship in the dose response. Luchnik and Timofeeff-Ressovsky were the first who showed a non-linear response to a low dose exposure [Luchnik, 1957; Timofeeff-Ressovsky and Luchnik, 1960]. Since then, many data have been accumulated which contradict the LNT model at low doses and dose rates. However, the hit-effect paradigm has become such a strong and indissoluble fact that it has persisted even under the growing pressure of scientific evidence for phenomena at low dose exposure that can not be successfully accounted for by the LNT concept. In recent years, additional information on non-targeted effects of radiation has been accumulated following the first reports of an adaptive response in human lymphocytes [Olivieri et al., 1984] as well as bystander mutagenic effect of

  19. Effective Lagrangian Approach to pion photoproduction from the nucleon

    CERN Document Server

    Fernandez-Ramirez, C; Udias, J M

    2006-01-01

    We present a pion photoproduction model on the free nucleon based on an Effective Lagrangian Approach (ELA) which includes the nucleon resonances ($\\Delta(1232)$, N(1440), N(1520), N(1535), $\\Delta (1620)$, N(1650), and $\\Delta (1700)$), in addition to Born and vector meson exchange terms. The model incorporates a new theoretical treatment of spin-3/2 resonances, first introduced by Pascalutsa, avoiding pathologies present in previous models. Other main features of the model are chiral symmetry, gauge invariance, and crossing symmetry. We use the model combined with modern optimization techniques to assess the parameters of the nucleon resonances on the basis of world data on electromagnetic multipoles. We present results for electromagnetic multipoles, differential cross sections, asymmetries, and total cross sections for all one pion photoproduction processes on free nucleons. We find overall agreement with data from threshold up to 1 GeV in laboratory frame.

  20. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  1. NON-LINEAR ANALYSIS OF EFFECT OF CONFINEMENT REGIONS ON MOMENT CURVATURE BEHAVIOR OF SHEAR WALL (THEORETICAL STUDY

    Directory of Open Access Journals (Sweden)

    Şevket Murat ŞENEL

    2002-02-01

    Full Text Available Computer program which investigates the effectiveness of confinement regions of shear walls was developed.Specimens which have unique web reinforcement and different confinement regions were analyzed by using this computer program. Data needed for theoratical computations were obtained by tensile testing of steel rods and by concrete specimen tests. Mander Method was applied to reflect confined concrete behavior. Strain hardening behavior of steel was included in computations. Effect of stirrup spacing and hook reinforcement was introduced together and seperately to understand the moment-curvature response of specimens.

  2. The application of a non-linear analysis technique to the monitoring of anesthetic effects in the rat

    NARCIS (Netherlands)

    Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Dirksen, R.; Coenen, A.M.L.; Booij, L.H.D.J.

    2000-01-01

    To find a new measure from the EEG that quantifies the effects of anesthetics during surgery, the correlation dimension (CD) of the EEG of eight rats was estimated. To get informed about the anesthetic state, the noxious induced withdrawal reflex (NIWR) was measured, i.e. the force elicited by trans

  3. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  4. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu46Zr54 alloy

    Science.gov (United States)

    Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liang, Yong-Chao; Zhang, Hai-Tao; Hou, Zhao-Yang; Liu, Hai-Rong; Zhang, Ai-long; Zhou, Li-Li; Peng, Ping; Xie, Zhong

    2015-05-01

    A MD simulation of liquid Cu46Zr54 alloys has been performed for understanding the effects of initial melt temperatures on the microstructural evolution and mechanical properties during quenching process. By using several microstructural analyzing methods, it is found that the icosahedral and defective icosahedral clusters play a key role in the microstructure transition. All the final solidification structures obtained at different initial melt temperatures are of amorphous structures, and their structural and mechanical properties are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. Especially, there exists a best initial melt temperature, from which the glass configuration possesses the highest packing density, the optimal elastic constants, and the smaller extent of structural softening under deforming.

  5. On Unsteady Three-Dimensional Axisymmetric MHD Nanofluid Flow with Entropy Generation and Thermo-Diffusion Effects on a Non-Linear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Mohammed Almakki

    2017-07-01

    Full Text Available The entropy generation in unsteady three-dimensional axisymmetric magnetohydrodynamics (MHD nanofluid flow over a non-linearly stretching sheet is investigated. The flow is subject to thermal radiation and a chemical reaction. The conservation equations are solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasi-linearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account. The nanofluid particle volume fraction on the boundary is passively controlled. The results show that as the Hartmann number increases, both the Nusselt number and the Sherwood number decrease, whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with respect to some physical parameters.

  6. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    Science.gov (United States)

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  7. Characteristic Scales of Baryon Acoustic Oscillations from Perturbation Theory: Non-linearity and Redshift-Space Distortion Effects

    CERN Document Server

    Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi

    2007-01-01

    An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.

  8. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    The isotopic fractionation associated with photodissociation of N2O, OCS and CO2, at different altitudes in Earth’s atmosphere, is investigated theoretically using constructed quantum mechanical models of the dissociation processes (i.e. potential energy surfaces and relevant coupling elements...... or moderate, and overall sulfur fractionation in the stratosphere is very weak which does not exclude OCS from being an acceptable background the Stratospheric Sulfate Aerosol layer. (iii) CO2 photolysis in the upper stratosphere and lower mesosphere is highly fractionating in both isotopes, enriching...

  9. Matching effective chiral Lagrangians with dimensional and lattice regularization

    CERN Document Server

    Niedermayer, Ferenc

    2016-01-01

    We compute the free energy in the presence of a chemical potential coupled to a conserved charge in effective O($n$) scalar field theory (without explicit symmetry breaking terms) to NNL order for asymmetric volumes in general $d$--dimensions, using dimensional (DR) and lattice regularizations. This yields relations between the 4-derivative couplings appearing in the effective actions for the two regularizations, which in turn allows us to translate results, e.g. the mass gap in a finite periodic box in $d=3+1$ dimensions, from one regularization to the other. Consistency is found with a new direct computation of the mass gap using DR. For the case $n=4, d=4$ the model is the low-energy effective theory of QCD with $N_{\\rm f}=2$ massless quarks. The results can thus be used to obtain estimates of low energy constants in the effective chiral Lagrangian from measurements of the low energy observables, including the low lying spectrum of $N_{\\rm f}=2$ QCD in the $\\delta$--regime using lattice simulations, as pro...

  10. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  11. Phenomenology of the Higgs effective Lagrangian via FEYNRULES

    Energy Technology Data Exchange (ETDEWEB)

    Alloul, Adam [Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace, IUT Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar Cedex (France); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, 23 rue du Loess, F-67037 Strasbourg (France); Sanz, Verónica [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2014-04-16

    The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FEYNRULES and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FEYNRULES capable to generate model files that can be understood by the MADGRAPH 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.

  12. Phenomenology of the Higgs Effective Lagrangian via FeynRules

    CERN Document Server

    Alloul, Adam; Sanz, Verónica

    2014-01-01

    The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of FeynRules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of FeynRules capable to generate model files that can be understood by the MadGraph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-...

  13. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  14. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    Science.gov (United States)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  15. Graphical and Analytical Analysis of the Non-Linear PLL

    NARCIS (Netherlands)

    de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper

  16. Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) sigma-model

    CERN Document Server

    Banerjee, Debasish

    2010-01-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind non-trivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical non-linear O(2) sigma model with a coupling $\\beta$ and chemical potential $\\mu$ on a 2+1 dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at non-zero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of world-line of particles, the sign problem is absent and the model can be studied efficiently with the "worm algorithm". Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum ...

  17. Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations.

    Science.gov (United States)

    Berglund, Martin; Sunnåker, Mikael; Adiels, Martin; Jirstrand, Mats; Wennberg, Bernt

    2012-12-01

    Non-linear mixed effects (NLME) models represent a powerful tool to simultaneously analyse data from several individuals. In this study, a compartmental model of leucine kinetics is examined and extended with a stochastic differential equation to model non-steady-state concentrations of free leucine in the plasma. Data obtained from tracer/tracee experiments for a group of healthy control individuals and a group of individuals suffering from diabetes mellitus type 2 are analysed. We find that the interindividual variation of the model parameters is much smaller for the NLME models, compared to traditional estimates obtained from each individual separately. Using the mixed effects approach, the population parameters are estimated well also when only half of the data are used for each individual. For a typical individual, the amount of free leucine is predicted to vary with a standard deviation of 8.9% around a mean value during the experiment. Moreover, leucine degradation and protein uptake of leucine is smaller, proteolysis larger and the amount of free leucine in the body is much larger for the diabetic individuals than the control individuals. In conclusion, NLME models offers improved estimates for model parameters in complex models based on tracer/tracee data and may be a suitable tool to reduce data sampling in clinical studies.

  18. On the Systematic Errors of Cosmological-Scale Gravity Tests using Redshift Space Distortion: Non-linear Effects and the Halo Bias

    CERN Document Server

    Ishikawa, Takashi; Nishimichi, Takahiro; Takahashi, Ryuichi; Yoshida, Naoki; Tonegawa, Motonari

    2013-01-01

    Redshift space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we employ various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, f\\sigma_8, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realisations of 3.4 \\times 10^8 comoving h^{-3}Mpc^3 cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z=0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of 5.0 \\times 10^{11} -- 2.0 \\times 10^{13} h^{-1} M_\\odot. We find that the systematic error of f\\sigma_8 is greatly reduced to ~4 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher-order coupling between the density and velocity fields is ado...

  19. On the systematic errors of cosmological-scale gravity tests using redshift-space distortion: non-linear effects and the halo bias

    Science.gov (United States)

    Ishikawa, Takashi; Totani, Tomonori; Nishimichi, Takahiro; Takahashi, Ryuichi; Yoshida, Naoki; Tonegawa, Motonari

    2014-10-01

    Redshift-space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we employ various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, fσ8, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realizations of 3.4 × 108 comoving h-3 Mpc3 cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z = 0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of 5.0 × 1011-2.0 × 1013 h-1 M⊙. We find that the systematic error of fσ8 is greatly reduced to ˜5 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher order coupling between the density and velocity fields is adopted, with a scale-dependent parametric bias model. Dependence of the systematic error on the halo mass, the redshift and the maximum wavenumber used in the analysis is discussed. We also find that the Wilson-Hilferty transformation is useful to improve the accuracy of likelihood analysis when only a small number of modes are available in power spectrum measurements.

  20. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  1. A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates.

    Science.gov (United States)

    Charvat, Hadrien; Remontet, Laurent; Bossard, Nadine; Roche, Laurent; Dejardin, Olivier; Rachet, Bernard; Launoy, Guy; Belot, Aurélien

    2016-08-15

    The excess hazard regression model is an approach developed for the analysis of cancer registry data to estimate net survival, that is, the survival of cancer patients that would be observed if cancer was the only cause of death. Cancer registry data typically possess a hierarchical structure: individuals from the same geographical unit share common characteristics such as proximity to a large hospital that may influence access to and quality of health care, so that their survival times might be correlated. As a consequence, correct statistical inference regarding the estimation of net survival and the effect of covariates should take this hierarchical structure into account. It becomes particularly important as many studies in cancer epidemiology aim at studying the effect on the excess mortality hazard of variables, such as deprivation indexes, often available only at the ecological level rather than at the individual level. We developed here an approach to fit a flexible excess hazard model including a random effect to describe the unobserved heterogeneity existing between different clusters of individuals, and with the possibility to estimate non-linear and time-dependent effects of covariates. We demonstrated the overall good performance of the proposed approach in a simulation study that assessed the impact on parameter estimates of the number of clusters, their size and their level of unbalance. We then used this multilevel model to describe the effect of a deprivation index defined at the geographical level on the excess mortality hazard of patients diagnosed with cancer of the oral cavity. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Badran, Hussain Ali, E-mail: badran_hussein@yahoo.com [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Ajeel, Khalid I. [Basrah University, Education College for Pure Sciences, Physics Department, Basrah (Iraq); Lazim, Haidar Gazy [Misan University, Basic Education College, Science Department, Misan (Iraq)

    2016-04-15

    Highlights: • Active layer (P3HT:PCBM) has been deposited on substrate type by spin coating at 1000 rpm. • The device was completed by evaporating a 60 nm thick, circular gold electrodes onto the P3HT:PCBM. • Nonlinear refractive indices of the three particle sizes are found to be of the order of 10{sup −7} cm{sup 2}/W - Abstract: Organic solar cells are based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid with methyl ester Bulk Heterojunction. An inverted structure has been fabricated using nano-anatase crystalline titanium dioxide, as the electron transport layer, which was prepared on either the Indium Tin Oxide coated glass (ITO—glass), or Silicon wafer, as well as on glass substrates by the sol–gel method, at different spin speed, using the spin-coating system. The effect of thickness on the surface morphology and on the optical properties of TiO{sub 2} layer, was investigated using the Atomic Force Microscopy (AFM), X-ray diffraction, and UV–visible spectrophotometer. The samples were examined to feature currents and voltages, in the darkness and light extraction efficiency of the solar cell. The highest open-circuit voltage, V{sub oc}, and power conversion efficiency were 0.66% and 0.39%, fabricated with 90 nm, respectively. The non-linear optical properties of nano-anatase TiO{sub 2} sol–gel, were investigated at different particle sizes, using the z-scan technique.

  3. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    CERN Document Server

    Hoelzl, M; Merkel, P; Atanasiu, C; Lackner, K; Nardon, E; Aleynikova, K; Liu, F; Strumberger, E; McAdams, R; Chapman, I; Fil, A

    2014-01-01

    The dynamics of large scale plasma instabilities can strongly be influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realist...

  4. Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge-Te-Sb thin films

    Science.gov (United States)

    Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.

    2017-06-01

    Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.

  5. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    OpenAIRE

    J. Puķīte; T. Wagner

    2016-01-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer–Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, ...

  6. Radiative neutron-proton capture in effective chiral lagrangians

    CERN Document Server

    Park, T S; Rho, M; Park, Tae Sun; Min, Dong Pil; Rho, Mannque

    1994-01-01

    We calculate the cross-section for the thermal n+p\\rightarrow d+\\gamma process in chiral perturbation theory to next-to-next-to-leading order using heavy-fermion formalism. The exchange current correction is found to be (4.5\\pm 0.3)~\\% in amplitude and the chiral perturbation at one-loop order gives the cross section \\sigma_{th}^{np}=(334\\pm 2)\\ {\\mbox mb} which is in agreement with the experimental value (334.2\\pm 0.5)\\ {\\mbox mb}. Together with the axial charge transitions, this provides a strong support for the power of chiral Lagrangians for nuclear physics.

  7. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  8. Testing non-linear vacuum electrodynamics with Michelson interferometry

    CERN Document Server

    Schellstede, Gerold O; Lämmerzahl, Claus

    2015-01-01

    We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...

  9. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  10. Effects of Er{sup 3+} and Yb{sup 3+} doping on structural and non-linear optical properties of LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Palmero, I.C. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Gonzalez-Silgo, C. [Departamento de Fisica Fundamental II, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Torres, M.E. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Marrero-Lopez, D. [Departamento de Quimica Inorganica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Rivera-Lopez, Fernando [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain)], E-mail: frivera@ull.es; Haro-Gonzalez, P. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Solans, X. [Departament de Cristallografia, Universitat de Barcelona, E-08028, Barcelona (Spain)

    2008-05-15

    We have characterized LiNaSO{sub 4} crystals doped with rare earth (RE) (Er{sup 3+} and Yb{sup 3+}) to give new insights about their structural properties relations. The samples were analyzed by X-ray single crystal diffraction and differential thermal analysis. The non-centrosymmetry was confirmed second-harmonic generation. Inductively coupled plasma (ICP) and emission experiments confirmed the nominal concentrations of the REs. Crystallographic data and two empirical models were employed to understand the structural modifications by substitution of the Na site which reduces, monotonically, the non-linear optical coefficients and the temperature of the phase transition in these crystals.

  11. The Effective Lagrangian for the Seesaw Model of Neutrino Mass and Leptogenesis

    CERN Document Server

    Broncano, A; Jenkins, E

    2003-01-01

    The effective Lagrangian for the seesaw model is derived including effects due to CP violation. Besides the usual dimension-5 operator responsible for light neutrino masses, a dimension-6 operator is obtained. For three or less heavy neutrino generations, the inclusion of both operators is necessary and sufficient for all independent physical parameters of the high-energy seesaw Lagrangian to appear in the low-energy effective theory, including the CP-odd phases relevant for leptogenesis. The dimension-6 operator implies exotic low-energy couplings for light neutrinos, providing a link between the high-energy physics and low-energy observables.

  12. The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Broncano, A.; Gavela, M.B.; Jenkins, E

    2003-01-23

    The effective Lagrangian for the seesaw model is derived including effects due to CP-violation. Besides the usual dimension-5 operator responsible for light neutrino masses, a dimension-6 operator is obtained. For three or less heavy neutrino generations, the inclusion of both operators is necessary and sufficient for all independent physical parameters of the high-energy seesaw Lagrangian to appear in the low-energy effective theory, including the CP-odd phases relevant for leptogenesis. The dimension-6 operator implies exotic low-energy couplings for light neutrinos, providing a link between the high-energy physics and low-energy observables.

  13. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  14. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  15. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  16. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  17. Steady induction effects in geomagnetism. Part 1B: Geomagnetic estimation of steady surficial core motions: A non-linear inverse problem

    Science.gov (United States)

    Voorhies, Coerte V.

    1993-01-01

    The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.

  18. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  19. Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity

    Science.gov (United States)

    Shabad, Anatoly E.; Usov, Vladimir V.

    2011-05-01

    In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum c=1, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed, resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.

  20. Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity

    CERN Document Server

    Shabad, Anatoly E

    2011-01-01

    In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetiz...

  1. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)

    1995-12-31

    Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.

  2. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  3. The effective chiral Lagrangian from dimension-six parity and time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R.G.E.; van Kolck, U.

    2013-01-01

    We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with had

  4. Effect of VO2+ ions on the EPR and optical absorption investigations of lithium sulphate monohydrate single crystals for non linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Radha Krishnan, S.; Shanmugam, V. M.; Subramanian, P.

    2017-09-01

    Electron paramagnetic resonance (EPR) and optical absorption studies of VO2+ ions in Lithium Sulphate Monohydrate (LSMH) single crystal are carried out at room temperature. Single crystal rotations in each of the three mutually orthogonal crystalline planes, ac, ab, cb indicate three different vanadyl complexes. Three VO2+ ions of EPR spectra indicate among them, that two of them have (the intense two) entered the lattice substitutionally and the third one occupies the interstitial position. From the angular variation, the spin Hamiltonian parameters are evaluated. From the optical absorption spectrum containing four selected bands and EPR data, various bonding parameters are determined and the nature of bonding in the crystal is discussed. Also Second Harmonic Generation (SHG) studies are carried out to confirm the Non Linear Optical (NLO) properties of the given material.

  5. Effective Lagrangian of C PN -1 models in the large N limit

    Science.gov (United States)

    Rossi, Paolo

    2016-08-01

    The effective low energy Lagrangian of C PN -1 models in d <4 dimensions can be constructed in the large N limit by solving the saddle point equations in the presence of a constant field strength. The two-dimensional case is explicitly worked out, and possible applications are briefly discussed.

  6. Effect of non-linearity of a predictor on the shape and magnitude of its receiver-operating-characteristic curve in predicting a binary outcome.

    Science.gov (United States)

    Ho, Kwok M

    2017-08-31

    Area under a receiver-operating-characteristic (AUROC) curve is widely used in medicine to summarize the ability of a continuous predictive marker to predict a binary outcome. This study illustrated how a U-shaped or inverted U-shaped continuous predictor would affect the shape and magnitude of its AUROC curve in predicting a binary outcome by comparing the ROC curves of the worst first 24-hour arterial pH values of 9549 consecutive critically ill patients in predicting hospital mortality before and after centering the predictor by its mean or median. A simulation dataset with an inverted U-shaped predictor was used to assess how this would affect the shape and magnitude of the AUROC curve. An asymmetrical U-shaped relationship between pH and hospital mortality, resulting in an inverse-sigmoidal ROC curve, was observed. The AUROC substantially increased after centering the predictor by its mean (0.611 vs 0.722, difference = 0.111, 95% confidence interval [CI] 0.087-0.135), and was further improved after centering by its median (0.611 vs 0.745, difference = 0.133, 95%CI 0.110-0.157). A sigmoidal-shaped ROC curve was observed for an inverted U-shaped predictor. In summary, a non-linear predictor can result in a biphasic-shaped ROC curve; and centering the predictor can reduce its bias towards null predictive ability.

  7. Non-linear Growth Models in Mplus and SAS.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2009-10-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.

  8. Massive Neutrinos and the Non-linear Matter Power Spectrum

    CERN Document Server

    Bird, Simeon; Haehnelt, Martin G

    2011-01-01

    We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...

  9. In-medium effective chiral lagrangians and the pion mass in nuclear matter

    CERN Document Server

    Wirzba, A; Wirzba, Andreas; Thorsson, Vesteinn

    1995-01-01

    We argue that the effective pion mass in nuclear matter obtained from chiral effective lagrangians is unique and does not depend on off-mass-shell extensions of the pion fields as e.g. the PCAC choice. The effective pion mass in isospin symmetric nuclear matter is predicted to increase slightly with increasing nuclear density, whereas the effective time-like pion decay constant and the magnitude of the density-dependent quark condensate decrease appreciably. The in-medium Gell-Mann-Oakes-Renner relation as well as other in-medium identities are studied in addition. Finally, several constraints on effective lagrangians for the description of the pion propagation in isospin symmetric, isotropic and homogenous nuclear matter are discussed. (Talk presented at the workshop ``Hirschegg '95: Hadrons in Nuclear Matter'', Hirschegg, Kleinwalsertal, Austria, January 16-21, 1995)

  10. Implementation of a Newton-Krylov iterative method to address strong non-linear feedback effects in FORMOSA-B BWR core simulator

    Science.gov (United States)

    Kastanya, Doddy Febrian

    A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of the FORMOSA-B boiling water reactor (BWR) core simulator. The new solver treats the strong non-linearities in the problem explicitly using the Newton's method, replacing the traditionally used nested iterative approach. Taking advantage of the higher convergence rate provided by the Newton's method, assuming that a good initial estimate of the unknowns is provided, and utilizing an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion equations coupled with a two-phase flow model within a BWR core simulator. The robustness of the solver has been tested against numerous BWR core configurations and consistent results have been observed each time. The best exact Newton-BICGSTAB solver performance provides an overall speedup of 2.07 to the core simulator, with reference to the traditional approach, i.e. outer (fission-source)-inner (red/black line SOR). When solving the same problem using the traditional approach but with the BICGSTAB solver as the inner iteration solver [traditional (BICGSTAB)], we observed a speedup of 1.85. This means that the Newton-BICGSTAB solver provides an additional 12% increase in the overall speedup over the traditional (BICGSTAB) solver. However, one needs to note that, on average, the exact Newton-BICGSTAB solver provides an overall speedup of around 1.70; whereas, on average, the traditional (BICGSTAB) provides an overall speedup of around 1.60. An investigation on the feasibility of implementing an inexact Newton-BICGSTAB solver indicates that further reduction in the execution time can likely be obtained through this approach. This study shows that the inexact Newton-BICGSTAB solver can provide speedups of 1.73 to 2.10 with respect to the traditional solver.

  11. Non-Linear Electrohydrodynamics in Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Jun Zeng

    2011-03-01

    Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.

  12. Non-Linear Relativity in Position Space

    CERN Document Server

    Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João

    2003-01-01

    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.

  13. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  14. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  15. Euler-Heisenberg Lagrangian to all orders in the magnetic field and the Chiral Magnetic Effect

    CERN Document Server

    Mages, Simon Wolfgang; Schäfer, Andreas

    2010-01-01

    In high energy heavy ion collisions as well as in astrophysical objects like magnetars extreme magnetic field strengths are reached. Thus, there exists a need to calculate divers QED processes to all orders in the magnetic field. We calculate the vacuum polarization graph in second order of the electric field and all orders of the magnetic field resulting in a generalization of the Euler-Heisenberg Lagrangian. We perform the calculation in the effective Lagrangian approach of J. Schwinger as well as using modified Feynman rules. We find that both approaches give the same results provided that the different finite renormalization terms are taken into account. Our results imply that any quantitative explanation of the recently proposed Chiral Magnetic Effect has to take 'Strong QED' effects into account, because these corrections are huge.

  16. Multi-photon Decays of the Higgs Boson in Standard Model: Leading Terms from Heisenberg-Euler Effective Lagrangian

    CERN Document Server

    Liao, Yi

    2012-01-01

    We calculate the multi-photon decay widths of the Higgs boson from an effective Lagrangian for a system of electromagnetic and Higgs fields. We utilize a low-energy theorem to connect the above Lagrangian to the Heisenberg-Euler effective Lagrangian induced by charged particles that gain mass from interactions with the Higgs boson. In the standard model only the W^\\pm gauge bosons and the top quark are relevant, and we compute their contributions to the effective couplings and the multi-photon decay widths of the Higgs boson.

  17. Canonical structure of evolution equations with non-linear dispersive terms

    Indian Academy of Sciences (India)

    B Talukdar; J Shamanna; S Ghosh

    2003-07-01

    The inverse problem of the variational calculus for evolution equations characterized by non-linear dispersive terms is analysed with a view to clarify why such a system does not follow from Lagrangians. Conditions are derived under which one could construct similar equations which admit a Lagrangian representation. It is shown that the system of equations thus obtained can be Hamiltonized by making use of the Dirac’s theory of constraints. The specific results presented refer to the third- and fifth-order equations of the so-called distinguished subclass.

  18. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    Science.gov (United States)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  19. Numerical Simulation of Non-Linear Wave Propagation in Waters of Mildly Varying Topography with Complicated Boundary

    Institute of Scientific and Technical Information of China (English)

    张洪生; 洪广文; 丁平兴; 曹振轶

    2001-01-01

    In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.

  20. Range non-linearities correction in FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si

  1. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  2. Photoproduction of the eta prime meson in the effective Lagrangian approach

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.; Zhang, J.F. [Rensselaer Polytechnic Inst., Troy, NY (United States); Benmerrouche, M. [Univ. of Saskatchewan, Saskaton (Canada)

    1994-04-01

    In the framework of the effective Lagrangian approach, the authors study the {eta}{prime} photoproduction off protons, of great interest at CEBAF I and II. They calculate the contributions from the leading nucleon Born terms, vector meson exchanges, and estimate the resonance contributions, using the transition amplitudes from the recent quark model estimates by Capstick and Roberts. They discuss implications for the CEBAF experiments.

  3. Exotic properties of neutrinos using effective Lagrangians and specific models

    CERN Document Server

    Aparici, Alberto

    2013-01-01

    This doctoral dissertation presents several works on nonstandard properties of neutrinos exploiting the synergies between effective field theory and models. The phenomena are first analysed by means of effective operators, which allow to discuss their phenomenological consequences and to derive estimations about the mass scale of the heavy particles needed to induce the new interactions. In a second phase we propose models that realise the effective operators, allowing us to check the conclusions of effective field theory as well as to extract new phenomenological features of the scenarios considered. The text is divided into two parts: in the first one we apply these ideas to an effective interaction that generates magnetic dipole moments for right-handed neutrinos, and in the second one we discuss a family of operators that violate lepton number without quarks, and which can allow for large rates of neutrinoless double $\\beta$ decay and small neutrino masses. The right-handed neutrino magnetic moments have ...

  4. Non-Linear Logging Parameters Inversion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,

  5. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  6. Oscillatons formed by non linear gravity

    CERN Document Server

    Obregón, O; Schunck, F E; Obregon, Octavio; Schunck, Franz E.

    2004-01-01

    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.

  7. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...

  8. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  9. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    Science.gov (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  10. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  11. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  12. Gauge-symmetric approach to effective lagrangians: The η' meson from QCD

    Science.gov (United States)

    Damgaard, P. H.; Nielsen, H. B.; Sollacher, R.

    1994-02-01

    We present a general scheme for extracting effective degrees of freedom from an underlying fundamental lagrangian, through a series of well-defined transformations in the functional integral of the cut-off theory. This is done by introducing collective fields in a gauge-symmetric manner. Through appropriate gauge fixings of this symmetry one can remove long-distance degrees of freedom from the underlying theory, replacing them by the collective fields. Applying this technique to QCD, we set out to extract the long-distance dynamics in the pseudoscalar flavour singlet sector through a gauging (and subsequent gauge fixing) of the U (1) A flavour symmetry which is broken by the anomaly. By this series of exact transformations of a cut-off generating functional for QCD, we arrive at a theory describing the long-distance physics of a pseudoscalar flavour singlet meson coupled to the residual quark-gluon degrees of freedom. As an example we show how to derive a Witten-Veneziano-like relation between the η' mass and the topological susceptibility. The resulting effective lagrangian contains an axial vector field, which shares the relevant features with the Veneziano ghost. This field is responsible for removing the η' degree of freedom from the fundamental QCD lagrangian.

  13. Non-linear energy conservation theorem in the framework of Special Relativity

    CERN Document Server

    Teruel, Ginés R Pérez

    2015-01-01

    In this work we revisit the study of the gravitational interaction in the context of the Special Theory of Relativity. It is found that, as long as the equivalence principle is respected, a relativistic non-linear energy conservation theorem arises in a natural way. We interpret that this non-linear conservation law stresses the non-linear character of the gravitational interaction.The theorem reproduces the energy conservation theorem of Newtonian mechanics in the corresponding low energy limit, but also allows to derive some standard results of post-Newtonian gravity, such as the formula of the gravitational redshift. Guided by this conservation law, we develop a Lagrangian formalism for a particle in a gravitational field. We realize that the Lagrangian can be written in an explicit covariant fashion, and turns out to be the geodesic Lagrangian of a curved Lorentzian manifold. Therefore, any attempt to describe gravity within the Special Theory, leads outside their own domains towards a curved space-time. ...

  14. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  15. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  16. Non-linear estimation is easy

    OpenAIRE

    Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt

    2008-01-01

    International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line ...

  17. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  18. Non-linear estimation is easy

    CERN Document Server

    Fliess, Michel; Sira-Ramirez, Hebertt

    2007-01-01

    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.

  19. Non-linearity parameter / of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma

    2000-09-01

    When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.

  20. Lagrangians Galore

    OpenAIRE

    Nucci, M. C.; Leach, P. G. L.

    2007-01-01

    Searching for a Lagrangian may seem either a trivial endeavour or an impossible task. In this paper we show that the Jacobi last multiplier associated with the Lie symmetries admitted by simple models of classical mechanics produces (too?) many Lagrangians in a simple way. We exemplify the method by such a classic as the simple harmonic oscillator, the harmonic oscillator in disguise [H Goldstein, {\\it Classical Mechanics}, 2nd edition (Addison-Wesley, Reading, 1980)] and the damped harmonic ...

  1. Effective Lagrangian description of the possible strong sector of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R. (European Organization for Nuclear Research, Geneva (Switzerland); Istituto Nazionale di Fisica Nucleare, Florence (Italy)); Dominici, D. (Istituto Nazionale di Fisica Nucleare, Florence (Italy); Florence Univ. (Italy). Ist. di Fisica); Gatto, R. (Geneva Univ. (Switzerland). Dept. de Physique Theorique)

    1984-11-15

    We discuss the effective Lagrangian of the scalar and longitudinal sector of the standard SU(2)xU(1) model and derive the corresponding Feynman rules. Such a sector becomes strong when the Higgs mass parameter msub(H) is large. Scalar propagation, in this case, is conveniently described by a degenerate 2x2 matrix. We apply the Feyman rules to calculate scattering amplitudes among longitudinally polarized W and Z, which now satisfy partial wave-unitarity also at large msub(H). We also calculate production amplitudes among such states and find that they are no longer depressed, when msub(H) is large.

  2. Effective lagrangian description of the possible strong sector of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Casalbuoni, R.; Dominici, D.; Gatto, R.

    1984-11-15

    We discuss the effective lagrangian of the scalar and longitudinal sector of the standard SU(2)xU(1) model and derive the corresponding Feynman rules. Such a sector becomes strong when the Higgs mass parameter msub(H) is large. Scalar propagation, in this case, is conveniently described by a degenerate 2x2 matrix. We apply the Feyman rules to calculate scattering amplitudes among longitudinally polarized W and Z, which now satisfy partial wave-unitarity also at large msub(H). We also calculate production amplitudes among such states and find that they are no longer depressed, when msub(H) is large.

  3. An effective lagrangian description of charged Higgs decays H^+ -> Wg, WZ and Wh

    CERN Document Server

    Díaz-Cruz, J L; Toscano, J J

    2001-01-01

    Charged Higgs decays are discussed within an effective lagrangian extension of the two-higgs doublet model, assuming new physics appearing in the Higgs sector of this model. Low energy constrains are used to imposse bounds on certain dimension -six operators that describe the modified charged Higgs interactions. These bounds are used then to study the decays H^+ -> Wg, WZ and Wh, which can have branching ratios of order 10^-5, 10^-1 and O(1), respectively; thse modes are thus sensitive probes of the symmetries of the Higgs sector that could be tested at future colliders.

  4. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  5. Non Linear Behaviour in Learning Processes

    OpenAIRE

    Manfredi, Paolo; Manfredi, Vicenzo Rosario

    2003-01-01

    This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...

  6. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  7. Limits on Non-Linear Electrodynamics

    CERN Document Server

    Fouché, M; Rizzo, C

    2016-01-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  8. Adaptive spectral identification techniques in presence of undetected non linearities

    CERN Document Server

    Cella, G; Guidi, G M

    2002-01-01

    The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise

  9. Non-linear Higgs portal to Dark Matter

    CERN Document Server

    Bajo, Rocío del Rey

    2016-01-01

    The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet Dark Matter candidate $S$ in an effective description. The main phenomenological differences with respect to the standard scenario can be seen in the Dark Matter relic abundance, in direct/indirect searches and in signals at colliders.

  10. Effect of betanin natural dye extracted from red beet root on the non linear optical properties ZnO nanoplates embedded in polymeric matrices

    Science.gov (United States)

    Thankappan, Aparna; Thomas, Sheenu; Nampoori, V. P. N.

    2012-12-01

    In this article, we have investigated the effect of betanin natural dye extracted from red beetroot on nonlinear optical properties of ZnO nanoplates embedded in polymeric matrices through the Z-scan technique using an Nd: YAG laser (532 nm, 7 ns, 10 Hz). We observed reverse saturable absorption (RSA) at 532 nm for dye and ZnO nanoplates. A strong influence on RSA behavior of nanoplates-PVA matrix was observed by adding betanin natural dye. The influence of betanin on the nonlinear character of ZnO-PVA system leads to saturable absorption and again to RSA on increasing input fluence. Such a change over in the sign of the nonlinearity is due to the interplay of the exciton bleaching and optical limiting mechanisms, and probably due the presence of sucrose. Theoretical analysis has been performed using a model based on nonlinear absorption coefficient and saturation intensity. The result of present study gives an additional mechanism for the gain enhancement in dye doped ZnO matrix.

  11. The Effect of Non-Linear Active Disturbance Rejection Control in Suppressing Accidental Measuring Errors%非线性自抗扰控制对偶然测量误差的抑制作用

    Institute of Scientific and Technical Information of China (English)

    时从波

    2012-01-01

    Diamond ultra-precision turning is suitable for machining micro-structure surfaces.A fast tool servo is crucial for machining micro-structure surfaces and one of its key properties is the controller's performances.This paper creates the simplified transfer function model and introduces active disturbance rejection controller and the corresponding parameter setting for the electromagnetic fast tool servo.At last,the design of a precision non -linear active disturbance rejection controller is adopted,The effects of linear ADRC and non-linear ADRC in suppressing accidental measuring errors are both simulated using MATLAB. The conclusion is that NLADRC can suppress the accidental measuring errors better.%金刚石超精密切削是加工微结构表面的有效方法,其关键技术是快速刀具伺服系统(FTS),控制器性能是FTS的一个重要生能指标.针对电磁驱动原理的快速刀具伺服系统,建立执行机构简化的传递函数模型,引入自抗扰控制器作为快速刀具伺服系统的控制器并介绍自抗扰控制器参数的整定.最后采用非线性自抗扰控制技术,并利用MATLAB仿真非线性自抗扰控制(NLADRC)和线性自抗扰控制(LADRC)对偶然测量误差的抑制作用,得出结论为非线性自抗扰控制相比线性自抗扰控制可以更好的抑制偶然测量误差造成的不利影响.

  12. Non-linear Young's double-slit experiment.

    Science.gov (United States)

    San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis

    2006-04-01

    The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.

  13. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2013-09-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  14. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  15. The effective chiral Lagrangian from dimension-six parity and time-reversal violation

    Energy Technology Data Exchange (ETDEWEB)

    Vries, J. de, E-mail: devries.jordy@gmail.com [KVI, Theory Group, University of Groningen, 9747 AA Groningen (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Mereghetti, E. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Timmermans, R.G.E. [KVI, Theory Group, University of Groningen, 9747 AA Groningen (Netherlands); Kolck, U. van [Institut de Physique Nucléaire, Université Paris Sud, CNRS/IN2P3, 91406 Orsay (France); Department of Physics, University of Arizona, Tucson, AZ 85721 (United States)

    2013-11-15

    We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion–nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. -- Highlights: •Classification of T-odd dimension-six sources based on impact on observables. •Building of the chiral Lagrangian for each dimension-six source. •Calculation of the PT-odd pion–nucleon form factor for each source. •Discussion of hadronic EDMs for each source and comparison with the theta term.

  16. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  17. Spontaneous $CP$ breaking in QCD and the axion potential: an effective Lagrangian approach arXiv

    CERN Document Server

    Di Vecchia, Paolo; Veneziano, Gabriele; Yankielowicz, Shimon

    Using the well-known low-energy effective Lagrangian of QCD --valid for small (non-vanishing) quark masses and a large number of colors-- we study in detail the regions of parameter space where $CP$ is spontaneously broken/unbroken for a vacuum angle $\\theta= \\pi$. In the $CP$-broken region there are first order phase transitions as one crosses $\\theta=\\pi$, while on the (hyper)surface separating the two regions, there are second order phase transitions signaled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the $CP$ spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised when the QCD parameters fall in the above mentioned $CP$-broken region, in spite of the fact that the axion solves the stro...

  18. Lagrangians galore

    Science.gov (United States)

    Nucci, M. C.; Leach, P. G. L.

    2007-12-01

    Searching for a Lagrangian may seem either a trivial endeavor or an impossible task. In this paper, we show that the Jacobi last multiplier associated with the Lie symmetries admitted by simple models of classical mechanics produces (too?) many Lagrangians in a simple way. We exemplify the method by such a classic as the simple harmonic oscillator, the harmonic oscillator in disguise [H. Goldstein, Classical Mechanics, 2nd edition (Addison-Wesley, Reading, MA, 1980)], and the damped harmonic oscillator. This is the first paper in a series dedicated to this subject.

  19. NonLinear Effects in Photorefractive Crystals

    Science.gov (United States)

    1988-01-01

    Counterpropagating beams impinging on a crystal exhibiting optical activity was studied by Kukhtarev, Dov- galenko and Starkov [741. Diffraction...Dovgalenko, and V. N. Starkov . Influence of the optical activity on hologram formation in photorefractive crystals. Applied Physics A, 33:227-230, 1984

  20. Non-linear polaronic conduction in magnetite nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pooja, E-mail: pooja7503@gmail.com [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rout, P.K., E-mail: pkrout.phy@gmail.com [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Husale, Sudhir; Gupta, Anurag [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Manju [National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Rakshit, R.K. [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Dogra, Anjana, E-mail: anjanad@nplindia.org [Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); National Physical Laboratory, Council of Scientific and Industrial Research, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2016-12-01

    We report the temperature dependent current (I) – voltage (V) characteristics of Fe{sub 3}O{sub 4} nanowires with varying width (w) of 132, 358, and 709 nm. While the widest nanowire (w=709 nm) shows ohmic I (V) curves for all temperatures, those for w=132 and 358 nm show nonlinearity, which can be expressed by a combination of linear (V) and cubic (V{sup 3}) terms. The behaviour of conductance (linear bias component of current) and non-linearity in these nanowires is related to small polaron hopping related conduction. Moreover, we observed an anomalously large hopping lengths, which may be related to the size of percolation cluster and/or antiphase domain. Our study presents first experimental evidence for such non-linear polaronic conduction in magnetite nanowires. - Highlights: • Temperature dependent I–V measurements of FIB fabricated magnetite nanowires. • Small polaron based conduction in non-linear I–V curves. • Anomalously large hopping lengths due to percolation effect and/or antiphase domains.

  1. Fitting and forecasting non-linear coupled dark energy

    CERN Document Server

    Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2015-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...

  2. Effects of Discrete Damping on the Dynamic Behaviour of Rotating Shaft through Extended Lagrangian Formulation

    Directory of Open Access Journals (Sweden)

    Rastogi Vikas

    2016-09-01

    Full Text Available The main focus of the paper is touted as effects of discrete damping on the dynamic analysis of rotating shaft. The whole analysis is being carried out through extended Lagrangian formulation for a discrete – continuous system. The variation formulation for this system is possible, considering the continuous system as one-dimensional. The generalized formulation for one dimensional continuous rotary shaft with discrete external damper has been obtained through principle of variation. Using this extended formulation, the invariance of umbra-Lagrangian density through extended Noether’s theorem is achieved. Rayleigh beam model is used to model the shaft. Amplitude equation of rotor is obtained theoretically and validated through simulation results. The simulation results reveal the important phenomena of limiting dynamics of the rotor shaft, which is due to an imbalance of material damping and stiffness of the rotor shaft. The regenerative energy in the rotor shaft, induced due to elasticity/stiffness of the rotor shaft, is dissipated partially through the in-span discrete damper and also through the dissipative coupling between drive and the rotor shaft. In such cases, the shaft speed will not increase with increase in excitation frequency of the rotor but the slip between the drive and the shaft increases due to loading of drive.

  3. Effects of Discrete Damping on the Dynamic Behaviour of Rotating Shaft through Extended Lagrangian Formulation

    Science.gov (United States)

    Rastogi, Vikas

    2016-09-01

    The main focus of the paper is touted as effects of discrete damping on the dynamic analysis of rotating shaft. The whole analysis is being carried out through extended Lagrangian formulation for a discrete - continuous system. The variation formulation for this system is possible, considering the continuous system as one-dimensional. The generalized formulation for one dimensional continuous rotary shaft with discrete external damper has been obtained through principle of variation. Using this extended formulation, the invariance of umbra-Lagrangian density through extended Noether's theorem is achieved. Rayleigh beam model is used to model the shaft. Amplitude equation of rotor is obtained theoretically and validated through simulation results. The simulation results reveal the important phenomena of limiting dynamics of the rotor shaft, which is due to an imbalance of material damping and stiffness of the rotor shaft. The regenerative energy in the rotor shaft, induced due to elasticity/stiffness of the rotor shaft, is dissipated partially through the in-span discrete damper and also through the dissipative coupling between drive and the rotor shaft. In such cases, the shaft speed will not increase with increase in excitation frequency of the rotor but the slip between the drive and the shaft increases due to loading of drive.

  4. BSM Primary Effects: The complete set of predictions from the dimension-6 BSM Lagrangian

    CERN Document Server

    Gupta, Rick S

    2014-01-01

    We present a physical parameterization of the leading effects beyond the SM (BSM), that give us, at present, the best way to constrain heavy new-physics at low-energies. We call these effects that constrain all possible interactions at the dimension 6 level, BSM Primary effects; there are 8 primaries related to Higgs physics, 3 related to Triple Gauge Couplings and 7 related to Z- pole measurements at LEP. Starting from these experimentally measurable deformations (and not operators), we construct the dimension 6 Lagrangian in a bottom up way. We, thus, show that other BSM effects are not independent from the primary ones and we provide the explicit correlations. We also discuss the theoretical expectation for the size of these BSM primaries in some well-motivated BSM theories.

  5. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  6. Chaotic Discrimination and Non-Linear Dynamics

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2005-01-01

    Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.

  7. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  8. A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Turgay ÇOŞGUN

    2003-02-01

    Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.

  9. Convexity of effective Lagrangian in nonlinear electrodynamics as derived from causality

    CERN Document Server

    Shabad, Anatoly E

    2009-01-01

    In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed unity, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we find restrictions on the behavior of massive and massless dispersion curves and establish the convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants. Violation of the general principles by the one-loop approximation in QED at exponentially large magnetic field is analyzed resulting in complex energy tachyons and super-luminal ghosts that signal the instability of the magnetized vacuum. General grounds for kinematical selection rules in the process of photon splitting/merging are discussed.

  10. Non-Linear Sigma Model on Conifolds

    CERN Document Server

    Parthasarathy, R

    2002-01-01

    Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...

  11. Multi-Lagrangians for Integrable Systems

    CERN Document Server

    Nutku, Y

    2001-01-01

    We propose a general scheme to construct multiple Lagrangians for completely integrable non-linear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit $N$-fold first order local Hamiltonian structure can be cast into variational form with $2N-1$ Lagrangians which will be local functionals of Clebsch potentials. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a {\\it local} functional of the physical field variables, namely density and velocity.

  12. On the theory of a non-linear neutral scalar field with spontaneously broken symmetry

    CERN Document Server

    Poluektov, Yu M

    2015-01-01

    On the example of a real scalar field, an approach to quantization of non-linear fields and construction of the perturbation theory with account of spontaneous symmetry breaking is proposed. The method is based on using as the main approximation of the relativistic self-consistent field model, in which the influence of vacuum fluctuations is taken into account in constructing the one-particle states. The solutions of the self-consistent equations determine possible states, which also include the states with broken symmetries. Different states of the field are matched to particles, whose masses are determined by both parameters of the Lagrangian and vacuum fluctuations.

  13. Hierarchical Non-linear Image Registration Integrating Deformable Segmentation

    Institute of Scientific and Technical Information of China (English)

    RAN Xin; QI Fei-hu

    2005-01-01

    A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.

  14. Analysis of the quadrupole deformation of {delta}(1232) within an effective Lagrangian model for pion photoproduction from the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ramirez, C. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Universidad de Sevilla, Departamento de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Moya de Guerra, E. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Universidad Complutense de Madrid, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Madrid (Spain); Udias, J.M. [Universidad Complutense de Madrid, Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Madrid (Spain)

    2007-03-15

    We present an extraction of the E2/M1 ratio of the {delta}(1232) from experimental data applying an effective Lagrangian model. We compare the result obtained with different nucleonic models and we reconcile the experimental results with the lattice QCD calculations. (orig.)

  15. Analysis of the quadrupole deformation of $\\Delta$(1232) within an effective Lagrangian model for pion photoproduction from the nucleon

    CERN Document Server

    Fernandez-Ramirez, C; Udias, J M

    2007-01-01

    We present an extraction of the E2/M1 ratio of the $\\Delta$(1232) from experimental data applying an effective Lagrangian model. We compare the result obtained with different nucleonic models and we reconcile the experimental results with the Lattice QCD calculations.

  16. Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren

    2005-01-01

    Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.

  17. Resonances in W_L W_L, Z_L Z_L and hh scattering from dispersive analysis of the non-linear Electroweak+Higgs Effective Theory

    CERN Document Server

    Dobado, Antonio; Llanes-Estrada, Felipe J

    2015-01-01

    If new resonances of the electroweak symmetry breaking sector (longitudinal-gauge and Higgs) bosons are found in the 1-3 TeV region, the right tool to assess their properties and confront experimental data in a largely model-independent yet simple manner is Unitarized Effective Theory. Its ingredients are: 1) custodial symmetry and the Equivalence Theorem, that allow to approximate W_L and Z_L by an isospin-triplet of Goldstone bosons omega^a in the 1-TeV region. 2) The effective coupling of a generic, approximately massless scalar-isoscalar h to those Goldstone bosons, and the chiral Lagrangian describing them, valid up to about 3 TeV. 3) The Inverse Amplitude or other unitarization techniques that allow to extend the reach of perturbation theory to the first resonance in each partial wave. We highlight some of the parameter space that can give rise to 2-TeV resonances, for example a simultaneous scalar-isoscalar and a vector-isovector ones (motivated by the ATLAS excess) and also the potential importance of...

  18. SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. V. Bosakov

    2008-01-01

    Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems. 

  19. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    Science.gov (United States)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  20. Phenomenology of the Higgs effective Lagrangian via F eynR ules

    Science.gov (United States)

    Alloul, Adam; Fuks, Benjamin; Sanz, Verónica

    2014-04-01

    The Higgs discovery and the lack of any other hint for new physics favor a description of non-standard Higgs physics in terms of an effective field theory. We present an implementation of a general Higgs effective Lagrangian containing operators up to dimension six in the framework of F eynR ules and provide details on the translation between the mass and interaction bases, in particular for three- and four-point interaction vertices involving Higgs and gauge bosons. We illustrate the strengths of this implementation by using the UFO interface of F eynR ules capable to generate model files that can be understood by the M adG raph 5 event generator and that have the specificity to contain all interaction vertices, without any restriction on the number of external legs or on the complexity of the Lorentz structures. We then investigate several new physics effects in total rates and differential distributions for different Higgs production modes, including gluon fusion, associated production with a gauge boson and di-Higgs production. We finally study contact interactions of gauge and Higgs bosons to fermions.

  1. Non-Linear Unit Root Properties of Crude Oil Production

    OpenAIRE

    Svetlana Maslyuk; Russell Smyth

    2007-01-01

    While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...

  2. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  3. Non Linear Analysis of MPPT for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    S. Sankar

    2015-08-01

    Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.

  4. Polycarbonate-Based Blends for Optical Non-linear Applications.

    Science.gov (United States)

    Stanculescu, F; Stanculescu, A

    2016-12-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  5. An Adaptive Non-Linear Map and Its Application

    Institute of Scientific and Technical Information of China (English)

    YAN Xuefeng

    2006-01-01

    A novel adaptive non-linear mapping (ANLM),integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimensional olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.

  6. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  7. Effective lagrangian approach to the theory of eta photoproduction in the N$^{*}$(1535) region

    CERN Document Server

    Benmerrouche, M; Zhang, J F; Benmerrouche, M; Mukhopadhyay, N C; Zhang, J F

    1995-01-01

    We investigate eta photoproduction in the N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading t-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the s- and u- channel; besides the dominant N^{*}(1535), these are: N^{*}(1440), N^{*}(1520),N^{*}(1650) and N^{*}(1710). The amplitudes for the \\pi^\\circ and the \\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the \\eta photoproduction of the s-channel excitation of the N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to...

  8. Non-linear Kalman filters for calibration in radio interferometry

    CERN Document Server

    Tasse, Cyril

    2014-01-01

    We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...

  9. Non linear prompt neutron kinetics in multigroup diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ajoy Kumar

    1963-06-15

    It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)

  10. Muon g-2 estimates : Can one trust Effective Lagrangians and global fits ?

    CERN Document Server

    Benayoun, M; DelBuono, L; Jegerlehner, F

    2015-01-01

    Previous studies have shown that the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms, provides an Effective Lagrangian (BHLS) which encompasses a large number of processes within a unified framework; a global fit procedure allows for a simultaneous description of the e+ e- annihilation into the 6 final states $\\pi^+ \\pi^-$, $\\pi^0 \\gamma$, $\\eta \\gamma$, $\\pi^+ \\pi^- \\pi^0$, $K^+ K^-$, $K_l K_s$ and includes the dipion spectrum in the {\\tau} decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment $a_{th}$ of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved compared to its partner derived from integrating the measured spectra directly. However, most spectra for the process $e^+ e^- \\to \\pi^+ \\pi^-$ undergo overall scale uncertainties which dominate the other sources, and one may suspect some bias in the dipion contribution to $a_{th}$. However, an iterate...

  11. Finite-time H∞ filtering for non-linear stochastic systems

    Science.gov (United States)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  12. Non-Linear Noise Contributions in Highly Dispersive Optical Transmission Systems

    Science.gov (United States)

    Matera, Francesco

    2016-01-01

    This article reports an analytical investigation, confirmed by numerical simulations, about the non-linear noise contribution in single-channel systems adopting generic modulation-detection formats in long links with both managed and unmanaged dispersion compensation and its impact in system performance. This noise contribution is expressed in terms of a pulse non-linear interaction length and permits a simple calculation of the Q-factor. Results point out the dependence of this non-linear noise on the number of amplifiers spans, N, according to the adopted chromatic dispersion compensation scheme, the modulation-detection format, and the signal baud rate. It is also shown how the effects of polarization multiplexing can be taken into account and how this single-channel non-linear noise contribution can be used in a wavelength-division multiplexing (WDM) environment.

  13. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  14. Lagrangian Quantum Homology for Lagrangian cobordism

    OpenAIRE

    Singer, Berit

    2015-01-01

    We extend the definition of Lagrangian quantum homology to monotone Lagrangian cobordism and establish its general algebraic properties. In particular we develop a relative version of Lagrangian quantum homology associated to a cobordism relative to a part of its boundary and study relations of this invariant to the ambient quantum homology.

  15. Non-linear PIC simulation in a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)

    2001-01-01

    We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.

  16. Non-linear scalable TFETI domain decomposition based contact algorithm

    Science.gov (United States)

    Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.

    2010-06-01

    The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.

  17. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  18. Non-linear Frequency Scaling Algorithm for FMCW SAR Data

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran

  19. Non Linear Gauge Fixing for FeynArts

    CERN Document Server

    Gajdosik, Thomas

    2007-01-01

    We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.

  20. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  1. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  2. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  3. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  4. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  5. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  6. Non-linear dielectric monitoring of biological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Treo, E F; Felice, C J [Departamento de BioingenierIa, Universidad Nacional de Tucuman and Consejo Nacional de Investigaciones Cientificas y Tecnicas. CC327, CP4000, San Miguel de Tucuman (Argentina)

    2007-11-15

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response.

  7. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  8. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  9. Magnetic instability in AdS/CFT : Schwinger effect and Euler-Heisenberg Lagrangian of Supersymmetric QCD

    CERN Document Server

    Hashimoto, Koji; Sonoda, Akihiko

    2014-01-01

    To reveal the Schwinger effect for quarks, i.e., pair creation process of quarks and antiquarks, we derive the vacuum decay rate at strong coupling using AdS/CFT correspondence. Magnetic fields, in addition to the electric field responsible for the pair creation, causes prominent effects on the rate, and is important also in experiments such as RHIC/LHC heavy ion collisions. In this paper, through the gravity dual we obtain the full Euler-Heisenberg Lagrangian of N=2 supersymmetric QCD and study the Schwinger mechanism with not only a constant electric field but also a constant magnetic field as external fields. We determine the quark mass and temperature dependence of the Lagrangian. In sharp contrast with the zero magnetic field case, we find that the imaginary part, and thus the vacuum decay rate, diverges in the massless zero-temperature limit. This may be related to a strong instability of the QCD vacuum in strong magnetic fields. The real part of the Lagrangian serves as a generating function for non-li...

  10. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  11. Non-linear dynamic response of a wind turbine blade

    Science.gov (United States)

    Chopra, I.; Dugundji, J.

    1979-01-01

    The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.

  12. Non-linear dynamics in photochemistry

    Science.gov (United States)

    Pimienta, V.; Lévy, G.; Lavabre, D.; Laplante, J. P.; Micheau, J. C.

    1992-09-01

    The rate law of an elementary photochemical reaction: A → B ( hv), contains 4 independent factors: the quantum yield, the photon flux, the concentration of the photosensitive substrate and the photokinetic factor. This type of reaction will always slow down. However, by increasing one of these 4 factors artificially, the reaction can be made to speed up. Using kinetic models comprising one or more photochemical reactions, we show that appropriate coupling between two or more elementary processes gives rise to a cooperative effect. This effect increases one or more of these 4 factors, and makes the coupled photochemical model bistable in a CSTR. The values of the parameters for which one observes bistability are experimentally realistic. One of these models provides a simplified simulation of the stages underlying the bistable photochemical behavior of the TPID/CHCl 3, system.

  13. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  14. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  15. Non-linear cosmological collapse of quintessence

    CERN Document Server

    Rekier, Jeremy; Cordero-Carrion, Isabel

    2015-01-01

    We present a study of the fully relativistic spherical collapse in presence of quintessence using on Numerical Relativity, following the method proposed by the authors in a previous article [arXiv:1409.3476]. We ascertain the validity of the method by studying the evolution of a spherically symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the local expansion around the centre of coordinates. We then proceed to compare the results of our method to those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up under the effect that matter inhomogeneities have on the local space-time yet remain very small due to the presence of momentum transfer from the over-dense to the background regions. We expect that these might have an even more important role in modified theories of gravitation.

  16. Non-linear conductivity in Coulomb glasses

    Energy Technology Data Exchange (ETDEWEB)

    Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.

    2009-12-15

    We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. 输送机非线性动力学的研究及其对动态性能的影响%Study on conveyor non-linear dynamics and its effect on dynamic behavior

    Institute of Scientific and Technical Information of China (English)

    李光布

    2004-01-01

    A conveyor linear system assumption is based on an approximate description of belt mechanics behavior and constant elastic module. It produces analysis errors and improper dynamics simulation in large conveyors. The belt non-linear characteristics based on sag are described and the belt equivalent elastic module expression is deduced. The relationship between belt-equivalent elastic module and elastic module is studied, and their ratio varies from 0. 1 to 1. 0. The non-linear motion equation with a lumped element model is put forward. Its increment equation and numerical solution are built. A dynamics simulation on a conveyor is carried out, mainly to calculate and compare belt speed, acceleration, tension, displacement of gravity take-up and wave period with linear and non-linear models. It shows that the simulation errors between two models vary from 6% to 50%.%输送机线性系统的假设是在胶带力学特性和弹性模量不变的情况下近似提出的. 这种假设会使大型输送机产生理论误差和不正确的动力学仿真结果. 本文分析了基于胶带悬垂度的非线性特性, 推导了等效弹性模量的表达式, 研究了胶带等效弹性模量和弹性模量之间的关系, 并发现两者的比值在0. 1~1. 0之间变化. 提出了输送机有限单元模型的非线性运动方程及其增量方程和数值解法. 通过对一输送机动态特性的仿真分析, 发现用线性和非线性2种模型, 它们动态参数(如带速, 胶带加速度, 张力以及重锤位移和张力波速)的计算误差介于6%~50% 之间.

  18. Muon g-2 estimates: can one trust effective Lagrangians and global fits?

    Energy Technology Data Exchange (ETDEWEB)

    Benayoun, M., E-mail: benayoun@in2p3.fr [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); David, P. [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); LIED, Université Paris-Diderot/CNRS UMR 8236, 75013, Paris (France); DelBuono, L. [LPNHE des Universités Paris VI et Paris VII IN2P3/CNRS, 75252, Paris (France); Jegerlehner, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489, Berlin (Germany); Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738, Zeuthen (Germany)

    2015-12-26

    Previous studies have shown that the Hidden Local Symmetry (HLS) model, supplied with appropriate symmetry breaking mechanisms, provides an effective Lagrangian (Broken Hidden Local Symmetry, BHLS) which encompasses a large number of processes within a unified framework. Based on it, a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into six final states—π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S}—and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sub μ}{sup th} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved in comparison to the standard approach of integrating the measured spectra directly. However, because most spectra for the annihilation process e{sup +}e{sup -}→π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, one may suspect some bias in the dipion contribution to a{sub μ}{sup th}, which could question the reliability of the global fit method. However, an iterated global fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied successfully to the e{sup +}e{sup -}→π{sup +}π{sup -} data samples from CMD2, SND, KLOE, BaBar, and BESSIII. The iterated fit solution is shown to further improve the prediction for a{sub μ}, which we find to deviate from its experimental value above the 4σ level. The contribution to a{sub μ} of the π{sup +}π{sup -} intermediate state up to 1.05 GeV has an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results.

  19. Muon g - 2 estimates. Can one trust effective Lagrangians and global fits?

    Energy Technology Data Exchange (ETDEWEB)

    Benayoun, M.; DelBuono, L. [LPNHE des Universites Paris VI et Paris VII IN2P3/CNRS, Paris (France); David, P. [LPNHE des Universites Paris VI et Paris VII IN2P3/CNRS, Paris (France); LIED, Universite Paris-Diderot/CNRS UMR 8236, Paris (France); Jegerlehner, F. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2015-12-15

    Previous studies have shown that the Hidden Local Symmetry (HLS) model, supplied with appropriate symmetry breaking mechanisms, provides an effective Lagrangian (Broken Hidden Local Symmetry, BHLS) which encompasses a large number of processes within a unified framework. Based on it, a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into six final states - π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S} - and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sub μ}{sup th} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved in comparison to the standard approach of integrating the measured spectra directly. However, because most spectra for the annihilation process e{sup +}e{sup -} → π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, one may suspect some bias in the dipion contribution to a{sub μ}{sup th}, which could question the reliability of the global fit method. However, an iterated global fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied successfully to the e{sup +}e{sup -} → π{sup +}π{sup -} data samples from CMD2, SND, KLOE, BaBar, and BESSIII. The iterated fit solution is shown to further improve the prediction for a{sub μ}, which we find to deviate from its experimental value above the 4σ level. The contribution to a{sub μ} of the π{sup +}π{sup -} intermediate state up to 1.05 GeV has an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results. (orig.)

  20. Muon g-2 Estimates. Can One Trust Effective Lagrangians and Global Fits?

    Energy Technology Data Exchange (ETDEWEB)

    Benayoun, M.; DelBuono, L. [Paris VI et Paris VII Univ. (France). LPNHE; David, P. [Paris VI et Paris VII Univ. (France). LPNHE; Paris-Diderot Univ./CNRS UMR 8236 (France). LIED; Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2015-07-15

    Previous studies have shown that the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms, provides an Effective Lagrangian (BHLS) which encompasses a large number of processes within a unified framework; a global fit procedure allows for a simultaneous description of the e{sup +}e{sup -} annihilation into the 6 final states - π{sup +}π{sup -}, π{sup 0}γ, ηγ, π{sup +}π{sup -}π{sup 0}, K{sup +}K{sup -}, K{sub L}K{sub S} - and includes the dipion spectrum in the τ decay and some more light meson decay partial widths. The contribution to the muon anomalous magnetic moment a{sup th}{sub μ} of these annihilation channels over the range of validity of the HLS model (up to 1.05 GeV) is found much improved compared to its partner derived from integrating the measured spectra directly. However, most spectra for the process e{sup +}e{sup -} → π{sup +}π{sup -} undergo overall scale uncertainties which dominate the other sources, and one may suspect some bias in the dipion contribution to a{sup th}{sub μ}. However, an iterated fit algorithm, shown to lead to unbiased results by a Monte Carlo study, is defined and applied succesfully to the e{sup +}e{sup -} → π{sup +}π{sup -} data samples from CMD2, SND, KLOE (including the latest sample) and BaBar. The iterated fit solution is shown to be further improved and leads to a value for a{sub μ} different from aexp above the 4σ level. The contribution of the π{sup +}π{sup -} intermediate state up to 1.05 GeV to a{sub μ} derived from the iterated fit benefits from an uncertainty about 3 times smaller than the corresponding usual estimate. Therefore, global fit techniques are shown to work and lead to improved unbiased results. The main issue raised in this study and the kind of solution proposed may be of concern for other data driven methods when the data samples are dominated by global normalization uncertainties.

  1. Non-linear mixed-effects modeling for photosynhetic response of Rosa hybrida L. under elevated CO2 in greenhouses - short communication

    DEFF Research Database (Denmark)

    Ozturk, I.; Ottosen, C.O.; Ritz, Christian

    2011-01-01

    conditions. Leaf gas exchanges were measured at 11 light intensities from 0 to 1,400 µmol/m2s, at 800 ppm CO2, 25°C, and 65 ± 5% relative humidity. In order to describe the data corresponding to diff erent measurement dates, the non-linear mixed-eff ects regression analysis was used. Th e model successfully...... described the photosynthetic responses. Th e analysis indicated signifi cant diff erences in light saturated photosynthetic rates and in light compensation points. Th e cultivar with the lower light compensation points (Escimo) maintained a higher carbon gain despite its lower (but not-signifi cant) quantum...... effi ciency. Th e results suggested acclimation response, as carbon assimilation rates and stomatal conductance at each measurement date were higher for Escimo than Mercedes. Diff erences in photosynthesis rates were attributed to the adaptive capacity of the cultivars to light conditions at a specifi...

  2. Non-linear mixed-effects modeling for photosynthetic response of Rosa hybrida L. under elevated CO2 in greenhouses - Short communication

    DEFF Research Database (Denmark)

    Öztürk, I.; Ottosen, C.O.; Ritz, C.

    2011-01-01

    conditions. Leaf gas exchanges were measured at 11 light intensities from 0 to 1,400 μmol/m2s, at 800 ppm CO2, 25°C, and 65 ± 5% relative humidity. In order to describe the data corresponding to diff erent measurement dates, the non-linear mixed-eff ects regression analysis was used. Th e model successfully...... described the photosynthetic responses. Th e analysis indicated signifi cant diff erences in light saturated photosynthetic rates and in light compensation points. Th e cultivar with the lower light compensation points (Escimo) maintained a higher carbon gain despite its lower (but not-signifi cant) quantum...... effi ciency. Th e results suggested acclimation response, as carbon assimilation rates and stomatal conductance at each measurement date were higher for Escimo than Mercedes. Diff erences in photosynthesis rates were attributed to the adaptive capacity of the cultivars to light conditions at a specifi...

  3. Basic non-linear effects in silicon radiation detector in detection of highly ionizing particles: registration of ultra rare events of superheavy nuclei in the long-term experiments

    CERN Document Server

    Tsyganov, Y S

    2015-01-01

    Sources of non-linear response of PIPS detector, when detecting highly ionizing particles like recoils (EVR), fission fragments and heavy ions, including formation of large pulse-height defect (PHD) are considered. An analytical formula to calculate the recombination component of EVR PHD is proposed on the base of surface recombination model with some empirical correction. PC-based simulation code for generating the spectrum of the measured recoil signal amplitudes of the heavy implanted nuclei is presented. The simulated spectra are compared with the experimental ones for the different facilities: the Dubna Gas Filled Recoil Separator (DGFRS), SHIP and RIKEN gas-filled separator. After the short reviewing of the detection system of the DGFRS, is considered the real-time matrix algorithm application aimed to the radical background suppression in the complete-fusion heavy-ion induced nuclear reactions. Typical examples of application in the long term experiments aimed to the synthesis of superheavy elements Z=...

  4. Effects of slurry pre-treatment and application technique on short-term N2O emmissions as determind by a new non-linear approach

    DEFF Research Database (Denmark)

    Thomsen, Ingrid K; Pedersen, Asger R; Nyord, Tavs

    2010-01-01

    method, and N2O emissions from untreated, digested and separated slurry were similar, although higher N2O emissions from treated slurry were indicated. A conceptual model to explain the observed patterns of N2O is discussed. Accounting for the indirect emissions of N2O associated with NH3 volatilization...... or straight tines. In 2008, three slurry types (digested, separated or untreated) were applied by straight tine injection. In both years band spreading of the slurries by trail-hose application was included as reference. Nitrous oxide emissions were quantified using static chambers for up to 44 days after...... slurry application. A new flux calculation method (HMR) was applied. With HMR, flux estimation is based on non-linear regression using a single-parameter criterion. In connection with gas samplings, soil cores were collected to 20-cm depth within and between bands for analysis of mineral N. Short...

  5. Lagrangian Volume Deformations around Simulated Galaxies

    CERN Document Server

    Robles, S; Oñorbe, J; Martínez-Serrano, F J

    2015-01-01

    We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume $\\Lambda$CDM hydrodynamical simulation. The LVs have a mass range of $1 - 1500 \\times 10^{10} M_\\odot$. We follow the dynamical evolution of the density field inside these initially spherical LVs from $z=10$ up to $z_{\\rm low}= 0.05$, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor $I_{ij}^r$, focusing on the evolution of the principal axes of inertia and their corresponding eigen directions, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by DM dynamics and they transform most of the initially spherical L...

  6. Lagrangian Hydrocode Simulations of Tsunamigenic, Subaerial Landslides

    Science.gov (United States)

    Schwaiger, H. F.; Parsons, J.; Higman, B.

    2006-12-01

    The interaction of debris flows, both subaqueous and subaerial, with bodies of water can produce tsunamis with a locally devastating impact. When debris flows begin above the water surface, the impact can produce a large air cavity, significantly increasing the effective volume of water displaced and complicating efforts to model the resulting tsunami. Because grid-based, Eulerian numerical methods have an inherent difficulty tracking material boundaries, we have implemented a particle-based, Lagrangian model (Smoothed Particle Hydrodynamics). The use of a particle model removes the common numerical difficulties associated with large deformation, multi-phase flows such as the numerical diffusion of material boundaries. We treat the debris flow as an incompressible, viscous fluid and the body of water as inviscid. Other rheologies of the debris flow (Mohr-Coulomb or Bingham plastic) can be included through the use of a non-linear viscosity. We apply this model to study the 1958 Lituya Bay landslide and resulting tsunami. Our simulation results compare favorably with field observations as well as a scaled laboratory experiment and a numerical study using an AMR Eulerian compressible fluid model.

  7. A Method on Non-Linear Correction of Broadband LFMCW Signal Utilizing Its Relative Sweep Non-Linear Error

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.

  8. Distributed adaptive output consensus control of second-order systems containing unknown non-linear control gains

    Science.gov (United States)

    Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan

    2016-10-01

    In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.

  9. Non-linear BFKL dynamics: color screening vs. gluon fusion

    CERN Document Server

    Fiore, R; Zoller, V R

    2012-01-01

    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...

  10. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  11. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  12. Analytical exact solution of the non-linear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica

    2011-07-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  13. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  14. Role of anharmonicities and non-linearities in heavy ion collisions a microscopic approach

    CERN Document Server

    Lanza, E G; Catara, F; Chomaz, P; Volpe, C; Chomaz, Ph.

    1996-01-01

    Using a microscopic approach beyond RPA to treat anharmonicities, we mix two-phonon states among themselves and with one-phonon states. We also introduce non-linear terms in the external field. These non-linear terms and the anharmonicities are not taken into account in the "standard" multiphonon picture. Within this framework we calculate Coulomb excitation of 208Pb and 40Ca by a 208Pb nucleus at 641 and 1000MeV/A. We show with different examples the importance of the non-linearities and anharmonicities for the excitation cross section. We find an increase of 10 % for 208Pb and 20 % for 40Ca of the excitation cross section corresponding to the energy region of the double giant dipole resonance with respect to the "standard" calculation. We also find important effects in the low energy region. The predicted cross section in the DGDR region is found to be rather close to the experimental observation.

  15. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    , for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical......Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  16. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  17. Lagrangian-Hamiltonian formulation of paraxial optics and applications: Study of gauge symmetries and the optical spin Hall effect

    Science.gov (United States)

    Dartora, C. A.; Cabrera, G. G.; Nobrega, K. Z.; Montagner, V. F.; Matielli, Marina H. K.; de Campos, Fillipi Klos Rodrigues; Filho, Horacio Tertuliano S.

    2011-01-01

    In the context of the paraxial regime, usually valid for optical frequencies and also in the microwave spectrum of guided waves, the propagation of electromagnetic fields can be analyzed through a paraxial wave equation, which is analogous to the nonrelativistic Schrödinger equation of quantum mechanics but replacing time t with spatial coordinate z. Considering that, here it is shown that for lossless media in optical frequencies it is possible to construct a Lagrangian operator with an one-to-one correspondence with nonrelativistic quantum mechanics, which allows someone to use the same mathematical methods and techniques for solving problems. To demonstrate that, we explore a few applications in optics with increasing levels of complexity. In the spirit of a Hamiltonian formulation, the ray-tracing trajectories of geometric optics in paraxial regime are obtained in a clear manner. Following that, the gauge symmetries of the optical-field Lagrangian density is discussed in a detailed way, leading to the general form of the interaction Hamiltonian. Through the use of perturbation theory, we discuss a classical analog for a quantum not gate, making use of mode coupling in an isotropic chiral medium. At last, we explore the optical spin Hall effect and its possible applications using an effective geometric optics equation derived from an interaction Hamiltonian for the optical fields. We also predict within the framework of paraxial optics a spin Hall effect of light induced by gravitational fields.

  18. NLHB : A Non-Linear Hopper Blum Protocol

    CERN Document Server

    Madhavan, Mukundan; Sankarasubramaniam, Yogesh; Viswanathan, Kapali

    2010-01-01

    In this paper, we propose a light-weight provably-secure authentication protocol called the NLHB protocol, which is a variant of the HB protocol. The HB protocol uses the complexity of decoding linear codes for security against passive attacks. In contrast, security for the NLHB protocol is proved by reducing passive attacks to the problem of decoding a class of non-linear codes\\footnote that are provably hard. We demonstrate that the existing passive attacks on the HB protocol family, which have contributed to considerable reduction in its effective key-size, are ineffective against the NLHB protocol. From the evidence, we conclude that smaller-key sizes are sufficient for the NLHB protocol to achieve the same level of passive attack security as the HB Protocol. Further, for this choice of parameters, we provide an implementation instance for the NLHB protocol for which the Prover/Verifier complexity is lower than the HB protocol, enabling authentication on very low-cost devices like RFID tags. Finally, in t...

  19. Organic non-linear optics and opto-electronics

    Science.gov (United States)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  20. Are oil markets chaotic? A non-linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)

    2000-10-01

    The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.

  1. [Non-linear rectification of sensor based on immune genetic algorithm].

    Science.gov (United States)

    Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong

    2014-08-01

    A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.

  2. Non-linear Langevin model for the early-stage dynamics of electrospinning jets

    CERN Document Server

    Lauricella, Marco; Pisignano, Dario; Succi, Sauro

    2015-01-01

    We present a non-linear Langevin model to investigate the early-stage dynamics of electrified polymer jets in electrospinning experiments. In particular, we study the effects of air drag force on the uniaxial elongation of the charged jet, right after ejection from the nozzle. Numerical simulations show that the elongation of the jet filament close to the injection point is significantly affected by the non-linear drag exerted by the surrounding air. These result provide useful insights for the optimal design of current and future electrospinning experiments.

  3. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano;

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  4. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    Science.gov (United States)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  5. Excitation Forces on Point Absorbers Exposed to High Order Non-linear Waves

    DEFF Research Database (Denmark)

    Viuff, Thomas Hansen; Andersen, Morten Thøtt; Kramer, Morten

    2013-01-01

    of proper methods to calculate design pressure distributions has led to structural failures such as buckling in the shells in wave energy prototypes. As a step towards understanding the complex loading from high order non-linear waves, this paper presents a practical approach to estimate wave excitation...... forces accounting for both non-linearity and diffraction effects. The method is validated by laboratory experiments using a hemispherical point absorber with a 6-axis force transducer, but the technique is believed to be applicable for most types of submerged or semi-submerged floating devices...

  6. Differential transform method for solving linear and non-linear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kanth, A.S.V. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)], E-mail: asvravikanth@yahoo.com; Aruna, K. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)

    2008-11-17

    In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  7. Compensation techniques for non-linearities in H-bridge inverters

    Directory of Open Access Journals (Sweden)

    Daniel Zammit

    2016-12-01

    Full Text Available This paper presents compensation techniques for component non-linearities in H-bridge inverters as those used in grid-connected photovoltaic (PV inverters. Novel compensation techniques depending on the switching device current were formulated to compensate for the non-linearities in inverter circuits caused by the voltage drops on the switching devices. Both simulation and experimental results will be presented. Testing was carried out on a PV inverter which was designed and constructed for this research. Very satisfactory results were obtained from all the compensation techniques presented, however the exact compensation method was the most effective, providing the highest reduction in harmonics.

  8. [Non-linear rectification of sensor based on immune genetic Algorithm].

    Science.gov (United States)

    Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong

    2014-08-01

    A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.

  9. Global search of non-linear systems periodic solutions: A rotordynamics application

    OpenAIRE

    Sarrouy, Emmanuelle; Thouverez, Fabrice

    2010-01-01

    International audience; Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions--where T is known--of a non-linear d...

  10. Generalized non-linear strength theory and transformed stress space

    Institute of Scientific and Technical Information of China (English)

    YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo

    2004-01-01

    Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.

  11. An algorithm for earthwork allocation considering non-linear factors

    Institute of Scientific and Technical Information of China (English)

    WANG Ren-chao; LIU Jin-fei

    2008-01-01

    For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.

  12. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  13. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  14. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  15. Change-Of-Bases Abstractions for Non-Linear Systems

    CERN Document Server

    Sankaranarayanan, Sriram

    2012-01-01

    We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...

  16. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  17. Non-linear growth and condensation in multiplex networks

    CERN Document Server

    Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc

    2013-01-01

    Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.

  18. Realization of non-linear coherent states by photonic lattices

    Directory of Open Access Journals (Sweden)

    Shahram Dehdashti

    2015-06-01

    Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  19. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...

  20. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  1. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  2. Non-linear dynamics of a geared rotor-bearing system with multiple clearances

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1991-02-01

    Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.

  3. On the quantum effects on noncollinear Lagrangian points and displaced periodic orbits in the Earth-Moon system

    CERN Document Server

    Battista, Emmanuele; Esposito, Giampiero; Simo, Jules

    2015-01-01

    Recent work in the literature has shown that the leading long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equi...

  4. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation...

  5. Scene matching based on non-linear pre-processing on reference image and sensed image

    Institute of Scientific and Technical Information of China (English)

    Zhong Sheng; Zhang Tianxu; Sang Nong

    2005-01-01

    To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.

  6. On Landau damping of dipole modes by non-linear space charge and octupoles

    CERN Document Server

    Möhl, D

    1995-01-01

    The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.

  7. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  8. Individualized Learning Through Non-Linear use of Learning Objects: With Examples From Math and Stat

    DEFF Research Database (Denmark)

    Rootzén, Helle

    2015-01-01

    Our aim is to ensure individualized learning that is fun, inspiring and innovative. We believe that when you enjoy, your brain will open up and learning will be easier and more effective. The methods use a non-linear learning environment based on self-contained learning objects which are pieced t...

  9. Alternative expression for the electromagnetic Lagrangian

    CERN Document Server

    Saldanha, Pablo L

    2015-01-01

    We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.

  10. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  11. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  12. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    a sequence of estimation problems for linearized models is solved. In the testing we apply four estimators to ten non-linear data fitting problems. The test problems are also solved by the Generalized Levenberg-Marquardt method and standard optimization BFGS method. It turns out that the new method...

  13. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...

  14. Non-Linear Langmuir Wave Modulation in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1977-01-01

    A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...

  15. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  16. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...

  17. Note About Hamiltonian Structure of Non-Linear Massive Gravity

    CERN Document Server

    Kluson, J

    2011-01-01

    We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.

  18. Locally supersymmetric D=3 non-linear sigma models

    NARCIS (Netherlands)

    Wit, B. de; Tollsten, A. K.; Nicolai, H.

    1992-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general

  19. Non-linear magnetorheological behaviour of an inverse ferrofluid

    NARCIS (Netherlands)

    de Gans, B.J.; Hoekstra, Hans; Mellema, J.

    1999-01-01

    The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made

  20. On the non-linearity of the subsidiary systems

    CERN Document Server

    Friedrich, H

    2005-01-01

    In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.

  1. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  2. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.;

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....

  3. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  4. Applications of non-linear methods in astronomy

    NARCIS (Netherlands)

    Martens, P.C.H.

    1984-01-01

    In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d

  5. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  6. Non-linear states of a positive or negative refraction index material in a cavity with feedback

    Science.gov (United States)

    Mártin, D. A.; Hoyuelos, M.

    2010-06-01

    We study a system composed by a cavity with plane mirrors containing a positive or negative refraction index material with third order effective electric and magnetic non-linearities. The aim of the work is to present a general picture of possible non-linear states in terms of the relevant parameters of the system. The parameters are the ones that appear in a reduced description that has the form of the Lugiato-Lefever equation. This equation is obtained from two coupled non-linear Schrödinger equations for the electric and magnetic field amplitudes.

  7. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2015-08-01

    Full Text Available Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position.

  8. Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method

    Science.gov (United States)

    Mishchenko, Yuriy; Ji, Chueng-R.

    2004-03-01

    Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.

  9. Using the group of non-linear cells design metamaterial bar

    Science.gov (United States)

    Sun, Hongwei; Song, Xin; Hu, Xiaolei; Gu, Jinliang

    2016-04-01

    The paper presents the wave propagation in one-dimensional metamaterial bar with attached group of non-linear local oscillators by using analytical and numerical models. The focus is on the influence of group of non-linear cells on the filtering properties of the bar in the 1000Hz to 2000Hz range. Group of Periodic cells with alternating properties exhibit interesting dynamic characteristics that enable them to act as filters. Waves can propagate along bars within specific bands of frequencies called pass bands, and attenuate within bands of frequencies called gaps. Gaps in structures with group of periodic cells are located according on the frequency of cells. From the cell, we can yield the effect negative stiffness and effect negative mass. We can also design the gaps from attached oscillators or cells. In the uniform case the gap is located around the resonant frequency of the oscillators, and thus a stop band can be created in the lower frequency range. In the case with group of non-linear cells the results show that the position of the gap can be designed, and the design depends on the amplitude and the degree of non-linear cells.

  10. Metal-organic frameworks as competitive materials for non-linear optics.

    Science.gov (United States)

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  11. Earth-moon Lagrangian points as a test bed for general relativity and effective field theories of gravity

    Science.gov (United States)

    Battista, Emmanuele; Dell'Agnello, Simone; Esposito, Giampiero; Di Fiore, Luciano; Simo, Jules; Grado, Aniello

    2015-09-01

    We first analyze the restricted four-body problem consisting of the Earth, the Moon, and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order 2 mm, whereas for Lagrangian points of unstable

  12. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h(2 )  0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  13. Towards a non-linear theory for induced seismicity in shales

    Science.gov (United States)

    Salusti, Ettore; Droghei, Riccardo

    2014-05-01

    We here analyze the pore transmission of fluid pressure pand solute density ρ in porous rocks, within the framework of the Biot theory of poroelasticity extended to include physico-chemical interactions. In more details we here analyze the effect of a strong external stress on the non-linear evolution of p and ρ in a porous rock. We here focus on the consequent deformation of the rock pores, relative to a non-linear Hooke equation among strain, linear/quadratic pressure and osmosis in 1-D. We in particular analyze cases with a large pressure, but minor than the 'rupture point'. All this gives relations similar to those discussed by Shapiro et al. (2013), which assume a pressure dependent permeability. Thus we analyze the external stress necessary to originate quick non-linear transients of combined fluid pressure and solute density in a porous matrix, which perturb in a mild (i.e. a linear diffusive phenomenon) or a more dramatic non-linear way (Burgers solitons) the rock structure. All this gives a novel, more realistic insight about the rock evolution, fracturing and micro-earthquakes under a large external stress.

  14. Performance analysis of damaged buildings applying scenario of related non-linear analyses and damage coefficient

    Directory of Open Access Journals (Sweden)

    Ćosić Mladen

    2015-01-01

    Full Text Available The paper deals with methodology developed and presented for analyzing the damage on structures exposed to accidental and seismic actions. The procedure is based on non-linear numerical analysis, taking into account the principles of Performance-Based Seismic Design (PBSD. The stiffness matrix of the effects of vertical action is used as the initial stiffness matrix in non-linear analysis which simulates the collapse of individual ground-floor columns, forming thereby a number of possible scenarios. By the end of the analysis that simulates the collapse of individual columns, the stiffness matrix is used as the initial stiffness matrix for Non-linear Static Pushover Analysis (NSPA of bi-directional seismic action (X and Y directions. Target displacement analyses were conducted using the Capacity Spectrum Method (CSM. The structure's conditions/state was assessed based on the calculated global and inter-storey drifts and the damage coefficient developed. The damage level to the building was established using an integrated approach based on global and inter-storey drifts, so that, depending on the level of displacements for which the drifts are identified, a more reliable answer can be obtained. Applying the damage coefficient, a prompt, reliable and accurate indication can be obtained on the damage level to the entire structure in the capacitive domain, from elastic and non-linear to collapse state.

  15. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part i: Stability

    Science.gov (United States)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    1999-08-01

    The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.

  16. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    Science.gov (United States)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendrücker, E.; Besse, N.; Bertrand, P.

    2006-11-01

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.

  17. Validity of purchasing power parity for selected Latin American countries: Linear and non-linear unit root tests

    Directory of Open Access Journals (Sweden)

    Claudio Roberto Fóffano Vasconcelos

    2016-01-01

    Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.

  18. On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Canfora, Fabrizio, E-mail: canfora@cecs.cl [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Giacomini, Alex, E-mail: alexgiacomini@uach.cl [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile); Zerwekh, Alfonso R., E-mail: alfonso.zerwekh@usm.cl [Departamento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile)

    2016-12-15

    In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati–Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space–time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov–Zwanziger like approach.

  19. On infrared problems of effective Lagrangians of massive spin 2 fields coupled to gauge fields

    CERN Document Server

    Canfora, Fabrizio; Zerwekh, Alfonso R

    2016-01-01

    In this paper we analyze the interactions of a massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati-Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stuckelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stuckelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space-time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for "lar...

  20. Effects of the next-to-leading order terms in the chiral SU(3) Lagrangian on the strangeness -1 s-wave meson-baryon interactions

    CERN Document Server

    Magas, V K; Ramos, A

    2013-01-01

    The meson-baryon interactions in s-wave in the strangeness S=-1 sector are studied using a chiral unitarity approach based on the next-to-leading order chiral SU(3) Lagrangian. The model is fitted to the large set of experimental data in different two-body channels. Particular attention is paid to the $\\Xi$ hyperon production reaction, $\\bar{K} N \\rightarrow K \\Xi$, where the effect of the next-to-leading order terms in the Lagrangian play a crucial role, since the cross section of this reaction at tree level is zero.

  1. Assessment of the non-linear behaviour of plastic ankle foot orthoses by the finite element method

    OpenAIRE

    Syngellakis, S.; Arnold, M. A.; Rassoulian, H.

    2000-01-01

    The stiffness characteristics of plastic ankle foot orthoses (AFOs) are studied through finite element modelling and stress analysis. Particular attention is given to the modelling and prediction of non-linear AFO behaviour, which has been frequently observed in previous experimental studies but not fully addressed analytically. Both large deformation effects and material non-linearity are included in the formulation and their individual influence on results assessed. The finite element progr...

  2. Non-linear Elasticity and Monitoring of Stress in the Focus of an Earthquake

    Science.gov (United States)

    Bakulin, V.; Bakulin, A.

    2001-05-01

    Non-linear elasticity proved to give comprehensive framework for relating seismic velocities in rocks to stress. This powerful theory allows attacking the problem of estimating stress state at the focus of earthquakes. Such idea has been proposed long time ago [Kostrov and Nikitin, 1968] however its implementation requires a-priori knowledge of non-linear rock properties. Three non-linear constants needed to describe variation of any velocity with stress are typically estimated from core measurements [Bakulin et al., 2000]. More reliable estimates can be obtained from multi-mode inversions of borehole acoustic data [Sinha, 1996]. Nevertheless database of non-linear formation constants is still very limited. More measurements are required to estimate non-linear rock properties on larger scale and with independent stress constraints. Such measurements can be done in mines [Bakulin and Bakulin, 1999] or in hydrocarbon reservoirs where time-dependent pressure measurements are available. Without knowledge of non-linear rock properties seismic waves can still bring information about directions of tectonic stresses. In particular, shear wave polarizations can deliver directions of principal stresses in the focus of an earthquake, provided the overburden effects were removed. If rock non-linear properties are independently derived then estimation of stress magnitudes becomes feasible. Such techniques were applied in mining environment [Bakulin and Bakulin, 1999]. They may become routine for monitoring stress state in the focus of earthquakes and therefore can be used for forecasting the seismic activity. Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., 2000, Acoustoelasticity of rocks, St. Petersburg (in Russian). Bakulin, V. and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual Internat. Mtg., Soc. Expl. Geophys., 1971-1974. Kostrov, B.V., and Nikitin, L.V., 1968, Influence of initial

  3. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.

    Science.gov (United States)

    Van Aert, S; Chen, J H; Van Dyck, D

    2010-10-01

    different effects on the transfer of the linear and non-linear terms, such that the non-linear imaging contributions are damped less than the linear imaging contributions at high spatial frequencies. This will be important when coherent aberrations such as spherical aberration and defocus are reduced.

  4. Non-linear irreversible thermodynamics of single-molecule experiments

    CERN Document Server

    Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A

    2015-01-01

    Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.

  5. SSNN toolbox for non-linear system identification

    Science.gov (United States)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  6. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  7. Integration of non-linear cellular mechanisms regulating microvascular perfusion.

    Science.gov (United States)

    Griffith, T M; Edwards, D H

    1999-01-01

    It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.

  8. Parametric Analysis of Fiber Non-Linearity in Optical systems

    Directory of Open Access Journals (Sweden)

    Abhishek Anand

    2013-06-01

    Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.

  9. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...

  10. Non-Linear Aeroelastic Stability of Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie;

    2013-01-01

    As wind turbines increase in magnitude without a proportional increase in stiffness, the risk of dynamic instability is believed to increase. Wind turbines are time dependent systems due to the coupling between degrees of freedom defined in the fixed and moving frames of reference, which may...... trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...... and non-linear aero-elasticity into consideration. The stability of the wind turbine is determined by the maximum Lyapunov exponent of the system, which is operated directly on the non-linear state vector differential equations. Numerical examples show that this approach is promising for stability...

  11. Defects in the discrete non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)

    2012-01-01

    The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.

  12. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  13. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)

    2015-12-15

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)

  14. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)

    2015-12-09

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.

  15. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  16. Linear Algebraic Method for Non-Linear Map Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  17. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found for no...... for nonlinear problems. Comparison of VIM and PPM with Runge-Kutta 4th leads to highly accurate solutions....

  18. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  19. Likelihood inference for discretely observed non-linear diffusions

    OpenAIRE

    1998-01-01

    This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...

  20. Non-linear dark matter collapse under diffusion

    CERN Document Server

    Velten, Hermano E S

    2014-01-01

    Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.

  1. On the non-linear stability of scalar field cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2011-09-22

    We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.

  2. Experimental verification of the linear and non-linear versions of a panel code

    Science.gov (United States)

    Grigoropoulos, G. J.; Katsikis, C.; Chalkias, D. S.

    2011-03-01

    In the proposed paper numerical calculations are carried out using two versions of a three-dimensional, timedomain panel method developed by the group of Prof. P. Sclavounos at MIT, i.e. the linear code SWAN2, enabling optionally the use of the instantaneous non-linear Froude-Krylov and hydrostatic forces and the fully non-linear SWAN4. The analytical results are compared with experimental results for three hull forms with increasing geometrical complexity, the Series 60, a reefer vessel with stern bulb and a modern fast ROPAX hull form with hollow bottom in the stern region. The details of the geometrical modeling of the hull forms are discussed. In addition, since SWAN4 does not support transom sterns, only the two versions of SWAN2 were evaluated over experimental results for the parent hull form of the NTUA double-chine, wide-transom, high-speed monohull series. The effect of speed on the numerical predictions was investigated. It is concluded that both versions of SWAN2 the linear and the one with the non-linear Froude-Krylov and hydrostatic forces provide a more robust tool for prediction of the dynamic response of the vessels than the non-linear SWAN4 code. In general, their results are close to what was expected on the basis of experience. Furthermore, the use of the option of non-linear Froude-Krylov and hydrostatic forces is beneficial for the accuracy of the predictions. The content of the paper is based on the Diploma thesis of the second author, supervised by the first one and further refined by the third one.

  3. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  4. Non-linear Q-clouds around Kerr black holes

    Directory of Open Access Journals (Sweden)

    Carlos Herdeiro

    2014-12-01

    Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.

  5. Generalized Ghost Dark Energy with Non-Linear Interaction

    CERN Document Server

    Ebrahimi, E; Mehrabi, A; Movahed, S M S

    2016-01-01

    In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...

  6. Fabrication and characterization of non-linear parabolic microporous membranes.

    Science.gov (United States)

    Rajasekaran, Pradeep Ramiah; Sharifi, Payam; Wolff, Justin; Kohli, Punit

    2015-01-01

    Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t(1/2). Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.

  7. Bifurcation and Resonance of a Mathematical Model for Non-Linear Motion of a Flooded Ship in Waves

    Science.gov (United States)

    Murashige, S.; Aihara, K.; Komuro, M.

    1999-02-01

    A flooded ship can exhibit undesirable non-linear roll motion even in waves of moderate amplitude. In order to understand the mechanism of this non-linear phenomenon, the non-linearly coupled dynamics of a ship and flood water are considered using a mathematical model for the simplified motion of a flooded ship in regular beam waves. This paper describes bifurcation and resonance of this coupled system. A bifurcation diagram shows that large-amplitude subharmonic motion exists in a wide range of parameters, and that the Hopf bifurcation is observed due to the dynamic effects of flood water. Resonance frequencies can be determined by linearization of this model. Comparison between the resonant points and the bifurcation curves suggests that non-linear resonance of this model can bring about large-amplitude subharmonic motion, even if it is in the non-resonate state of the linearized system.

  8. Onset and non-linear regimes of Soret-induced convection in binary mixtures heated from above.

    Science.gov (United States)

    Lyubimova, T; Zubova, N; Shevtsova, V

    2017-03-01

    The paper deals with the investigation of the onset and non-linear regimes of convection of liquid binary mixtures with negative Soret effect heated from above. The linear stability of a convectionless state in a horizontal layer is studied by the numerical solution of the linearized problem on the temporal evolution of small perturbations of the unsteady base state. Non-linear regimes of convection are investigated by the numerical solution of the non-linear unsteady equations for a horizontally elongated rectangular cavity. The calculations are performed for water-ethanol and water-isopropanol liquid mixtures and for colloidal suspensions. The dependences of the instability onset time and wave number of the most dangerous perturbations on the solutal Rayleigh number (gravity level) obtained by a linear stability analysis and non-linear calculations are found to be in a very good agreement. A favorable comparison with the existing experimental and numerical data is presented.

  9. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {{v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( 1 + {\\overline {M_s}} ^{-1/2})R\\overline D_{II}, where \\overline {M_s} = (1 + {\\overline {D_{II}} }^2 \\big/ {nD{_{II}^*}^2}) \\big/ ( 1 + {\\overline {D_{II}}^2} \\big/ D{_{II}^*}^2) and \\overline {D_{II}} is the second invariant of the far

  10. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  11. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  12. Modeling the Non-Linear Behavior of Library Cells for an Accurate Static Noise Analysis

    CERN Document Server

    Forzan, Cristiano

    2011-01-01

    In signal integrity analysis, the joint effect of propagated noise through library cells, and of the noise injected on a quiet net by neighboring switching nets through coupling capacitances, must be considered in order to accurately estimate the overall noise impact on design functionality and performances. In this work the impact of the cell non-linearity on the noise glitch waveform is analyzed in detail, and a new macromodel that allows to accurately and efficiently modeling the non-linear effects of the victim driver in noise analysis is presented. Experimental results demonstrate the effectiveness of our method, and confirm that existing noise analysis approaches based on linear superposition of the propagated and crosstalk-injected noise can be highly inaccurate, thus impairing the sign-off functional verification phase.

  13. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function.

    Science.gov (United States)

    Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A

    2006-01-01

    A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.

  14. Target Lagrangian kinematic simulation for particle-laden flows

    Science.gov (United States)

    Murray, S.; Lightstone, M. F.; Tullis, S.

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  15. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.

  16. Lagrangian multiplier and massive Yang-Mills fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.P.

    1982-09-01

    If we give appropriate constraint to the gauge invariant Lagrangian, the variation principle of the action convert to the variational problems with subsidiary condition. The effective Lagrangian which contains Lagrangian multiplier may have the mass term of the mesons. In that case we obtain naturally the massive Yang-Mills fields which was discussed by Nakanishi.

  17. Computing ITG turbulence with a full-f semi-Lagrangian code

    Energy Technology Data Exchange (ETDEWEB)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph. [CEA Cadarache, CEA/DSM/DRFC, Assoc Euratom CEA, Cadarache (France); Crouseilles, N.; Latu, G.; Sonnendruecker, E. [Univ Strasbourg 1, IRMA, F-67084 Strasbourg (France); Besse, N.; Bertrand, P. [Univ Nancy 1, LPMIA, BP 239, F-54506 Vandoeuvre Les Nancy (France)

    2008-07-01

    This paper addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a semi-Lagrangian (SL) scheme for the full distribution function. The 4D non-linear drift-kinetic version of the code already shows the interest in such a SL method which exhibits good properties of energy conservation. The code has been upgraded to run 5D toroidal simulations. Linear benchmarks and non-linear results are presented. (authors)

  18. Computing ITG turbulence with a full- f semi-Lagrangian code

    Science.gov (United States)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendrücker, E.; Besse, N.; Bertrand, P.

    2008-02-01

    This paper addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the G YSELA code. The particularity of G YSELA code is to use a semi-Lagrangian (SL) scheme for the full distribution function. The 4D non-linear drift-kinetic version of the code already shows the interest in such a SL method which exhibits good properties of energy conservation. The code has been upgrated to run 5D toroidal simulations. Linear benchmarks and non-linear results are presented.

  19. A Detailed Analytical Study of Non-Linear Semiconductor Device Modelling

    Directory of Open Access Journals (Sweden)

    Umesh Kumar

    1995-01-01

    junction diode have been developed. The results of computer simulated examples have been presented in each case. The non-linear lumped model for Gunn is a unified model as it describes the diffusion effects as the-domain traves from cathode to anode. An additional feature of this model is that it describes the domain extinction and nucleation phenomena in Gunn dioder with the help of a simple timing circuit. The non-linear lumped model for SCR is general and is valid under any mode of operation in any circuit environment. The memristive circuit model for p-n junction diodes is capable of simulating realistically the diode’s dynamic behavior under reverse, forward and sinusiodal operating modes. The model uses memristor, the charge-controlled resistor to mimic various second-order effects due to conductivity modulation. It is found that both storage time and fall time of the diode can be accurately predicted.

  20. Non-Linear Beam Dynamics Studies of the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Belgroune, Mahdia; Henry Rowland, James; Jones, James; Martin, Ian; Singh, Beni

    2005-01-01

    The non-linear beam dynamics have been investigated for the non-zero dispersion lattice of the Diamond storage ring. Effects in realistic lattice configurations such as the introduction of coupling errors, beta beating, closed orbit correction, quadrupole fringe field and in-vacuum and helical insertion devices have been studied in the presence of realistic physical aperture limitations. Frequency map analysis together with 6D tracking allows identification of the limiting resonances as well as the loss locations and calculation of the influence of non-linear longitudinal motion on the Touschek lifetime. The sensitivity of the lattice to some of these effects leads to the identification of a better working point for the machine.

  1. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    Science.gov (United States)

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  2. Simulation of non-linear rf losses derived from characteristic Nb topography

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Xu, Chen; Kelley, Michael [W& M. JLAB

    2013-09-01

    A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.

  3. Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment

    CERN Document Server

    Citrin, J; Haverkort, J W; Hogeweij, G M D; Jenko, F; Mantica, P; Pueschel, M J; Told, D; contributors, JET-EFDA

    2013-01-01

    Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness at low magnetic shear (s) in the presence of flow shear. Non-linear gyrokinetic simulations are performed, aiming to investigate the physical mechanism behind the observations. The sensitivity of profile stiffness to the variations of plasma parameters experimentally observed when transitioning to the low-stiffness regime is assessed. It is found that non-linear electromagnetic effects, even at low beta_e, can significantly reduce the profile stiffness, although not by a degree sufficient to explain the experimental observations. The effect of toroidal flow shear itself is not predicted by the simulations to lead to a significant reduction in flux due to significant parallel gradient velocity destabilisation. For the majority of discharges studied, the simulated and experimental ion heat flux values do agree within reasonable variations of input parameters around the experimental uncertainties. However, no such ...

  4. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model

    Energy Technology Data Exchange (ETDEWEB)

    Pecorari, Eliana, E-mail: eliana.pecorari@unive.it [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Mantovani, Alice [OSMOTECH S.r.l., via Francesco Sforza, 15, 20122 Milano (Italy); Franceschini, Chiara [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy); Bassano, Davide [SAVE S.p.A., Marco Polo Venice airport viale G. Galilei 30/1, 30173 Tessera-Venezia (Italy); Palmeri, Luca [Department of Industrial Engineering, University of Padova, v. Marzolo 9, 35131 Padova (Italy); Rampazzo, Giancarlo [Department of Environmental Science, Informatics and Statistics, University Ca’ Foscari Venice, Calle Larga Santa Marta 2137, Dorsoduro, 30123 Venezia (Italy)

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po’ Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15–50%) has been observed during specific meteorological events

  5. A Comparison of PDE-based Non-Linear Anisotropic Diffusion Techniques for Image Denoising

    Energy Technology Data Exchange (ETDEWEB)

    Weeratunga, S K; Kamath, C

    2003-01-06

    PDE-based, non-linear diffusion techniques are an effective way to denoise images. In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.

  6. Comparison of PDE-based non-linear anistropic diffusion techniques for image denoising

    Science.gov (United States)

    Weeratunga, Sisira K.; Kamath, Chandrika

    2003-05-01

    PDE-based, non-linear diffusion techniques are an effective way to denoise images.In a previous study, we investigated the effects of different parameters in the implementation of isotropic, non-linear diffusion. Using synthetic and real images, we showed that for images corrupted with additive Gaussian noise, such methods are quite effective, leading to lower mean-squared-error values in comparison with spatial filters and wavelet-based approaches. In this paper, we extend this work to include anisotropic diffusion, where the diffusivity is a tensor valued function which can be adapted to local edge orientation. This allows smoothing along the edges, but not perpendicular to it. We consider several anisotropic diffusivity functions as well as approaches for discretizing the diffusion operator that minimize the mesh orientation effects. We investigate how these tensor-valued diffusivity functions compare in image quality, ease of use, and computational costs relative to simple spatial filters, the more complex bilateral filters, wavelet-based methods, and isotropic non-linear diffusion based techniques.

  7. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  8. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  9. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  10. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  11. Hans Hinterreiter’s non-linear transformations

    DEFF Research Database (Denmark)

    Makovicky, Emil

    poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely...... of plane-group patterns onto curvilinear nets of different kinds, mostly combined with a skilful application of principles of dichroic or polychromatic symmetry. Unlike Escher, Hinterreiter strove to achieve the aesthetic ideal of a pure abstract form [2] with its inherent symmetries. His unique, two...

  12. Studies for an alternative LHC non-linear collimation system

    CERN Document Server

    Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J

    2012-01-01

    A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).

  13. Non-linear optical titanyl arsenates: Crystal growth and properties

    Science.gov (United States)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  14. Non-linear Calibration Leads to Improved Correspondence between Uncertainties

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2007-01-01

    an investigation of an uncomplicated expression of the non-linear working curve that is well suited to an assessment of predicted uncertainties. At small concentrations, the working curve reduces to a straight line that corresponds to the conventional calibration line. If no interferences were disturbing...... limit theorem, an excellent correspondence was obtained between predicted uncertainties and measured uncertainties. In order to validate the method, experiments were applied of flame atomic absorption spectrometry (FAAS) for the analysis of Co and Pt, and experiments of electrothermal atomic absorption...

  15. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  16. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  17. A non-linear UAV altitude PSO-PD control

    Science.gov (United States)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  18. Simulation of non-linear coaxial line using ferrite beads

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J. [Nagaoka Univ. of Technology, Niigata (Japan)

    2002-06-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  19. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  20. Utilization of non-linear converters for audio amplification

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold

    2012-01-01

    Class D amplifiers fits the automotive demands quite well. The traditional buck-based amplifier has reduced both the cost and size of amplifiers. However the buck topology is not without its limitations. The maximum peak AC output voltage produced by the power stage is only equal the supply voltage....... The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is possible to achieve...

  1. Non linear analyses of speech and prosody in Asperger's syndrome

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Bang, Dan; Weed, Ethan

    and explain this oddness of speech pattern. In this project, we quantify how the speech patterns of people with Asperger’s Syndrome (AS) differ from that of matched controls. To do so, we employed both traditional measures (pitch range and standard deviation, pause duration, and so on) and 2) non......-linear techniques measuring the structure (regularity and complexity) of verbal, prosodic and fluency behaviour. Our aims were (1) to achieve a more fine-grained understanding of the speech patterns in AS than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ...

  2. A New UKF Based Fault Detection Method in Non-linear Systems

    Institute of Scientific and Technical Information of China (English)

    GE Zhe-xue; YANG Yong-min; HU Zheng

    2006-01-01

    To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering(EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.

  3. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  4. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Science.gov (United States)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2016-07-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  5. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  6. [Radiation dose reduction using a non-linear image filter in MDCT].

    Science.gov (United States)

    Nakashima, Junya; Takahashi, Toshiyuki; Takahashi, Yoshimasa; Imai, Yasuhiro; Ishihara, Yotaro; Kato, Kyoichi; Nakazawa, Yasuo

    2010-05-20

    The development of MDCT enabled various high-quality 3D imaging and optimized scan timing with contrast injection in a multi-phase dynamic study. Since radiation dose tends to increase to yield such high-quality images, we have to make an effort to reduce radiation dose. A non-linear image filter (Neuro 3D filter: N3D filter) has been developed in order to improve image noise. The purpose of this study was to evaluate the physical performance and effectiveness of this non-linear image filter using phantoms, and show how we can reduce radiation dose in clinical use of this filter. This N3D filter reduced radiation dose by about 50%, with minimum deterioration of spatial reduction in phantom and clinical studies. This filter shows great potential for clinical application.

  7. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm

    Directory of Open Access Journals (Sweden)

    Antonio Gasparrini

    2011-08-01

    Full Text Available Distributed lag non-linear models (DLNMs represent a modeling framework to flexibly describe associations showing potentially non-linear and delayed effects in time series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space expressed by the combination of two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. This framework is implemented in the R package dlnm, which provides functions to perform the broad range of models within the DLNM family and then to help interpret the results, with an emphasis on graphical representation. This paper offers an overview of the capabilities of the package, describing the conceptual and practical steps to specify and interpret DLNMs with an example of application to real data.

  8. An efficient implementation of massive neutrinos in non-linear structure formation simulations

    CERN Document Server

    Ali-Haïmoud, Yacine

    2012-01-01

    Massive neutrinos make up a fraction of the dark matter, but due to their large thermal velocities, cluster significantly less than cold dark matter (CDM) on small scales. An accurate theoretical modelling of their effect during the non-linear regime of structure formation is required in order to properly analyse current and upcoming high-precision large-scale structure data, and constrain the neutrino mass. Taking advantage of the fact that massive neutrinos remain linearly clustered up to late times, this paper treats the linear growth of neutrino overdensities in a non-linear CDM background. The evolution of the CDM component is obtained via N-body computations. The smooth neutrino component is evaluated from that background by solving the Boltzmann equation linearised with respect to the neutrino overdensity. CDM and neutrinos are simultaneously evolved in time, consistently accounting for their mutual gravitational influence. This method avoids the issue of shot-noise inherent to particle-based neutrino ...

  9. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  10. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Science.gov (United States)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2017-01-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  11. Synthesis, characterization and calculated non-linear optical properties of two new chalcones

    Science.gov (United States)

    Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav

    2012-06-01

    Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).

  12. Global search of non-linear systems periodic solutions: A rotordynamics application

    Science.gov (United States)

    Sarrouy, E.; Thouverez, F.

    2010-08-01

    Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.

  13. Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand Roman; Enquobahrie, Andinet

    2012-02-23

    Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  14. Non-linear finite element simulations of injuries with free boundaries: application to surgical wounds

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.

    2015-01-01

    SUMMARY Wound healing is a process driven by biochemical and mechanical variables in which new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Due to the regularity of this morphology, we approximate the evolution of the wound through its cross-section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem while maintaining allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the non-linear problem we use the Finite Element Method and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. PMID:24443355

  15. Neurosurgery simulation using non-linear finite element modeling and haptic interaction

    Science.gov (United States)

    Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet

    2012-02-01

    Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.

  16. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  17. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  18. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  19. PV Degradation Curves: Non-Linearities and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill; Kurtz, Sarah R.

    2016-09-03

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.

  20. Non-linear Plasma Wake Growth of Electron Holes

    CERN Document Server

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  1. Charged relativistic fluids and non-linear electrodynamics

    Science.gov (United States)

    Dereli, T.; Tucker, R. W.

    2010-01-01

    The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.

  2. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  3. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....

  4. Non-linear plasma wake growth of electron holes

    Science.gov (United States)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  5. The Earth-Moon Lagrangian points as a testbed for general relativity and effective field theories of gravity

    CERN Document Server

    Battista, Emmanuele; Esposito, Giampiero; Di Fiore, Luciano; Simo, Jules; Grado, Aniello

    2015-01-01

    In the restricted four-body problem consisting of the Earth, the Moon and the Sun as the primaries and a spacecraft as the planetoid, we take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. We then evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. By virtue of the effective-gravity correction to the longdistance form of the potential among two point masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for ...

  6. ${\\bar p}p$ annihilation into ${\\bar D}D$ meson pair within an effective Lagrangian model

    CERN Document Server

    Shyam, R

    2015-01-01

    We study the charmed meson pair (${\\bar D}^0 D^0$ and $D^- D^+$) production in ${\\bar p}p$ annihilation within an effective Lagrangian model that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction amplitudes include terms corresponding to the t-channel $\\Lambda_c^+$, $\\Sigma_c^+$ and $\\Sigma_c^{++}$ baryon exchanges and the s-channel excitation, propagation and decay of the $\\Psi$(3770) resonance into the charmed mesons. The initial and final state distortion effects have been accounted for by using a simple eikonal approximation-based procedure in the same way as was done in our previous study of the ${\\bar p}p \\to {\\bar \\Lambda}_c^-\\Lambda_c^+$ reaction within a similar model. The ${\\bar D}^0 D^0$ production reaction is dominated by the $\\Lambda_c^+$ baryon exchange process, and the corresponding total cross sections are predicted to be in the range of 0.18 - 0.7 $\\mu$b for antiproton beam momenta varying between threshold and 20 $GeV/c$. The $\\Psi$(3770) reso...

  7. Did the Non-linear Effect of Fiscal Policies on the Rural Residents'Consumption Occur?%财政政策对农村居民消费产生了非线性效应吗?

    Institute of Scientific and Technical Information of China (English)

    储德银; 闫伟

    2011-01-01

    The nonlinear effect of fiscal policies on the rural residents'consumption is a specific research problem in China's urban and rural dual society. Studying this problem can not only provide practical evidences for the evaluation of China's fiscal policy practice, but also can provide a new idea for the future choices of the Government fiscal policy in post-crisis times. Our researching has shown : Firstly, the performance of fiscal revenue and expenditure on the rural residents'consumption is the Keynesian effects in normal times, but the Keynesian effect of fiscal revenue is not significant. Secondly, in the two special periods of contraction and expansion, the effects of fiscal revenue and expenditure on the rural residents'consumption are the significant non-Keynesian effects. Thirdly, in terms of the total effect of fiscal policy on the rural residents'consumption during the special period, the total effect of fiscal revenue on the rural residents'consumption is the non-Keynesian effects in the two special periods of contraction and expansion, however, the overall impact of expenditure is the Keynesian effect during the expansion periods, that is, the Keynesian effect of fiscal expenditure is in a dominant position during the expansion. But the total effect of fiscal expenditure on the rural residents'consumption can not be finalized in the tightening times.%财政政策对农村居民消费的非线性效应是中国城乡二元社会背景下的特有研究命题。本文对于这一问题的研究不仅能为客观评价我国财政政策实践提供理论依据,还可以为后危机时代政府未来财政政策抉择提供全新思路。本文研究发现,财政收入和支出在正常时期对农村居民消费表现为凯恩斯效应,但财政收入的凯恩斯效应并不显著;在紧缩和扩张两个特殊时期,财政收入和支出对农村居民消费均产生了显著的非凯恩斯效应;就特殊时期财政政策

  8. Quantum Effects on all Lagrangian Points and Prospects to Measure Them in the Earth-Moon System

    CERN Document Server

    Battista, Emmanuele; Agnello, Simone Dell'; Simo, Jules

    2015-01-01

    The one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., both at the Lagrangian points of stable equilibrium and at those of unstable equilibrium the Newtonian values of planetoid's coordinates are changed by a few millimetres in the Earth-Moon system. First, we find that the equations governing the position of both noncollinear and collinear quantum libration points are algebraic fifth degree and ninth degree equations, respectively. Second, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points. By taking into account the quantum corrections to the Newtonian potential, displaced periodic orbits of the...

  9. A review on non-linear aeroelasticity of high aspect-ratio wings

    Science.gov (United States)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  10. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    Science.gov (United States)

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods.

  11. Automated, non-linear registration between 3-dimensional brain map and medical head image

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-05-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  12. Non-linear partially massless symmetry in an SO(1,5) continuation of conformal gravity

    CERN Document Server

    Apolo, Luis

    2016-01-01

    We construct a non-linear theory of interacting spin-2 fields that is invariant under the partially massless (PM) symmetry to all orders. This theory is based on the SO(1,5) group, in analogy with the SO(2,4) formulation of conformal gravity, but has a quadratic spectrum free of ghost instabilities. The action contains a vector field associated to a local SO(2) symmetry which is manifest in the vielbein formulation of the theory. We show that, in a perturbative expansion, the SO(2) symmetry transmutes into the PM transformations of a massive spin-2 field. In this context, the vector field is crucial to circumvent earlier obstructions to an order-by-order construction of PM symmetry. Although the non-linear theory lacks enough first class constraints to remove all helicity-0 modes from the spectrum, the PM transformations survive to all orders. The absence of ghosts and strong coupling effects at the non-linear level are not addressed here.

  13. The Non-Linear Relationship Between Fiscal Deficits And Inflation: Evidence From Africa

    Directory of Open Access Journals (Sweden)

    Abu Nurudeen

    2015-12-01

    Full Text Available Although, there is abundant research on the fiscal deficit-inflation relationship, little has been done to investigate the non-linear association between them, particularly in Africa. This study employs fixed-effects and GMM estimators to examine the non-linear relationship between deficits and inflation from 1999 to 2011 in 51 African economies, which are further grouped into high-inflation/low-income countries and moderate-inflation/middle-income countries. The results indicate that the deficit-inflation relationship is non-linear for the whole sample and sub-groups. For the whole sample, a percentage point increase in deficit results in a 0.25 percentage point increase in inflation rate, while the relationship becomes quantitatively greater once deficits reach 23% of GDP. The subsamples report different relationships. Although our results cannot be used as the base for generalization, we identify importance of grouping African countries according to their levels of inflation and/or income, rather than treating them as a homogeneous entity.

  14. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    Science.gov (United States)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  15. Non-linear dimensionality reduction of signaling networks

    Directory of Open Access Journals (Sweden)

    Ivakhno Sergii

    2007-06-01

    Full Text Available Abstract Background Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling. Results Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF and insulin and (II combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA and Partial Least Squares – Discriminant analysis (PLS-DA were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN and quadratic discriminant analysis (QDA, apoptosis intensity can be predicted for different

  16. Non-linear rock creep model based on hardening and damage effect%基于硬化和损伤效应的岩石非线性蠕变模型

    Institute of Scientific and Technical Information of China (English)

    宋勇军; 雷胜友; 刘向科

    2012-01-01

    岩石的蠕变过程是岩石内部应力不断调整,硬化和损伤效应不断发展并共同作用的结果.借鉴经典元件模型的建模思路,将岩石的初始屈服强度作为蠕变硬化的应力阈值,岩石的长期强度作为损伤软化的应力阈值,引入能反映岩石硬化效应的硬化函数和损伤效应的损伤变量,建立能够全面反映蠕变机制的岩石非线性蠕变模型.利用蠕变试验数据对所提出的模型进行辨识,结果表明该模型不仅能够很好地描述蠕变全过程,而且可以全面反映岩石蠕变过程中的蠕变硬化和损伤软化机制.%Rock creep process is the result that the internal stresses of rock constantly adjusts, hardening and damage effect gradually grow and take mutual effect. By means of classic element combination modeling ideas,the rock initial yield strength was regarded as the stress threshold of the creep hardening, and rock' s long-term strength served as the stress threshold of damage softening, introduced hardening function and damage variable that could reflect the effect of rock hardening and damage effect. Established nonlinear creep model of rock that could comprehensively reflect the creep mechanism. The fitted results of the test data show that nonlinear rheological model not only can effectively describe the creep process of rocks, but also can reflect creep hardening and damage softening mechanism in the creep process of rocks.

  17. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  18. Study of the Performance of an All-Optical Half-Adder Based on Three-Core Non-Linear Directional Fiber Coupler Under Delayed and Instantaneous Non-Linear Kerr Responses

    Science.gov (United States)

    Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.

    2011-06-01

    Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the

  19. Investigating the impact of non-linear geometrical effects on wind turbine blades—Part 1: Current status of design and test methods and future challenges in design optimization

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt; Puri, Amit S.; Dear, John P.

    2011-01-01

    This article is the first part of a three-article series and it deals with full-scale tests of a load-carrying box girder. The two other articles present more details on smaller sub-component levels as well as cap specimens (article 2) and shear webs (article 3). This article also links to the two...... may also have a significant impact on present wind turbine blades. In this article, a 34 m long load-carrying box girder has been tested in static flap-wise bending, and it has been demonstrated that, for this design, the Brazier effect is a critical phenomenon of great relevance for the ultimate...

  20. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  1. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  2. Non-Gaussianity vs. non-linearity of cosmological perturbations

    CERN Document Server

    Verde, L

    2001-01-01

    Following the discovery of the CMB, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us towards a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, non-linear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but these might not be faithful tr...

  3. Hans Hinterreiter’s non-linear transformations

    DEFF Research Database (Denmark)

    Makovicky, Emil

    Hans Hinterreiter (1902-1989) was a Swiss painter, belonging to the Constructivist movement, who spent most of his life in Ibiza, Spain. Since 1930 he occupied himself with the laws of form and colour. Parallel to Escher, he discovered laws of coloured symmetry before crystallographers started...... poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely......-step approach that combines plane group patterns with the principles of coloured symmetry and nonlinear transformations, his understanding of crystallographic and non-crystallographic symmetry and a meticulous application of these principles even to the most complex patterns produced a legacy close to the heart...

  4. Hitting probabilities for non-linear systems of stochastic waves

    CERN Document Server

    Dalang, Robert C

    2012-01-01

    We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.

  5. Predictability of extremes in non-linear hierarchically organized systems

    Science.gov (United States)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare

  6. Method and system for non-linear motion estimation

    Science.gov (United States)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  7. Overall mass-transfer coefficients in non-linear chromatography

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Ernst

    1998-01-01

    In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....

  8. Non-linear rheology in a model biological tissue

    CERN Document Server

    Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2016-01-01

    Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  9. Realising traceable electrostatic forces despite non-linear balance motion

    Science.gov (United States)

    Stirling, Julian; Shaw, Gordon A.

    2017-05-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model.

  10. The mathematics of non-linear metrics for nested networks

    Science.gov (United States)

    Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian

    2016-10-01

    Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.

  11. Biometric Authentication System using Non-Linear Chaos

    Directory of Open Access Journals (Sweden)

    Dr.N.Krishnan

    2010-08-01

    Full Text Available A major concern nowadays for any Biometric Credential Management System is its potential vulnerability to protect its information sources; i.e. protecting a genuine user’s template from both internal and external threats. These days’ biometric authentication systems face various risks. One of the most serious threats is the ulnerability of the template's database. An attacker with access to a reference template could try to impersonate a legitimate user by reconstructing the biometric sample and by creating a physical spoof.Susceptibility of the database can have a disastrous impact on the whole authentication system. The potential disclosure of digitally stored biometric data raises serious concerns about privacy and data protection. Therefore, we propose a method which would integrate conventional cryptography techniques with biometrics. In this work, we present a biometric crypto system which encrypts the biometric template and the encryption is done by generating pseudo random numbers, based on non-linear dynamics.

  12. Responding to non-linear internationalisation of public policy

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten

    2016-01-01

    The transfer of regulatory authority to international organisations can initiate domestic policy reform. The internationalisation process can be a one-off transfer of authority to international institutions or an ongoing process. In the latter situation, the level of internationalisation may...... be gradually increased by expanding the regulatory scope of the regime or by deepening it. However, internationalisation processes may also involve stalemate or even reversal. How do domestic policy makers respond to such non-linear internationalisation? To answer this question, this paper analyzes...... the relationship between developments in the GATT and WTO farm trade negotiations and the reform trajectory of the EU's Common Agricultural Policy (CAP) from the early 1990s to 2013. Until 2008, the EU gradually changed the support instruments of the CAP to limit their trade distorting impact. After the Doha Round...

  13. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  14. Non-linear Oscillations of Compact Stars and Gravitational Waves

    CERN Document Server

    Passamonti, A

    2006-01-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...

  15. An empirical evaluation of non-linear trading rules.

    Directory of Open Access Journals (Sweden)

    Sosvilla-Rivero, Simón

    2003-01-01

    Full Text Available In this paper we investigate the profitability of non-linear trading rules based on nearest neighbour (NN predictors. Applying this investment strategy to the New York Stock Exchange, our results suggest that, taking into account transaction costs, the NN-based trading rule is superior to both a riskadjusted buy-and-hold strategy and a linear ARIMA-based strategy in terms of returns for all of the years studied (1997-2002. Regarding other profitability measures, the NN-based trading rule yields higher Sharpe ratios than the ARIMA-based strategy for all of the years in the sample except for 2001. As for 2001, in 36 out of the 101 cases considered, the ARIMA-based strategy gives higher Sharpe ratios than those from the NN-trading rule, in 18 cases the opposite is true, and in the remaining 36 cases both strategies yield the same ratios.

  16. Black Hole Hair Removal: Non-linear Analysis

    CERN Document Server

    Jatkar, Dileep P; Srivastava, Yogesh K

    2009-01-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  17. Black hole hair removal: non-linear analysis

    Science.gov (United States)

    Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.

    2010-02-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  18. Considering Complexity: Toward A Strategy for Non-linear Analysis

    Directory of Open Access Journals (Sweden)

    Ken Hatt

    2009-01-01

    Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.

  19. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, Rutwig, E-mail: rutwig@ucm.es [Faculted de Ciencias Matematicas Universidad Complutense, Instituto de Matemática Interdisciplinar and Departamento Geometría y Topología (Spain)

    2017-03-15

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  20. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    Science.gov (United States)

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events.